Privacy and Security in Federated Learning: A Survey
In recent years, privacy concerns have become a serious issue for companies wishing to protect economic models and comply with end-user expectations. In the same vein, some countries now impose, by law, constraints on data use and protection. Such context thus encourages machine learning to evolve f...
Saved in:
Published in | Applied sciences Vol. 12; no. 19; p. 9901 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Multidisciplinary digital publishing institute (MDPI)
01.10.2022
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app12199901 |
Cover
Abstract | In recent years, privacy concerns have become a serious issue for companies wishing to protect economic models and comply with end-user expectations. In the same vein, some countries now impose, by law, constraints on data use and protection. Such context thus encourages machine learning to evolve from a centralized data and computation approach to decentralized approaches. Specifically, Federated Learning (FL) has been recently developed as a solution to improve privacy, relying on local data to train local models, which collaborate to update a global model that improves generalization behaviors. However, by definition, no computer system is entirely safe. Security issues, such as data poisoning and adversarial attack, can introduce bias in the model predictions. In addition, it has recently been shown that the reconstruction of private raw data is still possible. This paper presents a comprehensive study concerning various privacy and security issues related to federated learning. Then, we identify the state-of-the-art approaches that aim to counteract these problems. Findings from our study confirm that the current major security threats are poisoning, backdoor, and Generative Adversarial Network (GAN)-based attacks, while inference-based attacks are the most critical to the privacy of FL. Finally, we identify ongoing research directions on the topic. This paper could be used as a reference to promote cybersecurity-related research on designing FL-based solutions for alleviating future challenges. |
---|---|
AbstractList | In recent years, privacy concerns have become a serious issue for companies wishing to protect economic models and comply with end-user expectations. In the same vein, some countries now impose, by law, constraints on data use and protection. Such context thus encourages machine learning to evolve from a centralized data and computation approach to decentralized approaches. Specifically, Federated Learning (FL) has been recently developed as a solution to improve privacy, relying on local data to train local models, which collaborate to update a global model that improves generalization behaviors. However, by definition, no computer system is entirely safe. Security issues, such as data poisoning and adversarial attack, can introduce bias in the model predictions. In addition, it has recently been shown that the reconstruction of private raw data is still possible. This paper presents a comprehensive study concerning various privacy and security issues related to federated learning. Then, we identify the state-of-the-art approaches that aim to counteract these problems. Findings from our study confirm that the current major security threats are poisoning, backdoor, and Generative Adversarial Network (GAN)-based attacks, while inference-based attacks are the most critical to the privacy of FL. Finally, we identify ongoing research directions on the topic. This paper could be used as a reference to promote cybersecurity-related research on designing FL-based solutions for alleviating future challenges. |
Author | Gosselin, Rémi Benoit, Alexandre Vieu, Loïc Loukil, Faiza |
Author_xml | – sequence: 1 givenname: Rémi surname: Gosselin fullname: Gosselin, Rémi – sequence: 2 givenname: Loïc surname: Vieu fullname: Vieu, Loïc – sequence: 3 givenname: Faiza orcidid: 0000-0003-4753-060X surname: Loukil fullname: Loukil, Faiza – sequence: 4 givenname: Alexandre orcidid: 0000-0002-0627-4948 surname: Benoit fullname: Benoit, Alexandre |
BackLink | https://hal.science/hal-03794100$$DView record in HAL |
BookMark | eNptkFtLw0AQhRepYK198g_kVSS6t-5mfSvF2kJAofq8TPZSt8SkbNJC_r2pFanivMxw5jsHZi7RoKorh9A1wXeMKXwP2y2hRCmFyRkaUixFyjiRg5P5Ao2bZoP7UoRlBA8Rf4lhD6ZLoLLJypldDG2XhCqZO-sitM4muYNYhWr9kEyT1S7uXXeFzj2UjRt_9xF6mz--zhZp_vy0nE3z1HAm2tRbxjChYISwE04oV7YQ1HnOLYgJwY7ZfukUNR4KL4oJt9gWjDPsFAgr2Qgtj7m2ho3exvABsdM1BP0l1HGtIbbBlE57y7ln_VVUZjxjBiTPMOVSUlp4meE-6-aY9Q7lr6jFNNcHDTOpOMF4T3r29siaWDdNdP7HQLA-_Fqf_LqnyR_ahBbaUFdthFD-6_kEj3aAkg |
CitedBy_id | crossref_primary_10_1002_spy2_403 crossref_primary_10_1145_3701724 crossref_primary_10_2139_ssrn_4945516 crossref_primary_10_1007_s10462_024_10970_5 crossref_primary_10_1016_j_inffus_2024_102598 crossref_primary_10_1016_j_aei_2025_103179 crossref_primary_10_3390_foods13060846 crossref_primary_10_3390_fi16110415 crossref_primary_10_1007_s11390_024_3702_7 crossref_primary_10_14201_adcaij_31647 crossref_primary_10_3390_en17215337 crossref_primary_10_1016_j_future_2024_06_023 crossref_primary_10_1177_2057150X251314299 crossref_primary_10_3390_fi15120383 crossref_primary_10_1109_MCI_2024_3487955 crossref_primary_10_1109_JIOT_2023_3347552 crossref_primary_10_3390_electronics12214463 crossref_primary_10_3390_jsan14010009 crossref_primary_10_1016_j_softx_2024_101765 crossref_primary_10_1109_JIOT_2024_3492074 crossref_primary_10_1016_j_neucom_2024_127427 crossref_primary_10_1093_gigascience_giae021 crossref_primary_10_1109_ACCESS_2024_3404948 crossref_primary_10_1049_cth2_12761 crossref_primary_10_3390_s23031252 crossref_primary_10_3390_app132111722 crossref_primary_10_32604_cmc_2024_049846 crossref_primary_10_1016_j_ejcped_2024_100196 crossref_primary_10_1016_j_eswa_2024_126233 crossref_primary_10_1109_TAI_2024_3426408 crossref_primary_10_1016_j_cose_2024_103801 crossref_primary_10_1016_j_iotcps_2023_04_001 crossref_primary_10_1016_j_iot_2023_100947 crossref_primary_10_3390_bdcc6040127 crossref_primary_10_1080_07366981_2023_2301832 crossref_primary_10_1007_s10586_024_04567_4 crossref_primary_10_3390_electronics13183672 crossref_primary_10_7717_peerj_cs_1778 crossref_primary_10_1016_j_bspc_2023_105416 crossref_primary_10_1016_j_engappai_2023_107166 crossref_primary_10_3390_pr12061262 crossref_primary_10_1007_s00521_023_09160_1 crossref_primary_10_1109_ACCESS_2024_3418016 crossref_primary_10_1109_ACCESS_2024_3458437 crossref_primary_10_1038_s41598_024_70375_w crossref_primary_10_1016_j_rineng_2024_103886 crossref_primary_10_1109_ACCESS_2024_3388992 crossref_primary_10_1016_j_comnet_2023_109650 crossref_primary_10_1109_ACCESS_2023_3238823 |
Cites_doi | 10.23919/APNOMS.2019.8892848 10.1109/ICPADS47876.2019.00042 10.1038/s41591-022-01768-5 10.1145/3457607 10.1016/j.cose.2021.102402 10.1109/SP.2019.00065 10.1109/JIOT.2020.3017377 10.1109/TII.2019.2945367 10.1109/TrustCom/BigDataSE.2019.00057 10.1109/TPDS.2020.3044223 10.1016/j.future.2020.10.007 10.1109/JIOT.2020.3023126 10.1145/3133956.3134012 10.1109/TIFS.2019.2929409 10.1007/978-3-030-63076-8_1 10.1109/SP.2019.00029 10.1007/978-3-030-00470-5_13 10.1007/s00105-021-04940-z 10.1007/978-3-030-58951-6_24 10.3390/computers9010008 10.1561/2200000083 10.1038/s41591-021-01506-3 10.1109/INFOCOM.2019.8737416 10.1038/s41586-021-03583-3 10.1109/JSAC.2020.3000372 10.1016/j.cie.2021.107174 10.1109/LCOMM.2019.2921755 10.1016/j.future.2021.10.016 10.1109/TII.2022.3170348 10.1109/IJCNN48605.2020.9207469 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC DOA |
DOI | 10.3390/app12199901 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Computer Science |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_fd44f3913278483ca7480247722bf780 oai_HAL_hal_03794100v1 10_3390_app12199901 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS 1XC PUEGO |
ID | FETCH-LOGICAL-c436t-fd33012ac66d541249db62ef44da6510e3d2ace92cfabf6b54d0db3430e9a6d73 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:27:20 EDT 2025 Fri May 09 12:20:19 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Tue Jul 01 00:41:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-fd33012ac66d541249db62ef44da6510e3d2ace92cfabf6b54d0db3430e9a6d73 |
ORCID | 0000-0002-0627-4948 0000-0003-4753-060X |
OpenAccessLink | https://doaj.org/article/fd44f3913278483ca7480247722bf780 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd44f3913278483ca7480247722bf780 hal_primary_oai_HAL_hal_03794100v1 crossref_primary_10_3390_app12199901 crossref_citationtrail_10_3390_app12199901 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | Multidisciplinary digital publishing institute (MDPI) MDPI AG |
Publisher_xml | – name: Multidisciplinary digital publishing institute (MDPI) – name: MDPI AG |
References | ref_50 Hathaway (ref_23) 2012; 100 Aono (ref_47) 2017; 13 Zhu (ref_7) 2019; 32 Kairouz (ref_10) 2021; 14 Truong (ref_38) 2021; 110 ref_58 ref_13 ref_11 ref_53 Crosby (ref_34) 2016; 2 ref_52 ref_19 ref_17 ref_16 Schultze (ref_63) 2021; 594 ref_15 ref_59 Geiping (ref_41) 2020; 33 Mehrabi (ref_57) 2021; 54 ref_25 Shayan (ref_4) 2020; 32 Ranzato (ref_60) 2021; Volume 34 Yang (ref_9) 2019; 13 ref_22 ref_21 ref_20 ref_29 Becker (ref_62) 2022; 73 ref_28 ref_26 Zhao (ref_55) 2020; 8 Abdellatif (ref_51) 2022; 128 ref_35 ref_33 ref_32 ref_31 Xu (ref_54) 2019; 15 Sun (ref_12) 2020; 60 Li (ref_18) 2020; 2 ref_39 ref_37 Song (ref_43) 2020; 38 Dayan (ref_14) 2021; 27 Mothukuri (ref_24) 2021; 115 ref_46 ref_45 ref_44 Hao (ref_56) 2019; 16 ref_42 ref_40 ref_1 Kim (ref_36) 2019; 24 ref_3 ref_49 Saldanha (ref_61) 2022; 28 ref_48 Zhang (ref_27) 2020; 8 Wang (ref_2) 2021; 155 ref_8 ref_5 Hayes (ref_30) 2018; 31 ref_6 |
References_xml | – ident: ref_35 doi: 10.23919/APNOMS.2019.8892848 – ident: ref_29 doi: 10.1109/ICPADS47876.2019.00042 – ident: ref_49 – volume: Volume 34 start-page: 11220 year: 2021 ident: ref_60 article-title: Federated Reconstruction: Partially Local Federated Learning publication-title: Proceedings of the Advances in Neural Information Processing Systems, Virtual Conference – ident: ref_5 – volume: 28 start-page: 1232 year: 2022 ident: ref_61 article-title: Swarm learning for decentralized artificial intelligence in cancer histopathology publication-title: Nat. Med. doi: 10.1038/s41591-022-01768-5 – volume: 54 start-page: 1 year: 2021 ident: ref_57 article-title: A survey on bias and fairness in machine learning publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3457607 – ident: ref_16 – volume: 110 start-page: 102402 year: 2021 ident: ref_38 article-title: Privacy preservation in federated learning: An insightful survey from the GDPR perspective publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102402 – volume: 13 start-page: 1333 year: 2017 ident: ref_47 article-title: Privacy-preserving deep learning via additively homomorphic encryption publication-title: IEEE Trans. Inf. Forensics Secur. – ident: ref_39 doi: 10.1109/SP.2019.00065 – ident: ref_42 – volume: 8 start-page: 1817 year: 2020 ident: ref_55 article-title: Privacy-preserving blockchain-based federated learning for IoT devices publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3017377 – volume: 16 start-page: 6532 year: 2019 ident: ref_56 article-title: Efficient and privacy-enhanced federated learning for industrial artificial intelligence publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2945367 – ident: ref_58 – ident: ref_6 doi: 10.1109/TrustCom/BigDataSE.2019.00057 – ident: ref_8 – volume: 60 start-page: 146 year: 2020 ident: ref_12 article-title: Privacy and security in the big data paradigm publication-title: J. Comput. Inf. Syst. – ident: ref_31 – volume: 32 start-page: 1513 year: 2020 ident: ref_4 article-title: Biscotti: A blockchain system for private and secure federated learning publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2020.3044223 – volume: 115 start-page: 619 year: 2021 ident: ref_24 article-title: A survey on security and privacy of federated learning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.10.007 – ident: ref_52 – volume: 8 start-page: 3310 year: 2020 ident: ref_27 article-title: Poisongan: Generative poisoning attacks against federated learning in edge computing systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3023126 – ident: ref_46 doi: 10.1145/3133956.3134012 – ident: ref_48 – volume: 2 start-page: 429 year: 2020 ident: ref_18 article-title: Federated optimization in heterogeneous networks publication-title: Proc. Mach. Learn. Syst. – volume: 100 start-page: 817 year: 2012 ident: ref_23 article-title: The law of cyber-attack publication-title: Calif. Law Rev. – volume: 15 start-page: 911 year: 2019 ident: ref_54 article-title: Verifynet: Secure and verifiable federated learning publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2929409 – ident: ref_45 doi: 10.1016/j.cose.2021.102402 – ident: ref_13 – ident: ref_25 doi: 10.1007/978-3-030-63076-8_1 – ident: ref_17 – ident: ref_40 doi: 10.1109/SP.2019.00029 – ident: ref_20 – ident: ref_32 doi: 10.1007/978-3-030-00470-5_13 – ident: ref_28 – ident: ref_53 – volume: 73 start-page: 323 year: 2022 ident: ref_62 article-title: Swarm learning for decentralized healthcare publication-title: Der Hautarzt doi: 10.1007/s00105-021-04940-z – ident: ref_26 doi: 10.1007/978-3-030-58951-6_24 – ident: ref_3 – volume: 33 start-page: 16937 year: 2020 ident: ref_41 article-title: Inverting gradients-how easy is it to break privacy in federated learning? publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_11 – ident: ref_1 doi: 10.3390/computers9010008 – volume: 14 start-page: 1 year: 2021 ident: ref_10 article-title: Advances and open problems in federated learning publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000083 – volume: 27 start-page: 1735 year: 2021 ident: ref_14 article-title: Federated learning for predicting clinical outcomes in patients with COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-021-01506-3 – ident: ref_21 – ident: ref_44 doi: 10.1109/INFOCOM.2019.8737416 – volume: 594 start-page: 265 year: 2021 ident: ref_63 article-title: Swarm learning for decentralized and confidential clinical machine learning publication-title: Nature doi: 10.1038/s41586-021-03583-3 – volume: 2 start-page: 71 year: 2016 ident: ref_34 article-title: Blockchain technology: Beyond bitcoin publication-title: Appl. Innov. – ident: ref_50 – ident: ref_33 – volume: 13 start-page: 1 year: 2019 ident: ref_9 article-title: Federated learning publication-title: Synth. Lect. Artif. Intell. Mach. Learn. – volume: 38 start-page: 2430 year: 2020 ident: ref_43 article-title: Analyzing user-level privacy attack against federated learning publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3000372 – volume: 31 start-page: 6604 year: 2018 ident: ref_30 article-title: Contamination attacks and mitigation in multi-party machine learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 155 start-page: 107174 year: 2021 ident: ref_2 article-title: The evolution of the Internet of Things (IoT) over the past 20 years publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107174 – ident: ref_15 – volume: 24 start-page: 1279 year: 2019 ident: ref_36 article-title: Blockchained on-device federated learning publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2921755 – volume: 128 start-page: 406 year: 2022 ident: ref_51 article-title: Communication-efficient hierarchical federated learning for IoT heterogeneous systems with imbalanced data publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.10.016 – ident: ref_37 doi: 10.1109/TII.2022.3170348 – ident: ref_19 – ident: ref_22 – ident: ref_59 doi: 10.1109/IJCNN48605.2020.9207469 – volume: 32 start-page: 14774 year: 2019 ident: ref_7 article-title: Deep leakage from gradients publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0000913810 |
Score | 2.5444224 |
Snippet | In recent years, privacy concerns have become a serious issue for companies wishing to protect economic models and comply with end-user expectations. In the... |
SourceID | doaj hal crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 9901 |
SubjectTerms | Computer Science deep learning distributed learning federated learning machine learning privacy survey |
Title | Privacy and Security in Federated Learning: A Survey |
URI | https://hal.science/hal-03794100 https://doaj.org/article/fd44f3913278483ca7480247722bf780 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EL3oQWxXroyziQYVgsrvdbLxVsRQRER_gLexTCxKltoX-e2c3W4kgePG6mTyYL7Mzk8x8g9CRJkIzZQgYkqAJ6xmXSC5JYhSRlkuVERkKZG_58IldP_eeG6O-fE1YTQ9cK-7MGcYcLSBpygUTVMucCfArEBQS5XIRsvW0SBvJVNiD4QSRpXVDHoW83v8PzojvuY_jXxYuKDD1g2N5XXxIDY5lsIHWY0SI-_WTtNCSrdporcET2EataIGf-DjSRJ9sInY3Hs2knmNZGfwQx9DhUYUHnh8CQkiDI3nqyznu44fpeGbnW-hpcPV4OUziDIREM8oniTMUTJBIzbnphUnRRnFiHWNGcrAnSw0ctAXRTirHVY-Z1CjKaGoLyU1Ot9Fy9V7ZHYS1pRaCnTyXRLMcEBIQ3BllXEF55gTpoNOFWkodCcL9nIq3EhIFr8OyocMOwLwQ_qh5MX4Xu_D6_RbxZNZhASAuI8TlXxB30CGg8-Maw_5N6ddSCvtJlqazbPc_7rSHVolvbwjFevtoeTKe2gMIOiaqi1Yurm7v7rvhPfsCCsbRrQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+and+Security+in+Federated+Learning%3A+A+Survey&rft.jtitle=Applied+sciences&rft.au=Gosselin%2C+R%C3%A9mi&rft.au=Vieu%2C+Lo%C3%AFc&rft.au=Loukil%2C+Faiza&rft.au=Benoit%2C+A&rft.date=2022-10-01&rft.pub=Multidisciplinary+digital+publishing+institute+%28MDPI%29&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390%2Fapp12199901&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03794100v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |