The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis
► Pyrolysis characteristics of cellulose, hemicellulose and lignin were identified. ► Components fractions were identified by atomic balance and optimization model. ► Higher lignin content led to slower decomposition and lower product gas. ► Lignin content of biomass is the main controlling factor o...
Saved in:
Published in | Journal of analytical and applied pyrolysis Vol. 101; pp. 177 - 184 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-2370 1873-250X |
DOI | 10.1016/j.jaap.2013.01.012 |
Cover
Abstract | ► Pyrolysis characteristics of cellulose, hemicellulose and lignin were identified. ► Components fractions were identified by atomic balance and optimization model. ► Higher lignin content led to slower decomposition and lower product gas. ► Lignin content of biomass is the main controlling factor of industrial pyrolysis. ► Industrial fixed bed gasification can be according to the feedstock composition.
Thermochemical conversion of biomass has been studied extensively over the last decades. For the design, optimization and modeling of thermochemical conversion processes, such as fixed bed pyrolysis, a sound understanding of pyrolysis is essential. However, the decomposition mechanism of most biomass types into gaseous, liquid, and solid fractions is still unknown because of the complexity of pyrolysis and differences in biomass composition.
The aim of this study was to find characteristic differences in the pyrolysis behavior of three widely used biomass feedstocks to optimize the performance of industrial fixed bed pyrolysis. This aim was achieved in three steps. First, devolatilization kinetics during pyrolysis of three biomass types was investigated in a thermogravimetric analyzer (TGA). Then, a one-step multi-component pyrolysis model with three independent parallel reactions for hemicellulose, cellulose and lignin was derived to correlate the kinetics with single component decomposition and to identify their amount in the biomass sample. In a final step, the findings were tested in a fixed bed reactor at laboratory scale to prove applicability in industrial processes.
Three types of biomass were chosen for this investigation: wheat straw, rape straw and spruce wood with bark. They represent biomass with a high cellulose, hemicellulose and lignin content, respectively. Since lignin is the most stable and complex of these three biomass components, its amount is assumed to be the main controlling factor in the thermochemical decomposition process.
The thermogravimetric (TG) curve of spruce wood with bark was found to shift to about 20K higher temperatures compared to the TG curves of straw and rape straw. This result indicates that a higher activation energy is needed to decompose woody biomass, which contains a higher amount and a different type of lignin than straw. Three wood decomposition phases were distinguished from the negative first derivatives curves (DTG): a shoulder during hemicellulose decomposition, a peak during cellulose decomposition and a smaller rise during lignin decomposition. By comparison both herbaceous biomass types decomposed in only two phases at lower temperatures. The decomposition of the herbaceous, and woody biomass samples was completed at about 830K and 900K, respectively, leaving only a solid residue of ash. The derived pyrolysis model estimated the composition and described the devolatilization curves of each biomass with sufficient accuracy for industrial processes, although the same activation energy set, taken from the literature, was used for each biomass. In the fixed bed pyrolysis experiments similar characteristics were found to those in the TGA experiments. Herbaceous biomass with a higher cellulose and hemicellulose content decomposed faster and produced a larger fraction of gaseous products than woody biomass with a higher lignin content. According to the assessment of the product distribution, performed after each experiment, woody biomass pyrolysis led to a larger fraction of solid products than herbaceous biomass pyrolysis. We conclude that industrial fixed bed pyrolysis can be optimized for different biomass feedstocks with a specific composition of cellulose, hemicellulose and lignin. |
---|---|
AbstractList | Thermochemical conversion of biomass has been studied extensively over the last decades. For the design, optimization and modeling of thermochemical conversion processes, such as fixed bed pyrolysis, a sound understanding of pyrolysis is essential. However, the decomposition mechanism of most biomass types into gaseous, liquid, and solid fractions is still unknown because of the complexity of pyrolysis and differences in biomass composition. The aim of this study was to find characteristic differences in the pyrolysis behavior of three widely used biomass feedstocks to optimize the performance of industrial fixed bed pyrolysis. This aim was achieved in three steps. First, devolatilization kinetics during pyrolysis of three biomass types was investigated in a thermogravimetric analyzer (TGA). Then, a one-step multi-component pyrolysis model with three independent parallel reactions for hemicellulose, cellulose and lignin was derived to correlate the kinetics with single component decomposition and to identify their amount in the biomass sample. In a final step, the findings were tested in a fixed bed reactor at laboratory scale to prove applicability in industrial processes. Three types of biomass were chosen for this investigation: wheat straw, rape straw and spruce wood with bark. They represent biomass with a high cellulose, hemicellulose and lignin content, respectively. Since lignin is the most stable and complex of these three biomass components, its amount is assumed to be the main controlling factor in the thermochemical decomposition process. The thermogravimetric (TG) curve of spruce wood with bark was found to shift to about 20K higher temperatures compared to the TG curves of straw and rape straw. This result indicates that a higher activation energy is needed to decompose woody biomass, which contains a higher amount and a different type of lignin than straw. Three wood decomposition phases were distinguished from the negative first derivatives curves (DTG): a shoulder during hemicellulose decomposition, a peak during cellulose decomposition and a smaller rise during lignin decomposition. By comparison both herbaceous biomass types decomposed in only two phases at lower temperatures. The decomposition of the herbaceous, and woody biomass samples was completed at about 830K and 900K, respectively, leaving only a solid residue of ash. The derived pyrolysis model estimated the composition and described the devolatilization curves of each biomass with sufficient accuracy for industrial processes, although the same activation energy set, taken from the literature, was used for each biomass. In the fixed bed pyrolysis experiments similar characteristics were found to those in the TGA experiments. Herbaceous biomass with a higher cellulose and hemicellulose content decomposed faster and produced a larger fraction of gaseous products than woody biomass with a higher lignin content. According to the assessment of the product distribution, performed after each experiment, woody biomass pyrolysis led to a larger fraction of solid products than herbaceous biomass pyrolysis. We conclude that industrial fixed bed pyrolysis can be optimized for different biomass feedstocks with a specific composition of cellulose, hemicellulose and lignin. ► Pyrolysis characteristics of cellulose, hemicellulose and lignin were identified. ► Components fractions were identified by atomic balance and optimization model. ► Higher lignin content led to slower decomposition and lower product gas. ► Lignin content of biomass is the main controlling factor of industrial pyrolysis. ► Industrial fixed bed gasification can be according to the feedstock composition. Thermochemical conversion of biomass has been studied extensively over the last decades. For the design, optimization and modeling of thermochemical conversion processes, such as fixed bed pyrolysis, a sound understanding of pyrolysis is essential. However, the decomposition mechanism of most biomass types into gaseous, liquid, and solid fractions is still unknown because of the complexity of pyrolysis and differences in biomass composition. The aim of this study was to find characteristic differences in the pyrolysis behavior of three widely used biomass feedstocks to optimize the performance of industrial fixed bed pyrolysis. This aim was achieved in three steps. First, devolatilization kinetics during pyrolysis of three biomass types was investigated in a thermogravimetric analyzer (TGA). Then, a one-step multi-component pyrolysis model with three independent parallel reactions for hemicellulose, cellulose and lignin was derived to correlate the kinetics with single component decomposition and to identify their amount in the biomass sample. In a final step, the findings were tested in a fixed bed reactor at laboratory scale to prove applicability in industrial processes. Three types of biomass were chosen for this investigation: wheat straw, rape straw and spruce wood with bark. They represent biomass with a high cellulose, hemicellulose and lignin content, respectively. Since lignin is the most stable and complex of these three biomass components, its amount is assumed to be the main controlling factor in the thermochemical decomposition process. The thermogravimetric (TG) curve of spruce wood with bark was found to shift to about 20K higher temperatures compared to the TG curves of straw and rape straw. This result indicates that a higher activation energy is needed to decompose woody biomass, which contains a higher amount and a different type of lignin than straw. Three wood decomposition phases were distinguished from the negative first derivatives curves (DTG): a shoulder during hemicellulose decomposition, a peak during cellulose decomposition and a smaller rise during lignin decomposition. By comparison both herbaceous biomass types decomposed in only two phases at lower temperatures. The decomposition of the herbaceous, and woody biomass samples was completed at about 830K and 900K, respectively, leaving only a solid residue of ash. The derived pyrolysis model estimated the composition and described the devolatilization curves of each biomass with sufficient accuracy for industrial processes, although the same activation energy set, taken from the literature, was used for each biomass. In the fixed bed pyrolysis experiments similar characteristics were found to those in the TGA experiments. Herbaceous biomass with a higher cellulose and hemicellulose content decomposed faster and produced a larger fraction of gaseous products than woody biomass with a higher lignin content. According to the assessment of the product distribution, performed after each experiment, woody biomass pyrolysis led to a larger fraction of solid products than herbaceous biomass pyrolysis. We conclude that industrial fixed bed pyrolysis can be optimized for different biomass feedstocks with a specific composition of cellulose, hemicellulose and lignin. |
Author | Laborie, Marie-Pierre Messmer, Jonas Burhenne, Luisa Aicher, Thomas |
Author_xml | – sequence: 1 givenname: Luisa surname: Burhenne fullname: Burhenne, Luisa email: luisa.burhenne@ise.fraunhofer.de organization: Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany – sequence: 2 givenname: Jonas surname: Messmer fullname: Messmer, Jonas organization: Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany – sequence: 3 givenname: Thomas surname: Aicher fullname: Aicher, Thomas organization: Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany – sequence: 4 givenname: Marie-Pierre surname: Laborie fullname: Laborie, Marie-Pierre organization: Institute of Forest Utilization and Work Science, University of Freiburg, Werthmannstr. 6, 79085 Freiburg, Germany |
BookMark | eNp9kEtLAzEUhYMo2Fb_gKssXThjkuk8Cm5K0SoU3FRwF_K406bMJGMyFfvvzVhBcFG44ZLc8yU5Z4zOrbOA0A0lKSW0uN-lOyG6lBGapYTGYmdoRKsyS1hO3s_RKIryhGUluUTjEHaEkKKg1Qht1lvAUNegeuxq3MedNK4VIWDl2i6-YvuAG7Oxxt5hBU2zb1wALKzGW2jN34mzeL2c_wxq8wUay7i6g3fNIZhwhS5q0QS4_u0T9Pb0uF48J6vX5ctivkrUNCv6BFQpBAVK5LSikuVKFjpnjCiIzmg907ErWWVMg8yUklIUBZtVQhelhioOJuj2eG_n3cceQs9bE4ZPCgtuHziLzsm0LGkepdVRqrwLwUPNlelFb5ztvTANp4QP2fIdH7LlQ7ac0Fgsouwf2nnTCn84DT0cIYj-Pw14HpQBq0AbH-Pn2plT-DczPZaH |
CitedBy_id | crossref_primary_10_1016_j_dib_2025_111296 crossref_primary_10_1016_j_renene_2019_08_056 crossref_primary_10_1016_j_enconman_2020_112707 crossref_primary_10_1021_acs_iecr_0c05174 crossref_primary_10_1021_acs_energyfuels_9b01260 crossref_primary_10_1016_j_jhazmat_2023_131433 crossref_primary_10_1002_app_56636 crossref_primary_10_1016_j_fuel_2015_04_056 crossref_primary_10_1080_15428052_2018_1509755 crossref_primary_10_1016_j_tca_2024_179802 crossref_primary_10_1016_j_jestch_2024_101615 crossref_primary_10_1002_rem_21733 crossref_primary_10_3390_polym13101551 crossref_primary_10_3390_en13153977 crossref_primary_10_1016_j_biombioe_2016_12_017 crossref_primary_10_1016_j_ijbiomac_2025_140839 crossref_primary_10_1016_j_jclepro_2024_142179 crossref_primary_10_3389_fenrg_2021_608825 crossref_primary_10_1016_j_conbuildmat_2015_05_006 crossref_primary_10_1177_00219983231184017 crossref_primary_10_1002_pol_20230126 crossref_primary_10_1016_j_chemgeo_2022_120964 crossref_primary_10_1016_j_joei_2017_12_003 crossref_primary_10_1115_1_4040202 crossref_primary_10_3390_en15207514 crossref_primary_10_1016_j_conbuildmat_2018_04_028 crossref_primary_10_1021_acsomega_9b01013 crossref_primary_10_1007_s13399_021_01300_8 crossref_primary_10_1016_j_fuel_2023_127526 crossref_primary_10_1016_j_cej_2022_137944 crossref_primary_10_1016_j_enconman_2019_04_020 crossref_primary_10_1016_j_fuel_2014_02_065 crossref_primary_10_3390_polym12030612 crossref_primary_10_1007_s13399_020_01172_4 crossref_primary_10_1016_j_fuel_2020_118169 crossref_primary_10_1016_j_energy_2020_117744 crossref_primary_10_1016_j_jaap_2024_106413 crossref_primary_10_1134_S0965544123090013 crossref_primary_10_3103_S0361521923060083 crossref_primary_10_1016_j_biortech_2020_123913 crossref_primary_10_1016_j_biteb_2021_100687 crossref_primary_10_1016_j_csite_2018_07_011 crossref_primary_10_3390_nano12121960 crossref_primary_10_1021_acs_energyfuels_9b02143 crossref_primary_10_1007_s11104_024_07143_2 crossref_primary_10_3390_gels9090674 crossref_primary_10_1016_j_est_2025_115903 crossref_primary_10_1016_j_ijhydene_2021_07_189 crossref_primary_10_1016_j_biombioe_2022_106687 crossref_primary_10_1039_D3MA00550J crossref_primary_10_1016_j_jclepro_2021_130000 crossref_primary_10_1016_j_fuel_2024_133300 crossref_primary_10_1016_j_ijbiomac_2024_130826 crossref_primary_10_1007_s12155_014_9507_8 crossref_primary_10_1002_slct_201802957 crossref_primary_10_1016_j_enconman_2017_01_075 crossref_primary_10_1016_j_applthermaleng_2019_03_110 crossref_primary_10_1002_cssc_202301005 crossref_primary_10_3390_ma15124130 crossref_primary_10_1016_j_rser_2016_04_049 crossref_primary_10_1016_j_jaap_2017_12_007 crossref_primary_10_1016_j_indcrop_2023_116644 crossref_primary_10_1007_s12649_020_01235_7 crossref_primary_10_5658_WOOD_2019_47_4_486 crossref_primary_10_1016_j_biortech_2023_129065 crossref_primary_10_3390_pr10010111 crossref_primary_10_1007_s10570_014_0309_0 crossref_primary_10_1016_j_enconman_2020_112634 crossref_primary_10_2298_JSC230303084Z crossref_primary_10_1016_j_energy_2021_121085 crossref_primary_10_1016_j_carbpol_2019_04_035 crossref_primary_10_1007_s12155_022_10526_x crossref_primary_10_1016_j_apenergy_2018_12_058 crossref_primary_10_1016_j_jaap_2013_10_006 crossref_primary_10_1115_1_4050578 crossref_primary_10_1016_j_renene_2023_02_012 crossref_primary_10_1016_j_envres_2023_115619 crossref_primary_10_1155_2020_8885259 crossref_primary_10_1016_j_jaap_2023_106128 crossref_primary_10_1098_rsos_180331 crossref_primary_10_1016_j_fuel_2021_121816 crossref_primary_10_2139_ssrn_4064472 crossref_primary_10_5658_WOOD_2016_44_1_96 crossref_primary_10_1021_acs_energyfuels_7b02595 crossref_primary_10_1016_j_biortech_2021_126440 crossref_primary_10_1016_j_fuel_2016_12_042 crossref_primary_10_31857_S0023117723060105 crossref_primary_10_1016_j_renene_2023_03_073 crossref_primary_10_1016_j_biortech_2015_12_055 crossref_primary_10_1007_s42773_024_00320_7 crossref_primary_10_1016_j_renene_2018_07_144 crossref_primary_10_1016_j_enmm_2020_100357 crossref_primary_10_1007_s11144_022_02176_z crossref_primary_10_1080_00102202_2024_2379493 crossref_primary_10_3390_ma17112474 crossref_primary_10_1016_j_energy_2015_01_018 crossref_primary_10_1002_cjce_23397 crossref_primary_10_1016_j_jaap_2025_106977 crossref_primary_10_3390_en16083457 crossref_primary_10_1080_14786451_2021_1887186 crossref_primary_10_1016_j_biombioe_2025_107671 crossref_primary_10_1016_j_fuel_2019_02_049 crossref_primary_10_1016_j_jarmap_2025_100624 crossref_primary_10_1016_j_biombioe_2020_105901 crossref_primary_10_1007_s12649_018_0318_6 crossref_primary_10_1007_s13399_020_01203_0 crossref_primary_10_16984_saufenbilder_811684 crossref_primary_10_1016_j_enconman_2017_10_001 crossref_primary_10_1016_j_fuel_2016_12_046 crossref_primary_10_1021_acsomega_1c04675 crossref_primary_10_1016_j_joei_2024_101769 crossref_primary_10_1016_j_biombioe_2022_106485 crossref_primary_10_1007_s13399_018_0351_5 crossref_primary_10_1016_j_fuel_2020_118112 crossref_primary_10_3390_polym14040833 crossref_primary_10_1016_j_cjche_2016_01_004 crossref_primary_10_3906_kim_1610_8 crossref_primary_10_15446_ing_investig_v34n2_40504 crossref_primary_10_1007_s10653_024_01981_w crossref_primary_10_1007_s11356_023_25150_1 crossref_primary_10_1021_acsomega_1c05907 crossref_primary_10_1002_ep_12869 crossref_primary_10_1002_slct_202400405 crossref_primary_10_1016_j_arabjc_2024_105892 crossref_primary_10_1016_j_jhazmat_2020_122711 crossref_primary_10_3390_f14081567 crossref_primary_10_1088_1757_899X_539_1_012017 crossref_primary_10_1016_j_jaap_2018_11_006 crossref_primary_10_1021_acssuschemeng_8b05364 crossref_primary_10_1063_1_4985944 crossref_primary_10_1016_j_joei_2023_101477 crossref_primary_10_1016_j_enconman_2024_118093 crossref_primary_10_1007_s10924_024_03478_0 crossref_primary_10_1016_j_biombioe_2020_105525 crossref_primary_10_1016_j_envres_2023_117551 crossref_primary_10_1007_s12649_022_01827_5 crossref_primary_10_1016_j_tca_2017_12_003 crossref_primary_10_1007_s11814_016_0102_x crossref_primary_10_3390_su132111731 crossref_primary_10_1021_acsaem_1c00521 crossref_primary_10_1016_j_eti_2018_09_007 crossref_primary_10_1007_s11356_021_17048_7 crossref_primary_10_1016_j_jhazmat_2023_131600 crossref_primary_10_1002_er_7104 crossref_primary_10_1016_j_jaap_2020_104966 crossref_primary_10_1098_rsos_171970 crossref_primary_10_3390_molecules27092794 crossref_primary_10_1016_j_cej_2023_145640 crossref_primary_10_1016_j_jwpe_2024_106715 crossref_primary_10_1016_j_biombioe_2025_107644 crossref_primary_10_1016_j_biortech_2018_10_084 crossref_primary_10_1007_s10570_024_05911_y crossref_primary_10_1063_5_0084886 crossref_primary_10_1021_acs_energyfuels_7b01226 crossref_primary_10_3390_ijms241411668 crossref_primary_10_1016_j_egyr_2021_07_094 crossref_primary_10_1002_adsu_202300632 crossref_primary_10_1016_j_biortech_2015_07_060 crossref_primary_10_1021_acsami_9b03040 crossref_primary_10_1002_er_8303 crossref_primary_10_3390_ma13173776 crossref_primary_10_1155_2016_3186589 crossref_primary_10_1021_acs_energyfuels_5b01152 crossref_primary_10_1021_acs_energyfuels_8b02557 crossref_primary_10_1016_j_rser_2019_109486 crossref_primary_10_3390_coatings14020200 crossref_primary_10_1016_j_energy_2017_01_020 crossref_primary_10_3390_en12203972 crossref_primary_10_1016_j_enconman_2018_07_018 crossref_primary_10_1016_j_renene_2019_05_116 crossref_primary_10_1590_S0100_204X2014000300005 crossref_primary_10_1016_j_indcrop_2024_119629 crossref_primary_10_1016_j_indcrop_2024_119509 crossref_primary_10_1016_j_tsep_2021_101104 crossref_primary_10_1016_j_jaap_2015_01_005 crossref_primary_10_1016_j_joei_2017_03_002 crossref_primary_10_1007_s11814_014_0296_8 crossref_primary_10_1016_j_csite_2020_100764 crossref_primary_10_1016_j_scp_2017_10_005 crossref_primary_10_1016_j_rineng_2024_102301 crossref_primary_10_1016_j_seta_2017_09_006 crossref_primary_10_1039_D1RA06652H crossref_primary_10_1007_s12649_020_01183_2 crossref_primary_10_1016_j_crcon_2018_05_004 crossref_primary_10_1007_s10973_019_08278_6 crossref_primary_10_1021_acs_iecr_7b00559 crossref_primary_10_1016_j_jaap_2019_104753 crossref_primary_10_1016_j_resconrec_2023_107367 crossref_primary_10_1016_j_biombioe_2019_105412 crossref_primary_10_1016_j_biortech_2016_01_075 crossref_primary_10_1016_j_biteb_2024_101771 crossref_primary_10_1007_s11696_019_00998_1 crossref_primary_10_1021_acssuschemeng_9b06522 crossref_primary_10_1016_j_biombioe_2024_107518 crossref_primary_10_1016_j_jallcom_2020_155029 crossref_primary_10_3390_agriculture13030687 crossref_primary_10_1016_j_ces_2015_01_017 crossref_primary_10_1002_cssc_201601441 crossref_primary_10_1016_j_enconman_2016_05_007 crossref_primary_10_1016_j_renene_2016_10_080 crossref_primary_10_1080_00450618_2017_1310921 crossref_primary_10_1016_j_esd_2015_05_005 crossref_primary_10_1016_j_quascirev_2022_107738 crossref_primary_10_1016_j_jallcom_2020_157207 crossref_primary_10_1016_j_renene_2020_07_001 crossref_primary_10_1080_02533839_2015_1112249 crossref_primary_10_1016_j_firesaf_2023_103762 crossref_primary_10_1007_s12155_025_10834_y crossref_primary_10_1016_j_enconman_2016_04_104 crossref_primary_10_1016_j_mtsust_2024_100868 crossref_primary_10_1016_j_actbio_2020_04_054 crossref_primary_10_1016_j_jclepro_2020_124015 crossref_primary_10_1007_s10973_023_12364_1 crossref_primary_10_1016_j_ijhydene_2022_05_170 crossref_primary_10_1007_s10973_020_09778_6 crossref_primary_10_1016_j_fuel_2022_123441 crossref_primary_10_1021_acsomega_2c01899 crossref_primary_10_1007_s13399_022_03656_x crossref_primary_10_3390_en12224344 crossref_primary_10_1016_j_biombioe_2019_05_010 crossref_primary_10_1016_j_jhazmat_2025_137916 crossref_primary_10_1016_j_apenergy_2022_119639 crossref_primary_10_1016_j_energy_2019_04_211 crossref_primary_10_1016_j_jece_2020_104914 crossref_primary_10_1016_j_fuproc_2015_09_014 crossref_primary_10_1016_j_proci_2016_06_081 crossref_primary_10_1016_j_biortech_2013_12_087 crossref_primary_10_1016_j_cej_2017_02_045 crossref_primary_10_1007_s10973_016_5541_4 crossref_primary_10_1016_j_biortech_2014_12_025 crossref_primary_10_1080_09243046_2023_2209764 crossref_primary_10_1007_s11157_017_9422_5 crossref_primary_10_1021_acssuschemeng_3c03769 crossref_primary_10_1016_j_ijhydene_2017_06_174 crossref_primary_10_1016_j_watres_2024_121138 crossref_primary_10_1021_acs_energyfuels_7b00796 crossref_primary_10_1016_j_biortech_2015_09_057 crossref_primary_10_1007_s00107_018_1343_7 crossref_primary_10_1016_j_biombioe_2024_107422 crossref_primary_10_1021_acs_energyfuels_0c01054 crossref_primary_10_1021_ef500654t crossref_primary_10_35429_JRE_2019_9_3_1_9 crossref_primary_10_1080_02773813_2014_962154 crossref_primary_10_3390_pr12040817 crossref_primary_10_1002_ese3_109 crossref_primary_10_1186_s13068_018_1305_7 crossref_primary_10_1080_17480272_2025_2475078 crossref_primary_10_1016_j_jaap_2022_105766 crossref_primary_10_3390_en13236202 crossref_primary_10_1016_j_wasman_2015_08_025 crossref_primary_10_1007_s13399_025_06683_6 crossref_primary_10_34185_tpm_4_2019_06 crossref_primary_10_1016_j_jclepro_2021_126645 crossref_primary_10_3390_polym14030387 crossref_primary_10_1016_j_renene_2018_10_033 crossref_primary_10_3390_jmse9010006 crossref_primary_10_1016_j_heliyon_2019_e02723 crossref_primary_10_1016_j_chemosphere_2021_132381 crossref_primary_10_1016_j_enconman_2016_04_097 crossref_primary_10_1016_j_indcrop_2022_115648 crossref_primary_10_1007_s10694_022_01339_7 crossref_primary_10_1016_j_renene_2014_11_071 crossref_primary_10_1007_s12649_021_01640_6 crossref_primary_10_1007_s10098_022_02339_5 crossref_primary_10_1007_s12155_021_10370_5 crossref_primary_10_1016_j_jenvman_2024_123334 crossref_primary_10_1016_j_biortech_2020_123498 crossref_primary_10_1080_00102202_2021_1989587 crossref_primary_10_1016_j_joei_2023_101419 crossref_primary_10_3390_f15030452 crossref_primary_10_1016_j_mtcomm_2019_100697 crossref_primary_10_1016_j_susmat_2021_e00310 crossref_primary_10_1007_s13399_020_00771_5 crossref_primary_10_3390_molecules29235665 crossref_primary_10_1002_cctc_201500029 crossref_primary_10_1016_j_orggeochem_2020_104065 crossref_primary_10_1016_j_joei_2018_09_006 crossref_primary_10_1021_ef401145w crossref_primary_10_29105_qh12_02_336 crossref_primary_10_1016_j_fuel_2021_123006 crossref_primary_10_1016_j_enconman_2023_117216 crossref_primary_10_1016_j_fuel_2014_05_019 crossref_primary_10_1021_acssuschemeng_8b02967 crossref_primary_10_1016_j_renene_2018_12_088 crossref_primary_10_2139_ssrn_4022021 crossref_primary_10_1155_2022_9884766 crossref_primary_10_1007_s13399_023_05158_w crossref_primary_10_3390_app13021055 crossref_primary_10_1007_s10570_022_04657_9 crossref_primary_10_1063_5_0142355 crossref_primary_10_1016_j_wasman_2019_01_048 crossref_primary_10_1016_j_renene_2022_09_110 crossref_primary_10_1016_j_jaap_2016_04_001 crossref_primary_10_1016_j_jaap_2021_105177 crossref_primary_10_1016_j_biombioe_2024_107103 crossref_primary_10_1051_e3sconf_202560301024 crossref_primary_10_1016_j_enconman_2021_113836 crossref_primary_10_3389_fchem_2020_00003 crossref_primary_10_1016_j_energy_2019_03_044 crossref_primary_10_1016_j_jclepro_2024_140761 crossref_primary_10_1016_j_rineng_2022_100648 crossref_primary_10_1016_j_ijhydene_2020_07_116 crossref_primary_10_1007_s11814_025_00439_8 crossref_primary_10_1016_j_cjche_2015_08_028 crossref_primary_10_1021_acs_energyfuels_7b00519 crossref_primary_10_1016_j_enconman_2020_113165 crossref_primary_10_1016_j_ensm_2020_06_017 crossref_primary_10_1007_s10973_017_6138_2 crossref_primary_10_1021_ef4012388 crossref_primary_10_1080_15567036_2019_1587075 crossref_primary_10_1016_j_indcrop_2025_120735 crossref_primary_10_1016_j_fuel_2023_128461 crossref_primary_10_1016_j_biortech_2020_123456 crossref_primary_10_1515_ijcre_2015_0082 crossref_primary_10_1016_j_rser_2016_01_088 crossref_primary_10_1016_j_jclepro_2025_145150 crossref_primary_10_1016_j_cej_2024_154579 crossref_primary_10_1016_j_jfca_2024_106564 crossref_primary_10_1021_acs_iecr_3c00192 crossref_primary_10_3390_en14020385 crossref_primary_10_1021_acs_langmuir_2c02006 crossref_primary_10_1177_0967033517728733 crossref_primary_10_3390_ma17194825 crossref_primary_10_1080_15440478_2020_1857896 crossref_primary_10_1016_j_fuel_2020_117711 crossref_primary_10_1016_j_jaap_2023_105992 crossref_primary_10_1007_s43153_020_00081_3 crossref_primary_10_1016_j_jece_2018_03_005 crossref_primary_10_1021_ef501746b crossref_primary_10_1016_j_jasrep_2018_08_032 crossref_primary_10_3390_en13112756 crossref_primary_10_1016_j_biortech_2019_122700 crossref_primary_10_1089_ees_2013_0415 crossref_primary_10_1016_j_jaap_2014_01_019 crossref_primary_10_3390_ma16010074 crossref_primary_10_3390_pr7110775 crossref_primary_10_1088_1755_1315_40_1_012047 crossref_primary_10_3390_f14102002 crossref_primary_10_1016_j_ijbiomac_2024_135925 crossref_primary_10_1016_j_jclepro_2017_10_034 crossref_primary_10_1016_j_jobab_2023_10_001 crossref_primary_10_2139_ssrn_4199516 crossref_primary_10_3390_en14227541 crossref_primary_10_1016_j_renene_2018_10_051 crossref_primary_10_1016_j_eti_2023_103075 crossref_primary_10_1016_j_firesaf_2023_103936 crossref_primary_10_1016_j_biombioe_2018_05_002 crossref_primary_10_1016_j_joei_2018_10_013 crossref_primary_10_1016_j_jaap_2022_105435 crossref_primary_10_1021_acsanm_4c03009 crossref_primary_10_1007_s13399_022_02729_1 crossref_primary_10_1016_j_ijbiomac_2023_127332 crossref_primary_10_3390_pr8091048 crossref_primary_10_1016_j_indcrop_2024_120383 crossref_primary_10_1080_17597269_2019_1646541 crossref_primary_10_1134_S1068162024070264 crossref_primary_10_1016_j_polymdegradstab_2017_03_004 crossref_primary_10_3389_fceng_2020_00004 crossref_primary_10_1002_ente_201600327 crossref_primary_10_1016_j_tca_2022_179408 crossref_primary_10_1016_j_pecs_2020_100887 crossref_primary_10_2139_ssrn_4112945 crossref_primary_10_4236_ojpc_2019_93009 crossref_primary_10_1515_npprj_2024_0059 crossref_primary_10_1007_s13399_021_01749_7 crossref_primary_10_3390_app13053240 crossref_primary_10_1007_s12155_019_09995_4 crossref_primary_10_1088_1757_899X_736_2_022061 crossref_primary_10_1016_j_mtcomm_2020_100981 crossref_primary_10_1016_j_ijhydene_2023_07_212 crossref_primary_10_1080_01932691_2024_2369881 crossref_primary_10_1186_2193_1801_3_124 crossref_primary_10_1016_j_biortech_2014_01_007 crossref_primary_10_20964_2021_01_61 crossref_primary_10_1080_09593330_2018_1520306 crossref_primary_10_3390_polym14204383 crossref_primary_10_3390_molecules28114310 crossref_primary_10_1016_j_biombioe_2018_09_031 crossref_primary_10_1016_j_jaap_2017_09_009 crossref_primary_10_1016_j_biombioe_2017_11_001 crossref_primary_10_1002_adhm_202404911 crossref_primary_10_1021_acs_est_1c08061 crossref_primary_10_1016_j_renene_2021_06_007 crossref_primary_10_1007_s10973_017_6329_x crossref_primary_10_1016_j_energy_2022_125437 crossref_primary_10_31857_S0028242123060011 crossref_primary_10_1016_j_esd_2015_08_004 crossref_primary_10_1016_j_chemosphere_2023_138437 crossref_primary_10_1021_acsomega_7b01825 crossref_primary_10_1080_17597269_2022_2146250 crossref_primary_10_1186_s40643_022_00618_z crossref_primary_10_1002_ceat_202000351 crossref_primary_10_1016_j_renene_2019_10_034 crossref_primary_10_3390_app11157069 crossref_primary_10_1021_acsanm_2c04325 crossref_primary_10_1016_j_rser_2021_111645 crossref_primary_10_1021_acs_jafc_1c07176 crossref_primary_10_1016_j_ijhydene_2024_12_085 crossref_primary_10_1016_j_carpta_2022_100259 crossref_primary_10_17221_26_2019_RAE crossref_primary_10_1016_j_energy_2015_10_007 crossref_primary_10_1016_j_fuel_2015_02_095 crossref_primary_10_1016_j_jiec_2021_01_028 crossref_primary_10_17475_kastorman_1394874 crossref_primary_10_1016_j_egyr_2024_10_016 crossref_primary_10_1007_s13399_019_00559_2 crossref_primary_10_1016_j_biortech_2019_121318 crossref_primary_10_3390_en14030682 crossref_primary_10_1016_j_fuproc_2024_108132 crossref_primary_10_1016_j_fuproc_2015_05_013 crossref_primary_10_1016_j_jenvman_2022_114598 crossref_primary_10_1252_jcej_20we148 crossref_primary_10_1016_j_wasman_2018_03_021 crossref_primary_10_3390_en16145341 crossref_primary_10_1016_j_jaap_2016_12_002 crossref_primary_10_1016_j_ces_2015_07_055 crossref_primary_10_1016_j_energy_2018_08_024 crossref_primary_10_1016_j_jaap_2016_12_005 crossref_primary_10_1016_j_rser_2018_12_047 crossref_primary_10_1016_j_scp_2018_09_005 crossref_primary_10_1016_j_indcrop_2019_03_043 crossref_primary_10_1016_j_tca_2015_07_017 crossref_primary_10_3390_app12062922 crossref_primary_10_1016_j_renene_2019_10_174 crossref_primary_10_1016_j_ijbiomac_2025_139773 crossref_primary_10_1007_s13399_023_03945_z crossref_primary_10_1016_j_energy_2023_127506 crossref_primary_10_1016_j_fuproc_2019_02_024 crossref_primary_10_21285_2227_2925_2020_10_1_124_132 crossref_primary_10_1021_acs_est_9b00262 crossref_primary_10_1021_acssuschemeng_6b02564 crossref_primary_10_1007_s11483_019_09613_y crossref_primary_10_1016_j_fuel_2016_10_074 crossref_primary_10_1002_batt_202300233 crossref_primary_10_1002_ep_13131 crossref_primary_10_3390_hydrogen4040046 crossref_primary_10_1016_j_fuproc_2015_11_022 crossref_primary_10_1016_j_biombioe_2023_106705 crossref_primary_10_1080_17597269_2019_1594598 crossref_primary_10_1007_s13399_022_03277_4 crossref_primary_10_1016_j_cej_2021_132975 crossref_primary_10_1016_j_wasman_2019_03_002 crossref_primary_10_1016_j_fuproc_2019_03_026 crossref_primary_10_3390_polym13111799 crossref_primary_10_1080_15567036_2019_1568630 crossref_primary_10_1088_2053_1591_ab4cb3 crossref_primary_10_3390_en13102468 crossref_primary_10_1016_j_apenergy_2013_04_082 crossref_primary_10_1039_C6EE00935B crossref_primary_10_1016_j_jaap_2014_03_012 crossref_primary_10_1016_j_jaap_2017_08_019 crossref_primary_10_1080_15567036_2022_2106326 |
Cites_doi | 10.1016/S0016-2361(97)85520-2 10.1021/ef800551t 10.1080/15567030600817258 10.1002/ceat.201000270 10.1016/j.biortech.2011.02.060 10.1016/0016-2361(96)00030-0 10.1016/j.fuel.2008.09.019 10.1016/j.fuel.2011.02.012 10.1016/0040-6031(83)80222-6 10.1016/j.fuel.2006.12.013 10.1016/j.renene.2006.02.017 10.1016/S0165-2370(01)00129-2 10.1016/j.indcrop.2011.10.025 10.1016/j.pecs.2006.12.001 10.1021/ef0580117 10.1016/S0016-2361(02)00138-2 10.1146/annurev.arplant.54.031902.134938 10.1021/ie0201157 10.1016/S0016-2361(01)00216-2 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jaap.2013.01.012 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-250X |
EndPage | 184 |
ExternalDocumentID | 10_1016_j_jaap_2013_01_012 S0165237013000168 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SES SEW SPC SPCBC SSK SSZ T5K TN5 WUQ YK3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c436t-ec7aa1e10b481b25cb6d5220ce0131f9de01cb832deb3ccbba66298ad67de8b83 |
IEDL.DBID | AIKHN |
ISSN | 0165-2370 |
IngestDate | Thu Sep 04 19:01:12 EDT 2025 Tue Jul 01 01:23:42 EDT 2025 Thu Apr 24 23:07:09 EDT 2025 Fri Feb 23 02:35:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pyrolysis Biomass Fixed bed TGA |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-ec7aa1e10b481b25cb6d5220ce0131f9de01cb832deb3ccbba66298ad67de8b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000047715 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000047715 crossref_citationtrail_10_1016_j_jaap_2013_01_012 crossref_primary_10_1016_j_jaap_2013_01_012 elsevier_sciencedirect_doi_10_1016_j_jaap_2013_01_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of analytical and applied pyrolysis |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rath, Wolfinger, Steiner, Krammer, Barontini, Cozzani (bib0095) 2003; 82 Raveendran, Ganesh, Khilar (bib0020) 1996; 75 Skreiberg, Skreiberg, Sandquist, SA,rum (bib0105) 2011; 90 Kaltschmitt, Hartmann, Hofbauer (bib0025) 2009 Gronli, Varhegyi, Di Blasi (bib0030) 2002; 41 Yang, Yan, Chen, Lee, Zheng (bib0040) 2007; 86 Fisher, Hajaligol, Waymack, Kellogg (bib0090) 2002; 62 Boerjan, Ralph, Baucher (bib0055) 2003; 54 Blasi (bib0070) 2008; 34 Damartzis, Vamvuka, Sfakiotakis, Zabaniotou (bib0065) 2011; 102 Raiskila (bib0050) 2008 Gani, Naruse (bib0080) 2007; 32 Balat (bib0085) 2008; 30 Morf, Hasler, Nussbaumer (bib0110) 2002; 81 R. Bayerbach, Ueber die Struktur der oligomeren Bestandteile von Flash-Pyrolyse aus Biomasse, PhD thesis, Universitat Hamburg, Von-Melle-Park 3, 20146 Hamburg, 2006. Mok (bib0100) 1983; 68 Ranzi, Cuoci, Faravelli, Frassoldati, Migliavacca, Pierucci, Sommariva (bib0005) 2008; 22 Couhert, Commandre, Salvador (bib0035) 2009; 88 Greenhalf, Nowakowski, Bridgwater, Titiloye, Yates, Riche, Shield (bib0045) 2012; 36 Pandey, Kim (bib0075) 2011; 34 Yang, Yan, Chen, Zheng, Lee, Liang (bib0015) 2006; 20 Demirbas (bib0060) 1997; 76 Yang (10.1016/j.jaap.2013.01.012_bib0015) 2006; 20 Greenhalf (10.1016/j.jaap.2013.01.012_bib0045) 2012; 36 Blasi (10.1016/j.jaap.2013.01.012_bib0070) 2008; 34 Ranzi (10.1016/j.jaap.2013.01.012_bib0005) 2008; 22 Couhert (10.1016/j.jaap.2013.01.012_bib0035) 2009; 88 Pandey (10.1016/j.jaap.2013.01.012_bib0075) 2011; 34 Balat (10.1016/j.jaap.2013.01.012_bib0085) 2008; 30 10.1016/j.jaap.2013.01.012_bib0010 Raveendran (10.1016/j.jaap.2013.01.012_bib0020) 1996; 75 Rath (10.1016/j.jaap.2013.01.012_bib0095) 2003; 82 Mok (10.1016/j.jaap.2013.01.012_bib0100) 1983; 68 Skreiberg (10.1016/j.jaap.2013.01.012_bib0105) 2011; 90 Raiskila (10.1016/j.jaap.2013.01.012_bib0050) 2008 Gronli (10.1016/j.jaap.2013.01.012_bib0030) 2002; 41 Gani (10.1016/j.jaap.2013.01.012_bib0080) 2007; 32 Demirbas (10.1016/j.jaap.2013.01.012_bib0060) 1997; 76 Fisher (10.1016/j.jaap.2013.01.012_bib0090) 2002; 62 Kaltschmitt (10.1016/j.jaap.2013.01.012_bib0025) 2009 Boerjan (10.1016/j.jaap.2013.01.012_bib0055) 2003; 54 Yang (10.1016/j.jaap.2013.01.012_bib0040) 2007; 86 Damartzis (10.1016/j.jaap.2013.01.012_bib0065) 2011; 102 Morf (10.1016/j.jaap.2013.01.012_bib0110) 2002; 81 |
References_xml | – volume: 90 start-page: 2182 year: 2011 end-page: 2197 ident: bib0105 article-title: TGA and macro-TGA characterisation of biomass fuels and fuel mixtures publication-title: Fuel – volume: 75 start-page: 987 year: 1996 end-page: 998 ident: bib0020 article-title: Pyrolysis characteristics of biomass and biomass components publication-title: Fuel – reference: R. Bayerbach, Ueber die Struktur der oligomeren Bestandteile von Flash-Pyrolyse aus Biomasse, PhD thesis, Universitat Hamburg, Von-Melle-Park 3, 20146 Hamburg, 2006. – volume: 34 start-page: 47 year: 2008 end-page: 90 ident: bib0070 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Progress in Energy and Combustion Science – volume: 36 start-page: 449 year: 2012 end-page: 459 ident: bib0045 article-title: Thermochemical characterisation of straws and high yielding perennial grasses publication-title: Industrial Crops and Products – year: 2009 ident: bib0025 article-title: Energie aus Biomasse: Grundlagen, Techniken und Verfahren – volume: 86 start-page: 1781 year: 2007 end-page: 1788 ident: bib0040 article-title: Characteristics of hemicellulose cellulose and lignin pyrolysis publication-title: Fuel – volume: 41 start-page: 4201 year: 2002 end-page: 4208 ident: bib0030 article-title: Thermogravimetric analysis and devolatilization kinetics of wood publication-title: Industrial and Engineering Chemistry Research – volume: 102 start-page: 6230 year: 2011 end-page: 6238 ident: bib0065 article-title: Thermal degradation studies and kinetic modeling of cardoon ( publication-title: Bioresource Technology – volume: 32 start-page: 649 year: 2007 end-page: 661 ident: bib0080 article-title: Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass publication-title: Renewable Energy – volume: 62 start-page: 331 year: 2002 end-page: 349 ident: bib0090 article-title: Pyrolysis behavior and kinetics of biomass derived materials publication-title: Journal of Analytical and Applied Pyrolysis – volume: 68 start-page: 165 year: 1983 end-page: 186 ident: bib0100 article-title: Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis publication-title: Thermochimica Acta – volume: 22 start-page: 4292 year: 2008 end-page: 4300 ident: bib0005 article-title: Chemical kinetics of biomass pyrolysis publication-title: Energy and Fuels – volume: 20 start-page: 388 year: 2006 end-page: 393 ident: bib0015 article-title: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin publication-title: Energy and Fuels – volume: 34 start-page: 29 year: 2011 end-page: 41 ident: bib0075 article-title: Lignin depolymerization and conversion: a review of thermochemical methods publication-title: Chemical Engineering and Technology – volume: 82 start-page: 81 year: 2003 end-page: 91 ident: bib0095 article-title: Heat of wood pyrolysis publication-title: Fuel – volume: 88 start-page: 408 year: 2009 end-page: 417 ident: bib0035 article-title: Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose hemicellulose and lignin? publication-title: Fuel – volume: 30 start-page: 620 year: 2008 end-page: 635 ident: bib0085 article-title: Mechanisms of thermochemical biomass conversion processes. 1. Reactions of pyrolysis publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects – volume: 81 start-page: 843 year: 2002 end-page: 853 ident: bib0110 article-title: Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips publication-title: Fuel – volume: 54 start-page: 519 year: 2003 end-page: 546 ident: bib0055 article-title: Lignin biosynthesis publication-title: Annual Review of Plant Biology – year: 2008 ident: bib0050 article-title: The Effect of Lignin Content and Lignin Modification on Norway Spruce Wood Properties and Decay Resistance – volume: 76 start-page: 431 year: 1997 end-page: 434 ident: bib0060 article-title: Calculation of higher heating values of biomass fuels publication-title: Fuel – volume: 76 start-page: 431 year: 1997 ident: 10.1016/j.jaap.2013.01.012_bib0060 article-title: Calculation of higher heating values of biomass fuels publication-title: Fuel doi: 10.1016/S0016-2361(97)85520-2 – volume: 22 start-page: 4292 year: 2008 ident: 10.1016/j.jaap.2013.01.012_bib0005 article-title: Chemical kinetics of biomass pyrolysis publication-title: Energy and Fuels doi: 10.1021/ef800551t – volume: 30 start-page: 620 year: 2008 ident: 10.1016/j.jaap.2013.01.012_bib0085 article-title: Mechanisms of thermochemical biomass conversion processes. 1. Reactions of pyrolysis publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects doi: 10.1080/15567030600817258 – volume: 34 start-page: 29 year: 2011 ident: 10.1016/j.jaap.2013.01.012_bib0075 article-title: Lignin depolymerization and conversion: a review of thermochemical methods publication-title: Chemical Engineering and Technology doi: 10.1002/ceat.201000270 – year: 2009 ident: 10.1016/j.jaap.2013.01.012_bib0025 – volume: 102 start-page: 6230 year: 2011 ident: 10.1016/j.jaap.2013.01.012_bib0065 article-title: Thermal degradation studies and kinetic modeling of cardoon (Cynaracardunculus) pyrolysis using thermogravimetric analysis (TGA) publication-title: Bioresource Technology doi: 10.1016/j.biortech.2011.02.060 – volume: 75 start-page: 987 year: 1996 ident: 10.1016/j.jaap.2013.01.012_bib0020 article-title: Pyrolysis characteristics of biomass and biomass components publication-title: Fuel doi: 10.1016/0016-2361(96)00030-0 – ident: 10.1016/j.jaap.2013.01.012_bib0010 – volume: 88 start-page: 408 year: 2009 ident: 10.1016/j.jaap.2013.01.012_bib0035 article-title: Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose hemicellulose and lignin? publication-title: Fuel doi: 10.1016/j.fuel.2008.09.019 – volume: 90 start-page: 2182 year: 2011 ident: 10.1016/j.jaap.2013.01.012_bib0105 article-title: TGA and macro-TGA characterisation of biomass fuels and fuel mixtures publication-title: Fuel doi: 10.1016/j.fuel.2011.02.012 – volume: 68 start-page: 165 year: 1983 ident: 10.1016/j.jaap.2013.01.012_bib0100 article-title: Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis publication-title: Thermochimica Acta doi: 10.1016/0040-6031(83)80222-6 – volume: 86 start-page: 1781 year: 2007 ident: 10.1016/j.jaap.2013.01.012_bib0040 article-title: Characteristics of hemicellulose cellulose and lignin pyrolysis publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – volume: 32 start-page: 649 year: 2007 ident: 10.1016/j.jaap.2013.01.012_bib0080 article-title: Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass publication-title: Renewable Energy doi: 10.1016/j.renene.2006.02.017 – volume: 62 start-page: 331 year: 2002 ident: 10.1016/j.jaap.2013.01.012_bib0090 article-title: Pyrolysis behavior and kinetics of biomass derived materials publication-title: Journal of Analytical and Applied Pyrolysis doi: 10.1016/S0165-2370(01)00129-2 – volume: 36 start-page: 449 year: 2012 ident: 10.1016/j.jaap.2013.01.012_bib0045 article-title: Thermochemical characterisation of straws and high yielding perennial grasses publication-title: Industrial Crops and Products doi: 10.1016/j.indcrop.2011.10.025 – volume: 34 start-page: 47 year: 2008 ident: 10.1016/j.jaap.2013.01.012_bib0070 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Progress in Energy and Combustion Science doi: 10.1016/j.pecs.2006.12.001 – volume: 20 start-page: 388 year: 2006 ident: 10.1016/j.jaap.2013.01.012_bib0015 article-title: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin publication-title: Energy and Fuels doi: 10.1021/ef0580117 – volume: 82 start-page: 81 year: 2003 ident: 10.1016/j.jaap.2013.01.012_bib0095 article-title: Heat of wood pyrolysis publication-title: Fuel doi: 10.1016/S0016-2361(02)00138-2 – year: 2008 ident: 10.1016/j.jaap.2013.01.012_bib0050 – volume: 54 start-page: 519 year: 2003 ident: 10.1016/j.jaap.2013.01.012_bib0055 article-title: Lignin biosynthesis publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.54.031902.134938 – volume: 41 start-page: 4201 year: 2002 ident: 10.1016/j.jaap.2013.01.012_bib0030 article-title: Thermogravimetric analysis and devolatilization kinetics of wood publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie0201157 – volume: 81 start-page: 843 year: 2002 ident: 10.1016/j.jaap.2013.01.012_bib0110 article-title: Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips publication-title: Fuel doi: 10.1016/S0016-2361(01)00216-2 |
SSID | ssj0006618 |
Score | 2.5619853 |
Snippet | ► Pyrolysis characteristics of cellulose, hemicellulose and lignin were identified. ► Components fractions were identified by atomic balance and optimization... Thermochemical conversion of biomass has been studied extensively over the last decades. For the design, optimization and modeling of thermochemical conversion... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 177 |
SubjectTerms | activation energy bark Biomass cellulose decayed wood feedstocks Fixed bed hemicellulose industrial applications lignin Pyrolysis temperature TGA thermogravimetry wheat straw |
Title | The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis |
URI | https://dx.doi.org/10.1016/j.jaap.2013.01.012 https://www.proquest.com/docview/2000047715 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Yn1UVbwprHdzftYirUqetGCt7C72ZSUkhRtQS_-dmfyKCroQUgI7GaXZSY7M0m--QbgTHOuhW1LSyvc5A6XuKWkSiypOdFducIzlJx8_-ANR87ts_vcgH6dC0Owysr2lza9sNZVS6eSZmeWpp1HSsQRtk-_3ihwCVZgVdih5zZhtXdzN3xYGmR0QUFJ8e1aNKDKnSlhXhMpibaS2wV7Jxe_-acflrpwP4Mt2KziRtYrl7YNDZPtwFq_Lte2AxtfmAV3YYzqZyVWg-UJwyiPUaI9RsqMQOR5RvgJNk3HWZpdMPp6v5jmr4bJLGYFhcCyJc_Y03Wv6EjSNxMzhefs_SUvuEz2YDS4euoPraqmgqUd25tbRvtScsO7ysGAVbhaeTGGYF1tiHgnCWO8aoXbPMa3bK2Vkp4nwkDGnh-bADv2oZnhIg-AmSBGD2t0mBDJoDE4rVG-Comi1AlttwW8lmSkK8JxqnsxjWpk2SQi6Uck_ajL8RAtOF-OmZV0G3_e7dYKir49NBH6gz_HndbajFBLJFKZmXzxSkU5iT_T5-7hP-c-gnVRVMwgTOQxNOcvC3OCcctctWHl8oO3q6fzE1ty7ZI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH0VVxfUbwpnU3ffe4LOr6vLiCt5CkqVSWdtkH6MXf7kwfvkAPQkshL8JMkpm233wDcKQ517bjSEsr3OQul7ilpEosqTnRXXm2byg4-fbO7z-4V4_e4xz06lgYglVWZ395phendVXSrqTZHqVp-54CcWwnoF9v5LiE87Dgek5AuL7Tt0-cBxqgsCT49ixqXkXOlCCvZymJtJI7BXcnt3-zTj_O6cL4nK_CSuU1sm45sTWYM1kTFnt1srYmLH_hFVyHJ1Q-K5EaLE8Y-niMwuzRT2YEIc8zQk-wYfqUpdkJo2_3s2E-MUxmMSsIBD5K8owNLrpFRZK-mJgpvEev47xgMtmAh_OzQa9vVRkVLO06_tQyOpCSG95RLrqrtqeVH6MD1tGGaHeSKManVrjJY3zH1lop6ft2FMrYD2ITYsUmNDKc5BYwE8ZoX42OEqIYNAaHNSpQERGUupHjtYDXkhS6ohunrBdDUePKngVJX5D0RYfjZbfg-KPPqCTb-LO1VytIfFsyAq3Bn_0Oa20K1BKJVGYmn00oJSexZwbc2_7n2Aew2B_c3oiby7vrHViyi9wZhI7chcZ0PDN76MFM1X6xQt8BXpvuXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+the+biomass+components+lignin%2C+cellulose+and+hemicellulose+on+TGA+and+fixed+bed+pyrolysis&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Burhenne%2C+Luisa&rft.au=Messmer%2C+Jonas&rft.au=Aicher%2C+Thomas&rft.au=Laborie%2C+Marie-Pierre&rft.date=2013-05-01&rft.issn=0165-2370&rft.volume=101+p.177-184&rft.spage=177&rft.epage=184&rft_id=info:doi/10.1016%2Fj.jaap.2013.01.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon |