A new method called MiKneeSoTA to minimize knee soft-tissue artifacts in kinematic analysis

The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with soft-tissue-induced motion artefacts (STIMA) and ambiguity in landmark palpation. This study therefore presents a novel protocol aiming to Mi nimize Knee So ft- T is...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 20666 - 12
Main Authors Einfeldt, Ann-Kathrin, Budde, Leon, Ortigas-Vásquez, Ariana, Sauer, Adrian, Utz, Michael, Jakubowitz, Eike
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with soft-tissue-induced motion artefacts (STIMA) and ambiguity in landmark palpation. This study therefore presents a novel protocol aiming to Mi nimize Knee So ft- T issue A rtefacts (MiKneeSoTA) and their effect on kinematic estimates. Relying on an augmented marker set and a new inverse kinematics approach, our method leverages frame-by-frame optimization to adjust best-fit cylinders that have been automatically generated based on the relative position of lower limb markers during an initial static trial. Tibiofemoral rotations and translations are then calculated along the anatomical joint axes based on the relative 3D motion of these cylinders. When compared against the conventional Helen-Hayes approach, in vivo assessment of fifteen healthy subjects revealed the MiKneeSoTA approach led to kinematic profiles with significantly lower standard deviations in joint rotations across trials, and even visibly reduced the presence of high frequency fluctuations presumably associated with e.g. soft-tissue vibration. In addition to agreeing with previously published bone pin and fluoroscopy datasets, our results illustrate MiKneeSoTA’s ability to abate the effect of STIMA induced by lateral knee ligaments. Our findings indicate that MiKneeSoTA is in fact a promising approach to mitigate knee joint STIMA and thus enable the previously unattainable accurate estimation of translational knee joint motion with an optoelectronic system.
AbstractList The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with soft-tissue-induced motion artefacts (STIMA) and ambiguity in landmark palpation. This study therefore presents a novel protocol aiming to Minimize Knee Soft-Tissue Artefacts (MiKneeSoTA) and their effect on kinematic estimates. Relying on an augmented marker set and a new inverse kinematics approach, our method leverages frame-by-frame optimization to adjust best-fit cylinders that have been automatically generated based on the relative position of lower limb markers during an initial static trial. Tibiofemoral rotations and translations are then calculated along the anatomical joint axes based on the relative 3D motion of these cylinders. When compared against the conventional Helen-Hayes approach, in vivo assessment of fifteen healthy subjects revealed the MiKneeSoTA approach led to kinematic profiles with significantly lower standard deviations in joint rotations across trials, and even visibly reduced the presence of high frequency fluctuations presumably associated with e.g. soft-tissue vibration. In addition to agreeing with previously published bone pin and fluoroscopy datasets, our results illustrate MiKneeSoTA's ability to abate the effect of STIMA induced by lateral knee ligaments. Our findings indicate that MiKneeSoTA is in fact a promising approach to mitigate knee joint STIMA and thus enable the previously unattainable accurate estimation of translational knee joint motion with an optoelectronic system.
The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with soft-tissue-induced motion artefacts (STIMA) and ambiguity in landmark palpation. This study therefore presents a novel protocol aiming to Minimize Knee Soft-Tissue Artefacts (MiKneeSoTA) and their effect on kinematic estimates. Relying on an augmented marker set and a new inverse kinematics approach, our method leverages frame-by-frame optimization to adjust best-fit cylinders that have been automatically generated based on the relative position of lower limb markers during an initial static trial. Tibiofemoral rotations and translations are then calculated along the anatomical joint axes based on the relative 3D motion of these cylinders. When compared against the conventional Helen-Hayes approach, in vivo assessment of fifteen healthy subjects revealed the MiKneeSoTA approach led to kinematic profiles with significantly lower standard deviations in joint rotations across trials, and even visibly reduced the presence of high frequency fluctuations presumably associated with e.g. soft-tissue vibration. In addition to agreeing with previously published bone pin and fluoroscopy datasets, our results illustrate MiKneeSoTA's ability to abate the effect of STIMA induced by lateral knee ligaments. Our findings indicate that MiKneeSoTA is in fact a promising approach to mitigate knee joint STIMA and thus enable the previously unattainable accurate estimation of translational knee joint motion with an optoelectronic system.The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with soft-tissue-induced motion artefacts (STIMA) and ambiguity in landmark palpation. This study therefore presents a novel protocol aiming to Minimize Knee Soft-Tissue Artefacts (MiKneeSoTA) and their effect on kinematic estimates. Relying on an augmented marker set and a new inverse kinematics approach, our method leverages frame-by-frame optimization to adjust best-fit cylinders that have been automatically generated based on the relative position of lower limb markers during an initial static trial. Tibiofemoral rotations and translations are then calculated along the anatomical joint axes based on the relative 3D motion of these cylinders. When compared against the conventional Helen-Hayes approach, in vivo assessment of fifteen healthy subjects revealed the MiKneeSoTA approach led to kinematic profiles with significantly lower standard deviations in joint rotations across trials, and even visibly reduced the presence of high frequency fluctuations presumably associated with e.g. soft-tissue vibration. In addition to agreeing with previously published bone pin and fluoroscopy datasets, our results illustrate MiKneeSoTA's ability to abate the effect of STIMA induced by lateral knee ligaments. Our findings indicate that MiKneeSoTA is in fact a promising approach to mitigate knee joint STIMA and thus enable the previously unattainable accurate estimation of translational knee joint motion with an optoelectronic system.
The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with soft-tissue-induced motion artefacts (STIMA) and ambiguity in landmark palpation. This study therefore presents a novel protocol aiming to Mi nimize Knee So ft- T issue A rtefacts (MiKneeSoTA) and their effect on kinematic estimates. Relying on an augmented marker set and a new inverse kinematics approach, our method leverages frame-by-frame optimization to adjust best-fit cylinders that have been automatically generated based on the relative position of lower limb markers during an initial static trial. Tibiofemoral rotations and translations are then calculated along the anatomical joint axes based on the relative 3D motion of these cylinders. When compared against the conventional Helen-Hayes approach, in vivo assessment of fifteen healthy subjects revealed the MiKneeSoTA approach led to kinematic profiles with significantly lower standard deviations in joint rotations across trials, and even visibly reduced the presence of high frequency fluctuations presumably associated with e.g. soft-tissue vibration. In addition to agreeing with previously published bone pin and fluoroscopy datasets, our results illustrate MiKneeSoTA’s ability to abate the effect of STIMA induced by lateral knee ligaments. Our findings indicate that MiKneeSoTA is in fact a promising approach to mitigate knee joint STIMA and thus enable the previously unattainable accurate estimation of translational knee joint motion with an optoelectronic system.
Abstract The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with soft-tissue-induced motion artefacts (STIMA) and ambiguity in landmark palpation. This study therefore presents a novel protocol aiming to Minimize Knee Soft-Tissue Artefacts (MiKneeSoTA) and their effect on kinematic estimates. Relying on an augmented marker set and a new inverse kinematics approach, our method leverages frame-by-frame optimization to adjust best-fit cylinders that have been automatically generated based on the relative position of lower limb markers during an initial static trial. Tibiofemoral rotations and translations are then calculated along the anatomical joint axes based on the relative 3D motion of these cylinders. When compared against the conventional Helen-Hayes approach, in vivo assessment of fifteen healthy subjects revealed the MiKneeSoTA approach led to kinematic profiles with significantly lower standard deviations in joint rotations across trials, and even visibly reduced the presence of high frequency fluctuations presumably associated with e.g. soft-tissue vibration. In addition to agreeing with previously published bone pin and fluoroscopy datasets, our results illustrate MiKneeSoTA’s ability to abate the effect of STIMA induced by lateral knee ligaments. Our findings indicate that MiKneeSoTA is in fact a promising approach to mitigate knee joint STIMA and thus enable the previously unattainable accurate estimation of translational knee joint motion with an optoelectronic system.
ArticleNumber 20666
Author Ortigas-Vásquez, Ariana
Jakubowitz, Eike
Einfeldt, Ann-Kathrin
Utz, Michael
Budde, Leon
Sauer, Adrian
Author_xml – sequence: 1
  givenname: Ann-Kathrin
  surname: Einfeldt
  fullname: Einfeldt, Ann-Kathrin
  organization: Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School
– sequence: 2
  givenname: Leon
  surname: Budde
  fullname: Budde, Leon
  organization: Leibniz Universität Hannover, Institute of Mechatronic Systems
– sequence: 3
  givenname: Ariana
  surname: Ortigas-Vásquez
  fullname: Ortigas-Vásquez, Ariana
  organization: Research and Development, Aesculap AG, Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich, Campus Grosshadern, Ludwig Maximilians University Munich
– sequence: 4
  givenname: Adrian
  surname: Sauer
  fullname: Sauer, Adrian
  organization: Research and Development, Aesculap AG
– sequence: 5
  givenname: Michael
  surname: Utz
  fullname: Utz, Michael
  organization: Research and Development, Aesculap AG
– sequence: 6
  givenname: Eike
  surname: Jakubowitz
  fullname: Jakubowitz, Eike
  email: Jakubowitz.Eike@mh-hannover.de
  organization: Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39237576$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB_0D7BAlth0Exi_4pvlVUVpRRGLtisWluOMi28Tu8SJUO-vx7cpBbHAG1uj75yZ8TkkezFFJOQNg_cMxOpDlkw1qwq4rDST0FTbF-SAg1QVF5zv_fXeJ8c5b6AcxRvJmldkXzRcaKXrA_JtTSP-pANO31NHne177OiX8DkiXqXrNZ0SHUIMQ9givStFmpOfqinkPCO14xS8dVOmIdK7EHGwU3DURts_5JBfk5fe9hmPn-4jcnP28fr0vLr8-unidH1ZOSnqqUKmXNcK6LhwGhyTLXjtwINEjbx2HIWXBWC1dRql8FpA47RtLNiuqZU4IheLb5fsxtyPYbDjg0k2mMdCGm_NblLXo3HgFHTMWuCtrBFbzZUvPZisBbDVzutk8bof048Z82SGkB32vY2Y5mwEA1Y-VdWsoO_-QTdpHsvuCwWwkjUv1Nsnam4H7J7H-x1BAfgCuDHlPKJ_RhiYXdRmidqUqM1j1GZbRGIR5QLHWxz_9P6P6hdeQan9
Cites_doi 10.1016/j.orthres.2005.02.006
10.1016/j.gaitpost.2018.06.024
10.1155/2020/8854124
10.1016/j.gaitpost.2021.06.016
10.1177/03635465030310012401
10.1515/cdbme-2020-2009
10.1002/jor.24226
10.7717/peerj.4640
10.1115/1.3138397
10.1016/j.orthres.2003.11.003
10.1016/j.clinbiomech.2003.10.003
10.1302/0301-620x.86b6.14589
10.1155/2012/586348
10.1016/s0021-9290(97)00001-8
10.1016/0021-9290(92)90254-x
10.1016/j.gaitpost.2022.07.258
10.1016/j.jbiomech.2017.04.014
10.1016/j.jbiomech.2004.02.010
10.1038/s41598-023-36625-z
10.1016/j.gaitpost.2018.01.019
10.1016/j.joca.2021.10.011
10.1002/jor.1100080310
10.1016/j.gaitpost.2005.08.002
10.4055/cios.2015.7.3.303
10.1115/1.2834888
10.1016/j.gaitpost.2009.04.004
10.1002/jmri.21413
10.1142/S0219519413500267
10.1097/01.blo.0000063598.67412.0d
10.1371/journal.pone.0185952
10.1016/j.jbiomech.2021.110464
10.1016/j.jbiomech.2023.111474
10.1097/BLO.0b013e31802dc4d0
10.1016/j.jbiomech.2016.03.046
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-71409-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_c0c50d1aa02b46eeb725f26c14630185
39237576
10_1038_s41598_024_71409_z
Genre Journal Article
GrantInformation_xml – fundername: Medizinische Hochschule Hannover (MHH) (3118)
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c436t-e15cdb30d23c70c14b0f7c0f04e7e26c2e3f4db316ac7e43f7309c7a9a0ad9653
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:32:31 EDT 2025
Fri Jul 11 10:23:58 EDT 2025
Wed Aug 13 08:19:59 EDT 2025
Mon Jul 21 06:00:41 EDT 2025
Tue Jul 01 03:22:54 EDT 2025
Fri Feb 21 02:40:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-e15cdb30d23c70c14b0f7c0f04e7e26c2e3f4db316ac7e43f7309c7a9a0ad9653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3101008462?pq-origsite=%requestingapplication%
PMID 39237576
PQID 3101008462
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_c0c50d1aa02b46eeb725f26c14630185
proquest_miscellaneous_3101232561
proquest_journals_3101008462
pubmed_primary_39237576
crossref_primary_10_1038_s41598_024_71409_z
springer_journals_10_1038_s41598_024_71409_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-05
PublicationDateYYYYMMDD 2024-09-05
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Grood, Suntay (CR24) 1983; 105
Benoit (CR10) 2007; 454
Fukaya, Mutsuzaki, Ida, Wadano (CR22) 2012; 2012
Clément (CR30) 2018; 64
Andriacchi, Alexander, Toney, Dyrby, Sum (CR11) 1998; 120
Kerkhoff, Wagner, Peikenkamp (CR12) 2020
Cho, Park, Kwon (CR28) 2004; 19
Collins, Ghoussayni, Ewins, Kent (CR13) 2009; 30
Ulbricht, Hou, Wang, He, Zhang (CR36) 2020; 2020
List (CR20) 2017; 12
Andriacchi, Dyrby (CR4) 2005; 38
Georgoulis, Papadonikolakis, Papageorgiou, Mitsou, Stergiou (CR6) 2003; 31
Lahkar (CR14) 2021; 122
Taylor (CR21) 2005; 23
Pinskerova (CR3) 2004; 86
Reinschmidt, van den Bogert, Nigg, Lundberg, Murphy (CR15) 1997; 30
Mezghani (CR31) 2013; 13
Draper (CR19) 2008; 28
Jensen, Lugade, Crenshaw, Miller, Kaufman (CR35) 2016; 49
Petersen (CR5) 2022; 30
Kim (CR23) 2015; 7
CR25
Freeman, Pinskerova (CR9) 2003
Lafortune, Cavanagh, Sommer, Kalenak (CR8) 1992; 25
Dyrby, Andriacchi (CR2) 2004; 22
Ortigas Vásquez (CR26) 2023; 13
Schache, Baker, Lamoreux (CR34) 2006; 24
Wang (CR17) 2023; 150
Mahaffey, Morrison, Bassett, Drechsler, Cramp (CR29) 2018; 61
Fukuchi, Fukuchi, Duarte (CR16) 2018; 6
Chehab, Andriacchi, Favre (CR32) 2017; 58
Nietert (CR33) 1976; 27
Byrnes (CR27) 2022; 98
Gray (CR1) 2019; 37
Kadaba, Ramakrishnan, Wootten (CR7) 1990; 8
Langley, Jones, Board, Greig (CR18) 2021; 89
HA Gray (71409_CR1) 2019; 37
MA Lafortune (71409_CR8) 1992; 25
MAR Freeman (71409_CR9) 2003
E Jensen (71409_CR35) 2016; 49
H Ulbricht (71409_CR36) 2020; 2020
CE Draper (71409_CR19) 2008; 28
EF Chehab (71409_CR32) 2017; 58
DL Benoit (71409_CR10) 2007; 454
A Kerkhoff (71409_CR12) 2020
AD Georgoulis (71409_CR6) 2003; 31
C Reinschmidt (71409_CR15) 1997; 30
WR Taylor (71409_CR21) 2005; 23
AG Schache (71409_CR34) 2006; 24
A Ortigas Vásquez (71409_CR26) 2023; 13
ES Grood (71409_CR24) 1983; 105
R Mahaffey (71409_CR29) 2018; 61
ET Petersen (71409_CR5) 2022; 30
TP Andriacchi (71409_CR11) 1998; 120
TP Andriacchi (71409_CR4) 2005; 38
HY Kim (71409_CR23) 2015; 7
J Clément (71409_CR30) 2018; 64
V Pinskerova (71409_CR3) 2004; 86
N Mezghani (71409_CR31) 2013; 13
W Wang (71409_CR17) 2023; 150
TD Collins (71409_CR13) 2009; 30
SH Cho (71409_CR28) 2004; 19
MP Kadaba (71409_CR7) 1990; 8
BK Lahkar (71409_CR14) 2021; 122
71409_CR25
M Nietert (71409_CR33) 1976; 27
B Langley (71409_CR18) 2021; 89
SK Byrnes (71409_CR27) 2022; 98
CO Dyrby (71409_CR2) 2004; 22
R List (71409_CR20) 2017; 12
CA Fukuchi (71409_CR16) 2018; 6
T Fukaya (71409_CR22) 2012; 2012
References_xml – volume: 23
  start-page: 726
  year: 2005
  end-page: 734
  ident: CR21
  article-title: On the influence of soft tissue coverage in the determination of bone kinematics using skin markers
  publication-title: J. Orthop. Res. Off. Publ. Orthop. Res. Society
  doi: 10.1016/j.orthres.2005.02.006
– volume: 64
  start-page: 198
  year: 2018
  end-page: 204
  ident: CR30
  article-title: Healthy 3D knee kinematics during gait: Differences between women and men, and correlation with x-ray alignment
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.06.024
– volume: 2020
  start-page: 8854124
  year: 2020
  ident: CR36
  article-title: The effect of correction algorithms on knee kinematics and kinetics during gait of patients with knee osteoarthritis
  publication-title: Appl. Bionics Biomech.
  doi: 10.1155/2020/8854124
– volume: 89
  start-page: 1
  year: 2021
  end-page: 6
  ident: CR18
  article-title: Modified conventional gait model vs. Six degrees of freedom model: A comparison of lower limb kinematics and associated error
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2021.06.016
– volume: 31
  start-page: 75
  year: 2003
  end-page: 79
  ident: CR6
  article-title: Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking
  publication-title: Am. J. Sports Med.
  doi: 10.1177/03635465030310012401
– year: 2020
  ident: CR12
  article-title: Comparison of six different marker sets to analyze knee kinematics and kinetics during landings
  publication-title: Curr. Directions Biomed. Eng.
  doi: 10.1515/cdbme-2020-2009
– volume: 37
  start-page: 615
  year: 2019
  end-page: 630
  ident: CR1
  article-title: Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane X-ray imaging
  publication-title: J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
  doi: 10.1002/jor.24226
– volume: 6
  year: 2018
  ident: CR16
  article-title: A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals
  publication-title: PeerJ
  doi: 10.7717/peerj.4640
– volume: 105
  start-page: 136
  year: 1983
  end-page: 144
  ident: CR24
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138397
– volume: 22
  start-page: 794
  year: 2004
  end-page: 800
  ident: CR2
  article-title: Secondary motions of the knee during weight bearing and non-weight bearing activities
  publication-title: J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
  doi: 10.1016/j.orthres.2003.11.003
– volume: 19
  start-page: 145
  year: 2004
  end-page: 152
  ident: CR28
  article-title: Gender differences in three dimensional gait analysis data from 98 healthy Korean adults
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2003.10.003
– volume: 86
  start-page: 925
  year: 2004
  end-page: 931
  ident: CR3
  article-title: Does the femur roll-back with flexion?
  publication-title: J. Bone Joint Surg. Br. Vol.
  doi: 10.1302/0301-620x.86b6.14589
– volume: 2012
  year: 2012
  ident: CR22
  article-title: Two different protocols for knee joint motion analyses in the stance phase of gait: Correlation of the rigid marker set and the point cluster technique
  publication-title: Rehabilit. Res. Practice
  doi: 10.1155/2012/586348
– volume: 30
  start-page: 729
  year: 1997
  end-page: 732
  ident: CR15
  article-title: Effect of skin movement on the analysis of skeletal knee joint motion during running
  publication-title: J. Biomech.
  doi: 10.1016/s0021-9290(97)00001-8
– ident: CR25
– volume: 25
  start-page: 347
  year: 1992
  end-page: 357
  ident: CR8
  article-title: Three-dimensional kinematics of the human knee during walking
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90254-x
– volume: 98
  start-page: 39
  year: 2022
  end-page: 48
  ident: CR27
  article-title: Frontal plane knee moment in clinical gait analysis: A systematic review on the effect of kinematic gait changes
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2022.07.258
– volume: 58
  start-page: 11
  year: 2017
  end-page: 20
  ident: CR32
  article-title: Speed, age, sex, and body mass index provide a rigorous basis for comparing the kinematic and kinetic profiles of the lower extremity during walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.04.014
– volume: 38
  start-page: 293
  year: 2005
  end-page: 298
  ident: CR4
  article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.02.010
– volume: 13
  start-page: 9632
  year: 2023
  ident: CR26
  article-title: A frame orientation optimisation method for consistent interpretation of kinematic profiles
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36625-z
– volume: 61
  start-page: 220
  year: 2018
  end-page: 225
  ident: CR29
  article-title: Biomechanical characteristics of lower limb gait waveforms: Associations with body fat in children
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.01.019
– volume: 30
  start-page: 249
  year: 2022
  end-page: 259
  ident: CR5
  article-title: Patients with knee osteoarthritis can be divided into subgroups based on tibiofemoral joint kinematics of gait—An exploratory and dynamic radiostereometric study
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2021.10.011
– volume: 27
  start-page: 198
  year: 1976
  end-page: 201
  ident: CR33
  article-title: The human anatomical knee axis and its significance for fitting disabled people with below-knee-prostheses and orthoses
  publication-title: Orthopädie-Technik
– volume: 8
  start-page: 383
  year: 1990
  end-page: 392
  ident: CR7
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
  doi: 10.1002/jor.1100080310
– volume: 24
  start-page: 100
  year: 2006
  end-page: 109
  ident: CR34
  article-title: Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: An evaluation of methods
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.08.002
– volume: 7
  start-page: 303
  year: 2015
  end-page: 309
  ident: CR23
  article-title: Screw-home movement of the tibiofemoral joint during normal gait: Three-dimensional analysis
  publication-title: Clin. Orthop. Surg.
  doi: 10.4055/cios.2015.7.3.303
– volume: 120
  start-page: 743
  year: 1998
  end-page: 749
  ident: CR11
  article-title: A point cluster method for in vivo motion analysis: Applied to a study of knee kinematics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2834888
– volume: 30
  start-page: 173
  year: 2009
  end-page: 180
  ident: CR13
  article-title: A six degrees-of-freedom marker set for gait analysis: Repeatability and comparison with a modified Helen Hayes set
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.04.004
– volume: 28
  start-page: 158
  year: 2008
  end-page: 166
  ident: CR19
  article-title: Feasibility of using real-time MRI to measure joint kinematics in 1.5T and open-bore 0.5T systems
  publication-title: J. Magnet. Resonance Imaging JMRI.
  doi: 10.1002/jmri.21413
– volume: 13
  start-page: 1350026
  year: 2013
  ident: CR31
  article-title: Identification of knee frontal plane kinematic patterns in normal gait by Principal Component Analysis
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519413500267
– year: 2003
  ident: CR9
  article-title: The movement of the knee studied by magnetic resonance imaging
  publication-title: Clin. Orthop. Related Res.
  doi: 10.1097/01.blo.0000063598.67412.0d
– volume: 12
  year: 2017
  ident: CR20
  article-title: A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent
  publication-title: PloS One
  doi: 10.1371/journal.pone.0185952
– volume: 122
  year: 2021
  ident: CR14
  article-title: Development and evaluation of a new methodology for Soft Tissue Artifact compensation in the lower limb
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110464
– volume: 150
  year: 2023
  ident: CR17
  article-title: Effects of soft tissue artifacts on the calculated kinematics of the knee during walking and running
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2023.111474
– volume: 454
  start-page: 81
  year: 2007
  end-page: 88
  ident: CR10
  article-title: In vivo knee kinematics during gait reveals new rotation profiles and smaller translations
  publication-title: Clin. Orthop. Related Res.
  doi: 10.1097/BLO.0b013e31802dc4d0
– volume: 49
  start-page: 1698
  year: 2016
  end-page: 1704
  ident: CR35
  article-title: A principal component analysis approach to correcting the knee flexion axis during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.03.046
– volume: 8
  start-page: 383
  year: 1990
  ident: 71409_CR7
  publication-title: J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
  doi: 10.1002/jor.1100080310
– volume: 7
  start-page: 303
  year: 2015
  ident: 71409_CR23
  publication-title: Clin. Orthop. Surg.
  doi: 10.4055/cios.2015.7.3.303
– volume: 2020
  start-page: 8854124
  year: 2020
  ident: 71409_CR36
  publication-title: Appl. Bionics Biomech.
  doi: 10.1155/2020/8854124
– volume: 30
  start-page: 729
  year: 1997
  ident: 71409_CR15
  publication-title: J. Biomech.
  doi: 10.1016/s0021-9290(97)00001-8
– volume: 38
  start-page: 293
  year: 2005
  ident: 71409_CR4
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.02.010
– volume: 23
  start-page: 726
  year: 2005
  ident: 71409_CR21
  publication-title: J. Orthop. Res. Off. Publ. Orthop. Res. Society
  doi: 10.1016/j.orthres.2005.02.006
– volume: 30
  start-page: 249
  year: 2022
  ident: 71409_CR5
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2021.10.011
– volume: 64
  start-page: 198
  year: 2018
  ident: 71409_CR30
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.06.024
– ident: 71409_CR25
– volume: 150
  year: 2023
  ident: 71409_CR17
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2023.111474
– volume: 13
  start-page: 1350026
  year: 2013
  ident: 71409_CR31
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519413500267
– volume: 25
  start-page: 347
  year: 1992
  ident: 71409_CR8
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90254-x
– volume: 49
  start-page: 1698
  year: 2016
  ident: 71409_CR35
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.03.046
– year: 2020
  ident: 71409_CR12
  publication-title: Curr. Directions Biomed. Eng.
  doi: 10.1515/cdbme-2020-2009
– volume: 12
  year: 2017
  ident: 71409_CR20
  publication-title: PloS One
  doi: 10.1371/journal.pone.0185952
– volume: 120
  start-page: 743
  year: 1998
  ident: 71409_CR11
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2834888
– volume: 30
  start-page: 173
  year: 2009
  ident: 71409_CR13
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.04.004
– volume: 98
  start-page: 39
  year: 2022
  ident: 71409_CR27
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2022.07.258
– volume: 19
  start-page: 145
  year: 2004
  ident: 71409_CR28
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2003.10.003
– volume: 28
  start-page: 158
  year: 2008
  ident: 71409_CR19
  publication-title: J. Magnet. Resonance Imaging JMRI.
  doi: 10.1002/jmri.21413
– volume: 13
  start-page: 9632
  year: 2023
  ident: 71409_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36625-z
– volume: 37
  start-page: 615
  year: 2019
  ident: 71409_CR1
  publication-title: J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
  doi: 10.1002/jor.24226
– volume: 31
  start-page: 75
  year: 2003
  ident: 71409_CR6
  publication-title: Am. J. Sports Med.
  doi: 10.1177/03635465030310012401
– volume: 6
  year: 2018
  ident: 71409_CR16
  publication-title: PeerJ
  doi: 10.7717/peerj.4640
– volume: 24
  start-page: 100
  year: 2006
  ident: 71409_CR34
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.08.002
– volume: 454
  start-page: 81
  year: 2007
  ident: 71409_CR10
  publication-title: Clin. Orthop. Related Res.
  doi: 10.1097/BLO.0b013e31802dc4d0
– volume: 89
  start-page: 1
  year: 2021
  ident: 71409_CR18
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2021.06.016
– volume: 105
  start-page: 136
  year: 1983
  ident: 71409_CR24
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138397
– volume: 27
  start-page: 198
  year: 1976
  ident: 71409_CR33
  publication-title: Orthopädie-Technik
– year: 2003
  ident: 71409_CR9
  publication-title: Clin. Orthop. Related Res.
  doi: 10.1097/01.blo.0000063598.67412.0d
– volume: 2012
  year: 2012
  ident: 71409_CR22
  publication-title: Rehabilit. Res. Practice
  doi: 10.1155/2012/586348
– volume: 61
  start-page: 220
  year: 2018
  ident: 71409_CR29
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.01.019
– volume: 22
  start-page: 794
  year: 2004
  ident: 71409_CR2
  publication-title: J. Orthop. Res. Off. Publ. Orthop. Res. Soc.
  doi: 10.1016/j.orthres.2003.11.003
– volume: 86
  start-page: 925
  year: 2004
  ident: 71409_CR3
  publication-title: J. Bone Joint Surg. Br. Vol.
  doi: 10.1302/0301-620x.86b6.14589
– volume: 122
  year: 2021
  ident: 71409_CR14
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110464
– volume: 58
  start-page: 11
  year: 2017
  ident: 71409_CR32
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.04.014
SSID ssj0000529419
Score 2.4493432
Snippet The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with soft-tissue-induced...
Abstract The use of marker-based optical motion capture to estimate joint kinematics during gait is currently limited by errors associated with...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 20666
SubjectTerms 639/166/985
692/698/1671
Adult
Biomechanical Phenomena
Female
Fluoroscopy
Gait - physiology
Humanities and Social Sciences
Humans
Kinematics
Knee
Knee Joint - physiology
Male
multidisciplinary
Range of Motion, Articular - physiology
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEB6KIPRSWu2PtSoRerOL2SS72RxfRRFFL1UQegjZ7Cw8pPvEtx58f30nyb5XpRUvXvaQDUvyTWbnG5J8A_Ct9jUalDovUApKUFryOaLFuWgKJH5co4vFJs4vqpMrdXpdXj8q9RXOhCV54ATcgee-5G3hHBeNqhAbLcpOVJ48nNZmHdVLKeY9SqaSqrcwqjDjLRku64M5Rapwm0yE44eU1OSLJ5EoCvb_j2X-s0MaA8_xe3g3MkY2SSP9AG-w34D1VEPyYRN-TRgxY5YqQTMfSqO07Hx61iP-nF1O2DBjQT7k93SB7IYa2Zx-vPkQ8WZh-uFqw5xNe3ZDhDMKuDI3KpV8hKvjo8vDk3ysmJB7Jashx6L0bSMJcek1J4wa3mnPO65QI4EmUHaKOhSV8xqV7Mi_jdfOOO5aU5XyE6z1sx6_AGtROy98w-mpWlk3pjNeVKXB2rXECTPYX6Jnb5Mwho0b2rK2CWtLWNuItV1k8CMAvOoZRK1jA5najqa2L5k6g-2leezoaXNLQwn6RKoSGeytXpOPhI0P1-PsPvUh5khUMYPPyayrkRA_lJqSrgy-L-389-PPT2jrNSb0Fd6KsCDD_lS5DWvD3T3uEMcZmt24nP8AfiD1VA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_OE8EX8dvqKRF802qbpE3zILKKx6GsL97CgQ8hTafHctre7fbA27_eSdKuiKsvfUjTMp2PzG-YzgzAi8pVqFGoNEfBKUBpyOYIFqe8zpHwcYU2DJuYfymPFvLTSXGyB9O4o5GB652hnZ8ntVh9f_3z4uodGfzbWDJevVmTE_KFYtz_WUjxSrq5BtfJMylvqPMR7sde31zLXI-1M7sf_cM_hTb-u7DnX3nT4I4Ob8OtEUeyWRT8HdjD7i7ciJMlr-7BtxkjvMzifGjm_MCUhs2XnzvEr_3xjA09801Ffiw3yM5oka3pOE6HIAXmtckXPKzZsmNnBENDW1dmx_4l92Fx-PH4w1E6zlFInRTlkGJeuKYWJAfhVOZyWWetclmbSVTIS8dRtJI25KV1CqVoyeq1U1bbzDa6LMQD2O_6Dh8Ba1BZx12d0VU2oqp1qx0vC42VbQgpJvBy4p45j-0yTEhzi8pEXhvitQm8NpsE3nsGb3f6VtdhoV-dmtFyjMtckTW5tRmvZYlYK160RDUd8XQ4VUUCB5N4zKQ-hkjxXYtkyRN4vr1NluPTIbbD_jLuITxJADKBh1GsW0oINQpFoVgCryY5_375vz_o8f9peQI3uVc1n48qDmB_WF3iU8I0Q_0sKOovEWbwug
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1Rqkq9VFDaEj4qI_UGUR3bsZPjdlWEWsGlICFxsBxnUq0QCWLDofvrGTvJVlXpoZccEicaz3jGzxn7DcCnwhdYojRphlLQAqUmnyNYnIoqQ8LHBbpYbOL8Qp9dqW_X-fUGiOksTNy0HyktY5iedod9XtJEEw6DibB7kNYk6eoFvAzU7WFUz_V8_V8lZK5UVo7nY7gsnnn1jzkoUvU_hy__yo3GKed0C96MWJHNBum2YQPbt_BqqB75awduZowwMRtqQDMfiqLU7HzxvUX80V3OWN-xQBxyt1ghu6WbbEkhN-2jplnocjjUsGSLlt0S1IzUrcyNHCXv4Or06-X8LB1rJaReSd2nmOW-riTpWnrDfaYq3hjPG67QoNBeoGwUNci08waVbMizS29c6birS53L97DZdi3uAqvROC98xemqallUZVN6ofMSC1cTGkzgeNKevR8oMWxMZcvCDrq2pGsbdW1XCXwJCl63DHTW8Ub38NOO5rWe-5zXmXNcVEojVkbkDUlNYZwCUJEncDCZx44-trQkSmAmUlokcLR-TN4RUh6uxe5xaEOYkUBiAh8Gs64lIWQoDS23EjiZ7Pz74__u0N7_Nd-H1yIMvZCDyg9gs394xEPCMX31MQ7cJ7gC67U
  priority: 102
  providerName: Springer Nature
Title A new method called MiKneeSoTA to minimize knee soft-tissue artifacts in kinematic analysis
URI https://link.springer.com/article/10.1038/s41598-024-71409-z
https://www.ncbi.nlm.nih.gov/pubmed/39237576
https://www.proquest.com/docview/3101008462
https://www.proquest.com/docview/3101232561
https://doaj.org/article/c0c50d1aa02b46eeb725f26c14630185
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ahEIvpe86TRcVemtNZEm27FNxloSwZUNpEljoQcjyOCyhdpp1Dtlf35Hs3VD6uMggCyPPS59mpBmAD7nLsUCp4wSloA1KTTpHsDgWVYKEj3O0odjE_DQ7uVCzRboYHW6r8VjlxiYGQ113zvvIDwiG-Dw0KhOfr3_GvmqUj66OJTQewq5PXeaPdOmF3vpYfBRLJcV4V4bL_GBF65W_Uyb8IUTa2sTr39ajkLb_b1jzjzhpWH6On8KTETeycmD0M3iA7XN4NFSSvHsB30tG-JgN9aCZ8wVSajZffmkRz7rzkvUd80lEfizXyK6ok63I_MZ9oDrz0uMvOKzYsmVXBDtDGldmx3wlL-Hi-Oh8ehKPdRNip2TWx5ikrq4k0V06zV2iKt5oxxuuUKPInEDZKBqQZNZpVLIhLS-ctoXlti6yVL6CnbZr8Q2wGrV1wlWcWlXLvCqawoksLTC3NbEkgo8b6pnrIT2GCWFtmZuB1oZobQKtzTqCQ0_g7Uif2jp0dDeXZtQU47hLeZ1Yy0WlMsRKi7ShWZNJJ2OUpxHsb9hjRn1bmXvpiOD99jVpig9_2Ba722EM4UcCjBG8Hti6nQmhRKlp6xXBpw2f7z_-7x_a-_9c3sJj4UXNx5_Sfdjpb27xHWGYvpoEQZ3AblnOzmb0PDw6_fqNeqfZdBL8AtTOVf4LzdvzBQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrRBcEG9SChgJThDVsZ3XAaEttNqy3RWCrVSJg-s4E7SqSNomFer-KH4j4zy2QjxuveSQWJYzL3_22PMBvExsginK2A9QClqg5ORzBIt9kQVI-DhB05JNTGfR-FB9PAqP1uDncBfGHascYmIbqPPKuj3ybYIhrg6NisS70zPfsUa57OpAodGZxQQvf9CSrX67_4H0-0qIvd35-7Hfswr4Vsmo8TEIbZ5JGpW0MbeByngRW15whTGKyAqUhaIGQWRsjEoW5AOpjU1quMnTyLFEUMjfoL44BYKNnd3Zp8-rXR2XN1NB2t_O4TLZrmmGdLfYhDv2SIspf_nbDNgSBfwN3f6RmW0nvL07cLtHqmzUmdZdWMPyHtzouCsv78PXESNEzjoGamYdJUvOpotJifilmo9YUzFXtuT7YonshF6ymgK-37R6Zs5e3ZWKmi1KdkJAty0cy0xfIeUBHF6LTB_CelmV-BhYjrGxwmacniqXSZYWqRVRmGJicjICD14P0tOnXUEO3SbSZaI7WWuStW5lrZce7DgBr1q6Ytrti-r8m-59U1tuQ54HxnCRqQgxi0VY0KhpEqHwl4QebA3q0b2H1_rKHj14sfpMvukSLqbE6qJrQ4iVIKoHjzq1rkZCuFTGtNjz4M2g56vO__1Dm_8fy3O4OZ5PD_TB_mzyBG4JZ3Yu-xVuwXpzfoFPCUE12bPebBkcX7en_ALPMSw3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiDeBAkaCE0Tr2EmcHBBaKKuWpRUSrbQSB9dxJmhVkZQmFer-NH4dYyfZCvG49ZKDY0XOvPzZY88H8DyzGeYoVRihFLRAKcnnCBaHooiQ8HGGxpNN7O2nO4fxh0Wy2ICf410Yd6xyjIk-UJeNdXvkE4Ihrg5NnIpJNRyL-LQ9e3PyPXQMUi7TOtJp9CYyx_MftHxrX-9uk65fCDF7f_BuJxwYBkIby7QLMUpsWUgaobSK2ygueKUsr3iMCkVqBcoqpg5RaqzCWFbkD7lVJjfclHnqGCMo_F9RMomcj6mFWu_vuAxaHOXDPR0us0lLc6W7zybcAUhaVoWr3-ZCTxnwN5z7R47WT32zm3BjwKxs2hvZLdjA-jZc7Vksz-_AlykjbM56LmpmHTlLyfaW8xrxc3MwZV3DXAGTb8sVsmNqZC2F_rDzGmfOct3lipYta3ZMkNeXkGVmqJVyFw4vRaL3YLNuanwArERlrLAFp2dcyqzIq9yKNMkxMyWZQwAvR-npk740h_YpdZnpXtaaZK29rPUqgLdOwOuerqy2b2hOv-rBS7XlNuFlZAwXRZwiFkokFY2aphMKhFkSwNaoHj34eqsvLDOAZ-vX5KUu9WJqbM76PoRdCawGcL9X63okhFClomVfAK9GPV98_N8_9PD_Y3kK18g_9Mfd_fkjuC6c1bk0WLIFm93pGT4mKNUVT7zNMji6bCf5BZOlLwc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+called+MiKneeSoTA+to+minimize+knee+soft-tissue+artifacts+in+kinematic+analysis&rft.jtitle=Scientific+reports&rft.au=Einfeldt%2C+Ann-Kathrin&rft.au=Budde%2C+Leon&rft.au=Ortigas-V%C3%A1squez%2C+Ariana&rft.au=Sauer%2C+Adrian&rft.date=2024-09-05&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=20666&rft_id=info:doi/10.1038%2Fs41598-024-71409-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon