A hybrid strategy of lattice Boltzmann method and finite volume method for combined conduction and radiation in irregular geometry
•LBM and FVM are coupled for combined conduction and radiation in irregular geometry.•Blocked-off method is used in FVM for radiative transfer equation.•The hybrid method is validated by cases with inclined and curved wall. Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and hea...
Saved in:
Published in | International journal of heat and mass transfer Vol. 121; pp. 1039 - 1054 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •LBM and FVM are coupled for combined conduction and radiation in irregular geometry.•Blocked-off method is used in FVM for radiative transfer equation.•The hybrid method is validated by cases with inclined and curved wall.
Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and heat transfer problems. Recently it has been applied to combined heat transfer problems with radiation, while most of the work consider a square enclosure. To extend the LBM to combined heat transfer problems with radiation in irregular geometries, it is coupled with the finite volume method (FVM) to solve the energy equation and radiative transfer equation (RTE), respectively. Blocked-off method is used in the FVM to approximate the curved boundary for radiation modeling. By using the half-way bounce back boundary method in the LBM, it can be perfectly coupled with the blocked-off FVM. Treatments of complex boundaries of these two methods are validated, and then the hybrid method is used to solve combined conduction and radiation heat transfer in enclosures with inclined and curved walls. Effects of the conduction-radiation number, optical thickness, scattering albedo and wall emissivity on the temperature distribution and wall heat flux are analyzed. Results show that this hybrid method can solve combined conduction and radiation heat transfer problems in irregular geometries. |
---|---|
AbstractList | •LBM and FVM are coupled for combined conduction and radiation in irregular geometry.•Blocked-off method is used in FVM for radiative transfer equation.•The hybrid method is validated by cases with inclined and curved wall.
Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and heat transfer problems. Recently it has been applied to combined heat transfer problems with radiation, while most of the work consider a square enclosure. To extend the LBM to combined heat transfer problems with radiation in irregular geometries, it is coupled with the finite volume method (FVM) to solve the energy equation and radiative transfer equation (RTE), respectively. Blocked-off method is used in the FVM to approximate the curved boundary for radiation modeling. By using the half-way bounce back boundary method in the LBM, it can be perfectly coupled with the blocked-off FVM. Treatments of complex boundaries of these two methods are validated, and then the hybrid method is used to solve combined conduction and radiation heat transfer in enclosures with inclined and curved walls. Effects of the conduction-radiation number, optical thickness, scattering albedo and wall emissivity on the temperature distribution and wall heat flux are analyzed. Results show that this hybrid method can solve combined conduction and radiation heat transfer problems in irregular geometries. Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and heat transfer problems. Recently it has been applied to combined heat transfer problems with radiation, while most of the work consider a square enclosure. To extend the LBM to combined heat transfer problems with radiation in irregular geometries, it is coupled with the finite volume method (FVM) to solve the energy equation and radiative transfer equation (RTE), respectively. Blocked-off method is used in the FVM to approximate the curved boundary for radiation modeling. By using the half-way bounce back boundary method in the LBM, it can be perfectly coupled with the blocked-off FVM. Treatments of complex boundaries of these two methods are validated, and then the hybrid method is used to solve combined conduction and radiation heat transfer in enclosures with inclined and curved walls. Effects of the conduction-radiation number, optical thickness, scattering albedo and wall emissivity on the temperature distribution and wall heat flux are analyzed. Results show that this hybrid method can solve combined conduction and radiation heat transfer problems in irregular geometries. |
Author | Zhang, Xiaobing Sun, Yujia |
Author_xml | – sequence: 1 givenname: Yujia surname: Sun fullname: Sun, Yujia email: runtowhere@msn.cn – sequence: 2 givenname: Xiaobing surname: Zhang fullname: Zhang, Xiaobing email: zhangxb680504@163.com |
BookMark | eNqVkMFO3DAQhi0EUhfoO1jqpZeEcbwbJ7cCKlCE1AucLcee7DpKbLAdpO2xT453t1zKpZVG8ozmn8_Sd0qOnXdIyFcGJQNWXwylHTao0qRiTEG52GMoK2BNCayEWhyRBWtEW1SsaY_JAoCJouUMPpHTGIfdCMt6QX5f0s22C9bQHSXhekt9T0eVktVIr_yYfk3KOTph2nhDlTO0t84mpK9-nCd8X_Q-UO2nzjo0uXFm1sl6tz8Iyli1n2yuEHA9jyrQNfp8HLbn5KRXY8TPf94z8nTz_fH6rnj4efvj-vKh0Etep6IXAuoVb7pVo1D0ldIaBOimRb40wGtVtbqtGeemWzHWtRy6VgusuFAcGq75Gfly4D4H_zJjTHLwc3D5S1llMtQMqlVOfTukdPAxBuzlc7CTClvJQO7My0F-NC935iUwmc1nxM1fCG3TXkCO2_F_QPcHEGYtrzZvo7boNBobUCdpvP132BuBvrYj |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2021_105156 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123499 crossref_primary_10_7498_aps_69_20191185 crossref_primary_10_1016_j_icheatmasstransfer_2021_105656 crossref_primary_10_1016_j_matcom_2024_06_021 crossref_primary_10_1016_j_compfluid_2021_104866 crossref_primary_10_1016_j_icheatmasstransfer_2021_105628 crossref_primary_10_1103_PhysRevE_107_015302 crossref_primary_10_1063_5_0085370 crossref_primary_10_3390_e24101448 crossref_primary_10_2139_ssrn_4168612 crossref_primary_10_1007_s42235_019_0100_x crossref_primary_10_1080_10407790_2019_1690368 crossref_primary_10_1108_HFF_06_2023_0319 crossref_primary_10_1016_j_jqsrt_2020_107467 crossref_primary_10_1088_1674_1056_abb22a crossref_primary_10_1016_j_icheatmasstransfer_2021_105390 crossref_primary_10_2514_1_T6097 crossref_primary_10_1016_j_ijthermalsci_2019_01_030 crossref_primary_10_1016_j_icheatmasstransfer_2019_104287 crossref_primary_10_3934_energy_2021028 crossref_primary_10_3390_aerospace10050473 |
Cites_doi | 10.1142/S0129183114500272 10.1007/s40430-017-0729-5 10.1142/S0129183108011978 10.1016/j.pecs.2015.10.001 10.1016/j.ijthermalsci.2005.06.006 10.1016/j.ijheatmasstransfer.2017.04.136 10.1016/j.enconman.2015.12.054 10.1080/10407790152034854 10.1103/PhysRevE.68.026701 10.1142/S0129183116500637 10.1016/j.ijthermalsci.2009.10.005 10.1016/j.jqsrt.2011.04.002 10.1103/PhysRevE.88.033304 10.1016/j.jqsrt.2013.06.002 10.1016/j.ijheatmasstransfer.2016.01.074 10.1080/10407790600762805 10.1016/j.jqsrt.2005.07.001 10.1016/j.jqsrt.2012.04.017 10.1016/j.jqsrt.2007.02.012 10.1016/j.ijthermalsci.2013.04.027 10.1016/j.ijheatmasstransfer.2009.11.014 10.1016/j.compfluid.2012.08.012 10.1006/jcph.1998.6057 10.1016/S0022-4073(99)00100-4 10.1016/j.ijheatmasstransfer.2013.11.077 10.1016/j.jqsrt.2006.02.070 10.1016/j.ijthermalsci.2016.05.003 10.1016/j.jcp.2006.08.021 10.1016/j.ijthermalsci.2014.11.020 10.1016/j.ijheatmasstransfer.2017.06.082 10.1080/10407790.2014.915668 10.1080/10407782.2014.994406 10.1115/1.3090617 10.1016/j.ijthermalsci.2017.03.002 10.1016/0022-4073(96)00082-9 10.1080/10407782.2014.894376 10.1080/10407790802154215 10.1016/j.jcp.2013.04.044 10.1016/j.jqsrt.2005.05.087 10.1080/10407780701347663 10.1080/10407799408914927 10.1103/PhysRevE.85.016701 10.2514/1.43400 10.1016/j.ijthermalsci.2013.08.013 10.1080/10407782.2015.1081043 10.1016/j.ijthermalsci.2010.10.012 10.1142/S0217979203017485 10.1080/713838148 10.1016/j.camwa.2009.08.070 10.1016/j.ijheatmasstransfer.2007.07.053 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jun 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2018 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2018.01.067 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 1054 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2018_01_067 S0017931017347294 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c436t-f7706538b58ae7f2acc070c89e34d036a29c96133db511b930b9c7e237a3083c3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 02:55:22 EDT 2025 Tue Jul 01 02:16:57 EDT 2025 Thu Apr 24 23:12:10 EDT 2025 Fri Feb 23 02:47:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-f7706538b58ae7f2acc070c89e34d036a29c96133db511b930b9c7e237a3083c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2065061025 |
PQPubID | 2045464 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2065061025 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_067 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_01_067 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_01_067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Chai, Lee, Patankar (b0205) 1994; 26 Zhang, Yi, Tan (b0190) 2014; 76 Li, Yang, Zhang (b0065) 2014; 70 Young Byun, Wook Baek, Young Kim (b0210) 2003; 43 Aghanajafi, Abjadpour (b0215) 2015 Tang, Tao, He (b0015) 2003; 17 Li, Sun, Zhang (b0165) 2009; 131 Zabihi, Lari, Amiri (b0255) 2017; 39 Sun, Zhang (b0085) 2015; 68 Chen, Zhang, Zhang (b0060) 2013; 88 Moufekkir, Moussaoui, Mezrhab, Naji, Lemonnier (b0045) 2012; 113 Kim, Baek, Il Park (b0140) 2008; 54 Bouzgarrou, Askri, Belhaj Ali, Ben Nasrallah (b0120) 2017; 116 Li, He, Wang, Tang (b0020) 2008; 19 Peng, Shu, Chew (b0010) 2003; 68 Ma, Sun, Li (b0180) 2017; 114 Kim, Baek, Park (b0125) 2001; 39 Ruan, Xie, Qi, An, Tan (b0150) 2006; 102 Sun, Ma, Li, Guo (b0170) 2016; 69 Aouled-Dlala, Sghaier, Seddiki (b0155) 2007; 107 Mondal, Mishra (b0090) 2007; 52 Luo, Yi, Tan (b0200) 2014; 66 Yao, Luo, Yi, Xie (b0115) 2017; 112 Lin, Liao, Lien, Lin (b0050) 2012; 69 Chen, Zhang, Zhang (b0070) 2014; 25 Asllanaj, Feldheim, Lybaert (b0135) 2007; 51 Mishra, Roy (b0095) 2007; 223 Luo, Yi, Tan (b0195) 2015; 89 Patel, Talukdar (b0250) 2016; 108 Chen, Zhang, Li, Jiang, Zhou (b0075) 2016; 27 Sakami, Charette (b0130) 2000; 64 Talukdar (b0230) 2006; 98 Sakami, Charette (b0145) 1996; 56 Yan, Zu (b0025) 2008; 51 Zhang, Shi, Guo, Chai, Lu (b0040) 2012; 85 Kamel, Naceur, Rachid, Rachid (b0220) 2006; 98 Alamyane, Mohamad (b0035) 2010; 59 Talukdar, Mendes, Parida, Trimis, Ray (b0245) 2013; 72 Amiri, Mansouri, Safavinejad (b0235) 2010; 49 Mishra, Poonia, Das, Asinari, Borchiellini (b0110) 2014; 66 Sun, Li (b0160) 2010; 24 Khazaeli, Mortazavi, Ashrafizaadeh (b0055) 2013; 250 Mohamad, Kuzmin (b0030) 2010; 53 Zhang, Ma, Yi, Tan (b0185) 2013; 129 Chaabane, Askri, Ben Nasrallah (b0105) 2011; 112 Amiri, Mansouri, Coelho (b0240) 2011; 50 Sun, Zhang (b0100) 2016; 97 He, Chen, Doolen (b0005) 1998; 146 Li, Luo, Kang, He, Chen, Liu (b0080) 2016; 52 Talukdar (b0225) 2006; 45 Ma, Sun, Li, Chen (b0175) 2016; 111 Luo (10.1016/j.ijheatmasstransfer.2018.01.067_b0200) 2014; 66 Talukdar (10.1016/j.ijheatmasstransfer.2018.01.067_b0225) 2006; 45 Mohamad (10.1016/j.ijheatmasstransfer.2018.01.067_b0030) 2010; 53 Talukdar (10.1016/j.ijheatmasstransfer.2018.01.067_b0230) 2006; 98 Chai (10.1016/j.ijheatmasstransfer.2018.01.067_b0205) 1994; 26 He (10.1016/j.ijheatmasstransfer.2018.01.067_b0005) 1998; 146 Sun (10.1016/j.ijheatmasstransfer.2018.01.067_b0085) 2015; 68 Amiri (10.1016/j.ijheatmasstransfer.2018.01.067_b0235) 2010; 49 Mondal (10.1016/j.ijheatmasstransfer.2018.01.067_b0090) 2007; 52 Li (10.1016/j.ijheatmasstransfer.2018.01.067_b0080) 2016; 52 Sun (10.1016/j.ijheatmasstransfer.2018.01.067_b0160) 2010; 24 Sun (10.1016/j.ijheatmasstransfer.2018.01.067_b0170) 2016; 69 Young Byun (10.1016/j.ijheatmasstransfer.2018.01.067_b0210) 2003; 43 Sakami (10.1016/j.ijheatmasstransfer.2018.01.067_b0145) 1996; 56 Luo (10.1016/j.ijheatmasstransfer.2018.01.067_b0195) 2015; 89 Chaabane (10.1016/j.ijheatmasstransfer.2018.01.067_b0105) 2011; 112 Kim (10.1016/j.ijheatmasstransfer.2018.01.067_b0125) 2001; 39 Yao (10.1016/j.ijheatmasstransfer.2018.01.067_b0115) 2017; 112 Li (10.1016/j.ijheatmasstransfer.2018.01.067_b0020) 2008; 19 Mishra (10.1016/j.ijheatmasstransfer.2018.01.067_b0095) 2007; 223 Yan (10.1016/j.ijheatmasstransfer.2018.01.067_b0025) 2008; 51 Kim (10.1016/j.ijheatmasstransfer.2018.01.067_b0140) 2008; 54 Peng (10.1016/j.ijheatmasstransfer.2018.01.067_b0010) 2003; 68 Kamel (10.1016/j.ijheatmasstransfer.2018.01.067_b0220) 2006; 98 Moufekkir (10.1016/j.ijheatmasstransfer.2018.01.067_b0045) 2012; 113 Chen (10.1016/j.ijheatmasstransfer.2018.01.067_b0075) 2016; 27 Ma (10.1016/j.ijheatmasstransfer.2018.01.067_b0175) 2016; 111 Zhang (10.1016/j.ijheatmasstransfer.2018.01.067_b0185) 2013; 129 Bouzgarrou (10.1016/j.ijheatmasstransfer.2018.01.067_b0120) 2017; 116 Zhang (10.1016/j.ijheatmasstransfer.2018.01.067_b0040) 2012; 85 Ma (10.1016/j.ijheatmasstransfer.2018.01.067_b0180) 2017; 114 Mishra (10.1016/j.ijheatmasstransfer.2018.01.067_b0110) 2014; 66 Aouled-Dlala (10.1016/j.ijheatmasstransfer.2018.01.067_b0155) 2007; 107 Lin (10.1016/j.ijheatmasstransfer.2018.01.067_b0050) 2012; 69 Asllanaj (10.1016/j.ijheatmasstransfer.2018.01.067_b0135) 2007; 51 Talukdar (10.1016/j.ijheatmasstransfer.2018.01.067_b0245) 2013; 72 Li (10.1016/j.ijheatmasstransfer.2018.01.067_b0065) 2014; 70 Aghanajafi (10.1016/j.ijheatmasstransfer.2018.01.067_b0215) 2015 Sakami (10.1016/j.ijheatmasstransfer.2018.01.067_b0130) 2000; 64 Amiri (10.1016/j.ijheatmasstransfer.2018.01.067_b0240) 2011; 50 Ruan (10.1016/j.ijheatmasstransfer.2018.01.067_b0150) 2006; 102 Chen (10.1016/j.ijheatmasstransfer.2018.01.067_b0060) 2013; 88 Zabihi (10.1016/j.ijheatmasstransfer.2018.01.067_b0255) 2017; 39 Khazaeli (10.1016/j.ijheatmasstransfer.2018.01.067_b0055) 2013; 250 Patel (10.1016/j.ijheatmasstransfer.2018.01.067_b0250) 2016; 108 Li (10.1016/j.ijheatmasstransfer.2018.01.067_b0165) 2009; 131 Zhang (10.1016/j.ijheatmasstransfer.2018.01.067_b0190) 2014; 76 Chen (10.1016/j.ijheatmasstransfer.2018.01.067_b0070) 2014; 25 Alamyane (10.1016/j.ijheatmasstransfer.2018.01.067_b0035) 2010; 59 Tang (10.1016/j.ijheatmasstransfer.2018.01.067_b0015) 2003; 17 Sun (10.1016/j.ijheatmasstransfer.2018.01.067_b0100) 2016; 97 |
References_xml | – volume: 146 start-page: 282 year: 1998 end-page: 300 ident: b0005 article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit publication-title: J. Comput. Phys. – volume: 129 start-page: 118 year: 2013 end-page: 130 ident: b0185 article-title: Natural element method for solving radiative transfer with or without conduction in three-dimensional complex geometries publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 39 start-page: 617 year: 2001 end-page: 635 ident: b0125 article-title: Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles publication-title: Numer. Heat Transf. Part B Fundam. – volume: 108 start-page: 89 year: 2016 end-page: 99 ident: b0250 article-title: Evaluation of radiative properties of a representative foam structure using blocked-off region approach integrated with finite volume method publication-title: Int. J. Therm. Sci. – volume: 25 start-page: 1 year: 2014 end-page: 13 ident: b0070 article-title: Numerical simulation of Neumann boundary condition in the thermal lattice Boltzmann model publication-title: Int. J. Mod. Phys. C – volume: 26 start-page: 225 year: 1994 end-page: 235 ident: b0205 article-title: Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation heat transfer procedure publication-title: Numer. Heat Transf. Part B Fundam. – volume: 39 start-page: 2847 year: 2017 end-page: 2864 ident: b0255 article-title: Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method publication-title: J. Brazilian Soc. Mech. Sci. Eng. – volume: 250 start-page: 126 year: 2013 end-page: 140 ident: b0055 article-title: Application of a ghost fluid approach for a thermal lattice Boltzmann method publication-title: J. Comput. Phys. – volume: 107 start-page: 443 year: 2007 end-page: 457 ident: b0155 article-title: Numerical solution of radiative and conductive heat transfer in concentric spherical and cylindrical media publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 111 start-page: 279 year: 2016 end-page: 288 ident: b0175 article-title: Spectral collocation method for radiative-conductive porous fin with temperature dependent properties publication-title: Energy Convers. Manage. – volume: 64 start-page: 275 year: 2000 end-page: 298 ident: b0130 article-title: Application of a modified discrete ordinates method to two-dimensional enclosures of irregular geometry publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 53 start-page: 990 year: 2010 end-page: 996 ident: b0030 article-title: A critical evaluation of force term in lattice Boltzmann method, natural convection problem publication-title: Int. J. Heat Mass Transf. – volume: 19 start-page: 125 year: 2008 end-page: 150 ident: b0020 article-title: An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work publication-title: Int. J. Mod. Phys. C – volume: 102 start-page: 190 year: 2006 end-page: 202 ident: b0150 article-title: Development of a finite element model for coupled radiative and conductive heat transfer in participating media publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 98 start-page: 238 year: 2006 end-page: 248 ident: b0230 article-title: Discrete transfer method with the concept of blocked-off region for irregular geometries publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 131 start-page: 62701 year: 2009 ident: b0165 article-title: Chebyshev collocation spectral methods for coupled radiation and conduction in a concentric spherical participating medium publication-title: J. Heat Transfer. – volume: 66 start-page: 243 year: 2014 end-page: 267 ident: b0200 article-title: Coupled radiation and mixed convection in an eccentric annulus using the hybrid strategy of lattice boltzmann-meshless method publication-title: Numer. Heat Transf. Part B Fundam. – volume: 98 start-page: 425 year: 2006 end-page: 445 ident: b0220 article-title: Formulation and testing of the FTn finite volume method for radiation in 3-D complex inhomogeneous participating media publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 69 start-page: 68 year: 2016 end-page: 83 ident: b0170 article-title: Predication of nonlinear heat transfer in a convective-radiative fin with temperature-dependent properties by the collocation spectral method publication-title: Numer. Heat Transf. Part B Fundam. – volume: 27 start-page: 1650063 year: 2016 ident: b0075 article-title: Study of three-dimensional electro-osmotic flow with curved boundary via lattice Boltzmann method publication-title: Int. J. Mod. Phys. C – volume: 97 start-page: 611 year: 2016 end-page: 617 ident: b0100 article-title: Analysis of transient conduction and radiation problems using lattice Boltzmann and finite volume methods publication-title: Int. J. Heat Mass Transf. – volume: 59 start-page: 2421 year: 2010 end-page: 2430 ident: b0035 article-title: Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method publication-title: Comput. Math. with Appl. – volume: 68 start-page: 619 year: 2015 end-page: 637 ident: b0085 article-title: Analysis of transient conduction and radiation problems using the lattice Boltzmann and discrete ordinates methods publication-title: Numer. Heat Transf. Part A Appl. An Int. J. Comput. Methodol. – volume: 76 start-page: 30 year: 2014 end-page: 42 ident: b0190 article-title: Natural element method analysis for coupled radiative and conductive heat transfer in semitransparent medium with irregular geometries publication-title: Int. J. Therm. Sci. – volume: 69 start-page: 35 year: 2012 end-page: 44 ident: b0050 article-title: Thermal lattice Boltzmann simulations of natural convection with complex geometry publication-title: Comput. Fluids – volume: 24 start-page: 823 year: 2010 end-page: 832 ident: b0160 article-title: Spectral collocation method for transient conduction-radiation heat transfer publication-title: J. Thermophys. Heat Transf. – volume: 49 start-page: 492 year: 2010 end-page: 503 ident: b0235 article-title: Combined conductive and radiative heat transfer in an anisotropic scattering participating medium with irregular geometries publication-title: Int. J. Therm. Sci. – volume: 51 start-page: 97 year: 2007 end-page: 119 ident: b0135 article-title: Solution of radiative heat transfer in 2-D geometries by a modified finite-volume method based on a cell vertex scheme using unstructured triangular meshes publication-title: Numer. Heat Transf. Part B Fundam. – volume: 113 start-page: 1689 year: 2012 end-page: 1704 ident: b0045 article-title: Numerical prediction of heat transfer by natural convection and radiation in an enclosure filled with an isotropic scattering medium publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 52 start-page: 757 year: 2007 end-page: 775 ident: b0090 article-title: Application of the lattice Boltzmann method and the discrete ordinates method for solving transient conduction and radiation heat transfer problems publication-title: Numer. Heat Transf. Part A Appl. – year: 2015 ident: b0215 article-title: Discrete ordinates method applied to radiative transfer equation in complex geometries meshed by structured and unstructured grids publication-title: J. Brazilian Soc. Mech. Sci. Eng. – volume: 17 start-page: 183 year: 2003 end-page: 187 ident: b0015 article-title: Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method publication-title: Int. J. Mod. Phys. B – volume: 85 start-page: 1 year: 2012 end-page: 14 ident: b0040 article-title: General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method publication-title: Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys. – volume: 68 start-page: 26701 year: 2003 ident: b0010 article-title: Simplified thermal lattice Boltzmann model for incompressible thermal flows publication-title: Phys. Rev. E – volume: 54 start-page: 116 year: 2008 end-page: 137 ident: b0140 article-title: Evaluation of the finite-volume solutions of radiative heat transfer in a complex two-dimensional enclosure with unstructured polygonal meshes publication-title: Numer. Heat Transf. Part B Fundam. – volume: 45 start-page: 103 year: 2006 end-page: 109 ident: b0225 article-title: Radiative heat transfer for irregular geometries with the collapsed dimension method publication-title: Int. J. Therm. Sci. – volume: 114 start-page: 469 year: 2017 end-page: 482 ident: b0180 article-title: Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation publication-title: Int. J. Heat Mass Transf. – volume: 51 start-page: 2519 year: 2008 end-page: 2536 ident: b0025 article-title: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder-A LBM approach publication-title: Int. J. Heat Mass Transf. – volume: 43 start-page: 807 year: 2003 end-page: 825 ident: b0210 article-title: Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments publication-title: Numer. Heat Transf. Part A Appl. – volume: 112 start-page: 413 year: 2017 end-page: 426 ident: b0115 article-title: Analysis of melting with natural convection and volumetric radiation using lattice Boltzmann method publication-title: Int. J. Heat Mass Transf. – volume: 50 start-page: 515 year: 2011 end-page: 524 ident: b0240 article-title: Application of the modified discrete ordinates method with the concept of blocked-off region to irregular geometries publication-title: Int. J. Therm. Sci. – volume: 88 start-page: 33304 year: 2013 ident: b0060 article-title: Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes publication-title: Phys. Rev. E – volume: 56 start-page: 517 year: 1996 end-page: 533 ident: b0145 article-title: Application of the discrete ordinates method to combined conductive and radiative heat transfer in a two-dimensional complex geometry publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 70 start-page: 864 year: 2014 end-page: 874 ident: b0065 article-title: A coupled lattice Boltzmann and finite volume method for natural convection simulation publication-title: Int. J. Heat Mass Transf. – volume: 72 start-page: 102 year: 2013 end-page: 114 ident: b0245 article-title: Modelling of conduction-radiation in a porous medium with blocked-off region approach publication-title: Int. J. Therm. Sci. – volume: 52 start-page: 62 year: 2016 end-page: 105 ident: b0080 article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer publication-title: Prog. Energy Combust. Sci. – volume: 223 start-page: 89 year: 2007 end-page: 107 ident: b0095 article-title: Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method publication-title: J. Comput. Phys. – volume: 89 start-page: 283 year: 2015 end-page: 293 ident: b0195 article-title: Eccentricity effect on bifurcation and dual solutions in transient natural convection in a horizontal annulus publication-title: Int. J. Therm. Sci. – volume: 112 start-page: 2013 year: 2011 end-page: 2027 ident: b0105 article-title: Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 66 start-page: 669 year: 2014 end-page: 688 ident: b0110 article-title: Analysis of conduction-radiation heat transfer in a 2D enclosure using the lattice Boltzmann method publication-title: Numer. Heat Transf. Part A Appl. – volume: 116 start-page: 287 year: 2017 end-page: 309 ident: b0120 article-title: Analyses of unsteady conduction-radiation heat transfer using unstructured Lattice Boltzmann method publication-title: Int. J. Therm. Sci. – volume: 25 start-page: 1 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0070 article-title: Numerical simulation of Neumann boundary condition in the thermal lattice Boltzmann model publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183114500272 – volume: 39 start-page: 2847 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0255 article-title: Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method publication-title: J. Brazilian Soc. Mech. Sci. Eng. doi: 10.1007/s40430-017-0729-5 – volume: 19 start-page: 125 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0020 article-title: An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183108011978 – volume: 52 start-page: 62 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0080 article-title: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2015.10.001 – volume: 45 start-page: 103 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0225 article-title: Radiative heat transfer for irregular geometries with the collapsed dimension method publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2005.06.006 – volume: 112 start-page: 413 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0115 article-title: Analysis of melting with natural convection and volumetric radiation using lattice Boltzmann method publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.04.136 – volume: 111 start-page: 279 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0175 article-title: Spectral collocation method for radiative-conductive porous fin with temperature dependent properties publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.12.054 – volume: 39 start-page: 617 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0125 article-title: Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles publication-title: Numer. Heat Transf. Part B Fundam. doi: 10.1080/10407790152034854 – volume: 68 start-page: 26701 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0010 article-title: Simplified thermal lattice Boltzmann model for incompressible thermal flows publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.026701 – volume: 27 start-page: 1650063 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0075 article-title: Study of three-dimensional electro-osmotic flow with curved boundary via lattice Boltzmann method publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183116500637 – volume: 49 start-page: 492 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0235 article-title: Combined conductive and radiative heat transfer in an anisotropic scattering participating medium with irregular geometries publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.10.005 – volume: 112 start-page: 2013 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0105 article-title: Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2011.04.002 – year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0215 article-title: Discrete ordinates method applied to radiative transfer equation in complex geometries meshed by structured and unstructured grids publication-title: J. Brazilian Soc. Mech. Sci. Eng. – volume: 88 start-page: 33304 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0060 article-title: Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.033304 – volume: 129 start-page: 118 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0185 article-title: Natural element method for solving radiative transfer with or without conduction in three-dimensional complex geometries publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2013.06.002 – volume: 97 start-page: 611 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0100 article-title: Analysis of transient conduction and radiation problems using lattice Boltzmann and finite volume methods publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.01.074 – volume: 51 start-page: 97 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0135 article-title: Solution of radiative heat transfer in 2-D geometries by a modified finite-volume method based on a cell vertex scheme using unstructured triangular meshes publication-title: Numer. Heat Transf. Part B Fundam. doi: 10.1080/10407790600762805 – volume: 98 start-page: 425 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0220 article-title: Formulation and testing of the FTn finite volume method for radiation in 3-D complex inhomogeneous participating media publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2005.07.001 – volume: 113 start-page: 1689 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0045 article-title: Numerical prediction of heat transfer by natural convection and radiation in an enclosure filled with an isotropic scattering medium publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2012.04.017 – volume: 107 start-page: 443 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0155 article-title: Numerical solution of radiative and conductive heat transfer in concentric spherical and cylindrical media publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2007.02.012 – volume: 72 start-page: 102 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0245 article-title: Modelling of conduction-radiation in a porous medium with blocked-off region approach publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.04.027 – volume: 53 start-page: 990 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0030 article-title: A critical evaluation of force term in lattice Boltzmann method, natural convection problem publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.11.014 – volume: 69 start-page: 35 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0050 article-title: Thermal lattice Boltzmann simulations of natural convection with complex geometry publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2012.08.012 – volume: 146 start-page: 282 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0005 article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.6057 – volume: 64 start-page: 275 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0130 article-title: Application of a modified discrete ordinates method to two-dimensional enclosures of irregular geometry publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/S0022-4073(99)00100-4 – volume: 70 start-page: 864 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0065 article-title: A coupled lattice Boltzmann and finite volume method for natural convection simulation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.11.077 – volume: 102 start-page: 190 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0150 article-title: Development of a finite element model for coupled radiative and conductive heat transfer in participating media publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2006.02.070 – volume: 108 start-page: 89 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0250 article-title: Evaluation of radiative properties of a representative foam structure using blocked-off region approach integrated with finite volume method publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.05.003 – volume: 223 start-page: 89 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0095 article-title: Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.08.021 – volume: 89 start-page: 283 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0195 article-title: Eccentricity effect on bifurcation and dual solutions in transient natural convection in a horizontal annulus publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.11.020 – volume: 114 start-page: 469 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0180 article-title: Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.082 – volume: 66 start-page: 243 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0200 article-title: Coupled radiation and mixed convection in an eccentric annulus using the hybrid strategy of lattice boltzmann-meshless method publication-title: Numer. Heat Transf. Part B Fundam. doi: 10.1080/10407790.2014.915668 – volume: 68 start-page: 619 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0085 article-title: Analysis of transient conduction and radiation problems using the lattice Boltzmann and discrete ordinates methods publication-title: Numer. Heat Transf. Part A Appl. An Int. J. Comput. Methodol. doi: 10.1080/10407782.2014.994406 – volume: 131 start-page: 62701 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0165 article-title: Chebyshev collocation spectral methods for coupled radiation and conduction in a concentric spherical participating medium publication-title: J. Heat Transfer. doi: 10.1115/1.3090617 – volume: 116 start-page: 287 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0120 article-title: Analyses of unsteady conduction-radiation heat transfer using unstructured Lattice Boltzmann method publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.03.002 – volume: 56 start-page: 517 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0145 article-title: Application of the discrete ordinates method to combined conductive and radiative heat transfer in a two-dimensional complex geometry publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/0022-4073(96)00082-9 – volume: 66 start-page: 669 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0110 article-title: Analysis of conduction-radiation heat transfer in a 2D enclosure using the lattice Boltzmann method publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407782.2014.894376 – volume: 54 start-page: 116 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0140 article-title: Evaluation of the finite-volume solutions of radiative heat transfer in a complex two-dimensional enclosure with unstructured polygonal meshes publication-title: Numer. Heat Transf. Part B Fundam. doi: 10.1080/10407790802154215 – volume: 250 start-page: 126 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0055 article-title: Application of a ghost fluid approach for a thermal lattice Boltzmann method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.04.044 – volume: 98 start-page: 238 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0230 article-title: Discrete transfer method with the concept of blocked-off region for irregular geometries publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2005.05.087 – volume: 52 start-page: 757 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0090 article-title: Application of the lattice Boltzmann method and the discrete ordinates method for solving transient conduction and radiation heat transfer problems publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407780701347663 – volume: 26 start-page: 225 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0205 article-title: Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation heat transfer procedure publication-title: Numer. Heat Transf. Part B Fundam. doi: 10.1080/10407799408914927 – volume: 85 start-page: 1 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0040 article-title: General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method publication-title: Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.85.016701 – volume: 24 start-page: 823 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0160 article-title: Spectral collocation method for transient conduction-radiation heat transfer publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.43400 – volume: 76 start-page: 30 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0190 article-title: Natural element method analysis for coupled radiative and conductive heat transfer in semitransparent medium with irregular geometries publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.08.013 – volume: 69 start-page: 68 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0170 article-title: Predication of nonlinear heat transfer in a convective-radiative fin with temperature-dependent properties by the collocation spectral method publication-title: Numer. Heat Transf. Part B Fundam. doi: 10.1080/10407782.2015.1081043 – volume: 50 start-page: 515 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0240 article-title: Application of the modified discrete ordinates method with the concept of blocked-off region to irregular geometries publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.10.012 – volume: 17 start-page: 183 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0015 article-title: Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979203017485 – volume: 43 start-page: 807 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0210 article-title: Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/713838148 – volume: 59 start-page: 2421 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0035 article-title: Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method publication-title: Comput. Math. with Appl. doi: 10.1016/j.camwa.2009.08.070 – volume: 51 start-page: 2519 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.01.067_b0025 article-title: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder-A LBM approach publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.07.053 |
SSID | ssj0017046 |
Score | 2.3875463 |
Snippet | •LBM and FVM are coupled for combined conduction and radiation in irregular geometry.•Blocked-off method is used in FVM for radiative transfer equation.•The... Lattice Boltzmann method (LBM) has been a trendy tool for fluid flow and heat transfer problems. Recently it has been applied to combined heat transfer... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1039 |
SubjectTerms | Albedo Computational fluid dynamics Conduction heating Conductivity Finite volume method Fluid flow Geometry Heat flux Heat transfer Optical thickness Radiation Radiative transfer Temperature distribution |
Title | A hybrid strategy of lattice Boltzmann method and finite volume method for combined conduction and radiation in irregular geometry |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.01.067 https://www.proquest.com/docview/2065061025 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEG6MRuPF-Izv9ODBC7rQssDJrBvN6kYPRqO3ppRW2aysYfGwHjz4y51pQePjYmJCAqW0kHb45ivMg5A9nsaBMsp4IZf4tUrBOwda0gsMC9taRaAj0Tn54rLdu-Hnd-HdFOk2vjBoVlljv8N0i9b1mcN6NA-f8hx9fFG4UKQYB4qIMUE5j1DKD14_zDz8qOWcdRCN8eo5sv9p45UPEPEegaZWliZqjBDqxzaQp808_6uq-gbaVhOdLpKFmkLSjnvKJTKli2Uya0051XiFvHXowwT9sOjYRZ6d0JGhQ1mhmRs9Hg2rl0dZFNTljqayyKjJkXlSh1RNBbBZCqMCK2edwUGRuTiztkGJEQ1sKYetLG1C-5Le6xE0Lier5Ob05Lrb8-pMC57irF15JsK_nSxOw1jqyARSKYACFSea8Qx0nAwSlYDiZ1kKBC1NWCtNVKQDFkkGHE6xNTJdjAq9TiiTUah9bfws1TzJYEVnfJnGvo79FpM63CBHzaAKVYchx2wYQ9HYmw3Ez2kROC2i5QuYlg2SfPTw5EJy_KFtt5lH8UXMBGiQP_Sy3YiAqF_5MdQD2QUyGoSb_3KTLTKPJWeWtk2mq_JZ7wABqtJdK-G7ZKZz1u9d4r5_ddt_B-nSDnk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH7qWjF2QQOGYGPgAwcuEU2cNMlpKhWoXaEnkLhZjmOPoJKiNDt0x_3le89OQMAuSEg5JLGcRH7P3_scvx8AR2GWBMoo40WhpL9VCuccWkkvMDwaaBWjjaTg5MvZYHwd_ryJbjowamNhyK2ywX6H6RatmzsnzWiePBQFxfiScpFK8RApYvgBepSdKupCbziZjmePmwlx38XrECBTh49w_OTmVdwR6N0jU60tU9SUJNRPbC5PW3z-v9bqBW5bY3T-GTYaFsmG7kM3oaPLLViz3pxquQ1_h-x2RaFYbOmSz67YwrC5rMnTjZ0u5vWfe1mWzJWPZrLMmSmIfDIHVm0DElqGA4OLZ53jSZm7VLO2Q0VJDexVgUdV2Zr2FfulF9i5Wn2B6_Ozq9HYa4oteCrkg9ozMW148iSLEqljE0ilEA1Ukmoe5mjmZJCqFG0_zzPkaFnK-1mqYh3wWHKkcYrvQLdclHoXGJdxpH1t_DzTYZrjos74Mkt8nfh9LnW0Bz_aQRWqyUROBTHmonU5uxOvxSJILKLvCxTLHqSPT3hwWTne0HfUylE80zSBRuQNT9lvVUA0s36J7ch3kY8G0dd3eckhrI-vLi_ExWQ2_QafqMV5qe1Dt65-6-_Ih-rsoNH3f5ZnD4c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+strategy+of+lattice+Boltzmann+method+and+finite+volume+method+for+combined+conduction+and+radiation+in+irregular+geometry&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Sun%2C+Yujia&rft.au=Zhang%2C+Xiaobing&rft.date=2018-06-01&rft.issn=0017-9310&rft.volume=121&rft.spage=1039&rft.epage=1054&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.01.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_01_067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |