The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis

► Pyrolysis characteristics of cellulose, hemicellulose and lignin were identified. ► Components fractions were identified by atomic balance and optimization model. ► Higher lignin content led to slower decomposition and lower product gas. ► Lignin content of biomass is the main controlling factor o...

Full description

Saved in:
Bibliographic Details
Published inJournal of analytical and applied pyrolysis Vol. 101; pp. 177 - 184
Main Authors Burhenne, Luisa, Messmer, Jonas, Aicher, Thomas, Laborie, Marie-Pierre
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2013
Subjects
Online AccessGet full text
ISSN0165-2370
1873-250X
DOI10.1016/j.jaap.2013.01.012

Cover

Abstract ► Pyrolysis characteristics of cellulose, hemicellulose and lignin were identified. ► Components fractions were identified by atomic balance and optimization model. ► Higher lignin content led to slower decomposition and lower product gas. ► Lignin content of biomass is the main controlling factor of industrial pyrolysis. ► Industrial fixed bed gasification can be according to the feedstock composition. Thermochemical conversion of biomass has been studied extensively over the last decades. For the design, optimization and modeling of thermochemical conversion processes, such as fixed bed pyrolysis, a sound understanding of pyrolysis is essential. However, the decomposition mechanism of most biomass types into gaseous, liquid, and solid fractions is still unknown because of the complexity of pyrolysis and differences in biomass composition. The aim of this study was to find characteristic differences in the pyrolysis behavior of three widely used biomass feedstocks to optimize the performance of industrial fixed bed pyrolysis. This aim was achieved in three steps. First, devolatilization kinetics during pyrolysis of three biomass types was investigated in a thermogravimetric analyzer (TGA). Then, a one-step multi-component pyrolysis model with three independent parallel reactions for hemicellulose, cellulose and lignin was derived to correlate the kinetics with single component decomposition and to identify their amount in the biomass sample. In a final step, the findings were tested in a fixed bed reactor at laboratory scale to prove applicability in industrial processes. Three types of biomass were chosen for this investigation: wheat straw, rape straw and spruce wood with bark. They represent biomass with a high cellulose, hemicellulose and lignin content, respectively. Since lignin is the most stable and complex of these three biomass components, its amount is assumed to be the main controlling factor in the thermochemical decomposition process. The thermogravimetric (TG) curve of spruce wood with bark was found to shift to about 20K higher temperatures compared to the TG curves of straw and rape straw. This result indicates that a higher activation energy is needed to decompose woody biomass, which contains a higher amount and a different type of lignin than straw. Three wood decomposition phases were distinguished from the negative first derivatives curves (DTG): a shoulder during hemicellulose decomposition, a peak during cellulose decomposition and a smaller rise during lignin decomposition. By comparison both herbaceous biomass types decomposed in only two phases at lower temperatures. The decomposition of the herbaceous, and woody biomass samples was completed at about 830K and 900K, respectively, leaving only a solid residue of ash. The derived pyrolysis model estimated the composition and described the devolatilization curves of each biomass with sufficient accuracy for industrial processes, although the same activation energy set, taken from the literature, was used for each biomass. In the fixed bed pyrolysis experiments similar characteristics were found to those in the TGA experiments. Herbaceous biomass with a higher cellulose and hemicellulose content decomposed faster and produced a larger fraction of gaseous products than woody biomass with a higher lignin content. According to the assessment of the product distribution, performed after each experiment, woody biomass pyrolysis led to a larger fraction of solid products than herbaceous biomass pyrolysis. We conclude that industrial fixed bed pyrolysis can be optimized for different biomass feedstocks with a specific composition of cellulose, hemicellulose and lignin.
AbstractList Thermochemical conversion of biomass has been studied extensively over the last decades. For the design, optimization and modeling of thermochemical conversion processes, such as fixed bed pyrolysis, a sound understanding of pyrolysis is essential. However, the decomposition mechanism of most biomass types into gaseous, liquid, and solid fractions is still unknown because of the complexity of pyrolysis and differences in biomass composition. The aim of this study was to find characteristic differences in the pyrolysis behavior of three widely used biomass feedstocks to optimize the performance of industrial fixed bed pyrolysis. This aim was achieved in three steps. First, devolatilization kinetics during pyrolysis of three biomass types was investigated in a thermogravimetric analyzer (TGA). Then, a one-step multi-component pyrolysis model with three independent parallel reactions for hemicellulose, cellulose and lignin was derived to correlate the kinetics with single component decomposition and to identify their amount in the biomass sample. In a final step, the findings were tested in a fixed bed reactor at laboratory scale to prove applicability in industrial processes. Three types of biomass were chosen for this investigation: wheat straw, rape straw and spruce wood with bark. They represent biomass with a high cellulose, hemicellulose and lignin content, respectively. Since lignin is the most stable and complex of these three biomass components, its amount is assumed to be the main controlling factor in the thermochemical decomposition process. The thermogravimetric (TG) curve of spruce wood with bark was found to shift to about 20K higher temperatures compared to the TG curves of straw and rape straw. This result indicates that a higher activation energy is needed to decompose woody biomass, which contains a higher amount and a different type of lignin than straw. Three wood decomposition phases were distinguished from the negative first derivatives curves (DTG): a shoulder during hemicellulose decomposition, a peak during cellulose decomposition and a smaller rise during lignin decomposition. By comparison both herbaceous biomass types decomposed in only two phases at lower temperatures. The decomposition of the herbaceous, and woody biomass samples was completed at about 830K and 900K, respectively, leaving only a solid residue of ash. The derived pyrolysis model estimated the composition and described the devolatilization curves of each biomass with sufficient accuracy for industrial processes, although the same activation energy set, taken from the literature, was used for each biomass. In the fixed bed pyrolysis experiments similar characteristics were found to those in the TGA experiments. Herbaceous biomass with a higher cellulose and hemicellulose content decomposed faster and produced a larger fraction of gaseous products than woody biomass with a higher lignin content. According to the assessment of the product distribution, performed after each experiment, woody biomass pyrolysis led to a larger fraction of solid products than herbaceous biomass pyrolysis. We conclude that industrial fixed bed pyrolysis can be optimized for different biomass feedstocks with a specific composition of cellulose, hemicellulose and lignin.
► Pyrolysis characteristics of cellulose, hemicellulose and lignin were identified. ► Components fractions were identified by atomic balance and optimization model. ► Higher lignin content led to slower decomposition and lower product gas. ► Lignin content of biomass is the main controlling factor of industrial pyrolysis. ► Industrial fixed bed gasification can be according to the feedstock composition. Thermochemical conversion of biomass has been studied extensively over the last decades. For the design, optimization and modeling of thermochemical conversion processes, such as fixed bed pyrolysis, a sound understanding of pyrolysis is essential. However, the decomposition mechanism of most biomass types into gaseous, liquid, and solid fractions is still unknown because of the complexity of pyrolysis and differences in biomass composition. The aim of this study was to find characteristic differences in the pyrolysis behavior of three widely used biomass feedstocks to optimize the performance of industrial fixed bed pyrolysis. This aim was achieved in three steps. First, devolatilization kinetics during pyrolysis of three biomass types was investigated in a thermogravimetric analyzer (TGA). Then, a one-step multi-component pyrolysis model with three independent parallel reactions for hemicellulose, cellulose and lignin was derived to correlate the kinetics with single component decomposition and to identify their amount in the biomass sample. In a final step, the findings were tested in a fixed bed reactor at laboratory scale to prove applicability in industrial processes. Three types of biomass were chosen for this investigation: wheat straw, rape straw and spruce wood with bark. They represent biomass with a high cellulose, hemicellulose and lignin content, respectively. Since lignin is the most stable and complex of these three biomass components, its amount is assumed to be the main controlling factor in the thermochemical decomposition process. The thermogravimetric (TG) curve of spruce wood with bark was found to shift to about 20K higher temperatures compared to the TG curves of straw and rape straw. This result indicates that a higher activation energy is needed to decompose woody biomass, which contains a higher amount and a different type of lignin than straw. Three wood decomposition phases were distinguished from the negative first derivatives curves (DTG): a shoulder during hemicellulose decomposition, a peak during cellulose decomposition and a smaller rise during lignin decomposition. By comparison both herbaceous biomass types decomposed in only two phases at lower temperatures. The decomposition of the herbaceous, and woody biomass samples was completed at about 830K and 900K, respectively, leaving only a solid residue of ash. The derived pyrolysis model estimated the composition and described the devolatilization curves of each biomass with sufficient accuracy for industrial processes, although the same activation energy set, taken from the literature, was used for each biomass. In the fixed bed pyrolysis experiments similar characteristics were found to those in the TGA experiments. Herbaceous biomass with a higher cellulose and hemicellulose content decomposed faster and produced a larger fraction of gaseous products than woody biomass with a higher lignin content. According to the assessment of the product distribution, performed after each experiment, woody biomass pyrolysis led to a larger fraction of solid products than herbaceous biomass pyrolysis. We conclude that industrial fixed bed pyrolysis can be optimized for different biomass feedstocks with a specific composition of cellulose, hemicellulose and lignin.
Author Laborie, Marie-Pierre
Messmer, Jonas
Burhenne, Luisa
Aicher, Thomas
Author_xml – sequence: 1
  givenname: Luisa
  surname: Burhenne
  fullname: Burhenne, Luisa
  email: luisa.burhenne@ise.fraunhofer.de
  organization: Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany
– sequence: 2
  givenname: Jonas
  surname: Messmer
  fullname: Messmer, Jonas
  organization: Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany
– sequence: 3
  givenname: Thomas
  surname: Aicher
  fullname: Aicher, Thomas
  organization: Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany
– sequence: 4
  givenname: Marie-Pierre
  surname: Laborie
  fullname: Laborie, Marie-Pierre
  organization: Institute of Forest Utilization and Work Science, University of Freiburg, Werthmannstr. 6, 79085 Freiburg, Germany
BookMark eNp9kEtLAzEUhYMo2Fb_gKssXThjkuk8Cm5K0SoU3FRwF_K406bMJGMyFfvvzVhBcFG44ZLc8yU5Z4zOrbOA0A0lKSW0uN-lOyG6lBGapYTGYmdoRKsyS1hO3s_RKIryhGUluUTjEHaEkKKg1Qht1lvAUNegeuxq3MedNK4VIWDl2i6-YvuAG7Oxxt5hBU2zb1wALKzGW2jN34mzeL2c_wxq8wUay7i6g3fNIZhwhS5q0QS4_u0T9Pb0uF48J6vX5ctivkrUNCv6BFQpBAVK5LSikuVKFjpnjCiIzmg907ErWWVMg8yUklIUBZtVQhelhioOJuj2eG_n3cceQs9bE4ZPCgtuHziLzsm0LGkepdVRqrwLwUPNlelFb5ztvTANp4QP2fIdH7LlQ7ac0Fgsouwf2nnTCn84DT0cIYj-Pw14HpQBq0AbH-Pn2plT-DczPZaH
CitedBy_id crossref_primary_10_1016_j_dib_2025_111296
crossref_primary_10_1016_j_renene_2019_08_056
crossref_primary_10_1016_j_enconman_2020_112707
crossref_primary_10_1021_acs_iecr_0c05174
crossref_primary_10_1021_acs_energyfuels_9b01260
crossref_primary_10_1016_j_jhazmat_2023_131433
crossref_primary_10_1002_app_56636
crossref_primary_10_1016_j_fuel_2015_04_056
crossref_primary_10_1080_15428052_2018_1509755
crossref_primary_10_1016_j_tca_2024_179802
crossref_primary_10_1016_j_jestch_2024_101615
crossref_primary_10_1002_rem_21733
crossref_primary_10_3390_polym13101551
crossref_primary_10_3390_en13153977
crossref_primary_10_1016_j_biombioe_2016_12_017
crossref_primary_10_1016_j_ijbiomac_2025_140839
crossref_primary_10_1016_j_jclepro_2024_142179
crossref_primary_10_3389_fenrg_2021_608825
crossref_primary_10_1016_j_conbuildmat_2015_05_006
crossref_primary_10_1177_00219983231184017
crossref_primary_10_1002_pol_20230126
crossref_primary_10_1016_j_chemgeo_2022_120964
crossref_primary_10_1016_j_joei_2017_12_003
crossref_primary_10_1115_1_4040202
crossref_primary_10_3390_en15207514
crossref_primary_10_1016_j_conbuildmat_2018_04_028
crossref_primary_10_1021_acsomega_9b01013
crossref_primary_10_1007_s13399_021_01300_8
crossref_primary_10_1016_j_fuel_2023_127526
crossref_primary_10_1016_j_cej_2022_137944
crossref_primary_10_1016_j_enconman_2019_04_020
crossref_primary_10_1016_j_fuel_2014_02_065
crossref_primary_10_3390_polym12030612
crossref_primary_10_1007_s13399_020_01172_4
crossref_primary_10_1016_j_fuel_2020_118169
crossref_primary_10_1016_j_energy_2020_117744
crossref_primary_10_1016_j_jaap_2024_106413
crossref_primary_10_1134_S0965544123090013
crossref_primary_10_3103_S0361521923060083
crossref_primary_10_1016_j_biortech_2020_123913
crossref_primary_10_1016_j_biteb_2021_100687
crossref_primary_10_1016_j_csite_2018_07_011
crossref_primary_10_3390_nano12121960
crossref_primary_10_1021_acs_energyfuels_9b02143
crossref_primary_10_1007_s11104_024_07143_2
crossref_primary_10_3390_gels9090674
crossref_primary_10_1016_j_est_2025_115903
crossref_primary_10_1016_j_ijhydene_2021_07_189
crossref_primary_10_1016_j_biombioe_2022_106687
crossref_primary_10_1039_D3MA00550J
crossref_primary_10_1016_j_jclepro_2021_130000
crossref_primary_10_1016_j_fuel_2024_133300
crossref_primary_10_1016_j_ijbiomac_2024_130826
crossref_primary_10_1007_s12155_014_9507_8
crossref_primary_10_1002_slct_201802957
crossref_primary_10_1016_j_enconman_2017_01_075
crossref_primary_10_1016_j_applthermaleng_2019_03_110
crossref_primary_10_1002_cssc_202301005
crossref_primary_10_3390_ma15124130
crossref_primary_10_1016_j_rser_2016_04_049
crossref_primary_10_1016_j_jaap_2017_12_007
crossref_primary_10_1016_j_indcrop_2023_116644
crossref_primary_10_1007_s12649_020_01235_7
crossref_primary_10_5658_WOOD_2019_47_4_486
crossref_primary_10_1016_j_biortech_2023_129065
crossref_primary_10_3390_pr10010111
crossref_primary_10_1007_s10570_014_0309_0
crossref_primary_10_1016_j_enconman_2020_112634
crossref_primary_10_2298_JSC230303084Z
crossref_primary_10_1016_j_energy_2021_121085
crossref_primary_10_1016_j_carbpol_2019_04_035
crossref_primary_10_1007_s12155_022_10526_x
crossref_primary_10_1016_j_apenergy_2018_12_058
crossref_primary_10_1016_j_jaap_2013_10_006
crossref_primary_10_1115_1_4050578
crossref_primary_10_1016_j_renene_2023_02_012
crossref_primary_10_1016_j_envres_2023_115619
crossref_primary_10_1155_2020_8885259
crossref_primary_10_1016_j_jaap_2023_106128
crossref_primary_10_1098_rsos_180331
crossref_primary_10_1016_j_fuel_2021_121816
crossref_primary_10_2139_ssrn_4064472
crossref_primary_10_5658_WOOD_2016_44_1_96
crossref_primary_10_1021_acs_energyfuels_7b02595
crossref_primary_10_1016_j_biortech_2021_126440
crossref_primary_10_1016_j_fuel_2016_12_042
crossref_primary_10_31857_S0023117723060105
crossref_primary_10_1016_j_renene_2023_03_073
crossref_primary_10_1016_j_biortech_2015_12_055
crossref_primary_10_1007_s42773_024_00320_7
crossref_primary_10_1016_j_renene_2018_07_144
crossref_primary_10_1016_j_enmm_2020_100357
crossref_primary_10_1007_s11144_022_02176_z
crossref_primary_10_1080_00102202_2024_2379493
crossref_primary_10_3390_ma17112474
crossref_primary_10_1016_j_energy_2015_01_018
crossref_primary_10_1002_cjce_23397
crossref_primary_10_1016_j_jaap_2025_106977
crossref_primary_10_3390_en16083457
crossref_primary_10_1080_14786451_2021_1887186
crossref_primary_10_1016_j_biombioe_2025_107671
crossref_primary_10_1016_j_fuel_2019_02_049
crossref_primary_10_1016_j_jarmap_2025_100624
crossref_primary_10_1016_j_biombioe_2020_105901
crossref_primary_10_1007_s12649_018_0318_6
crossref_primary_10_1007_s13399_020_01203_0
crossref_primary_10_16984_saufenbilder_811684
crossref_primary_10_1016_j_enconman_2017_10_001
crossref_primary_10_1016_j_fuel_2016_12_046
crossref_primary_10_1021_acsomega_1c04675
crossref_primary_10_1016_j_joei_2024_101769
crossref_primary_10_1016_j_biombioe_2022_106485
crossref_primary_10_1007_s13399_018_0351_5
crossref_primary_10_1016_j_fuel_2020_118112
crossref_primary_10_3390_polym14040833
crossref_primary_10_1016_j_cjche_2016_01_004
crossref_primary_10_3906_kim_1610_8
crossref_primary_10_15446_ing_investig_v34n2_40504
crossref_primary_10_1007_s10653_024_01981_w
crossref_primary_10_1007_s11356_023_25150_1
crossref_primary_10_1021_acsomega_1c05907
crossref_primary_10_1002_ep_12869
crossref_primary_10_1002_slct_202400405
crossref_primary_10_1016_j_arabjc_2024_105892
crossref_primary_10_1016_j_jhazmat_2020_122711
crossref_primary_10_3390_f14081567
crossref_primary_10_1088_1757_899X_539_1_012017
crossref_primary_10_1016_j_jaap_2018_11_006
crossref_primary_10_1021_acssuschemeng_8b05364
crossref_primary_10_1063_1_4985944
crossref_primary_10_1016_j_joei_2023_101477
crossref_primary_10_1016_j_enconman_2024_118093
crossref_primary_10_1007_s10924_024_03478_0
crossref_primary_10_1016_j_biombioe_2020_105525
crossref_primary_10_1016_j_envres_2023_117551
crossref_primary_10_1007_s12649_022_01827_5
crossref_primary_10_1016_j_tca_2017_12_003
crossref_primary_10_1007_s11814_016_0102_x
crossref_primary_10_3390_su132111731
crossref_primary_10_1021_acsaem_1c00521
crossref_primary_10_1016_j_eti_2018_09_007
crossref_primary_10_1007_s11356_021_17048_7
crossref_primary_10_1016_j_jhazmat_2023_131600
crossref_primary_10_1002_er_7104
crossref_primary_10_1016_j_jaap_2020_104966
crossref_primary_10_1098_rsos_171970
crossref_primary_10_3390_molecules27092794
crossref_primary_10_1016_j_cej_2023_145640
crossref_primary_10_1016_j_jwpe_2024_106715
crossref_primary_10_1016_j_biombioe_2025_107644
crossref_primary_10_1016_j_biortech_2018_10_084
crossref_primary_10_1007_s10570_024_05911_y
crossref_primary_10_1063_5_0084886
crossref_primary_10_1021_acs_energyfuels_7b01226
crossref_primary_10_3390_ijms241411668
crossref_primary_10_1016_j_egyr_2021_07_094
crossref_primary_10_1002_adsu_202300632
crossref_primary_10_1016_j_biortech_2015_07_060
crossref_primary_10_1021_acsami_9b03040
crossref_primary_10_1002_er_8303
crossref_primary_10_3390_ma13173776
crossref_primary_10_1155_2016_3186589
crossref_primary_10_1021_acs_energyfuels_5b01152
crossref_primary_10_1021_acs_energyfuels_8b02557
crossref_primary_10_1016_j_rser_2019_109486
crossref_primary_10_3390_coatings14020200
crossref_primary_10_1016_j_energy_2017_01_020
crossref_primary_10_3390_en12203972
crossref_primary_10_1016_j_enconman_2018_07_018
crossref_primary_10_1016_j_renene_2019_05_116
crossref_primary_10_1590_S0100_204X2014000300005
crossref_primary_10_1016_j_indcrop_2024_119629
crossref_primary_10_1016_j_indcrop_2024_119509
crossref_primary_10_1016_j_tsep_2021_101104
crossref_primary_10_1016_j_jaap_2015_01_005
crossref_primary_10_1016_j_joei_2017_03_002
crossref_primary_10_1007_s11814_014_0296_8
crossref_primary_10_1016_j_csite_2020_100764
crossref_primary_10_1016_j_scp_2017_10_005
crossref_primary_10_1016_j_rineng_2024_102301
crossref_primary_10_1016_j_seta_2017_09_006
crossref_primary_10_1039_D1RA06652H
crossref_primary_10_1007_s12649_020_01183_2
crossref_primary_10_1016_j_crcon_2018_05_004
crossref_primary_10_1007_s10973_019_08278_6
crossref_primary_10_1021_acs_iecr_7b00559
crossref_primary_10_1016_j_jaap_2019_104753
crossref_primary_10_1016_j_resconrec_2023_107367
crossref_primary_10_1016_j_biombioe_2019_105412
crossref_primary_10_1016_j_biortech_2016_01_075
crossref_primary_10_1016_j_biteb_2024_101771
crossref_primary_10_1007_s11696_019_00998_1
crossref_primary_10_1021_acssuschemeng_9b06522
crossref_primary_10_1016_j_biombioe_2024_107518
crossref_primary_10_1016_j_jallcom_2020_155029
crossref_primary_10_3390_agriculture13030687
crossref_primary_10_1016_j_ces_2015_01_017
crossref_primary_10_1002_cssc_201601441
crossref_primary_10_1016_j_enconman_2016_05_007
crossref_primary_10_1016_j_renene_2016_10_080
crossref_primary_10_1080_00450618_2017_1310921
crossref_primary_10_1016_j_esd_2015_05_005
crossref_primary_10_1016_j_quascirev_2022_107738
crossref_primary_10_1016_j_jallcom_2020_157207
crossref_primary_10_1016_j_renene_2020_07_001
crossref_primary_10_1080_02533839_2015_1112249
crossref_primary_10_1016_j_firesaf_2023_103762
crossref_primary_10_1007_s12155_025_10834_y
crossref_primary_10_1016_j_enconman_2016_04_104
crossref_primary_10_1016_j_mtsust_2024_100868
crossref_primary_10_1016_j_actbio_2020_04_054
crossref_primary_10_1016_j_jclepro_2020_124015
crossref_primary_10_1007_s10973_023_12364_1
crossref_primary_10_1016_j_ijhydene_2022_05_170
crossref_primary_10_1007_s10973_020_09778_6
crossref_primary_10_1016_j_fuel_2022_123441
crossref_primary_10_1021_acsomega_2c01899
crossref_primary_10_1007_s13399_022_03656_x
crossref_primary_10_3390_en12224344
crossref_primary_10_1016_j_biombioe_2019_05_010
crossref_primary_10_1016_j_jhazmat_2025_137916
crossref_primary_10_1016_j_apenergy_2022_119639
crossref_primary_10_1016_j_energy_2019_04_211
crossref_primary_10_1016_j_jece_2020_104914
crossref_primary_10_1016_j_fuproc_2015_09_014
crossref_primary_10_1016_j_proci_2016_06_081
crossref_primary_10_1016_j_biortech_2013_12_087
crossref_primary_10_1016_j_cej_2017_02_045
crossref_primary_10_1007_s10973_016_5541_4
crossref_primary_10_1016_j_biortech_2014_12_025
crossref_primary_10_1080_09243046_2023_2209764
crossref_primary_10_1007_s11157_017_9422_5
crossref_primary_10_1021_acssuschemeng_3c03769
crossref_primary_10_1016_j_ijhydene_2017_06_174
crossref_primary_10_1016_j_watres_2024_121138
crossref_primary_10_1021_acs_energyfuels_7b00796
crossref_primary_10_1016_j_biortech_2015_09_057
crossref_primary_10_1007_s00107_018_1343_7
crossref_primary_10_1016_j_biombioe_2024_107422
crossref_primary_10_1021_acs_energyfuels_0c01054
crossref_primary_10_1021_ef500654t
crossref_primary_10_35429_JRE_2019_9_3_1_9
crossref_primary_10_1080_02773813_2014_962154
crossref_primary_10_3390_pr12040817
crossref_primary_10_1002_ese3_109
crossref_primary_10_1186_s13068_018_1305_7
crossref_primary_10_1080_17480272_2025_2475078
crossref_primary_10_1016_j_jaap_2022_105766
crossref_primary_10_3390_en13236202
crossref_primary_10_1016_j_wasman_2015_08_025
crossref_primary_10_1007_s13399_025_06683_6
crossref_primary_10_34185_tpm_4_2019_06
crossref_primary_10_1016_j_jclepro_2021_126645
crossref_primary_10_3390_polym14030387
crossref_primary_10_1016_j_renene_2018_10_033
crossref_primary_10_3390_jmse9010006
crossref_primary_10_1016_j_heliyon_2019_e02723
crossref_primary_10_1016_j_chemosphere_2021_132381
crossref_primary_10_1016_j_enconman_2016_04_097
crossref_primary_10_1016_j_indcrop_2022_115648
crossref_primary_10_1007_s10694_022_01339_7
crossref_primary_10_1016_j_renene_2014_11_071
crossref_primary_10_1007_s12649_021_01640_6
crossref_primary_10_1007_s10098_022_02339_5
crossref_primary_10_1007_s12155_021_10370_5
crossref_primary_10_1016_j_jenvman_2024_123334
crossref_primary_10_1016_j_biortech_2020_123498
crossref_primary_10_1080_00102202_2021_1989587
crossref_primary_10_1016_j_joei_2023_101419
crossref_primary_10_3390_f15030452
crossref_primary_10_1016_j_mtcomm_2019_100697
crossref_primary_10_1016_j_susmat_2021_e00310
crossref_primary_10_1007_s13399_020_00771_5
crossref_primary_10_3390_molecules29235665
crossref_primary_10_1002_cctc_201500029
crossref_primary_10_1016_j_orggeochem_2020_104065
crossref_primary_10_1016_j_joei_2018_09_006
crossref_primary_10_1021_ef401145w
crossref_primary_10_29105_qh12_02_336
crossref_primary_10_1016_j_fuel_2021_123006
crossref_primary_10_1016_j_enconman_2023_117216
crossref_primary_10_1016_j_fuel_2014_05_019
crossref_primary_10_1021_acssuschemeng_8b02967
crossref_primary_10_1016_j_renene_2018_12_088
crossref_primary_10_2139_ssrn_4022021
crossref_primary_10_1155_2022_9884766
crossref_primary_10_1007_s13399_023_05158_w
crossref_primary_10_3390_app13021055
crossref_primary_10_1007_s10570_022_04657_9
crossref_primary_10_1063_5_0142355
crossref_primary_10_1016_j_wasman_2019_01_048
crossref_primary_10_1016_j_renene_2022_09_110
crossref_primary_10_1016_j_jaap_2016_04_001
crossref_primary_10_1016_j_jaap_2021_105177
crossref_primary_10_1016_j_biombioe_2024_107103
crossref_primary_10_1051_e3sconf_202560301024
crossref_primary_10_1016_j_enconman_2021_113836
crossref_primary_10_3389_fchem_2020_00003
crossref_primary_10_1016_j_energy_2019_03_044
crossref_primary_10_1016_j_jclepro_2024_140761
crossref_primary_10_1016_j_rineng_2022_100648
crossref_primary_10_1016_j_ijhydene_2020_07_116
crossref_primary_10_1007_s11814_025_00439_8
crossref_primary_10_1016_j_cjche_2015_08_028
crossref_primary_10_1021_acs_energyfuels_7b00519
crossref_primary_10_1016_j_enconman_2020_113165
crossref_primary_10_1016_j_ensm_2020_06_017
crossref_primary_10_1007_s10973_017_6138_2
crossref_primary_10_1021_ef4012388
crossref_primary_10_1080_15567036_2019_1587075
crossref_primary_10_1016_j_indcrop_2025_120735
crossref_primary_10_1016_j_fuel_2023_128461
crossref_primary_10_1016_j_biortech_2020_123456
crossref_primary_10_1515_ijcre_2015_0082
crossref_primary_10_1016_j_rser_2016_01_088
crossref_primary_10_1016_j_jclepro_2025_145150
crossref_primary_10_1016_j_cej_2024_154579
crossref_primary_10_1016_j_jfca_2024_106564
crossref_primary_10_1021_acs_iecr_3c00192
crossref_primary_10_3390_en14020385
crossref_primary_10_1021_acs_langmuir_2c02006
crossref_primary_10_1177_0967033517728733
crossref_primary_10_3390_ma17194825
crossref_primary_10_1080_15440478_2020_1857896
crossref_primary_10_1016_j_fuel_2020_117711
crossref_primary_10_1016_j_jaap_2023_105992
crossref_primary_10_1007_s43153_020_00081_3
crossref_primary_10_1016_j_jece_2018_03_005
crossref_primary_10_1021_ef501746b
crossref_primary_10_1016_j_jasrep_2018_08_032
crossref_primary_10_3390_en13112756
crossref_primary_10_1016_j_biortech_2019_122700
crossref_primary_10_1089_ees_2013_0415
crossref_primary_10_1016_j_jaap_2014_01_019
crossref_primary_10_3390_ma16010074
crossref_primary_10_3390_pr7110775
crossref_primary_10_1088_1755_1315_40_1_012047
crossref_primary_10_3390_f14102002
crossref_primary_10_1016_j_ijbiomac_2024_135925
crossref_primary_10_1016_j_jclepro_2017_10_034
crossref_primary_10_1016_j_jobab_2023_10_001
crossref_primary_10_2139_ssrn_4199516
crossref_primary_10_3390_en14227541
crossref_primary_10_1016_j_renene_2018_10_051
crossref_primary_10_1016_j_eti_2023_103075
crossref_primary_10_1016_j_firesaf_2023_103936
crossref_primary_10_1016_j_biombioe_2018_05_002
crossref_primary_10_1016_j_joei_2018_10_013
crossref_primary_10_1016_j_jaap_2022_105435
crossref_primary_10_1021_acsanm_4c03009
crossref_primary_10_1007_s13399_022_02729_1
crossref_primary_10_1016_j_ijbiomac_2023_127332
crossref_primary_10_3390_pr8091048
crossref_primary_10_1016_j_indcrop_2024_120383
crossref_primary_10_1080_17597269_2019_1646541
crossref_primary_10_1134_S1068162024070264
crossref_primary_10_1016_j_polymdegradstab_2017_03_004
crossref_primary_10_3389_fceng_2020_00004
crossref_primary_10_1002_ente_201600327
crossref_primary_10_1016_j_tca_2022_179408
crossref_primary_10_1016_j_pecs_2020_100887
crossref_primary_10_2139_ssrn_4112945
crossref_primary_10_4236_ojpc_2019_93009
crossref_primary_10_1515_npprj_2024_0059
crossref_primary_10_1007_s13399_021_01749_7
crossref_primary_10_3390_app13053240
crossref_primary_10_1007_s12155_019_09995_4
crossref_primary_10_1088_1757_899X_736_2_022061
crossref_primary_10_1016_j_mtcomm_2020_100981
crossref_primary_10_1016_j_ijhydene_2023_07_212
crossref_primary_10_1080_01932691_2024_2369881
crossref_primary_10_1186_2193_1801_3_124
crossref_primary_10_1016_j_biortech_2014_01_007
crossref_primary_10_20964_2021_01_61
crossref_primary_10_1080_09593330_2018_1520306
crossref_primary_10_3390_polym14204383
crossref_primary_10_3390_molecules28114310
crossref_primary_10_1016_j_biombioe_2018_09_031
crossref_primary_10_1016_j_jaap_2017_09_009
crossref_primary_10_1016_j_biombioe_2017_11_001
crossref_primary_10_1002_adhm_202404911
crossref_primary_10_1021_acs_est_1c08061
crossref_primary_10_1016_j_renene_2021_06_007
crossref_primary_10_1007_s10973_017_6329_x
crossref_primary_10_1016_j_energy_2022_125437
crossref_primary_10_31857_S0028242123060011
crossref_primary_10_1016_j_esd_2015_08_004
crossref_primary_10_1016_j_chemosphere_2023_138437
crossref_primary_10_1021_acsomega_7b01825
crossref_primary_10_1080_17597269_2022_2146250
crossref_primary_10_1186_s40643_022_00618_z
crossref_primary_10_1002_ceat_202000351
crossref_primary_10_1016_j_renene_2019_10_034
crossref_primary_10_3390_app11157069
crossref_primary_10_1021_acsanm_2c04325
crossref_primary_10_1016_j_rser_2021_111645
crossref_primary_10_1021_acs_jafc_1c07176
crossref_primary_10_1016_j_ijhydene_2024_12_085
crossref_primary_10_1016_j_carpta_2022_100259
crossref_primary_10_17221_26_2019_RAE
crossref_primary_10_1016_j_energy_2015_10_007
crossref_primary_10_1016_j_fuel_2015_02_095
crossref_primary_10_1016_j_jiec_2021_01_028
crossref_primary_10_17475_kastorman_1394874
crossref_primary_10_1016_j_egyr_2024_10_016
crossref_primary_10_1007_s13399_019_00559_2
crossref_primary_10_1016_j_biortech_2019_121318
crossref_primary_10_3390_en14030682
crossref_primary_10_1016_j_fuproc_2024_108132
crossref_primary_10_1016_j_fuproc_2015_05_013
crossref_primary_10_1016_j_jenvman_2022_114598
crossref_primary_10_1252_jcej_20we148
crossref_primary_10_1016_j_wasman_2018_03_021
crossref_primary_10_3390_en16145341
crossref_primary_10_1016_j_jaap_2016_12_002
crossref_primary_10_1016_j_ces_2015_07_055
crossref_primary_10_1016_j_energy_2018_08_024
crossref_primary_10_1016_j_jaap_2016_12_005
crossref_primary_10_1016_j_rser_2018_12_047
crossref_primary_10_1016_j_scp_2018_09_005
crossref_primary_10_1016_j_indcrop_2019_03_043
crossref_primary_10_1016_j_tca_2015_07_017
crossref_primary_10_3390_app12062922
crossref_primary_10_1016_j_renene_2019_10_174
crossref_primary_10_1016_j_ijbiomac_2025_139773
crossref_primary_10_1007_s13399_023_03945_z
crossref_primary_10_1016_j_energy_2023_127506
crossref_primary_10_1016_j_fuproc_2019_02_024
crossref_primary_10_21285_2227_2925_2020_10_1_124_132
crossref_primary_10_1021_acs_est_9b00262
crossref_primary_10_1021_acssuschemeng_6b02564
crossref_primary_10_1007_s11483_019_09613_y
crossref_primary_10_1016_j_fuel_2016_10_074
crossref_primary_10_1002_batt_202300233
crossref_primary_10_1002_ep_13131
crossref_primary_10_3390_hydrogen4040046
crossref_primary_10_1016_j_fuproc_2015_11_022
crossref_primary_10_1016_j_biombioe_2023_106705
crossref_primary_10_1080_17597269_2019_1594598
crossref_primary_10_1007_s13399_022_03277_4
crossref_primary_10_1016_j_cej_2021_132975
crossref_primary_10_1016_j_wasman_2019_03_002
crossref_primary_10_1016_j_fuproc_2019_03_026
crossref_primary_10_3390_polym13111799
crossref_primary_10_1080_15567036_2019_1568630
crossref_primary_10_1088_2053_1591_ab4cb3
crossref_primary_10_3390_en13102468
crossref_primary_10_1016_j_apenergy_2013_04_082
crossref_primary_10_1039_C6EE00935B
crossref_primary_10_1016_j_jaap_2014_03_012
crossref_primary_10_1016_j_jaap_2017_08_019
crossref_primary_10_1080_15567036_2022_2106326
Cites_doi 10.1016/S0016-2361(97)85520-2
10.1021/ef800551t
10.1080/15567030600817258
10.1002/ceat.201000270
10.1016/j.biortech.2011.02.060
10.1016/0016-2361(96)00030-0
10.1016/j.fuel.2008.09.019
10.1016/j.fuel.2011.02.012
10.1016/0040-6031(83)80222-6
10.1016/j.fuel.2006.12.013
10.1016/j.renene.2006.02.017
10.1016/S0165-2370(01)00129-2
10.1016/j.indcrop.2011.10.025
10.1016/j.pecs.2006.12.001
10.1021/ef0580117
10.1016/S0016-2361(02)00138-2
10.1146/annurev.arplant.54.031902.134938
10.1021/ie0201157
10.1016/S0016-2361(01)00216-2
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jaap.2013.01.012
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-250X
EndPage 184
ExternalDocumentID 10_1016_j_jaap_2013_01_012
S0165237013000168
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
WUQ
YK3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c436t-ec7aa1e10b481b25cb6d5220ce0131f9de01cb832deb3ccbba66298ad67de8b83
IEDL.DBID AIKHN
ISSN 0165-2370
IngestDate Thu Sep 04 19:01:12 EDT 2025
Tue Jul 01 01:23:42 EDT 2025
Thu Apr 24 23:07:09 EDT 2025
Fri Feb 23 02:35:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pyrolysis
Biomass
Fixed bed
TGA
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-ec7aa1e10b481b25cb6d5220ce0131f9de01cb832deb3ccbba66298ad67de8b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000047715
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2000047715
crossref_citationtrail_10_1016_j_jaap_2013_01_012
crossref_primary_10_1016_j_jaap_2013_01_012
elsevier_sciencedirect_doi_10_1016_j_jaap_2013_01_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of analytical and applied pyrolysis
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rath, Wolfinger, Steiner, Krammer, Barontini, Cozzani (bib0095) 2003; 82
Raveendran, Ganesh, Khilar (bib0020) 1996; 75
Skreiberg, Skreiberg, Sandquist, SA,rum (bib0105) 2011; 90
Kaltschmitt, Hartmann, Hofbauer (bib0025) 2009
Gronli, Varhegyi, Di Blasi (bib0030) 2002; 41
Yang, Yan, Chen, Lee, Zheng (bib0040) 2007; 86
Fisher, Hajaligol, Waymack, Kellogg (bib0090) 2002; 62
Boerjan, Ralph, Baucher (bib0055) 2003; 54
Blasi (bib0070) 2008; 34
Damartzis, Vamvuka, Sfakiotakis, Zabaniotou (bib0065) 2011; 102
Raiskila (bib0050) 2008
Gani, Naruse (bib0080) 2007; 32
Balat (bib0085) 2008; 30
Morf, Hasler, Nussbaumer (bib0110) 2002; 81
R. Bayerbach, Ueber die Struktur der oligomeren Bestandteile von Flash-Pyrolyse aus Biomasse, PhD thesis, Universitat Hamburg, Von-Melle-Park 3, 20146 Hamburg, 2006.
Mok (bib0100) 1983; 68
Ranzi, Cuoci, Faravelli, Frassoldati, Migliavacca, Pierucci, Sommariva (bib0005) 2008; 22
Couhert, Commandre, Salvador (bib0035) 2009; 88
Greenhalf, Nowakowski, Bridgwater, Titiloye, Yates, Riche, Shield (bib0045) 2012; 36
Pandey, Kim (bib0075) 2011; 34
Yang, Yan, Chen, Zheng, Lee, Liang (bib0015) 2006; 20
Demirbas (bib0060) 1997; 76
Yang (10.1016/j.jaap.2013.01.012_bib0015) 2006; 20
Greenhalf (10.1016/j.jaap.2013.01.012_bib0045) 2012; 36
Blasi (10.1016/j.jaap.2013.01.012_bib0070) 2008; 34
Ranzi (10.1016/j.jaap.2013.01.012_bib0005) 2008; 22
Couhert (10.1016/j.jaap.2013.01.012_bib0035) 2009; 88
Pandey (10.1016/j.jaap.2013.01.012_bib0075) 2011; 34
Balat (10.1016/j.jaap.2013.01.012_bib0085) 2008; 30
10.1016/j.jaap.2013.01.012_bib0010
Raveendran (10.1016/j.jaap.2013.01.012_bib0020) 1996; 75
Rath (10.1016/j.jaap.2013.01.012_bib0095) 2003; 82
Mok (10.1016/j.jaap.2013.01.012_bib0100) 1983; 68
Skreiberg (10.1016/j.jaap.2013.01.012_bib0105) 2011; 90
Raiskila (10.1016/j.jaap.2013.01.012_bib0050) 2008
Gronli (10.1016/j.jaap.2013.01.012_bib0030) 2002; 41
Gani (10.1016/j.jaap.2013.01.012_bib0080) 2007; 32
Demirbas (10.1016/j.jaap.2013.01.012_bib0060) 1997; 76
Fisher (10.1016/j.jaap.2013.01.012_bib0090) 2002; 62
Kaltschmitt (10.1016/j.jaap.2013.01.012_bib0025) 2009
Boerjan (10.1016/j.jaap.2013.01.012_bib0055) 2003; 54
Yang (10.1016/j.jaap.2013.01.012_bib0040) 2007; 86
Damartzis (10.1016/j.jaap.2013.01.012_bib0065) 2011; 102
Morf (10.1016/j.jaap.2013.01.012_bib0110) 2002; 81
References_xml – volume: 90
  start-page: 2182
  year: 2011
  end-page: 2197
  ident: bib0105
  article-title: TGA and macro-TGA characterisation of biomass fuels and fuel mixtures
  publication-title: Fuel
– volume: 75
  start-page: 987
  year: 1996
  end-page: 998
  ident: bib0020
  article-title: Pyrolysis characteristics of biomass and biomass components
  publication-title: Fuel
– reference: R. Bayerbach, Ueber die Struktur der oligomeren Bestandteile von Flash-Pyrolyse aus Biomasse, PhD thesis, Universitat Hamburg, Von-Melle-Park 3, 20146 Hamburg, 2006.
– volume: 34
  start-page: 47
  year: 2008
  end-page: 90
  ident: bib0070
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Progress in Energy and Combustion Science
– volume: 36
  start-page: 449
  year: 2012
  end-page: 459
  ident: bib0045
  article-title: Thermochemical characterisation of straws and high yielding perennial grasses
  publication-title: Industrial Crops and Products
– year: 2009
  ident: bib0025
  article-title: Energie aus Biomasse: Grundlagen, Techniken und Verfahren
– volume: 86
  start-page: 1781
  year: 2007
  end-page: 1788
  ident: bib0040
  article-title: Characteristics of hemicellulose cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 41
  start-page: 4201
  year: 2002
  end-page: 4208
  ident: bib0030
  article-title: Thermogravimetric analysis and devolatilization kinetics of wood
  publication-title: Industrial and Engineering Chemistry Research
– volume: 102
  start-page: 6230
  year: 2011
  end-page: 6238
  ident: bib0065
  article-title: Thermal degradation studies and kinetic modeling of cardoon (
  publication-title: Bioresource Technology
– volume: 32
  start-page: 649
  year: 2007
  end-page: 661
  ident: bib0080
  article-title: Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass
  publication-title: Renewable Energy
– volume: 62
  start-page: 331
  year: 2002
  end-page: 349
  ident: bib0090
  article-title: Pyrolysis behavior and kinetics of biomass derived materials
  publication-title: Journal of Analytical and Applied Pyrolysis
– volume: 68
  start-page: 165
  year: 1983
  end-page: 186
  ident: bib0100
  article-title: Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis
  publication-title: Thermochimica Acta
– volume: 22
  start-page: 4292
  year: 2008
  end-page: 4300
  ident: bib0005
  article-title: Chemical kinetics of biomass pyrolysis
  publication-title: Energy and Fuels
– volume: 20
  start-page: 388
  year: 2006
  end-page: 393
  ident: bib0015
  article-title: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin
  publication-title: Energy and Fuels
– volume: 34
  start-page: 29
  year: 2011
  end-page: 41
  ident: bib0075
  article-title: Lignin depolymerization and conversion: a review of thermochemical methods
  publication-title: Chemical Engineering and Technology
– volume: 82
  start-page: 81
  year: 2003
  end-page: 91
  ident: bib0095
  article-title: Heat of wood pyrolysis
  publication-title: Fuel
– volume: 88
  start-page: 408
  year: 2009
  end-page: 417
  ident: bib0035
  article-title: Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose hemicellulose and lignin?
  publication-title: Fuel
– volume: 30
  start-page: 620
  year: 2008
  end-page: 635
  ident: bib0085
  article-title: Mechanisms of thermochemical biomass conversion processes. 1. Reactions of pyrolysis
  publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
– volume: 81
  start-page: 843
  year: 2002
  end-page: 853
  ident: bib0110
  article-title: Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips
  publication-title: Fuel
– volume: 54
  start-page: 519
  year: 2003
  end-page: 546
  ident: bib0055
  article-title: Lignin biosynthesis
  publication-title: Annual Review of Plant Biology
– year: 2008
  ident: bib0050
  article-title: The Effect of Lignin Content and Lignin Modification on Norway Spruce Wood Properties and Decay Resistance
– volume: 76
  start-page: 431
  year: 1997
  end-page: 434
  ident: bib0060
  article-title: Calculation of higher heating values of biomass fuels
  publication-title: Fuel
– volume: 76
  start-page: 431
  year: 1997
  ident: 10.1016/j.jaap.2013.01.012_bib0060
  article-title: Calculation of higher heating values of biomass fuels
  publication-title: Fuel
  doi: 10.1016/S0016-2361(97)85520-2
– volume: 22
  start-page: 4292
  year: 2008
  ident: 10.1016/j.jaap.2013.01.012_bib0005
  article-title: Chemical kinetics of biomass pyrolysis
  publication-title: Energy and Fuels
  doi: 10.1021/ef800551t
– volume: 30
  start-page: 620
  year: 2008
  ident: 10.1016/j.jaap.2013.01.012_bib0085
  article-title: Mechanisms of thermochemical biomass conversion processes. 1. Reactions of pyrolysis
  publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
  doi: 10.1080/15567030600817258
– volume: 34
  start-page: 29
  year: 2011
  ident: 10.1016/j.jaap.2013.01.012_bib0075
  article-title: Lignin depolymerization and conversion: a review of thermochemical methods
  publication-title: Chemical Engineering and Technology
  doi: 10.1002/ceat.201000270
– year: 2009
  ident: 10.1016/j.jaap.2013.01.012_bib0025
– volume: 102
  start-page: 6230
  year: 2011
  ident: 10.1016/j.jaap.2013.01.012_bib0065
  article-title: Thermal degradation studies and kinetic modeling of cardoon (Cynaracardunculus) pyrolysis using thermogravimetric analysis (TGA)
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2011.02.060
– volume: 75
  start-page: 987
  year: 1996
  ident: 10.1016/j.jaap.2013.01.012_bib0020
  article-title: Pyrolysis characteristics of biomass and biomass components
  publication-title: Fuel
  doi: 10.1016/0016-2361(96)00030-0
– ident: 10.1016/j.jaap.2013.01.012_bib0010
– volume: 88
  start-page: 408
  year: 2009
  ident: 10.1016/j.jaap.2013.01.012_bib0035
  article-title: Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose hemicellulose and lignin?
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.09.019
– volume: 90
  start-page: 2182
  year: 2011
  ident: 10.1016/j.jaap.2013.01.012_bib0105
  article-title: TGA and macro-TGA characterisation of biomass fuels and fuel mixtures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.02.012
– volume: 68
  start-page: 165
  year: 1983
  ident: 10.1016/j.jaap.2013.01.012_bib0100
  article-title: Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis
  publication-title: Thermochimica Acta
  doi: 10.1016/0040-6031(83)80222-6
– volume: 86
  start-page: 1781
  year: 2007
  ident: 10.1016/j.jaap.2013.01.012_bib0040
  article-title: Characteristics of hemicellulose cellulose and lignin pyrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.013
– volume: 32
  start-page: 649
  year: 2007
  ident: 10.1016/j.jaap.2013.01.012_bib0080
  article-title: Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2006.02.017
– volume: 62
  start-page: 331
  year: 2002
  ident: 10.1016/j.jaap.2013.01.012_bib0090
  article-title: Pyrolysis behavior and kinetics of biomass derived materials
  publication-title: Journal of Analytical and Applied Pyrolysis
  doi: 10.1016/S0165-2370(01)00129-2
– volume: 36
  start-page: 449
  year: 2012
  ident: 10.1016/j.jaap.2013.01.012_bib0045
  article-title: Thermochemical characterisation of straws and high yielding perennial grasses
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2011.10.025
– volume: 34
  start-page: 47
  year: 2008
  ident: 10.1016/j.jaap.2013.01.012_bib0070
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Progress in Energy and Combustion Science
  doi: 10.1016/j.pecs.2006.12.001
– volume: 20
  start-page: 388
  year: 2006
  ident: 10.1016/j.jaap.2013.01.012_bib0015
  article-title: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin
  publication-title: Energy and Fuels
  doi: 10.1021/ef0580117
– volume: 82
  start-page: 81
  year: 2003
  ident: 10.1016/j.jaap.2013.01.012_bib0095
  article-title: Heat of wood pyrolysis
  publication-title: Fuel
  doi: 10.1016/S0016-2361(02)00138-2
– year: 2008
  ident: 10.1016/j.jaap.2013.01.012_bib0050
– volume: 54
  start-page: 519
  year: 2003
  ident: 10.1016/j.jaap.2013.01.012_bib0055
  article-title: Lignin biosynthesis
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.54.031902.134938
– volume: 41
  start-page: 4201
  year: 2002
  ident: 10.1016/j.jaap.2013.01.012_bib0030
  article-title: Thermogravimetric analysis and devolatilization kinetics of wood
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie0201157
– volume: 81
  start-page: 843
  year: 2002
  ident: 10.1016/j.jaap.2013.01.012_bib0110
  article-title: Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips
  publication-title: Fuel
  doi: 10.1016/S0016-2361(01)00216-2
SSID ssj0006618
Score 2.5619853
Snippet ► Pyrolysis characteristics of cellulose, hemicellulose and lignin were identified. ► Components fractions were identified by atomic balance and optimization...
Thermochemical conversion of biomass has been studied extensively over the last decades. For the design, optimization and modeling of thermochemical conversion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms activation energy
bark
Biomass
cellulose
decayed wood
feedstocks
Fixed bed
hemicellulose
industrial applications
lignin
Pyrolysis
temperature
TGA
thermogravimetry
wheat straw
Title The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis
URI https://dx.doi.org/10.1016/j.jaap.2013.01.012
https://www.proquest.com/docview/2000047715
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Yn1UVbwprHdzftYirUqetGCt7C72ZSUkhRtQS_-dmfyKCroQUgI7GaXZSY7M0m--QbgTHOuhW1LSyvc5A6XuKWkSiypOdFducIzlJx8_-ANR87ts_vcgH6dC0Owysr2lza9sNZVS6eSZmeWpp1HSsQRtk-_3ihwCVZgVdih5zZhtXdzN3xYGmR0QUFJ8e1aNKDKnSlhXhMpibaS2wV7Jxe_-acflrpwP4Mt2KziRtYrl7YNDZPtwFq_Lte2AxtfmAV3YYzqZyVWg-UJwyiPUaI9RsqMQOR5RvgJNk3HWZpdMPp6v5jmr4bJLGYFhcCyJc_Y03Wv6EjSNxMzhefs_SUvuEz2YDS4euoPraqmgqUd25tbRvtScsO7ysGAVbhaeTGGYF1tiHgnCWO8aoXbPMa3bK2Vkp4nwkDGnh-bADv2oZnhIg-AmSBGD2t0mBDJoDE4rVG-Comi1AlttwW8lmSkK8JxqnsxjWpk2SQi6Uck_ajL8RAtOF-OmZV0G3_e7dYKir49NBH6gz_HndbajFBLJFKZmXzxSkU5iT_T5-7hP-c-gnVRVMwgTOQxNOcvC3OCcctctWHl8oO3q6fzE1ty7ZI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH0VVxfUbwpnU3ffe4LOr6vLiCt5CkqVSWdtkH6MXf7kwfvkAPQkshL8JMkpm233wDcKQ517bjSEsr3OQul7ilpEosqTnRXXm2byg4-fbO7z-4V4_e4xz06lgYglVWZ395phendVXSrqTZHqVp-54CcWwnoF9v5LiE87Dgek5AuL7Tt0-cBxqgsCT49ixqXkXOlCCvZymJtJI7BXcnt3-zTj_O6cL4nK_CSuU1sm45sTWYM1kTFnt1srYmLH_hFVyHJ1Q-K5EaLE8Y-niMwuzRT2YEIc8zQk-wYfqUpdkJo2_3s2E-MUxmMSsIBD5K8owNLrpFRZK-mJgpvEev47xgMtmAh_OzQa9vVRkVLO06_tQyOpCSG95RLrqrtqeVH6MD1tGGaHeSKManVrjJY3zH1lop6ft2FMrYD2ITYsUmNDKc5BYwE8ZoX42OEqIYNAaHNSpQERGUupHjtYDXkhS6ohunrBdDUePKngVJX5D0RYfjZbfg-KPPqCTb-LO1VytIfFsyAq3Bn_0Oa20K1BKJVGYmn00oJSexZwbc2_7n2Aew2B_c3oiby7vrHViyi9wZhI7chcZ0PDN76MFM1X6xQt8BXpvuXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+the+biomass+components+lignin%2C+cellulose+and+hemicellulose+on+TGA+and+fixed+bed+pyrolysis&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Burhenne%2C+Luisa&rft.au=Messmer%2C+Jonas&rft.au=Aicher%2C+Thomas&rft.au=Laborie%2C+Marie-Pierre&rft.date=2013-05-01&rft.issn=0165-2370&rft.volume=101+p.177-184&rft.spage=177&rft.epage=184&rft_id=info:doi/10.1016%2Fj.jaap.2013.01.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon