A hybrid strategy of lattice Boltzmann method and finite volume method for combined conduction and radiation in irregular geometry

•LBM and FVM are coupled for combined conduction and radiation in irregular geometry.•Blocked-off method is used in FVM for radiative transfer equation.•The hybrid method is validated by cases with inclined and curved wall. Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and hea...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 121; pp. 1039 - 1054
Main Authors Sun, Yujia, Zhang, Xiaobing
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •LBM and FVM are coupled for combined conduction and radiation in irregular geometry.•Blocked-off method is used in FVM for radiative transfer equation.•The hybrid method is validated by cases with inclined and curved wall. Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and heat transfer problems. Recently it has been applied to combined heat transfer problems with radiation, while most of the work consider a square enclosure. To extend the LBM to combined heat transfer problems with radiation in irregular geometries, it is coupled with the finite volume method (FVM) to solve the energy equation and radiative transfer equation (RTE), respectively. Blocked-off method is used in the FVM to approximate the curved boundary for radiation modeling. By using the half-way bounce back boundary method in the LBM, it can be perfectly coupled with the blocked-off FVM. Treatments of complex boundaries of these two methods are validated, and then the hybrid method is used to solve combined conduction and radiation heat transfer in enclosures with inclined and curved walls. Effects of the conduction-radiation number, optical thickness, scattering albedo and wall emissivity on the temperature distribution and wall heat flux are analyzed. Results show that this hybrid method can solve combined conduction and radiation heat transfer problems in irregular geometries.
AbstractList •LBM and FVM are coupled for combined conduction and radiation in irregular geometry.•Blocked-off method is used in FVM for radiative transfer equation.•The hybrid method is validated by cases with inclined and curved wall. Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and heat transfer problems. Recently it has been applied to combined heat transfer problems with radiation, while most of the work consider a square enclosure. To extend the LBM to combined heat transfer problems with radiation in irregular geometries, it is coupled with the finite volume method (FVM) to solve the energy equation and radiative transfer equation (RTE), respectively. Blocked-off method is used in the FVM to approximate the curved boundary for radiation modeling. By using the half-way bounce back boundary method in the LBM, it can be perfectly coupled with the blocked-off FVM. Treatments of complex boundaries of these two methods are validated, and then the hybrid method is used to solve combined conduction and radiation heat transfer in enclosures with inclined and curved walls. Effects of the conduction-radiation number, optical thickness, scattering albedo and wall emissivity on the temperature distribution and wall heat flux are analyzed. Results show that this hybrid method can solve combined conduction and radiation heat transfer problems in irregular geometries.
Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and heat transfer problems. Recently it has been applied to combined heat transfer problems with radiation, while most of the work consider a square enclosure. To extend the LBM to combined heat transfer problems with radiation in irregular geometries, it is coupled with the finite volume method (FVM) to solve the energy equation and radiative transfer equation (RTE), respectively. Blocked-off method is used in the FVM to approximate the curved boundary for radiation modeling. By using the half-way bounce back boundary method in the LBM, it can be perfectly coupled with the blocked-off FVM. Treatments of complex boundaries of these two methods are validated, and then the hybrid method is used to solve combined conduction and radiation heat transfer in enclosures with inclined and curved walls. Effects of the conduction-radiation number, optical thickness, scattering albedo and wall emissivity on the temperature distribution and wall heat flux are analyzed. Results show that this hybrid method can solve combined conduction and radiation heat transfer problems in irregular geometries.
Author Zhang, Xiaobing
Sun, Yujia
Author_xml – sequence: 1
  givenname: Yujia
  surname: Sun
  fullname: Sun, Yujia
  email: runtowhere@msn.cn
– sequence: 2
  givenname: Xiaobing
  surname: Zhang
  fullname: Zhang, Xiaobing
  email: zhangxb680504@163.com
BookMark eNqVkMFO3DAQhi0EUhfoO1jqpZeEcbwbJ7cCKlCE1AucLcee7DpKbLAdpO2xT453t1zKpZVG8ozmn8_Sd0qOnXdIyFcGJQNWXwylHTao0qRiTEG52GMoK2BNCayEWhyRBWtEW1SsaY_JAoCJouUMPpHTGIfdCMt6QX5f0s22C9bQHSXhekt9T0eVktVIr_yYfk3KOTph2nhDlTO0t84mpK9-nCd8X_Q-UO2nzjo0uXFm1sl6tz8Iyli1n2yuEHA9jyrQNfp8HLbn5KRXY8TPf94z8nTz_fH6rnj4efvj-vKh0Etep6IXAuoVb7pVo1D0ldIaBOimRb40wGtVtbqtGeemWzHWtRy6VgusuFAcGq75Gfly4D4H_zJjTHLwc3D5S1llMtQMqlVOfTukdPAxBuzlc7CTClvJQO7My0F-NC935iUwmc1nxM1fCG3TXkCO2_F_QPcHEGYtrzZvo7boNBobUCdpvP132BuBvrYj
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2021_105156
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123499
crossref_primary_10_7498_aps_69_20191185
crossref_primary_10_1016_j_icheatmasstransfer_2021_105656
crossref_primary_10_1016_j_matcom_2024_06_021
crossref_primary_10_1016_j_compfluid_2021_104866
crossref_primary_10_1016_j_icheatmasstransfer_2021_105628
crossref_primary_10_1103_PhysRevE_107_015302
crossref_primary_10_1063_5_0085370
crossref_primary_10_3390_e24101448
crossref_primary_10_2139_ssrn_4168612
crossref_primary_10_1007_s42235_019_0100_x
crossref_primary_10_1080_10407790_2019_1690368
crossref_primary_10_1108_HFF_06_2023_0319
crossref_primary_10_1016_j_jqsrt_2020_107467
crossref_primary_10_1088_1674_1056_abb22a
crossref_primary_10_1016_j_icheatmasstransfer_2021_105390
crossref_primary_10_2514_1_T6097
crossref_primary_10_1016_j_ijthermalsci_2019_01_030
crossref_primary_10_1016_j_icheatmasstransfer_2019_104287
crossref_primary_10_3934_energy_2021028
crossref_primary_10_3390_aerospace10050473
Cites_doi 10.1142/S0129183114500272
10.1007/s40430-017-0729-5
10.1142/S0129183108011978
10.1016/j.pecs.2015.10.001
10.1016/j.ijthermalsci.2005.06.006
10.1016/j.ijheatmasstransfer.2017.04.136
10.1016/j.enconman.2015.12.054
10.1080/10407790152034854
10.1103/PhysRevE.68.026701
10.1142/S0129183116500637
10.1016/j.ijthermalsci.2009.10.005
10.1016/j.jqsrt.2011.04.002
10.1103/PhysRevE.88.033304
10.1016/j.jqsrt.2013.06.002
10.1016/j.ijheatmasstransfer.2016.01.074
10.1080/10407790600762805
10.1016/j.jqsrt.2005.07.001
10.1016/j.jqsrt.2012.04.017
10.1016/j.jqsrt.2007.02.012
10.1016/j.ijthermalsci.2013.04.027
10.1016/j.ijheatmasstransfer.2009.11.014
10.1016/j.compfluid.2012.08.012
10.1006/jcph.1998.6057
10.1016/S0022-4073(99)00100-4
10.1016/j.ijheatmasstransfer.2013.11.077
10.1016/j.jqsrt.2006.02.070
10.1016/j.ijthermalsci.2016.05.003
10.1016/j.jcp.2006.08.021
10.1016/j.ijthermalsci.2014.11.020
10.1016/j.ijheatmasstransfer.2017.06.082
10.1080/10407790.2014.915668
10.1080/10407782.2014.994406
10.1115/1.3090617
10.1016/j.ijthermalsci.2017.03.002
10.1016/0022-4073(96)00082-9
10.1080/10407782.2014.894376
10.1080/10407790802154215
10.1016/j.jcp.2013.04.044
10.1016/j.jqsrt.2005.05.087
10.1080/10407780701347663
10.1080/10407799408914927
10.1103/PhysRevE.85.016701
10.2514/1.43400
10.1016/j.ijthermalsci.2013.08.013
10.1080/10407782.2015.1081043
10.1016/j.ijthermalsci.2010.10.012
10.1142/S0217979203017485
10.1080/713838148
10.1016/j.camwa.2009.08.070
10.1016/j.ijheatmasstransfer.2007.07.053
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jun 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2018
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2018.01.067
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 1054
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2018_01_067
S0017931017347294
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c436t-f7706538b58ae7f2acc070c89e34d036a29c96133db511b930b9c7e237a3083c3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 02:55:22 EDT 2025
Tue Jul 01 02:16:57 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Fri Feb 23 02:47:23 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-f7706538b58ae7f2acc070c89e34d036a29c96133db511b930b9c7e237a3083c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2065061025
PQPubID 2045464
PageCount 16
ParticipantIDs proquest_journals_2065061025
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_067
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_01_067
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_01_067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chai, Lee, Patankar (b0205) 1994; 26
Zhang, Yi, Tan (b0190) 2014; 76
Li, Yang, Zhang (b0065) 2014; 70
Young Byun, Wook Baek, Young Kim (b0210) 2003; 43
Aghanajafi, Abjadpour (b0215) 2015
Tang, Tao, He (b0015) 2003; 17
Li, Sun, Zhang (b0165) 2009; 131
Zabihi, Lari, Amiri (b0255) 2017; 39
Sun, Zhang (b0085) 2015; 68
Chen, Zhang, Zhang (b0060) 2013; 88
Moufekkir, Moussaoui, Mezrhab, Naji, Lemonnier (b0045) 2012; 113
Kim, Baek, Il Park (b0140) 2008; 54
Bouzgarrou, Askri, Belhaj Ali, Ben Nasrallah (b0120) 2017; 116
Li, He, Wang, Tang (b0020) 2008; 19
Peng, Shu, Chew (b0010) 2003; 68
Ma, Sun, Li (b0180) 2017; 114
Kim, Baek, Park (b0125) 2001; 39
Ruan, Xie, Qi, An, Tan (b0150) 2006; 102
Sun, Ma, Li, Guo (b0170) 2016; 69
Aouled-Dlala, Sghaier, Seddiki (b0155) 2007; 107
Mondal, Mishra (b0090) 2007; 52
Luo, Yi, Tan (b0200) 2014; 66
Yao, Luo, Yi, Xie (b0115) 2017; 112
Lin, Liao, Lien, Lin (b0050) 2012; 69
Chen, Zhang, Zhang (b0070) 2014; 25
Asllanaj, Feldheim, Lybaert (b0135) 2007; 51
Mishra, Roy (b0095) 2007; 223
Luo, Yi, Tan (b0195) 2015; 89
Patel, Talukdar (b0250) 2016; 108
Chen, Zhang, Li, Jiang, Zhou (b0075) 2016; 27
Sakami, Charette (b0130) 2000; 64
Talukdar (b0230) 2006; 98
Sakami, Charette (b0145) 1996; 56
Yan, Zu (b0025) 2008; 51
Zhang, Shi, Guo, Chai, Lu (b0040) 2012; 85
Kamel, Naceur, Rachid, Rachid (b0220) 2006; 98
Alamyane, Mohamad (b0035) 2010; 59
Talukdar, Mendes, Parida, Trimis, Ray (b0245) 2013; 72
Amiri, Mansouri, Safavinejad (b0235) 2010; 49
Mishra, Poonia, Das, Asinari, Borchiellini (b0110) 2014; 66
Sun, Li (b0160) 2010; 24
Khazaeli, Mortazavi, Ashrafizaadeh (b0055) 2013; 250
Mohamad, Kuzmin (b0030) 2010; 53
Zhang, Ma, Yi, Tan (b0185) 2013; 129
Chaabane, Askri, Ben Nasrallah (b0105) 2011; 112
Amiri, Mansouri, Coelho (b0240) 2011; 50
Sun, Zhang (b0100) 2016; 97
He, Chen, Doolen (b0005) 1998; 146
Li, Luo, Kang, He, Chen, Liu (b0080) 2016; 52
Talukdar (b0225) 2006; 45
Ma, Sun, Li, Chen (b0175) 2016; 111
Luo (10.1016/j.ijheatmasstransfer.2018.01.067_b0200) 2014; 66
Talukdar (10.1016/j.ijheatmasstransfer.2018.01.067_b0225) 2006; 45
Mohamad (10.1016/j.ijheatmasstransfer.2018.01.067_b0030) 2010; 53
Talukdar (10.1016/j.ijheatmasstransfer.2018.01.067_b0230) 2006; 98
Chai (10.1016/j.ijheatmasstransfer.2018.01.067_b0205) 1994; 26
He (10.1016/j.ijheatmasstransfer.2018.01.067_b0005) 1998; 146
Sun (10.1016/j.ijheatmasstransfer.2018.01.067_b0085) 2015; 68
Amiri (10.1016/j.ijheatmasstransfer.2018.01.067_b0235) 2010; 49
Mondal (10.1016/j.ijheatmasstransfer.2018.01.067_b0090) 2007; 52
Li (10.1016/j.ijheatmasstransfer.2018.01.067_b0080) 2016; 52
Sun (10.1016/j.ijheatmasstransfer.2018.01.067_b0160) 2010; 24
Sun (10.1016/j.ijheatmasstransfer.2018.01.067_b0170) 2016; 69
Young Byun (10.1016/j.ijheatmasstransfer.2018.01.067_b0210) 2003; 43
Sakami (10.1016/j.ijheatmasstransfer.2018.01.067_b0145) 1996; 56
Luo (10.1016/j.ijheatmasstransfer.2018.01.067_b0195) 2015; 89
Chaabane (10.1016/j.ijheatmasstransfer.2018.01.067_b0105) 2011; 112
Kim (10.1016/j.ijheatmasstransfer.2018.01.067_b0125) 2001; 39
Yao (10.1016/j.ijheatmasstransfer.2018.01.067_b0115) 2017; 112
Li (10.1016/j.ijheatmasstransfer.2018.01.067_b0020) 2008; 19
Mishra (10.1016/j.ijheatmasstransfer.2018.01.067_b0095) 2007; 223
Yan (10.1016/j.ijheatmasstransfer.2018.01.067_b0025) 2008; 51
Kim (10.1016/j.ijheatmasstransfer.2018.01.067_b0140) 2008; 54
Peng (10.1016/j.ijheatmasstransfer.2018.01.067_b0010) 2003; 68
Kamel (10.1016/j.ijheatmasstransfer.2018.01.067_b0220) 2006; 98
Moufekkir (10.1016/j.ijheatmasstransfer.2018.01.067_b0045) 2012; 113
Chen (10.1016/j.ijheatmasstransfer.2018.01.067_b0075) 2016; 27
Ma (10.1016/j.ijheatmasstransfer.2018.01.067_b0175) 2016; 111
Zhang (10.1016/j.ijheatmasstransfer.2018.01.067_b0185) 2013; 129
Bouzgarrou (10.1016/j.ijheatmasstransfer.2018.01.067_b0120) 2017; 116
Zhang (10.1016/j.ijheatmasstransfer.2018.01.067_b0040) 2012; 85
Ma (10.1016/j.ijheatmasstransfer.2018.01.067_b0180) 2017; 114
Mishra (10.1016/j.ijheatmasstransfer.2018.01.067_b0110) 2014; 66
Aouled-Dlala (10.1016/j.ijheatmasstransfer.2018.01.067_b0155) 2007; 107
Lin (10.1016/j.ijheatmasstransfer.2018.01.067_b0050) 2012; 69
Asllanaj (10.1016/j.ijheatmasstransfer.2018.01.067_b0135) 2007; 51
Talukdar (10.1016/j.ijheatmasstransfer.2018.01.067_b0245) 2013; 72
Li (10.1016/j.ijheatmasstransfer.2018.01.067_b0065) 2014; 70
Aghanajafi (10.1016/j.ijheatmasstransfer.2018.01.067_b0215) 2015
Sakami (10.1016/j.ijheatmasstransfer.2018.01.067_b0130) 2000; 64
Amiri (10.1016/j.ijheatmasstransfer.2018.01.067_b0240) 2011; 50
Ruan (10.1016/j.ijheatmasstransfer.2018.01.067_b0150) 2006; 102
Chen (10.1016/j.ijheatmasstransfer.2018.01.067_b0060) 2013; 88
Zabihi (10.1016/j.ijheatmasstransfer.2018.01.067_b0255) 2017; 39
Khazaeli (10.1016/j.ijheatmasstransfer.2018.01.067_b0055) 2013; 250
Patel (10.1016/j.ijheatmasstransfer.2018.01.067_b0250) 2016; 108
Li (10.1016/j.ijheatmasstransfer.2018.01.067_b0165) 2009; 131
Zhang (10.1016/j.ijheatmasstransfer.2018.01.067_b0190) 2014; 76
Chen (10.1016/j.ijheatmasstransfer.2018.01.067_b0070) 2014; 25
Alamyane (10.1016/j.ijheatmasstransfer.2018.01.067_b0035) 2010; 59
Tang (10.1016/j.ijheatmasstransfer.2018.01.067_b0015) 2003; 17
Sun (10.1016/j.ijheatmasstransfer.2018.01.067_b0100) 2016; 97
References_xml – volume: 146
  start-page: 282
  year: 1998
  end-page: 300
  ident: b0005
  article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit
  publication-title: J. Comput. Phys.
– volume: 129
  start-page: 118
  year: 2013
  end-page: 130
  ident: b0185
  article-title: Natural element method for solving radiative transfer with or without conduction in three-dimensional complex geometries
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 39
  start-page: 617
  year: 2001
  end-page: 635
  ident: b0125
  article-title: Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles
  publication-title: Numer. Heat Transf. Part B Fundam.
– volume: 108
  start-page: 89
  year: 2016
  end-page: 99
  ident: b0250
  article-title: Evaluation of radiative properties of a representative foam structure using blocked-off region approach integrated with finite volume method
  publication-title: Int. J. Therm. Sci.
– volume: 25
  start-page: 1
  year: 2014
  end-page: 13
  ident: b0070
  article-title: Numerical simulation of Neumann boundary condition in the thermal lattice Boltzmann model
  publication-title: Int. J. Mod. Phys. C
– volume: 26
  start-page: 225
  year: 1994
  end-page: 235
  ident: b0205
  article-title: Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation heat transfer procedure
  publication-title: Numer. Heat Transf. Part B Fundam.
– volume: 39
  start-page: 2847
  year: 2017
  end-page: 2864
  ident: b0255
  article-title: Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
– volume: 250
  start-page: 126
  year: 2013
  end-page: 140
  ident: b0055
  article-title: Application of a ghost fluid approach for a thermal lattice Boltzmann method
  publication-title: J. Comput. Phys.
– volume: 107
  start-page: 443
  year: 2007
  end-page: 457
  ident: b0155
  article-title: Numerical solution of radiative and conductive heat transfer in concentric spherical and cylindrical media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 111
  start-page: 279
  year: 2016
  end-page: 288
  ident: b0175
  article-title: Spectral collocation method for radiative-conductive porous fin with temperature dependent properties
  publication-title: Energy Convers. Manage.
– volume: 64
  start-page: 275
  year: 2000
  end-page: 298
  ident: b0130
  article-title: Application of a modified discrete ordinates method to two-dimensional enclosures of irregular geometry
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 53
  start-page: 990
  year: 2010
  end-page: 996
  ident: b0030
  article-title: A critical evaluation of force term in lattice Boltzmann method, natural convection problem
  publication-title: Int. J. Heat Mass Transf.
– volume: 19
  start-page: 125
  year: 2008
  end-page: 150
  ident: b0020
  article-title: An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work
  publication-title: Int. J. Mod. Phys. C
– volume: 102
  start-page: 190
  year: 2006
  end-page: 202
  ident: b0150
  article-title: Development of a finite element model for coupled radiative and conductive heat transfer in participating media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 98
  start-page: 238
  year: 2006
  end-page: 248
  ident: b0230
  article-title: Discrete transfer method with the concept of blocked-off region for irregular geometries
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 131
  start-page: 62701
  year: 2009
  ident: b0165
  article-title: Chebyshev collocation spectral methods for coupled radiation and conduction in a concentric spherical participating medium
  publication-title: J. Heat Transfer.
– volume: 66
  start-page: 243
  year: 2014
  end-page: 267
  ident: b0200
  article-title: Coupled radiation and mixed convection in an eccentric annulus using the hybrid strategy of lattice boltzmann-meshless method
  publication-title: Numer. Heat Transf. Part B Fundam.
– volume: 98
  start-page: 425
  year: 2006
  end-page: 445
  ident: b0220
  article-title: Formulation and testing of the FTn finite volume method for radiation in 3-D complex inhomogeneous participating media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 69
  start-page: 68
  year: 2016
  end-page: 83
  ident: b0170
  article-title: Predication of nonlinear heat transfer in a convective-radiative fin with temperature-dependent properties by the collocation spectral method
  publication-title: Numer. Heat Transf. Part B Fundam.
– volume: 27
  start-page: 1650063
  year: 2016
  ident: b0075
  article-title: Study of three-dimensional electro-osmotic flow with curved boundary via lattice Boltzmann method
  publication-title: Int. J. Mod. Phys. C
– volume: 97
  start-page: 611
  year: 2016
  end-page: 617
  ident: b0100
  article-title: Analysis of transient conduction and radiation problems using lattice Boltzmann and finite volume methods
  publication-title: Int. J. Heat Mass Transf.
– volume: 59
  start-page: 2421
  year: 2010
  end-page: 2430
  ident: b0035
  article-title: Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method
  publication-title: Comput. Math. with Appl.
– volume: 68
  start-page: 619
  year: 2015
  end-page: 637
  ident: b0085
  article-title: Analysis of transient conduction and radiation problems using the lattice Boltzmann and discrete ordinates methods
  publication-title: Numer. Heat Transf. Part A Appl. An Int. J. Comput. Methodol.
– volume: 76
  start-page: 30
  year: 2014
  end-page: 42
  ident: b0190
  article-title: Natural element method analysis for coupled radiative and conductive heat transfer in semitransparent medium with irregular geometries
  publication-title: Int. J. Therm. Sci.
– volume: 69
  start-page: 35
  year: 2012
  end-page: 44
  ident: b0050
  article-title: Thermal lattice Boltzmann simulations of natural convection with complex geometry
  publication-title: Comput. Fluids
– volume: 24
  start-page: 823
  year: 2010
  end-page: 832
  ident: b0160
  article-title: Spectral collocation method for transient conduction-radiation heat transfer
  publication-title: J. Thermophys. Heat Transf.
– volume: 49
  start-page: 492
  year: 2010
  end-page: 503
  ident: b0235
  article-title: Combined conductive and radiative heat transfer in an anisotropic scattering participating medium with irregular geometries
  publication-title: Int. J. Therm. Sci.
– volume: 51
  start-page: 97
  year: 2007
  end-page: 119
  ident: b0135
  article-title: Solution of radiative heat transfer in 2-D geometries by a modified finite-volume method based on a cell vertex scheme using unstructured triangular meshes
  publication-title: Numer. Heat Transf. Part B Fundam.
– volume: 113
  start-page: 1689
  year: 2012
  end-page: 1704
  ident: b0045
  article-title: Numerical prediction of heat transfer by natural convection and radiation in an enclosure filled with an isotropic scattering medium
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 52
  start-page: 757
  year: 2007
  end-page: 775
  ident: b0090
  article-title: Application of the lattice Boltzmann method and the discrete ordinates method for solving transient conduction and radiation heat transfer problems
  publication-title: Numer. Heat Transf. Part A Appl.
– year: 2015
  ident: b0215
  article-title: Discrete ordinates method applied to radiative transfer equation in complex geometries meshed by structured and unstructured grids
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
– volume: 17
  start-page: 183
  year: 2003
  end-page: 187
  ident: b0015
  article-title: Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method
  publication-title: Int. J. Mod. Phys. B
– volume: 85
  start-page: 1
  year: 2012
  end-page: 14
  ident: b0040
  article-title: General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method
  publication-title: Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys.
– volume: 68
  start-page: 26701
  year: 2003
  ident: b0010
  article-title: Simplified thermal lattice Boltzmann model for incompressible thermal flows
  publication-title: Phys. Rev. E
– volume: 54
  start-page: 116
  year: 2008
  end-page: 137
  ident: b0140
  article-title: Evaluation of the finite-volume solutions of radiative heat transfer in a complex two-dimensional enclosure with unstructured polygonal meshes
  publication-title: Numer. Heat Transf. Part B Fundam.
– volume: 45
  start-page: 103
  year: 2006
  end-page: 109
  ident: b0225
  article-title: Radiative heat transfer for irregular geometries with the collapsed dimension method
  publication-title: Int. J. Therm. Sci.
– volume: 114
  start-page: 469
  year: 2017
  end-page: 482
  ident: b0180
  article-title: Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation
  publication-title: Int. J. Heat Mass Transf.
– volume: 51
  start-page: 2519
  year: 2008
  end-page: 2536
  ident: b0025
  article-title: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder-A LBM approach
  publication-title: Int. J. Heat Mass Transf.
– volume: 43
  start-page: 807
  year: 2003
  end-page: 825
  ident: b0210
  article-title: Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments
  publication-title: Numer. Heat Transf. Part A Appl.
– volume: 112
  start-page: 413
  year: 2017
  end-page: 426
  ident: b0115
  article-title: Analysis of melting with natural convection and volumetric radiation using lattice Boltzmann method
  publication-title: Int. J. Heat Mass Transf.
– volume: 50
  start-page: 515
  year: 2011
  end-page: 524
  ident: b0240
  article-title: Application of the modified discrete ordinates method with the concept of blocked-off region to irregular geometries
  publication-title: Int. J. Therm. Sci.
– volume: 88
  start-page: 33304
  year: 2013
  ident: b0060
  article-title: Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes
  publication-title: Phys. Rev. E
– volume: 56
  start-page: 517
  year: 1996
  end-page: 533
  ident: b0145
  article-title: Application of the discrete ordinates method to combined conductive and radiative heat transfer in a two-dimensional complex geometry
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 70
  start-page: 864
  year: 2014
  end-page: 874
  ident: b0065
  article-title: A coupled lattice Boltzmann and finite volume method for natural convection simulation
  publication-title: Int. J. Heat Mass Transf.
– volume: 72
  start-page: 102
  year: 2013
  end-page: 114
  ident: b0245
  article-title: Modelling of conduction-radiation in a porous medium with blocked-off region approach
  publication-title: Int. J. Therm. Sci.
– volume: 52
  start-page: 62
  year: 2016
  end-page: 105
  ident: b0080
  article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
  publication-title: Prog. Energy Combust. Sci.
– volume: 223
  start-page: 89
  year: 2007
  end-page: 107
  ident: b0095
  article-title: Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method
  publication-title: J. Comput. Phys.
– volume: 89
  start-page: 283
  year: 2015
  end-page: 293
  ident: b0195
  article-title: Eccentricity effect on bifurcation and dual solutions in transient natural convection in a horizontal annulus
  publication-title: Int. J. Therm. Sci.
– volume: 112
  start-page: 2013
  year: 2011
  end-page: 2027
  ident: b0105
  article-title: Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 66
  start-page: 669
  year: 2014
  end-page: 688
  ident: b0110
  article-title: Analysis of conduction-radiation heat transfer in a 2D enclosure using the lattice Boltzmann method
  publication-title: Numer. Heat Transf. Part A Appl.
– volume: 116
  start-page: 287
  year: 2017
  end-page: 309
  ident: b0120
  article-title: Analyses of unsteady conduction-radiation heat transfer using unstructured Lattice Boltzmann method
  publication-title: Int. J. Therm. Sci.
– volume: 25
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0070
  article-title: Numerical simulation of Neumann boundary condition in the thermal lattice Boltzmann model
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183114500272
– volume: 39
  start-page: 2847
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0255
  article-title: Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-017-0729-5
– volume: 19
  start-page: 125
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0020
  article-title: An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183108011978
– volume: 52
  start-page: 62
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0080
  article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2015.10.001
– volume: 45
  start-page: 103
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0225
  article-title: Radiative heat transfer for irregular geometries with the collapsed dimension method
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2005.06.006
– volume: 112
  start-page: 413
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0115
  article-title: Analysis of melting with natural convection and volumetric radiation using lattice Boltzmann method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.04.136
– volume: 111
  start-page: 279
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0175
  article-title: Spectral collocation method for radiative-conductive porous fin with temperature dependent properties
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.12.054
– volume: 39
  start-page: 617
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0125
  article-title: Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407790152034854
– volume: 68
  start-page: 26701
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0010
  article-title: Simplified thermal lattice Boltzmann model for incompressible thermal flows
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.026701
– volume: 27
  start-page: 1650063
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0075
  article-title: Study of three-dimensional electro-osmotic flow with curved boundary via lattice Boltzmann method
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183116500637
– volume: 49
  start-page: 492
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0235
  article-title: Combined conductive and radiative heat transfer in an anisotropic scattering participating medium with irregular geometries
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.10.005
– volume: 112
  start-page: 2013
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0105
  article-title: Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2011.04.002
– year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0215
  article-title: Discrete ordinates method applied to radiative transfer equation in complex geometries meshed by structured and unstructured grids
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
– volume: 88
  start-page: 33304
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0060
  article-title: Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.033304
– volume: 129
  start-page: 118
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0185
  article-title: Natural element method for solving radiative transfer with or without conduction in three-dimensional complex geometries
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2013.06.002
– volume: 97
  start-page: 611
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0100
  article-title: Analysis of transient conduction and radiation problems using lattice Boltzmann and finite volume methods
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.01.074
– volume: 51
  start-page: 97
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0135
  article-title: Solution of radiative heat transfer in 2-D geometries by a modified finite-volume method based on a cell vertex scheme using unstructured triangular meshes
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407790600762805
– volume: 98
  start-page: 425
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0220
  article-title: Formulation and testing of the FTn finite volume method for radiation in 3-D complex inhomogeneous participating media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2005.07.001
– volume: 113
  start-page: 1689
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0045
  article-title: Numerical prediction of heat transfer by natural convection and radiation in an enclosure filled with an isotropic scattering medium
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2012.04.017
– volume: 107
  start-page: 443
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0155
  article-title: Numerical solution of radiative and conductive heat transfer in concentric spherical and cylindrical media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2007.02.012
– volume: 72
  start-page: 102
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0245
  article-title: Modelling of conduction-radiation in a porous medium with blocked-off region approach
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.04.027
– volume: 53
  start-page: 990
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0030
  article-title: A critical evaluation of force term in lattice Boltzmann method, natural convection problem
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.11.014
– volume: 69
  start-page: 35
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0050
  article-title: Thermal lattice Boltzmann simulations of natural convection with complex geometry
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.08.012
– volume: 146
  start-page: 282
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0005
  article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.6057
– volume: 64
  start-page: 275
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0130
  article-title: Application of a modified discrete ordinates method to two-dimensional enclosures of irregular geometry
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/S0022-4073(99)00100-4
– volume: 70
  start-page: 864
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0065
  article-title: A coupled lattice Boltzmann and finite volume method for natural convection simulation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.11.077
– volume: 102
  start-page: 190
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0150
  article-title: Development of a finite element model for coupled radiative and conductive heat transfer in participating media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2006.02.070
– volume: 108
  start-page: 89
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0250
  article-title: Evaluation of radiative properties of a representative foam structure using blocked-off region approach integrated with finite volume method
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.05.003
– volume: 223
  start-page: 89
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0095
  article-title: Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.08.021
– volume: 89
  start-page: 283
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0195
  article-title: Eccentricity effect on bifurcation and dual solutions in transient natural convection in a horizontal annulus
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.11.020
– volume: 114
  start-page: 469
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0180
  article-title: Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.082
– volume: 66
  start-page: 243
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0200
  article-title: Coupled radiation and mixed convection in an eccentric annulus using the hybrid strategy of lattice boltzmann-meshless method
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407790.2014.915668
– volume: 68
  start-page: 619
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0085
  article-title: Analysis of transient conduction and radiation problems using the lattice Boltzmann and discrete ordinates methods
  publication-title: Numer. Heat Transf. Part A Appl. An Int. J. Comput. Methodol.
  doi: 10.1080/10407782.2014.994406
– volume: 131
  start-page: 62701
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0165
  article-title: Chebyshev collocation spectral methods for coupled radiation and conduction in a concentric spherical participating medium
  publication-title: J. Heat Transfer.
  doi: 10.1115/1.3090617
– volume: 116
  start-page: 287
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0120
  article-title: Analyses of unsteady conduction-radiation heat transfer using unstructured Lattice Boltzmann method
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.03.002
– volume: 56
  start-page: 517
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0145
  article-title: Application of the discrete ordinates method to combined conductive and radiative heat transfer in a two-dimensional complex geometry
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/0022-4073(96)00082-9
– volume: 66
  start-page: 669
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0110
  article-title: Analysis of conduction-radiation heat transfer in a 2D enclosure using the lattice Boltzmann method
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407782.2014.894376
– volume: 54
  start-page: 116
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0140
  article-title: Evaluation of the finite-volume solutions of radiative heat transfer in a complex two-dimensional enclosure with unstructured polygonal meshes
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407790802154215
– volume: 250
  start-page: 126
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0055
  article-title: Application of a ghost fluid approach for a thermal lattice Boltzmann method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.044
– volume: 98
  start-page: 238
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0230
  article-title: Discrete transfer method with the concept of blocked-off region for irregular geometries
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2005.05.087
– volume: 52
  start-page: 757
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0090
  article-title: Application of the lattice Boltzmann method and the discrete ordinates method for solving transient conduction and radiation heat transfer problems
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407780701347663
– volume: 26
  start-page: 225
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0205
  article-title: Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation heat transfer procedure
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407799408914927
– volume: 85
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0040
  article-title: General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method
  publication-title: Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.85.016701
– volume: 24
  start-page: 823
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0160
  article-title: Spectral collocation method for transient conduction-radiation heat transfer
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.43400
– volume: 76
  start-page: 30
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0190
  article-title: Natural element method analysis for coupled radiative and conductive heat transfer in semitransparent medium with irregular geometries
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.08.013
– volume: 69
  start-page: 68
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0170
  article-title: Predication of nonlinear heat transfer in a convective-radiative fin with temperature-dependent properties by the collocation spectral method
  publication-title: Numer. Heat Transf. Part B Fundam.
  doi: 10.1080/10407782.2015.1081043
– volume: 50
  start-page: 515
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0240
  article-title: Application of the modified discrete ordinates method with the concept of blocked-off region to irregular geometries
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.10.012
– volume: 17
  start-page: 183
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0015
  article-title: Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979203017485
– volume: 43
  start-page: 807
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0210
  article-title: Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/713838148
– volume: 59
  start-page: 2421
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0035
  article-title: Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method
  publication-title: Comput. Math. with Appl.
  doi: 10.1016/j.camwa.2009.08.070
– volume: 51
  start-page: 2519
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0025
  article-title: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder-A LBM approach
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.07.053
SSID ssj0017046
Score 2.3875463
Snippet •LBM and FVM are coupled for combined conduction and radiation in irregular geometry.•Blocked-off method is used in FVM for radiative transfer equation.•The...
Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and heat transfer problems. Recently it has been applied to combined heat transfer...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1039
SubjectTerms Albedo
Computational fluid dynamics
Conduction heating
Conductivity
Finite volume method
Fluid flow
Geometry
Heat flux
Heat transfer
Optical thickness
Radiation
Radiative transfer
Temperature distribution
Title A hybrid strategy of lattice Boltzmann method and finite volume method for combined conduction and radiation in irregular geometry
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.01.067
https://www.proquest.com/docview/2065061025
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEG6MRuPF-Izv9ODBC7rQssDJrBvN6kYPRqO3ppRW2aysYfGwHjz4y51pQePjYmJCAqW0kHb45ivMg5A9nsaBMsp4IZf4tUrBOwda0gsMC9taRaAj0Tn54rLdu-Hnd-HdFOk2vjBoVlljv8N0i9b1mcN6NA-f8hx9fFG4UKQYB4qIMUE5j1DKD14_zDz8qOWcdRCN8eo5sv9p45UPEPEegaZWliZqjBDqxzaQp808_6uq-gbaVhOdLpKFmkLSjnvKJTKli2Uya0051XiFvHXowwT9sOjYRZ6d0JGhQ1mhmRs9Hg2rl0dZFNTljqayyKjJkXlSh1RNBbBZCqMCK2edwUGRuTiztkGJEQ1sKYetLG1C-5Le6xE0Lier5Ob05Lrb8-pMC57irF15JsK_nSxOw1jqyARSKYACFSea8Qx0nAwSlYDiZ1kKBC1NWCtNVKQDFkkGHE6xNTJdjAq9TiiTUah9bfws1TzJYEVnfJnGvo79FpM63CBHzaAKVYchx2wYQ9HYmw3Ez2kROC2i5QuYlg2SfPTw5EJy_KFtt5lH8UXMBGiQP_Sy3YiAqF_5MdQD2QUyGoSb_3KTLTKPJWeWtk2mq_JZ7wABqtJdK-G7ZKZz1u9d4r5_ddt_B-nSDnk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH7qWjF2QQOGYGPgAwcuEU2cNMlpKhWoXaEnkLhZjmOPoJKiNDt0x_3le89OQMAuSEg5JLGcRH7P3_scvx8AR2GWBMoo40WhpL9VCuccWkkvMDwaaBWjjaTg5MvZYHwd_ryJbjowamNhyK2ywX6H6RatmzsnzWiePBQFxfiScpFK8RApYvgBepSdKupCbziZjmePmwlx38XrECBTh49w_OTmVdwR6N0jU60tU9SUJNRPbC5PW3z-v9bqBW5bY3T-GTYaFsmG7kM3oaPLLViz3pxquQ1_h-x2RaFYbOmSz67YwrC5rMnTjZ0u5vWfe1mWzJWPZrLMmSmIfDIHVm0DElqGA4OLZ53jSZm7VLO2Q0VJDexVgUdV2Zr2FfulF9i5Wn2B6_Ozq9HYa4oteCrkg9ozMW148iSLEqljE0ilEA1Ukmoe5mjmZJCqFG0_zzPkaFnK-1mqYh3wWHKkcYrvQLdclHoXGJdxpH1t_DzTYZrjos74Mkt8nfh9LnW0Bz_aQRWqyUROBTHmonU5uxOvxSJILKLvCxTLHqSPT3hwWTne0HfUylE80zSBRuQNT9lvVUA0s36J7ch3kY8G0dd3eckhrI-vLi_ExWQ2_QafqMV5qe1Dt65-6-_Ih-rsoNH3f5ZnD4c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+strategy+of+lattice+Boltzmann+method+and+finite+volume+method+for+combined+conduction+and+radiation+in+irregular+geometry&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Sun%2C+Yujia&rft.au=Zhang%2C+Xiaobing&rft.date=2018-06-01&rft.issn=0017-9310&rft.volume=121&rft.spage=1039&rft.epage=1054&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.01.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_01_067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon