Morphology, flow and heat transfer in triply periodic minimal surface based porous structures

Porous structures are ubiquitous in many thermal management and energy conversion systems. The morphology of a porous structure has significant impact on the fluid flow, heat/mass transport, and strength performance. However, the available fabrication techniques are not capable of directly tailoring...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 170; p. 120902
Main Authors Cheng, Zhilong, Xu, Ruina, Jiang, Pei-Xue
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porous structures are ubiquitous in many thermal management and energy conversion systems. The morphology of a porous structure has significant impact on the fluid flow, heat/mass transport, and strength performance. However, the available fabrication techniques are not capable of directly tailoring porous structures with well-controlled pore features and functional graded pore morphology, thereby limiting the performance enhancements for these systems. In this study, a triply periodic minimal surface (TPMS) based method was developed to customize the morphology of porous media with well-controlled pore features and to fabricate these parts with additive manufacturing. Porous structures with designed pore parameters were built based on the mathematically defined iWP surface, primitive surface, diamond surface and gyroid surface. Before performing flow and heat transfer simulations, morphological analysis was conducted to establish the connections between the geometrical parameters and the performance of the porous structure (flow resistance, heat transfer, and strength). The porous structures were compared in terms of their structural strength, specific pressure drop, interstitial/volumetric heat transfer coefficients and the ratio of the Colburn factor relative to the friction factor. The TPMS porous structures indicated that much higher strength than the simple cubic packing structure (approximation of sintered metal particles) due to their reasonable struct connectivity. Computations demonstrated that the type P structure had the lowest flow resistance and highest comprehensive heat transfer coefficient (j/f). The high specific surface area, continuous changes in the flow direction, periodic mixing/redistribution and flow acceleration contributed to the higher volumetric heat transfer coefficients in the type W/G structures.
AbstractList Porous structures are ubiquitous in many thermal management and energy conversion systems. The morphology of a porous structure has significant impact on the fluid flow, heat/mass transport, and strength performance. However, the available fabrication techniques are not capable of directly tailoring porous structures with well-controlled pore features and functional graded pore morphology, thereby limiting the performance enhancements for these systems. In this study, a triply periodic minimal surface (TPMS) based method was developed to customize the morphology of porous media with well-controlled pore features and to fabricate these parts with additive manufacturing. Porous structures with designed pore parameters were built based on the mathematically defined iWP surface, primitive surface, diamond surface and gyroid surface. Before performing flow and heat transfer simulations, morphological analysis was conducted to establish the connections between the geometrical parameters and the performance of the porous structure (flow resistance, heat transfer, and strength). The porous structures were compared in terms of their structural strength, specific pressure drop, interstitial/volumetric heat transfer coefficients and the ratio of the Colburn factor relative to the friction factor. The TPMS porous structures indicated that much higher strength than the simple cubic packing structure (approximation of sintered metal particles) due to their reasonable struct connectivity. Computations demonstrated that the type P structure had the lowest flow resistance and highest comprehensive heat transfer coefficient (j/f). The high specific surface area, continuous changes in the flow direction, periodic mixing/redistribution and flow acceleration contributed to the higher volumetric heat transfer coefficients in the type W/G structures.
ArticleNumber 120902
Author Jiang, Pei-Xue
Cheng, Zhilong
Xu, Ruina
Author_xml – sequence: 1
  givenname: Zhilong
  surname: Cheng
  fullname: Cheng, Zhilong
– sequence: 2
  givenname: Ruina
  surname: Xu
  fullname: Xu, Ruina
– sequence: 3
  givenname: Pei-Xue
  surname: Jiang
  fullname: Jiang, Pei-Xue
  email: jiangpx@tsinghua.edu.cn
BookMark eNqNkMtOwzAQRS1UJErhHyyxYUHK2HnvQBVPFbGBJbIce0wdpXGwE1D_nlSBFRtWM6O5OjP3HpNZ61ok5JzBkgHLLuulrTco-60MofeyDQb9kgNnS8ahBH5A5qzIy4izopyROQDLozJmcESOQ6j3IyTZnLw9Od9tXOPedxfUNO6LylbTPZj-Uqltx952zY526K3TVtGtbe1WNjQM3kiFtJIBNe2cd0Og4z-D6geP4YQcGtkEPP2pC_J6e_Oyuo_Wz3cPq-t1pJI46yNT5kbnIJUGlRcQpxlLEqhixFIZyJAblmaJ4bkxMaBMCoSy0lXFM4wLnVTxgpxN3M67jwFDL2o3-HY8KXjKWJxnSVqOqqtJpbwLwaMRnR9d-J1gIPahilr8DVXsQxVTqCPicULg6ObTjtugLLYKtfWoeqGd_T_sG6GakG8
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2024_125824
crossref_primary_10_1016_j_matdes_2022_111413
crossref_primary_10_1016_j_enss_2022_04_005
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123642
crossref_primary_10_1360_SST_2023_0073
crossref_primary_10_3390_ma17051137
crossref_primary_10_1016_j_ces_2024_120291
crossref_primary_10_1016_j_addma_2023_103778
crossref_primary_10_1002_ente_202301287
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125863
crossref_primary_10_1016_j_icheatmasstransfer_2023_106976
crossref_primary_10_1016_j_surfcoat_2023_129819
crossref_primary_10_1002_advs_202205723
crossref_primary_10_1016_j_applthermaleng_2024_123828
crossref_primary_10_1016_j_enconman_2023_116955
crossref_primary_10_1016_j_pnucene_2023_104895
crossref_primary_10_1016_j_applthermaleng_2024_122850
crossref_primary_10_1016_j_cej_2024_152005
crossref_primary_10_1016_j_tsep_2024_102728
crossref_primary_10_17673_Vestnik_2023_04_06
crossref_primary_10_1016_j_energy_2023_128806
crossref_primary_10_1021_acs_iecr_2c03384
crossref_primary_10_1021_acsbiomaterials_3c00214
crossref_primary_10_1299_mej_23_00015
crossref_primary_10_1115_1_4064441
crossref_primary_10_1016_j_csite_2022_102161
crossref_primary_10_1016_j_icheatmasstransfer_2021_105713
crossref_primary_10_1016_j_applthermaleng_2024_122402
crossref_primary_10_1080_08916152_2024_2312464
crossref_primary_10_1016_j_applthermaleng_2022_119198
crossref_primary_10_3390_en15238994
crossref_primary_10_1016_j_jmbbm_2022_105345
crossref_primary_10_1002_adem_202300359
crossref_primary_10_1016_j_icheatmasstransfer_2024_107443
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124808
crossref_primary_10_1016_j_applthermaleng_2023_121572
crossref_primary_10_1016_j_applthermaleng_2023_121098
crossref_primary_10_1016_j_applthermaleng_2023_121296
crossref_primary_10_1016_j_icheatmasstransfer_2024_107364
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123862
crossref_primary_10_1016_j_cnsns_2024_107819
crossref_primary_10_33737_jgpps_166418
crossref_primary_10_1016_j_enconman_2024_118713
crossref_primary_10_1016_j_csite_2024_104291
crossref_primary_10_3390_ma15228046
crossref_primary_10_1016_j_addma_2022_103082
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125170
crossref_primary_10_1016_j_icheatmasstransfer_2024_107292
crossref_primary_10_3390_en17040861
crossref_primary_10_1016_j_ijthermalsci_2023_108748
crossref_primary_10_1115_1_4056541
crossref_primary_10_1016_j_icheatmasstransfer_2023_106942
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125538
crossref_primary_10_1016_j_icheatmasstransfer_2021_105654
crossref_primary_10_1016_j_icheatmasstransfer_2024_107611
crossref_primary_10_1007_s10853_022_07301_w
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124264
crossref_primary_10_1016_j_ces_2023_119039
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124905
crossref_primary_10_1016_j_jsv_2022_117303
crossref_primary_10_1115_1_4057023
crossref_primary_10_1016_j_apenergy_2023_121847
Cites_doi 10.1002/9781119236016.ch4
10.1016/j.ces.2006.08.003
10.1016/j.enconman.2019.04.052
10.1016/j.compositesb.2018.02.012
10.1016/j.ijheatfluidflow.2014.05.005
10.1016/j.ijheatmasstransfer.2018.02.024
10.1016/j.ijheatmasstransfer.2015.07.060
10.1016/j.ijheatmasstransfer.2014.03.060
10.1016/j.cej.2017.03.112
10.1016/j.cej.2013.12.060
10.1016/j.applthermaleng.2017.01.013
10.1115/1.4042009
10.1016/j.ijheatmasstransfer.2016.11.073
10.1007/s00348-010-1008-8
10.1115/1.2910442
10.1016/j.ijheatmasstransfer.2018.03.110
10.1115/1.4044365
10.1016/j.jmst.2018.09.002
10.1016/j.matdes.2020.108602
10.1115/1.2822636
10.1016/j.ijheatmasstransfer.2020.119745
10.2514/1.39070
10.1016/j.ijheatmasstransfer.2010.07.019
10.1016/j.ijheatmasstransfer.2014.03.076
10.1016/j.applthermaleng.2019.114485
10.1007/BF02120318
10.1016/j.ijheatmasstransfer.2015.04.038
10.1016/j.apenergy.2019.113507
10.1016/j.ijheatmasstransfer.2013.02.050
10.1016/j.polymer.2017.11.049
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV May 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV May 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2021.120902
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2021_120902
S0017931021000053
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c436t-f97fd70acd0c7803561440b3ee9cf06e2f1564f27ff30ea48e09bdbb26e38d4b3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Thu Oct 10 18:00:22 EDT 2024
Thu Sep 26 17:16:26 EDT 2024
Fri Feb 23 02:47:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porous structure
Flow resistance
Pore morphology
Heat transfer coefficient
Triply periodic minimal surface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-f97fd70acd0c7803561440b3ee9cf06e2f1564f27ff30ea48e09bdbb26e38d4b3
PQID 2511376459
PQPubID 2045464
ParticipantIDs proquest_journals_2511376459
crossref_primary_10_1016_j_ijheatmasstransfer_2021_120902
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_120902
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhang (bib0034) 2017
Liu, Jiang, Jin, Sun (bib0001) 2010; 53
Torre, Montenegro, Tabor, Wears (bib0027) 2014; 50
Li, Zhu, Xu, Ma, Zhang, Liu, Wang, Wang (bib0015) 2019; 254
Diani, Bodla, Rossetto, Garimella (bib0028) 2015; 88
Maskery, Sturm, Aremu, Panesar, Williams (bib0020) 2018; 152
Qian, Wang, Wu, Yang, Wang (bib0004) 2019; 193
Ghahremannezhad, Vafai (bib0002) 2018; 122
Min, Huang, Parbat, Yang, Chyu (bib0016) 2019; 141
Scheithauer, Schwarzer, Ganzer, Kornig, Becker (bib0005) 2016; 258
Ngo, Kashani, Imbalzano, Nguyen, Hui (bib0014) 2018; 143
Hu, Jiang, Ouyang, Zhao, Xu (bib0025) 2020; 158
Aghaei, Visconti, Groppi, Tronconi (bib0032) 2017; 321
Wang, Vafai (bib0003) 2017; 139
Lucci, Torre, Montenegro, Kaufmann, Eggenschwiler (bib0018) 2017; 108
Hwang, Wu, Chao (bib0023) 1995; 117
van Foreest, Sippel, Gülhan, Esser, Ambrosius (bib0009) 2009; 23
Huang, Min, Yang, Jiang, Chyu (bib0012) 2018; 124
Huang, Liao, Xu, Zhu, Jiang (bib0011) 2020; 164
Onstad, Elkins, Medina, Wicker, Eaton (bib0029) 2011; 50
Lezuo, Haidn, Lezuo (bib0008) 1997
Wang, Zhao, Wang, Ma, Lin (bib0006) 2014; 75
Vafai, Sozen (bib0022) 1990; 112
von Rickenbach, Lucci, Narayanan, Eggenschwiler, Poulikakos (bib0026) 2014; 75
Jiang, Xu, Gong (bib0017) 2006; 61
Klumpp, Inayat, Schwerdtfeger, Körner, Singer (bib0030) 2014; 242
Xu, Liu, Luo, Ma, Li (bib0007) 2015; 91
Brinkman (bib0021) 1947; 1
Zhang, Jiang, Wang, Xu (bib0033) 2017; 115
Li, Huang, Zhang, Qin, Liu (bib0013) 2019; 35
Mancin, Zilio, Diani, Rossetto (bib0031) 2013; 62
Reimer, Kuhn, Gülhan, Esser, Sippel (bib0010) 2011
Cheng, Yang, Guo, Fu, Ihme, Wang (bib0024) 2019; 141
Vijayavenkataraman, Kuan, Lu (bib0019) 2020; 191
Liu (10.1016/j.ijheatmasstransfer.2021.120902_bib0001) 2010; 53
Xu (10.1016/j.ijheatmasstransfer.2021.120902_bib0007) 2015; 91
Wang (10.1016/j.ijheatmasstransfer.2021.120902_bib0006) 2014; 75
Huang (10.1016/j.ijheatmasstransfer.2021.120902_bib0012) 2018; 124
Vafai (10.1016/j.ijheatmasstransfer.2021.120902_bib0022) 1990; 112
Ghahremannezhad (10.1016/j.ijheatmasstransfer.2021.120902_bib0002) 2018; 122
Ngo (10.1016/j.ijheatmasstransfer.2021.120902_bib0014) 2018; 143
Li (10.1016/j.ijheatmasstransfer.2021.120902_bib0015) 2019; 254
Qian (10.1016/j.ijheatmasstransfer.2021.120902_bib0004) 2019; 193
Maskery (10.1016/j.ijheatmasstransfer.2021.120902_bib0020) 2018; 152
van Foreest (10.1016/j.ijheatmasstransfer.2021.120902_bib0009) 2009; 23
Torre (10.1016/j.ijheatmasstransfer.2021.120902_bib0027) 2014; 50
Lucci (10.1016/j.ijheatmasstransfer.2021.120902_bib0018) 2017; 108
Reimer (10.1016/j.ijheatmasstransfer.2021.120902_bib0010) 2011
Jiang (10.1016/j.ijheatmasstransfer.2021.120902_bib0017) 2006; 61
Min (10.1016/j.ijheatmasstransfer.2021.120902_bib0016) 2019; 141
Lezuo (10.1016/j.ijheatmasstransfer.2021.120902_bib0008) 1997
Cheng (10.1016/j.ijheatmasstransfer.2021.120902_bib0024) 2019; 141
Mancin (10.1016/j.ijheatmasstransfer.2021.120902_bib0031) 2013; 62
Zhang (10.1016/j.ijheatmasstransfer.2021.120902_bib0033) 2017; 115
Klumpp (10.1016/j.ijheatmasstransfer.2021.120902_bib0030) 2014; 242
Hu (10.1016/j.ijheatmasstransfer.2021.120902_bib0025) 2020; 158
von Rickenbach (10.1016/j.ijheatmasstransfer.2021.120902_bib0026) 2014; 75
Li (10.1016/j.ijheatmasstransfer.2021.120902_bib0013) 2019; 35
Aghaei (10.1016/j.ijheatmasstransfer.2021.120902_bib0032) 2017; 321
Wang (10.1016/j.ijheatmasstransfer.2021.120902_bib0003) 2017; 139
Brinkman (10.1016/j.ijheatmasstransfer.2021.120902_bib0021) 1947; 1
Zhang (10.1016/j.ijheatmasstransfer.2021.120902_bib0034) 2017
Vijayavenkataraman (10.1016/j.ijheatmasstransfer.2021.120902_bib0019) 2020; 191
Onstad (10.1016/j.ijheatmasstransfer.2021.120902_bib0029) 2011; 50
Scheithauer (10.1016/j.ijheatmasstransfer.2021.120902_bib0005) 2016; 258
Huang (10.1016/j.ijheatmasstransfer.2021.120902_bib0011) 2020; 164
Hwang (10.1016/j.ijheatmasstransfer.2021.120902_bib0023) 1995; 117
Diani (10.1016/j.ijheatmasstransfer.2021.120902_bib0028) 2015; 88
References_xml – year: 2011
  ident: bib0010
  article-title: Transpiration cooling tests of porous CMC in hypersonic flow
  publication-title: 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference
  contributor:
    fullname: Sippel
– volume: 50
  start-page: 1571
  year: 2011
  end-page: 1585
  ident: bib0029
  article-title: Full-field measurements of flow through a scaled metal foam replica
  publication-title: Exp. Fluids
  contributor:
    fullname: Eaton
– volume: 122
  start-page: 1313
  year: 2018
  end-page: 1326
  ident: bib0002
  article-title: Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Vafai
– volume: 61
  start-page: 7213
  year: 2006
  end-page: 7222
  ident: bib0017
  article-title: Particle-to-fluid heat transfer coefficients in miniporous media
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Gong
– volume: 1
  start-page: 81
  year: 1947
  end-page: 86
  ident: bib0021
  article-title: A calculation of the viscous force extended by a flowing fluid on a dense swarm of particles
  publication-title: Appl. Sci. Res. A
  contributor:
    fullname: Brinkman
– volume: 258
  start-page: 31
  year: 2016
  end-page: 41
  ident: bib0005
  article-title: Micro-reactors made by lithography-based ceramic manufacturing (LCM)
  publication-title: Ceram. Trans. Ser.
  contributor:
    fullname: Becker
– volume: 23
  start-page: 693
  year: 2009
  end-page: 702
  ident: bib0009
  article-title: Transpiration cooling using liquid water
  publication-title: J. Thermophys. Heat Transf.
  contributor:
    fullname: Ambrosius
– volume: 139
  year: 2017
  ident: bib0003
  article-title: Modeling and analysis of an efficient porous media for a solar porous absorber with a variable pore structure
  publication-title: ASME J. Solar Energy
  contributor:
    fullname: Vafai
– volume: 88
  start-page: 508
  year: 2015
  end-page: 515
  ident: bib0028
  article-title: Numerical investigation of pressure drop and heat transfer through reconstructed metal foams and comparison against experiments
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Garimella
– volume: 115
  start-page: 923
  year: 2017
  end-page: 936
  ident: bib0033
  article-title: Convective heat transfer of supercritical CO
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Xu
– volume: 62
  start-page: 112
  year: 2013
  end-page: 123
  ident: bib0031
  article-title: Air forced convection through metal foams: experimental results and modeling
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Rossetto
– volume: 91
  start-page: 898
  year: 2015
  end-page: 907
  ident: bib0007
  article-title: Experimental investigation of transpiration cooling for sintered woven wire mesh structures
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Li
– volume: 35
  start-page: 242
  year: 2019
  end-page: 269
  ident: bib0013
  article-title: Progress in additive manufacturing on new materials: a review
  publication-title: J. Mater. Sci. Technol.
  contributor:
    fullname: Liu
– volume: 117
  start-page: 725
  year: 1995
  end-page: 732
  ident: bib0023
  article-title: Investigation of non-Darcian forced convection in an asymmetrically heated sintered porous channel
  publication-title: ASME J. Heat Transf.
  contributor:
    fullname: Chao
– volume: 152
  start-page: 62
  year: 2018
  end-page: 71
  ident: bib0020
  article-title: Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing
  publication-title: Polymer
  contributor:
    fullname: Williams
– volume: 141
  year: 2019
  ident: bib0016
  article-title: Experimental investigation on additively manufactured transpiration and film cooling structures
  publication-title: J. Turbomach.
  contributor:
    fullname: Chyu
– volume: 158
  year: 2020
  ident: bib0025
  article-title: A modified energy equation model for flow boiling in porous media and its application to transpiration cooling at low pressures with transient effect
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Xu
– volume: 108
  start-page: 341
  year: 2017
  end-page: 350
  ident: bib0018
  article-title: Comparison of geometrical, momentum and mass transfer characteristics of real foams to Kelvin cell lattices for catalyst applications
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Eggenschwiler
– volume: 124
  start-page: 1076
  year: 2018
  end-page: 1087
  ident: bib0012
  article-title: Transpiration cooling for additive manufactured porous plates with partition walls
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Chyu
– volume: 164
  year: 2020
  ident: bib0011
  article-title: Self-pumping transpiration cooling with a protective porous armor
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Jiang
– volume: 254
  year: 2019
  ident: bib0015
  article-title: A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process
  publication-title: Appl. Energy
  contributor:
    fullname: Wang
– volume: 50
  start-page: 72
  year: 2014
  end-page: 82
  ident: bib0027
  article-title: CFD characterization of flow regimes inside open cell foam substrates
  publication-title: Int. J. Heat Fluid Flow
  contributor:
    fullname: Wears
– year: 1997
  ident: bib0008
  article-title: Transpiration cooling using gaseous hydrogen
  publication-title: 33rd Joint Propulsion Conference and Exhibit
  contributor:
    fullname: Lezuo
– year: 2017
  ident: bib0034
  article-title: Research on Convection Heat Transfer of Supercritical Pressure CO
  contributor:
    fullname: Zhang
– volume: 141
  year: 2019
  ident: bib0024
  article-title: Numerical analysis of heat and mass transfer coupled with gaseous fuel injection in reactive porous media
  publication-title: ASME J. Heat Transf.
  contributor:
    fullname: Wang
– volume: 321
  start-page: 432
  year: 2017
  end-page: 446
  ident: bib0032
  article-title: Development of a heat transport model for open-cell metal foams with high cell densities
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Tronconi
– volume: 242
  start-page: 364
  year: 2014
  end-page: 378
  ident: bib0030
  article-title: Periodic open cellular structures with ideal cubic cell geometry: effect of porosity and cell orientation on pressure drop behavior
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Singer
– volume: 193
  start-page: 39
  year: 2019
  end-page: 51
  ident: bib0004
  article-title: Performance comparison of methane steam reforming in a randomly packed bed and a grille-sphere composite packed bed
  publication-title: Energy Convers. Manage.
  contributor:
    fullname: Wang
– volume: 143
  start-page: 172
  year: 2018
  end-page: 196
  ident: bib0014
  article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges
  publication-title: Composite Part B
  contributor:
    fullname: Hui
– volume: 53
  start-page: 5364
  year: 2010
  end-page: 5372
  ident: bib0001
  article-title: Transpiration cooling of a nose cone by various foreign gases
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Sun
– volume: 112
  start-page: 690
  year: 1990
  end-page: 699
  ident: bib0022
  article-title: Analysis of energy and momentum transport for fluid flow through a porous bed
  publication-title: ASME J. Heat Transf.
  contributor:
    fullname: Sozen
– volume: 75
  start-page: 442
  year: 2014
  end-page: 449
  ident: bib0006
  article-title: An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Lin
– volume: 191
  year: 2020
  ident: bib0019
  article-title: 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants
  publication-title: Mater. Des.
  contributor:
    fullname: Lu
– volume: 75
  start-page: 337
  year: 2014
  end-page: 346
  ident: bib0026
  article-title: Multi-scale modelling of mass transfer limited heterogeneous reactions in open cell foams
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Poulikakos
– volume: 258
  start-page: 31
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0005
  article-title: Micro-reactors made by lithography-based ceramic manufacturing (LCM)
  publication-title: Ceram. Trans. Ser.
  doi: 10.1002/9781119236016.ch4
  contributor:
    fullname: Scheithauer
– volume: 61
  start-page: 7213
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0017
  article-title: Particle-to-fluid heat transfer coefficients in miniporous media
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.08.003
  contributor:
    fullname: Jiang
– volume: 193
  start-page: 39
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0004
  article-title: Performance comparison of methane steam reforming in a randomly packed bed and a grille-sphere composite packed bed
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.04.052
  contributor:
    fullname: Qian
– volume: 143
  start-page: 172
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0014
  article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges
  publication-title: Composite Part B
  doi: 10.1016/j.compositesb.2018.02.012
  contributor:
    fullname: Ngo
– volume: 50
  start-page: 72
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0027
  article-title: CFD characterization of flow regimes inside open cell foam substrates
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2014.05.005
  contributor:
    fullname: Torre
– volume: 122
  start-page: 1313
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0002
  article-title: Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.02.024
  contributor:
    fullname: Ghahremannezhad
– volume: 91
  start-page: 898
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0007
  article-title: Experimental investigation of transpiration cooling for sintered woven wire mesh structures
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.07.060
  contributor:
    fullname: Xu
– volume: 75
  start-page: 337
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0026
  article-title: Multi-scale modelling of mass transfer limited heterogeneous reactions in open cell foams
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.03.060
  contributor:
    fullname: von Rickenbach
– volume: 321
  start-page: 432
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0032
  article-title: Development of a heat transport model for open-cell metal foams with high cell densities
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.112
  contributor:
    fullname: Aghaei
– volume: 242
  start-page: 364
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0030
  article-title: Periodic open cellular structures with ideal cubic cell geometry: effect of porosity and cell orientation on pressure drop behavior
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.060
  contributor:
    fullname: Klumpp
– volume: 115
  start-page: 923
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0033
  article-title: Convective heat transfer of supercritical CO2 in a rock fracture for enhanced geothermal systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.01.013
  contributor:
    fullname: Zhang
– volume: 139
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0003
  article-title: Modeling and analysis of an efficient porous media for a solar porous absorber with a variable pore structure
  publication-title: ASME J. Solar Energy
  contributor:
    fullname: Wang
– volume: 141
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0016
  article-title: Experimental investigation on additively manufactured transpiration and film cooling structures
  publication-title: J. Turbomach.
  doi: 10.1115/1.4042009
  contributor:
    fullname: Min
– volume: 108
  start-page: 341
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0018
  article-title: Comparison of geometrical, momentum and mass transfer characteristics of real foams to Kelvin cell lattices for catalyst applications
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.073
  contributor:
    fullname: Lucci
– volume: 50
  start-page: 1571
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0029
  article-title: Full-field measurements of flow through a scaled metal foam replica
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-010-1008-8
  contributor:
    fullname: Onstad
– volume: 112
  start-page: 690
  year: 1990
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0022
  article-title: Analysis of energy and momentum transport for fluid flow through a porous bed
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.2910442
  contributor:
    fullname: Vafai
– volume: 124
  start-page: 1076
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0012
  article-title: Transpiration cooling for additive manufactured porous plates with partition walls
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.03.110
  contributor:
    fullname: Huang
– volume: 141
  issue: 11
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0024
  article-title: Numerical analysis of heat and mass transfer coupled with gaseous fuel injection in reactive porous media
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.4044365
  contributor:
    fullname: Cheng
– year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0008
  article-title: Transpiration cooling using gaseous hydrogen
  contributor:
    fullname: Lezuo
– year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0010
  article-title: Transpiration cooling tests of porous CMC in hypersonic flow
  contributor:
    fullname: Reimer
– volume: 35
  start-page: 242
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0013
  article-title: Progress in additive manufacturing on new materials: a review
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.09.002
  contributor:
    fullname: Li
– year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0034
  contributor:
    fullname: Zhang
– volume: 191
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0019
  article-title: 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108602
  contributor:
    fullname: Vijayavenkataraman
– volume: 117
  start-page: 725
  issue: 3
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0023
  article-title: Investigation of non-Darcian forced convection in an asymmetrically heated sintered porous channel
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.2822636
  contributor:
    fullname: Hwang
– volume: 158
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0025
  article-title: A modified energy equation model for flow boiling in porous media and its application to transpiration cooling at low pressures with transient effect
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119745
  contributor:
    fullname: Hu
– volume: 23
  start-page: 693
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0009
  article-title: Transpiration cooling using liquid water
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.39070
  contributor:
    fullname: van Foreest
– volume: 53
  start-page: 5364
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0001
  article-title: Transpiration cooling of a nose cone by various foreign gases
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.07.019
  contributor:
    fullname: Liu
– volume: 75
  start-page: 442
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0006
  article-title: An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.03.076
  contributor:
    fullname: Wang
– volume: 164
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0011
  article-title: Self-pumping transpiration cooling with a protective porous armor
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114485
  contributor:
    fullname: Huang
– volume: 1
  start-page: 81
  year: 1947
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0021
  article-title: A calculation of the viscous force extended by a flowing fluid on a dense swarm of particles
  publication-title: Appl. Sci. Res. A
  doi: 10.1007/BF02120318
  contributor:
    fullname: Brinkman
– volume: 88
  start-page: 508
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0028
  article-title: Numerical investigation of pressure drop and heat transfer through reconstructed metal foams and comparison against experiments
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.04.038
  contributor:
    fullname: Diani
– volume: 254
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0015
  article-title: A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113507
  contributor:
    fullname: Li
– volume: 62
  start-page: 112
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0031
  article-title: Air forced convection through metal foams: experimental results and modeling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.02.050
  contributor:
    fullname: Mancin
– volume: 152
  start-page: 62
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.120902_bib0020
  article-title: Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.11.049
  contributor:
    fullname: Maskery
SSID ssj0017046
Score 2.6215842
Snippet Porous structures are ubiquitous in many thermal management and energy conversion systems. The morphology of a porous structure has significant impact on the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 120902
SubjectTerms Computational fluid dynamics
Diamonds
Energy conversion
Flow resistance
Fluid flow
Friction factor
Heat transfer
Heat transfer coefficient
Heat transfer coefficients
Mass transport
Mathematical analysis
Metal particles
Minimal surfaces
Morphology
Parameters
Pore morphology
Porous media
Porous structure
Pressure drop
Sintering (powder metallurgy)
Structural strength
Thermal management
Triply periodic minimal surface
Title Morphology, flow and heat transfer in triply periodic minimal surface based porous structures
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.120902
https://www.proquest.com/docview/2511376459
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6KongRn1itsgcPHky7STbJ5liKpVragyj2Ikv2BZE2KbZFvPjb3clD8XERPOVB2F2-3Xwzs8x8i9A5o1qGbuI64Fw4NIi0w0LhOTFzA5XY-IAYCBRH43BwT28mwaSBenUtDKRVVtxfcnrB1tWbToVmZ56mUOMLiwuOpiZFSSlUsFtjZNd0--0jzcN2VhbrABvD15vo4jPHK30CxptZN3VZuIkaFEI9tw0FpdVGyy-m6htpF5aov4O2KxcSd8tR7qKGzvbQRpHKKRf76HGUW-yK3fJLbKb5C04yhWEEuO4ep5m9T-fTVwxCx7lKJQaNkZltdrF6NonUGMybwtY7z1cLXKrMrmxofoDu-1d3vYFTHaLgSOqHS8fEkVERSaQiMmLEB-VPSoSvdSwNCbVnQC7GeJExPtEJZZrEQgnhhdpnigr_EK1leaaPENaMCI8KT7lMUiVYnMS2WU8lRtqwROkmimu8-LzUyuB1EtkT_4k1B6x5iXUT9WqA-Zf555ba_9BKq54bXv2LCw5BlKVRGsTH_9LJCdqCpzLrsYXW7AzoU-uZLMVZsfTO0Hr3ejgYw3V4-zB8B-xE6iI
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH644HIRV9zNwYMHq2mbtulRBmVcxpOCFwnNBh3GdnBmEC_-dvO6KC4XwVtpS1K-pF_eC9_7AnDImVGxn_keBhceixLj8VgGXsr9SGcuP6AWE8Xebdy9Z1cP0cMUdNpaGJRVNtxfc3rF1s2d0wbN02GeY40vTi48mppWJaXTMIvRAOq6Tt4-dB6ut7paB-kYX5-Ho0-RV95Hyntyceq4ihMNWoQG_glWlDY7Lb-sVd9Yu1qKLpZhqYkhyVn9mSswZYpVmKu0nGq0Bo-90oFXbZcfEzsoX0hWaIJfQNruSV6463w4eCXodFzqXBE0GXlyzY4mzzZThuD6pokLz8vJiNQ2sxOXm6_D_cX5XafrNacoeIqF8dizaWJ1QjOlqUo4DdH6k1EZGpMqS2MTWPSLsUFibUhNxrihqdRSBrEJuWYy3ICZoizMJhDDqQyYDLTPFdOSp1nqmg10ZpXLS7TZgrTFSwxrswzRqsj64ifWArEWNdZb0GkBFl8mgHDc_odWdtuxEc3POBKYRTkeZVG6_S-dHMBC9653I24ub693YBGf1BLIXZhxo2H2XJgylvvVNHwHGWHqGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology%2C+flow+and+heat+transfer+in+triply+periodic+minimal+surface+based+porous+structures&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Cheng%2C+Zhilong&rft.au=Xu%2C+Ruina&rft.au=Jiang%2C+Pei-Xue&rft.date=2021-05-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=170&rft.spage=120902&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.120902&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon