Optimizing Dispersal Corridors For The Cape Proteaceae Using Network Flow
We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple species and the social and financial constraint of minimizing land area requiring additional protection. Our method is based on the concept of...
Saved in:
Published in | Ecological applications Vol. 18; no. 5; pp. 1200 - 1211 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.2008
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple species and the social and financial constraint of minimizing land area requiring additional protection. Our method is based on the concept of network flow; we demonstrate its use by optimizing protected areas in the Western Cape of South Africa to facilitate autogenic species shifts in geographic range under climate change for a family of endemic plants, the Cape Proteaceae. In 2005, P. Williams and colleagues introduced a novel framework for this protected area design task. To ensure population viability, they assumed each species should have a range size of at least 100 km2 of predicted suitable conditions contained in protected areas at all times between 2000 and 2050. The goal was to design multiple dispersal corridors for each species, connecting suitable conditions between time periods, subject to each species' limited dispersal ability, and minimizing the total area requiring additional protection. We show that both minimum range size and limited dispersal abilities can be naturally modeled using the concept of network flow. This allows us to apply well-established tools from operations research and computer science for solving network flow problems. Using the same data and this novel modeling approach, we reduce the area requiring additional protection by a third compared to previous methods, from 4593 km2 to 3062 km , while still achieving the same conservation planning goals. We prove that this is the best solution mathematically possible: the given planning goals cannot be achieved with a smaller area, given our modeling assumptions and data. Our method allows for flexibility and refinement of the underlying climate-change, species-habitat-suitability, and dispersal models. In particular, we propose an alternate formalization of a minimum range size moving through time and use network flow to achieve the revised goals, again with the smallest possible newly protected area (2850 km2). We show how to relate total dispersal distance to probability of successful dispersal, and compute a trade-off curve between this quantity and the total amount of extra land that must be protected. |
---|---|
AbstractList | We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple species and the social and financial constraint of minimizing land area requiring additional protection. Our method is based on the concept of network flow; we demonstrate its use by optimizing protected areas in the Western Cape of South Africa to facilitate autogenic species shifts in geographic range under climate change for a family of endemic plants, the Cape Proteaceae. In 2005, P. Williams and colleagues introduced a novel framework for this protected area design task. To ensure population viability, they assumed each species should have a range size of at least 100 km2 of predicted suitable conditions contained in protected areas at all times between 2000 and 2050. The goal was to design multiple dispersal corridors for each species, connecting suitable conditions between time periods, subject to each species' limited dispersal ability, and minimizing the total area requiring additional protection. We show that both minimum range size and limited dispersal abilities can be naturally modeled using the concept of network flow. This allows us to apply well-established tools from operations research and computer science for solving network flow problems. Using the same data and this novel modeling approach, we reduce the area requiring additional protection by a third compared to previous methods, from 4593 km2 to 3062 km , while still achieving the same conservation planning goals. We prove that this is the best solution mathematically possible: the given planning goals cannot be achieved with a smaller area, given our modeling assumptions and data. Our method allows for flexibility and refinement of the underlying climate-change, species-habitat-suitability, and dispersal models. In particular, we propose an alternate formalization of a minimum range size moving through time and use network flow to achieve the revised goals, again with the smallest possible newly protected area (2850 km2). We show how to relate total dispersal distance to probability of successful dispersal, and compute a trade-off curve between this quantity and the total amount of extra land that must be protected. |
Author | Midgley, Guy Archer, Aaron Phillips, Steven J Williams, Paul |
Author_xml | – sequence: 1 fullname: Phillips, Steven J – sequence: 2 fullname: Williams, Paul – sequence: 3 fullname: Midgley, Guy – sequence: 4 fullname: Archer, Aaron |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18686581$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j81OwzAQhH0ooj9w4AXAL5Cy6zTr-IgChUoVRaI9R46zKYG2juyiCp6eosJc5vJ9I81Q9HZ-x0JcIYwxN3ALOoEM9Bh7YoCQYQKasC-GMb7DMUqpc9HHnHLKchyI2aLbt9v2u92t5X0bOw7RbmThQ2hrH6Kc-iCXbywL27F8CX7P1rFluYq_xjPvDz58yOnGHy7EWWM3kS__eiRW04dl8ZTMF4-z4m6euEmqITGudoBISA2xM7W2LmNtdE0p2wqUQa402dxwairlKKWmqicVkTXocmPVSFyfdrvPast12YV2a8NX-f_pCNycgMb60q5DG8vVqwJMAQkM6VT9ACXjVZY |
CitedBy_id | crossref_primary_10_1111_ddi_12562 crossref_primary_10_1016_j_biocon_2014_01_001 crossref_primary_10_1002_ece3_672 crossref_primary_10_1111_ddi_12208 crossref_primary_10_1371_journal_pone_0183648 crossref_primary_10_1007_s10584_016_1789_8 crossref_primary_10_1017_S0030605309000945 crossref_primary_10_1007_s10980_022_01445_5 crossref_primary_10_1371_journal_pone_0006392 crossref_primary_10_1016_j_tree_2015_03_008 crossref_primary_10_1111_conl_12036 crossref_primary_10_1111_j_1365_2664_2011_01970_x crossref_primary_10_1002_ece3_3788 crossref_primary_10_1111_j_1523_1739_2010_01633_x crossref_primary_10_1111_ddi_12572 crossref_primary_10_1016_j_biocon_2012_09_020 crossref_primary_10_1016_j_jas_2011_03_024 crossref_primary_10_1002_eap_2468 crossref_primary_10_1080_17550874_2018_1474281 crossref_primary_10_1111_j_1523_1739_2011_01753_x crossref_primary_10_1007_s11629_018_5138_4 crossref_primary_10_1016_j_gecco_2023_e02560 crossref_primary_10_1002_ece3_70231 crossref_primary_10_1002_fee_2043 crossref_primary_10_1111_ecog_05166 crossref_primary_10_1111_fwb_12874 crossref_primary_10_1016_j_biocon_2021_109330 crossref_primary_10_1111_j_1600_0587_2010_06430_x crossref_primary_10_1111_2041_210X_12470 crossref_primary_10_1111_j_1365_2486_2012_02700_x crossref_primary_10_1007_s10584_013_0699_2 crossref_primary_10_1146_annurev_environ_112321_114023 crossref_primary_10_7717_peerj_690 crossref_primary_10_1111_gcb_12123 crossref_primary_10_1007_s10980_018_0626_z crossref_primary_10_1111_cobi_12014 crossref_primary_10_1007_s10531_022_02413_w crossref_primary_10_1016_j_scitotenv_2019_06_153 crossref_primary_10_1007_s40823_016_0006_9 crossref_primary_10_1111_j_1523_1739_2009_01422_x crossref_primary_10_1111_2041_210X_12524 crossref_primary_10_1002_wcc_551 crossref_primary_10_1007_s12524_023_01758_1 crossref_primary_10_1111_j_1523_1739_2012_01824_x crossref_primary_10_1111_2041_210X_13455 crossref_primary_10_1111_ddi_12184 crossref_primary_10_12688_f1000research_6490_1 crossref_primary_10_1002_wea_3272 crossref_primary_10_1111_cobi_14204 crossref_primary_10_1016_j_apgeog_2023_103098 crossref_primary_10_1016_j_jnc_2019_01_007 crossref_primary_10_1371_journal_pone_0053315 crossref_primary_10_1002_wcc_295 crossref_primary_10_1111_j_1472_4642_2011_00875_x crossref_primary_10_1111_j_1939_7445_2012_00134_x crossref_primary_10_1007_s10531_017_1442_5 crossref_primary_10_1111_ele_12132 crossref_primary_10_1371_journal_pone_0283258 crossref_primary_10_1007_s10980_022_01490_0 crossref_primary_10_1111_1365_2664_13228 crossref_primary_10_1111_ddi_12196 crossref_primary_10_1111_gcb_14373 crossref_primary_10_1016_j_jenvman_2022_115172 crossref_primary_10_3390_land9100355 crossref_primary_10_1016_j_ecolmodel_2012_01_022 crossref_primary_10_1016_j_marpol_2020_103927 crossref_primary_10_1146_annurev_ecolsys_102209_144718 crossref_primary_10_1111_j_1365_2486_2010_02218_x crossref_primary_10_1186_1472_6785_11_12 crossref_primary_10_1126_science_327_5972_1452_b crossref_primary_10_1002_aqc_2857 crossref_primary_10_1016_j_landurbplan_2021_104169 crossref_primary_10_1111_1365_2664_12865 crossref_primary_10_7554_eLife_69395 crossref_primary_10_1111_j_1472_4642_2011_00851_x crossref_primary_10_1017_S0376892914000265 crossref_primary_10_1890_11_0213_1 crossref_primary_10_1111_gcb_15645 crossref_primary_10_1111_j_1755_263X_2011_00177_x crossref_primary_10_1111_nyas_12172 crossref_primary_10_1371_journal_pone_0084135 crossref_primary_10_1016_j_ecolmodel_2010_06_017 crossref_primary_10_1111_1365_2664_12230 crossref_primary_10_1007_s10980_014_0004_4 crossref_primary_10_1088_1748_9326_aacb85 crossref_primary_10_1007_s10113_012_0329_y crossref_primary_10_1111_j_1523_1739_2011_01788_x crossref_primary_10_3375_043_035_0120 crossref_primary_10_1111_ddi_12793 crossref_primary_10_1111_j_1523_1739_2011_01716_x crossref_primary_10_1111_j_1523_1739_2012_01929_x crossref_primary_10_1016_j_ecolmodel_2020_109036 crossref_primary_10_1016_j_landurbplan_2016_08_013 crossref_primary_10_1111_ecog_02712 crossref_primary_10_1111_2041_210X_13817 crossref_primary_10_1111_aec_12940 crossref_primary_10_1111_j_1461_0248_2008_01271_x crossref_primary_10_1111_2041_210X_12614 crossref_primary_10_1111_j_1523_1739_2011_01648_x crossref_primary_10_1111_cobi_12505 |
ContentType | Journal Article |
DBID | FBQ CGR CUY CVF ECM EIF NPM |
DOI | 10.1890/07-0507.1 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EndPage | 1211 |
ExternalDocumentID | 18686581 US201301609673 |
Genre | Journal Article |
GeographicLocations | South Africa |
GeographicLocations_xml | – name: South Africa |
GroupedDBID | --- -ET -~X .-4 ..I 0R~ 1OB 1OC 29G 2AX 33P 4.4 42X 53G 5GY 85S 8WZ A6W AAESR AAHBH AAHHS AAHKG AAHQN AAIHA AAIKC AAISJ AAKGQ AAMNL AAMNW AANLZ AASGY AAXRX AAYCA AAYJJ AAZKR ABAWQ ABBHK ABCUV ABEFU ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABSQW ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACGFS ACHIC ACHJO ACNCT ACPOU ACSTJ ACUBG ACXBN ACXQS ADBBV ADKYN ADMGS ADNWM ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFFPM AFGKR AFWVQ AFXHP AFZJQ AGHNM AGUYK AHBTC AHXOZ AI. AIDAL AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ANHSF AQVQM AS~ AZFZN AZVAB BFHJK BMXJE BRXPI CBGCD CS3 CUYZI DCZOG DDYGU DEVKO DRFUL DRSTM DU5 EBS ECGQY EJD F5P FBQ FVMVE GTFYD HGD HGLYW HQ2 HTVGU HVGLF H~9 IAG IAO IEA IEP IGH IOF IPSME ITC JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST L7B LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MV1 MVM MXFUL MXSTM NHB NXSMM O9- P0- P2P P2W PALCI RJQFR ROL RSZ SA0 SAMSI SUPJJ TN5 UKR V62 VH1 VOH WBKPD WH7 WOHZO WXSBR XIH XSW Y6R YV5 YXE YYM YYP Z0I ZCA ZCG ZO4 ZZTAW ~02 ~KM AAMMB AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c4370-9cdc011616f6ec9d7ac5e797d63eab0291eb76a89e39b2c636fbd4b66a91c89a2 |
ISSN | 1051-0761 |
IngestDate | Mon Jul 21 06:03:11 EDT 2025 Thu Apr 03 09:44:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4370-9cdc011616f6ec9d7ac5e797d63eab0291eb76a89e39b2c636fbd4b66a91c89a2 |
PMID | 18686581 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_18686581 fao_agris_US201301609673 |
PublicationCentury | 2000 |
PublicationDate | July 2008 |
PublicationDateYYYYMMDD | 2008-07-01 |
PublicationDate_xml | – month: 07 year: 2008 text: July 2008 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Ecological applications |
PublicationTitleAlternate | Ecol Appl |
PublicationYear | 2008 |
SSID | ssj0000222 |
Score | 2.2919037 |
Snippet | We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple... |
SourceID | pubmed fao |
SourceType | Index Database Publisher |
StartPage | 1200 |
SubjectTerms | Cape Proteaceae climate change conservation areas Conservation of Natural Resources conservation programs dispersal corridors indigenous species land use planning Magnoliopsida - physiology measurement network flow optimization plants Proteaceae |
Title | Optimizing Dispersal Corridors For The Cape Proteaceae Using Network Flow |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18686581 |
Volume | 18 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5WEbyIe13JwZuMdrbM5KjiCiqihd5K8pKRgralKtL-el-SWapWqF6GkLRhJt-Xl7ckL4TsS-Ax4LLn-cADL1KAcy6D2MsiAQCh9KVF-uaWXTaj61bcqlzZ9nTJmzyE0cRzJf9BFesQV3NK9g_Ilp1iBZYRX3wiwvicCuM7nO8vnZGx9lXHpPx-tdk-BoOOMnfoFDsIT0VfmxMBiCdooQ_erX-g6zaAH2TPvY8v_nko5eF4dHtS-MBdiVZFlsadN1-2HHbUU-4bv3gfVhwrCHMsBjk7Cv9DWu5VLUQmTmvPeEMmy9Qqam0FpO8Sk_6U3Cm3Wx2x79j4vMZ_g4Pef7EQmtz-qDJN0fotiXbRVCM1NCfM_ajGqVMs2C7YVH5InoAK3-iofB-TXDbvA7WQTPS-mSFWHXlcIou5HUGPHSmWyYzurpB5d7PoEEsORSytn1VHGfEPuSx_XSVXFXtoyR5asocieyiyhxr20Io91LKH5uyhhj1rpHl-9nh66eUXa3gQhUnD46DABOB8ljENXCUCYp3wRLFQC9kIuK9lwkTKdchlACxkmVSRZExwH1IugnUy2-11dZ3QNNIiaGA9qt1RolMus6ghtAhBoCUdq01Sx8FqiydcstrNh8AEyn2GdnMSbpINN4Ltvkus0i5GeOvXlm2yUHFwh8xlOJP1LqqFb3KP1M5P7vcstJ-6iGF1 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+dispersal+corridors+for+the+Cape+Proteaceae+using+network+flow&rft.jtitle=Ecological+applications&rft.au=Phillips%2C+Steven+J&rft.au=Williams%2C+Paul&rft.au=Midgley%2C+Guy&rft.au=Archer%2C+Aaron&rft.date=2008-07-01&rft.issn=1051-0761&rft.volume=18&rft.issue=5&rft.spage=1200&rft_id=info:doi/10.1890%2F07-0507.1&rft_id=info%3Apmid%2F18686581&rft_id=info%3Apmid%2F18686581&rft.externalDocID=18686581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon |