Optimizing Dispersal Corridors For The Cape Proteaceae Using Network Flow

We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple species and the social and financial constraint of minimizing land area requiring additional protection. Our method is based on the concept of...

Full description

Saved in:
Bibliographic Details
Published inEcological applications Vol. 18; no. 5; pp. 1200 - 1211
Main Authors Phillips, Steven J, Williams, Paul, Midgley, Guy, Archer, Aaron
Format Journal Article
LanguageEnglish
Published United States 01.07.2008
Subjects
Online AccessGet more information

Cover

Loading…
Abstract We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple species and the social and financial constraint of minimizing land area requiring additional protection. Our method is based on the concept of network flow; we demonstrate its use by optimizing protected areas in the Western Cape of South Africa to facilitate autogenic species shifts in geographic range under climate change for a family of endemic plants, the Cape Proteaceae. In 2005, P. Williams and colleagues introduced a novel framework for this protected area design task. To ensure population viability, they assumed each species should have a range size of at least 100 km2 of predicted suitable conditions contained in protected areas at all times between 2000 and 2050. The goal was to design multiple dispersal corridors for each species, connecting suitable conditions between time periods, subject to each species' limited dispersal ability, and minimizing the total area requiring additional protection. We show that both minimum range size and limited dispersal abilities can be naturally modeled using the concept of network flow. This allows us to apply well-established tools from operations research and computer science for solving network flow problems. Using the same data and this novel modeling approach, we reduce the area requiring additional protection by a third compared to previous methods, from 4593 km2 to 3062 km , while still achieving the same conservation planning goals. We prove that this is the best solution mathematically possible: the given planning goals cannot be achieved with a smaller area, given our modeling assumptions and data. Our method allows for flexibility and refinement of the underlying climate-change, species-habitat-suitability, and dispersal models. In particular, we propose an alternate formalization of a minimum range size moving through time and use network flow to achieve the revised goals, again with the smallest possible newly protected area (2850 km2). We show how to relate total dispersal distance to probability of successful dispersal, and compute a trade-off curve between this quantity and the total amount of extra land that must be protected.
AbstractList We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple species and the social and financial constraint of minimizing land area requiring additional protection. Our method is based on the concept of network flow; we demonstrate its use by optimizing protected areas in the Western Cape of South Africa to facilitate autogenic species shifts in geographic range under climate change for a family of endemic plants, the Cape Proteaceae. In 2005, P. Williams and colleagues introduced a novel framework for this protected area design task. To ensure population viability, they assumed each species should have a range size of at least 100 km2 of predicted suitable conditions contained in protected areas at all times between 2000 and 2050. The goal was to design multiple dispersal corridors for each species, connecting suitable conditions between time periods, subject to each species' limited dispersal ability, and minimizing the total area requiring additional protection. We show that both minimum range size and limited dispersal abilities can be naturally modeled using the concept of network flow. This allows us to apply well-established tools from operations research and computer science for solving network flow problems. Using the same data and this novel modeling approach, we reduce the area requiring additional protection by a third compared to previous methods, from 4593 km2 to 3062 km , while still achieving the same conservation planning goals. We prove that this is the best solution mathematically possible: the given planning goals cannot be achieved with a smaller area, given our modeling assumptions and data. Our method allows for flexibility and refinement of the underlying climate-change, species-habitat-suitability, and dispersal models. In particular, we propose an alternate formalization of a minimum range size moving through time and use network flow to achieve the revised goals, again with the smallest possible newly protected area (2850 km2). We show how to relate total dispersal distance to probability of successful dispersal, and compute a trade-off curve between this quantity and the total amount of extra land that must be protected.
Author Midgley, Guy
Archer, Aaron
Phillips, Steven J
Williams, Paul
Author_xml – sequence: 1
  fullname: Phillips, Steven J
– sequence: 2
  fullname: Williams, Paul
– sequence: 3
  fullname: Midgley, Guy
– sequence: 4
  fullname: Archer, Aaron
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18686581$$D View this record in MEDLINE/PubMed
BookMark eNo1j81OwzAQhH0ooj9w4AXAL5Cy6zTr-IgChUoVRaI9R46zKYG2juyiCp6eosJc5vJ9I81Q9HZ-x0JcIYwxN3ALOoEM9Bh7YoCQYQKasC-GMb7DMUqpc9HHnHLKchyI2aLbt9v2u92t5X0bOw7RbmThQ2hrH6Kc-iCXbywL27F8CX7P1rFluYq_xjPvDz58yOnGHy7EWWM3kS__eiRW04dl8ZTMF4-z4m6euEmqITGudoBISA2xM7W2LmNtdE0p2wqUQa402dxwairlKKWmqicVkTXocmPVSFyfdrvPast12YV2a8NX-f_pCNycgMb60q5DG8vVqwJMAQkM6VT9ACXjVZY
CitedBy_id crossref_primary_10_1111_ddi_12562
crossref_primary_10_1016_j_biocon_2014_01_001
crossref_primary_10_1002_ece3_672
crossref_primary_10_1111_ddi_12208
crossref_primary_10_1371_journal_pone_0183648
crossref_primary_10_1007_s10584_016_1789_8
crossref_primary_10_1017_S0030605309000945
crossref_primary_10_1007_s10980_022_01445_5
crossref_primary_10_1371_journal_pone_0006392
crossref_primary_10_1016_j_tree_2015_03_008
crossref_primary_10_1111_conl_12036
crossref_primary_10_1111_j_1365_2664_2011_01970_x
crossref_primary_10_1002_ece3_3788
crossref_primary_10_1111_j_1523_1739_2010_01633_x
crossref_primary_10_1111_ddi_12572
crossref_primary_10_1016_j_biocon_2012_09_020
crossref_primary_10_1016_j_jas_2011_03_024
crossref_primary_10_1002_eap_2468
crossref_primary_10_1080_17550874_2018_1474281
crossref_primary_10_1111_j_1523_1739_2011_01753_x
crossref_primary_10_1007_s11629_018_5138_4
crossref_primary_10_1016_j_gecco_2023_e02560
crossref_primary_10_1002_ece3_70231
crossref_primary_10_1002_fee_2043
crossref_primary_10_1111_ecog_05166
crossref_primary_10_1111_fwb_12874
crossref_primary_10_1016_j_biocon_2021_109330
crossref_primary_10_1111_j_1600_0587_2010_06430_x
crossref_primary_10_1111_2041_210X_12470
crossref_primary_10_1111_j_1365_2486_2012_02700_x
crossref_primary_10_1007_s10584_013_0699_2
crossref_primary_10_1146_annurev_environ_112321_114023
crossref_primary_10_7717_peerj_690
crossref_primary_10_1111_gcb_12123
crossref_primary_10_1007_s10980_018_0626_z
crossref_primary_10_1111_cobi_12014
crossref_primary_10_1007_s10531_022_02413_w
crossref_primary_10_1016_j_scitotenv_2019_06_153
crossref_primary_10_1007_s40823_016_0006_9
crossref_primary_10_1111_j_1523_1739_2009_01422_x
crossref_primary_10_1111_2041_210X_12524
crossref_primary_10_1002_wcc_551
crossref_primary_10_1007_s12524_023_01758_1
crossref_primary_10_1111_j_1523_1739_2012_01824_x
crossref_primary_10_1111_2041_210X_13455
crossref_primary_10_1111_ddi_12184
crossref_primary_10_12688_f1000research_6490_1
crossref_primary_10_1002_wea_3272
crossref_primary_10_1111_cobi_14204
crossref_primary_10_1016_j_apgeog_2023_103098
crossref_primary_10_1016_j_jnc_2019_01_007
crossref_primary_10_1371_journal_pone_0053315
crossref_primary_10_1002_wcc_295
crossref_primary_10_1111_j_1472_4642_2011_00875_x
crossref_primary_10_1111_j_1939_7445_2012_00134_x
crossref_primary_10_1007_s10531_017_1442_5
crossref_primary_10_1111_ele_12132
crossref_primary_10_1371_journal_pone_0283258
crossref_primary_10_1007_s10980_022_01490_0
crossref_primary_10_1111_1365_2664_13228
crossref_primary_10_1111_ddi_12196
crossref_primary_10_1111_gcb_14373
crossref_primary_10_1016_j_jenvman_2022_115172
crossref_primary_10_3390_land9100355
crossref_primary_10_1016_j_ecolmodel_2012_01_022
crossref_primary_10_1016_j_marpol_2020_103927
crossref_primary_10_1146_annurev_ecolsys_102209_144718
crossref_primary_10_1111_j_1365_2486_2010_02218_x
crossref_primary_10_1186_1472_6785_11_12
crossref_primary_10_1126_science_327_5972_1452_b
crossref_primary_10_1002_aqc_2857
crossref_primary_10_1016_j_landurbplan_2021_104169
crossref_primary_10_1111_1365_2664_12865
crossref_primary_10_7554_eLife_69395
crossref_primary_10_1111_j_1472_4642_2011_00851_x
crossref_primary_10_1017_S0376892914000265
crossref_primary_10_1890_11_0213_1
crossref_primary_10_1111_gcb_15645
crossref_primary_10_1111_j_1755_263X_2011_00177_x
crossref_primary_10_1111_nyas_12172
crossref_primary_10_1371_journal_pone_0084135
crossref_primary_10_1016_j_ecolmodel_2010_06_017
crossref_primary_10_1111_1365_2664_12230
crossref_primary_10_1007_s10980_014_0004_4
crossref_primary_10_1088_1748_9326_aacb85
crossref_primary_10_1007_s10113_012_0329_y
crossref_primary_10_1111_j_1523_1739_2011_01788_x
crossref_primary_10_3375_043_035_0120
crossref_primary_10_1111_ddi_12793
crossref_primary_10_1111_j_1523_1739_2011_01716_x
crossref_primary_10_1111_j_1523_1739_2012_01929_x
crossref_primary_10_1016_j_ecolmodel_2020_109036
crossref_primary_10_1016_j_landurbplan_2016_08_013
crossref_primary_10_1111_ecog_02712
crossref_primary_10_1111_2041_210X_13817
crossref_primary_10_1111_aec_12940
crossref_primary_10_1111_j_1461_0248_2008_01271_x
crossref_primary_10_1111_2041_210X_12614
crossref_primary_10_1111_j_1523_1739_2011_01648_x
crossref_primary_10_1111_cobi_12505
ContentType Journal Article
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1890/07-0507.1
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EndPage 1211
ExternalDocumentID 18686581
US201301609673
Genre Journal Article
GeographicLocations South Africa
GeographicLocations_xml – name: South Africa
GroupedDBID ---
-ET
-~X
.-4
..I
0R~
1OB
1OC
29G
2AX
33P
4.4
42X
53G
5GY
85S
8WZ
A6W
AAESR
AAHBH
AAHHS
AAHKG
AAHQN
AAIHA
AAIKC
AAISJ
AAKGQ
AAMNL
AAMNW
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABAWQ
ABBHK
ABCUV
ABEFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACGFS
ACHIC
ACHJO
ACNCT
ACPOU
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADNWM
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFFPM
AFGKR
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AI.
AIDAL
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ANHSF
AQVQM
AS~
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CBGCD
CS3
CUYZI
DCZOG
DDYGU
DEVKO
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F5P
FBQ
FVMVE
GTFYD
HGD
HGLYW
HQ2
HTVGU
HVGLF
H~9
IAG
IAO
IEA
IEP
IGH
IOF
IPSME
ITC
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MV1
MVM
MXFUL
MXSTM
NHB
NXSMM
O9-
P0-
P2P
P2W
PALCI
RJQFR
ROL
RSZ
SA0
SAMSI
SUPJJ
TN5
UKR
V62
VH1
VOH
WBKPD
WH7
WOHZO
WXSBR
XIH
XSW
Y6R
YV5
YXE
YYM
YYP
Z0I
ZCA
ZCG
ZO4
ZZTAW
~02
~KM
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c4370-9cdc011616f6ec9d7ac5e797d63eab0291eb76a89e39b2c636fbd4b66a91c89a2
ISSN 1051-0761
IngestDate Mon Jul 21 06:03:11 EDT 2025
Thu Apr 03 09:44:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4370-9cdc011616f6ec9d7ac5e797d63eab0291eb76a89e39b2c636fbd4b66a91c89a2
PMID 18686581
PageCount 12
ParticipantIDs pubmed_primary_18686581
fao_agris_US201301609673
PublicationCentury 2000
PublicationDate July 2008
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: July 2008
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ecological applications
PublicationTitleAlternate Ecol Appl
PublicationYear 2008
SSID ssj0000222
Score 2.2919037
Snippet We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple...
SourceID pubmed
fao
SourceType Index Database
Publisher
StartPage 1200
SubjectTerms Cape Proteaceae
climate change
conservation areas
Conservation of Natural Resources
conservation programs
dispersal corridors
indigenous species
land use planning
Magnoliopsida - physiology
measurement
network flow
optimization
plants
Proteaceae
Title Optimizing Dispersal Corridors For The Cape Proteaceae Using Network Flow
URI https://www.ncbi.nlm.nih.gov/pubmed/18686581
Volume 18
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5WEbyIe13JwZuMdrbM5KjiCiqihd5K8pKRgralKtL-el-SWapWqF6GkLRhJt-Xl7ckL4TsS-Ax4LLn-cADL1KAcy6D2MsiAQCh9KVF-uaWXTaj61bcqlzZ9nTJmzyE0cRzJf9BFesQV3NK9g_Ilp1iBZYRX3wiwvicCuM7nO8vnZGx9lXHpPx-tdk-BoOOMnfoFDsIT0VfmxMBiCdooQ_erX-g6zaAH2TPvY8v_nko5eF4dHtS-MBdiVZFlsadN1-2HHbUU-4bv3gfVhwrCHMsBjk7Cv9DWu5VLUQmTmvPeEMmy9Qqam0FpO8Sk_6U3Cm3Wx2x79j4vMZ_g4Pef7EQmtz-qDJN0fotiXbRVCM1NCfM_ajGqVMs2C7YVH5InoAK3-iofB-TXDbvA7WQTPS-mSFWHXlcIou5HUGPHSmWyYzurpB5d7PoEEsORSytn1VHGfEPuSx_XSVXFXtoyR5asocieyiyhxr20Io91LKH5uyhhj1rpHl-9nh66eUXa3gQhUnD46DABOB8ljENXCUCYp3wRLFQC9kIuK9lwkTKdchlACxkmVSRZExwH1IugnUy2-11dZ3QNNIiaGA9qt1RolMus6ghtAhBoCUdq01Sx8FqiydcstrNh8AEyn2GdnMSbpINN4Ltvkus0i5GeOvXlm2yUHFwh8xlOJP1LqqFb3KP1M5P7vcstJ-6iGF1
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+dispersal+corridors+for+the+Cape+Proteaceae+using+network+flow&rft.jtitle=Ecological+applications&rft.au=Phillips%2C+Steven+J&rft.au=Williams%2C+Paul&rft.au=Midgley%2C+Guy&rft.au=Archer%2C+Aaron&rft.date=2008-07-01&rft.issn=1051-0761&rft.volume=18&rft.issue=5&rft.spage=1200&rft_id=info:doi/10.1890%2F07-0507.1&rft_id=info%3Apmid%2F18686581&rft_id=info%3Apmid%2F18686581&rft.externalDocID=18686581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon