A novel population-characteristic weighted sparse model for accurate respiratory motion prediction in CT-guided lung cancer interventions

Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of l...

Full description

Saved in:
Bibliographic Details
Published inComputerized medical imaging and graphics Vol. 123; p. 102557
Main Authors Xia, Guo-Ren, Wang, Tengfei, Xu, Jun, Li, Xiaoyang, Wang, Hongzhi, Wong, Stephen T.C., Li, Hai
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes. •Integrating the advantages of global and individual models can improve performance.•Extracts subpopulations similar to individual subjects to reduce the differences in population respiratory characteristics.•Combining two 3D CT from respiratory phases can eliminate the obligation to get 4D CT.•Multi-center data have validated the robustness and clinical usability of the model.
AbstractList Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes. •Integrating the advantages of global and individual models can improve performance.•Extracts subpopulations similar to individual subjects to reduce the differences in population respiratory characteristics.•Combining two 3D CT from respiratory phases can eliminate the obligation to get 4D CT.•Multi-center data have validated the robustness and clinical usability of the model.
Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes.Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes.
Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes.
AbstractAccurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion modeling to optimize diagnosis and treatment. Population-based motion models predict lung movement in real time by extracting common features of lung motion from the group-level imaging data, but they usually overlook individual differences. Conversely, patient-specific models require patient-specific four-dimensional computed tomography (4D CT), which increases radiation damage. This study introduces a novel Population-Characteristic Weighted Sparse (PCWS) model. PCWS combines population-level motion characteristics with patient-specific data to accurately predict lung movement, eliminating the need for 4D CT acquisition. Sparse manifold clustering is employed to identify a subpopulation exhibiting motion patterns similar to those of the target patient. The respiratory motion field for the specific patient is then approximated using a sparse linear combination of motion data from this subpopulation. Experimental results demonstrate that the PCWS model achieves an average lung estimation error of 0.20 ± 0.15 mm, validating its accuracy. Meanwhile, the PCWS model outperforms three other advanced models in prediction accuracy, effectively combining the strengths of both population and patient-specific models. To evaluate the reproducibility of the PCWS model, two additional datasets from different clinical centers were used. The results confirmed its accuracy and repeatability across various evaluation criteria, further validating its superior performance. Future research will focus on applying the PCWS model to image-guided percutaneous lung biopsy and radiation therapy, aiming to enhance procedural precision and clinical outcomes.
ArticleNumber 102557
Author Wong, Stephen T.C.
Xia, Guo-Ren
Xu, Jun
Li, Xiaoyang
Wang, Tengfei
Li, Hai
Wang, Hongzhi
Author_xml – sequence: 1
  givenname: Guo-Ren
  surname: Xia
  fullname: Xia, Guo-Ren
  organization: Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P. R. China
– sequence: 2
  givenname: Tengfei
  surname: Wang
  fullname: Wang, Tengfei
  email: wangtf@cmpt.ac.cn
  organization: Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P. R. China
– sequence: 3
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
  organization: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
– sequence: 4
  givenname: Xiaoyang
  surname: Li
  fullname: Li, Xiaoyang
  organization: Department of Radiation Oncology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui, China
– sequence: 5
  givenname: Hongzhi
  surname: Wang
  fullname: Wang, Hongzhi
  organization: Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P. R. China
– sequence: 6
  givenname: Stephen T.C.
  surname: Wong
  fullname: Wong, Stephen T.C.
  email: STWong@houstonmethodist.org
  organization: Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, United States
– sequence: 7
  givenname: Hai
  surname: Li
  fullname: Li, Hai
  email: hli@cmpt.ac.cn
  organization: Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40262374$$D View this record in MEDLINE/PubMed
BookMark eNqNUsuO1DAQtNAidnbhF5C5ccngRxxPLkijES9pJQ4sZ8vpdGY9JHawk1nNJ_DXOMyCEBLSntxyV5fbVXVFLnzwSMgrztac8erNYQ1hGAds3WD3a8GEyvdCKf2ErPhG1wXTml-QFdvUqqg455fkKqUDY0wwzZ-Ry5KJSkhdrsiPLfXhiD0dwzj3dnLBF3Bno4UJo0uTA3qPbn83YUvTaGNCOoQ247sQqQWYo52QRkyjy1WIp9xeSOgY83rwq3Se7m6L_ezaTNLPfk_BesCYG_mRI_oFlZ6Tp53tE754OK_J1_fvbncfi5vPHz7ttjcFlLKairbjSm5Eo6BSogElLaoS642WULed1mXDuppZoVotGikrWwrkErBRLVittbwmr8-8YwzfZ0yTGVwC7HvrMczJSF5LzaWuqwx9-QCdm6y2GWMWPJ7Mb_kyoD4DIIaUInZ_IJyZxSpzMH9ZZRarzNmqPLs7z2L-7NFhNAkcZl1aFxEm0wb3KJa3_7BA77wD23_DE6ZDmKPPahpukjDMfFkisSRCqJyGqloItv8neOQSPwFoGdCB
Cites_doi 10.1093/jrr/rrx098
10.1016/j.media.2016.06.005
10.1016/S0360-3016(00)00748-3
10.1109/TBME.2013.2245895
10.1118/1.2804576
10.1088/1361-6560/aa8841
10.1016/j.compbiomed.2020.103913
10.1088/0031-9155/57/13/4175
10.1088/0031-9155/54/7/001
10.1088/1361-6560/aa70cc
10.1088/1361-6560/ab13fa
10.1118/1.4718578
10.3390/s21196445
10.4028/www.scientific.net/AMR.951.227
10.1109/TMI.2023.3234046
10.1118/1.2349696
10.1016/j.media.2012.09.005
10.1007/s11548-022-02676-2
10.1016/j.ijrobp.2013.09.026
10.1016/j.radonc.2007.11.017
10.1002/mp.17039
10.1109/ACCESS.2018.2869780
10.1002/mp.12982
10.1088/1361-6560/aa6070
10.1016/j.eswa.2023.122757
10.1007/978-981-97-1484-1
10.1177/0954411919832042
10.1016/j.compmedimag.2024.102385
10.1109/TMI.2010.2076299
10.1016/j.media.2014.05.013
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compmedimag.2025.102557
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0771
EndPage 102557
ExternalDocumentID 40262374
10_1016_j_compmedimag_2025_102557
S0895611125000667
1_s2_0_S0895611125000667
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEI
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AFCTW
AGRNS
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c436t-df15382b5c652bc53ae54e9873c9df774b0f90a25d72b336a42e13ceb5dca7773
IEDL.DBID .~1
ISSN 0895-6111
1879-0771
IngestDate Wed Jul 02 05:01:31 EDT 2025
Mon Jul 21 06:06:20 EDT 2025
Thu Jul 03 08:27:14 EDT 2025
Sat Jun 28 18:17:50 EDT 2025
Thu Jun 19 21:26:05 EDT 2025
Tue Aug 26 16:44:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Respiratory motion model
Sparse manifold cluster
Image-guided lung intervention
Weighted sparse algorithm
Population characteristic
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-df15382b5c652bc53ae54e9873c9df774b0f90a25d72b336a42e13ceb5dca7773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40262374
PQID 3193713796
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3193713796
pubmed_primary_40262374
crossref_primary_10_1016_j_compmedimag_2025_102557
elsevier_sciencedirect_doi_10_1016_j_compmedimag_2025_102557
elsevier_clinicalkeyesjournals_1_s2_0_S0895611125000667
elsevier_clinicalkey_doi_10_1016_j_compmedimag_2025_102557
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computerized medical imaging and graphics
PublicationTitleAlternate Comput Med Imaging Graph
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hong, Jun (bib17) 2014; 951
Klinder, Lorenz, Ostermann (bib20) 2010; 6363
Jiang, Li, Yang, Li, Zhou (bib18) 2024
Zhou, Jiang, Yang, Zhou, Ma, Li (bib38) 2024; 242
Castillo, Castillo, Guerra, Johnson, McPhail, Garg, Guerrero (bib4) 2009; 54
Ehrhardt, Werner, Schmidt-Richberg, Handels (bib8) 2011; 30
Keall, Mageras, Balter, Emery, Forster, Jiang, Kapatoes, Low, Murphy, Murray (bib19) 2006; 33
Peressutti, Penney, Kolbitsch, King (bib25) 2014; 18
Fassi, Schaerer, Fernandes, Riboldi, Sarrut, Baroni (bib10) 2014; 88
Andrew, Michael, Yair (bib1) 2002
Baumgartner, Kolbitsch, McClelland, Rueckert, King (bib2) 2017; 35
Lin, Shi, Wang, Chan, Tang, J W (bib21) 2019; 64
Giger, Sandkühler, Jud, Bauman, Bieri, Salomir, Cattin (bib14) 2018; 11073
Burnett, Sixel, Cheung, Hoisak (bib3) 2008; 86
Nakamura, Ishihara, Matsuo, Iizuka, Ueki, Iramina, Hirashima, Mizowaki (bib24) 2018; 59
He, Xue, Yu, Nitsch, The, Wong (bib16) 2014; 8674
McClelland, Modat, Arridge, Grimes, Souza, Thomas, Connell, Low, Kaza, Collins, Leach, Hawkes (bib23) 2017; 62
Wang, Xia, Li, Chen, Wang (bib30) 2021
Fayad, Gilles, Pan, Visvikis (bib12) 2018; 45
Fu, Zhang, Fan, Cai, Pham, Rimner, Cuaron, Cervino, Moran, Li, Li (bib13) 2024; 51
Shirato, Shimizu, Kunieda, Kitamura, Herk, Kagei, Nishioka, Hashimoto, Fujita, Aoyama, Tsuchiya, Kudo, Miyasaka (bib27) 2000; 48
McClelland, Hawkes, Schaeffter, King (bib22) 2013; 17
Wu, Wang, Lian, Shen (bib34) 2011; 6891
Yakno, Mohamad-Saleh, Ibrahim (bib35) 2021; 21
Fayad, Pan, Pradier, Visvikis (bib11) 2012; 39
Chen, Xie, Zhang, Gu (bib5) 2017; 62
Zhang, Pevsner, Hertanto, Hu, Rosenzweig, Ling, Mageras (bib36) 2007; 34
Romaguera, Alley, Carrier, Kadoury (bib26) 2023; 42
Chung, Chun, Kim, Park, Shin (bib7) 2020; 108
Wang, Liang, Zhu, Xie (bib29) 2018; 6
Zhao, Jordan, Tse (bib37) 2019; 233
Elhamifar, Vidal (bib9) 2011
Chen, Xie, Gu, Liu, Tian (bib6) 2020; 123
Wang, He, Zhang, Chen, Zhang, Xia, Yang, Wang, Wong, Li (bib31) 2022; 17
Wentz, Fayad, Bert, Pradier, Clement, Vourch, Boussion, Visvikisl (bib32) 2012; 57
Su, Yang, Lu, Yu, Wong, Xue (bib28) 2013; 60
Wilms, Werner, Yamamoto, Handels, Ehrhardt (bib33) 2017; 62
Gong, Li, Zhou, Liang, Zhang, Cheng, Zhang (bib15) 2024; 115
Chung (10.1016/j.compmedimag.2025.102557_bib7) 2020; 108
Giger (10.1016/j.compmedimag.2025.102557_bib14) 2018; 11073
McClelland (10.1016/j.compmedimag.2025.102557_bib22) 2013; 17
Romaguera (10.1016/j.compmedimag.2025.102557_bib26) 2023; 42
Su (10.1016/j.compmedimag.2025.102557_bib28) 2013; 60
Zhou (10.1016/j.compmedimag.2025.102557_bib38) 2024; 242
Jiang (10.1016/j.compmedimag.2025.102557_bib18) 2024
Fassi (10.1016/j.compmedimag.2025.102557_bib10) 2014; 88
Keall (10.1016/j.compmedimag.2025.102557_bib19) 2006; 33
McClelland (10.1016/j.compmedimag.2025.102557_bib23) 2017; 62
Castillo (10.1016/j.compmedimag.2025.102557_bib4) 2009; 54
Chen (10.1016/j.compmedimag.2025.102557_bib6) 2020; 123
Peressutti (10.1016/j.compmedimag.2025.102557_bib25) 2014; 18
Shirato (10.1016/j.compmedimag.2025.102557_bib27) 2000; 48
Chen (10.1016/j.compmedimag.2025.102557_bib5) 2017; 62
Elhamifar (10.1016/j.compmedimag.2025.102557_bib9) 2011
Nakamura (10.1016/j.compmedimag.2025.102557_bib24) 2018; 59
Burnett (10.1016/j.compmedimag.2025.102557_bib3) 2008; 86
Fu (10.1016/j.compmedimag.2025.102557_bib13) 2024; 51
Wang (10.1016/j.compmedimag.2025.102557_bib30) 2021
Wang (10.1016/j.compmedimag.2025.102557_bib29) 2018; 6
Lin (10.1016/j.compmedimag.2025.102557_bib21) 2019; 64
Wentz (10.1016/j.compmedimag.2025.102557_bib32) 2012; 57
He (10.1016/j.compmedimag.2025.102557_bib16) 2014; 8674
Hong (10.1016/j.compmedimag.2025.102557_bib17) 2014; 951
Andrew (10.1016/j.compmedimag.2025.102557_bib1) 2002
Wilms (10.1016/j.compmedimag.2025.102557_bib33) 2017; 62
Baumgartner (10.1016/j.compmedimag.2025.102557_bib2) 2017; 35
Zhang (10.1016/j.compmedimag.2025.102557_bib36) 2007; 34
Fayad (10.1016/j.compmedimag.2025.102557_bib11) 2012; 39
Fayad (10.1016/j.compmedimag.2025.102557_bib12) 2018; 45
Wang (10.1016/j.compmedimag.2025.102557_bib31) 2022; 17
Ehrhardt (10.1016/j.compmedimag.2025.102557_bib8) 2011; 30
Gong (10.1016/j.compmedimag.2025.102557_bib15) 2024; 115
Wu (10.1016/j.compmedimag.2025.102557_bib34) 2011; 6891
Yakno (10.1016/j.compmedimag.2025.102557_bib35) 2021; 21
Zhao (10.1016/j.compmedimag.2025.102557_bib37) 2019; 233
Klinder (10.1016/j.compmedimag.2025.102557_bib20) 2010; 6363
References_xml – volume: 33
  start-page: 3874
  year: 2006
  end-page: 3900
  ident: bib19
  article-title: The management of respiratory motion in radiation oncology report of AAPM task group 76
  publication-title: Med Phys.
– start-page: 488
  year: 2021
  end-page: 492
  ident: bib30
  article-title: Patient specific respiratory motion model using two static CT images
  publication-title: Proc. 2nd Int. Symp. . Artif. Intell. Med. Sci. (ISAIMS)
– volume: 242
  year: 2024
  ident: bib38
  article-title: A high-dimensional respiratory motion modeling method based on machine learning
  publication-title: Expert Syst. Appl.
– volume: 62
  start-page: 5823
  year: 2017
  end-page: 5839
  ident: bib33
  article-title: Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations
  publication-title: Phys. Med. Biol.
– volume: 88
  start-page: 182
  year: 2014
  end-page: 188
  ident: bib10
  article-title: Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate
  publication-title: Int J. Radiat. Oncol.
– volume: 62
  start-page: 4273
  year: 2017
  ident: bib23
  article-title: A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images
  publication-title: Phys. Med. Biol.
– volume: 42
  start-page: 1603
  year: 2023
  end-page: 1618
  ident: bib26
  article-title: Conditional-Based Transformer Network with Learnable Queries for 4D Deformation Forecasting and Tracking
  publication-title: IEEE Trans. Med. Imaging
– volume: 30
  start-page: 251
  year: 2011
  ident: bib8
  article-title: Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration
  publication-title: IEEE Trans. Med. Imag.
– volume: 62
  start-page: 7855
  year: 2017
  end-page: 7873
  ident: bib5
  article-title: Lung respiration motion modeling: a sparse motion field presentation method using biplane X-ray images
  publication-title: Phys. Med Biol.
– volume: 51
  start-page: 4271
  year: 2024
  end-page: 4282
  ident: bib13
  article-title: Deep learning-based target decomposition for markerless lung tumor tracking in radiotherapy
  publication-title: Med Phys.
– volume: 54
  start-page: 1849
  year: 2009
  end-page: 1870
  ident: bib4
  article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets
  publication-title: Phys. Med. Biol.
– volume: 18
  start-page: 1015
  year: 2014
  end-page: 1025
  ident: bib25
  article-title: Personalising population-based respiratory motion models of the heart using neighbourhood approximation based on learnt anatomical features
  publication-title: Med. Image Anal.
– volume: 8674
  start-page: 138
  year: 2014
  end-page: 145
  ident: bib16
  article-title: Estimating dynamic lung images from high-dimension chest surface motion using 4D statistical model
  publication-title: Proc. Med. Image Comput. Comput. -Assist. Interv. MICCAI, Part II, LNCS
– volume: 48
  start-page: 1187
  year: 2000
  end-page: 1195
  ident: bib27
  article-title: Physical aspects of a real-time tumor-tracking system for gated radiotherapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– start-page: 849
  year: 2002
  end-page: 856
  ident: bib1
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Proc. NIPS
– start-page: 55
  year: 2011
  end-page: 63
  ident: bib9
  article-title: Sparse manifold clustering and embedding
  publication-title: Proc. NIPS
– volume: 951
  start-page: 227
  year: 2014
  end-page: 230
  ident: bib17
  article-title: Automatic method for determining cluster number based on silhouette coefficient
  publication-title: Adv. Mater. Res.
– year: 2024
  ident: bib18
  article-title: A back propagation neural network based respiratory motion modelling method
  publication-title: Int J. Med Robot
– volume: 21
  start-page: 6445
  year: 2021
  ident: bib35
  article-title: Dorsal Hand Vein Image Enhancement Using Fusion of CLAHE and Fuzzy Adaptive Gamma
  publication-title: Sensors
– volume: 45
  start-page: 3043
  year: 2018
  end-page: 3051
  ident: bib12
  article-title: A 4D global respiratory motion model of the thorax based on CT images: a proof of concept
  publication-title: Med. Phys.
– volume: 6363
  start-page: 327
  year: 2010
  end-page: 334
  ident: bib20
  article-title: Prediction framework for statistical respiratory motion modeling
  publication-title: MICCAI 2010, Part III. LNCS
– volume: 60
  start-page: 2034
  year: 2013
  end-page: 2041
  ident: bib28
  article-title: A fast CT and CT-fluoroscopy registration algorithm with respiratory motion compensation for image-guided lung intervention
  publication-title: IEEE Trans. Biomed. Eng. Jul.
– volume: 34
  start-page: 4772
  year: 2007
  end-page: 4781
  ident: bib36
  article-title: A patient-specific respiratory model of anatomical motion for radiation treatment planning
  publication-title: Med. Phys.
– volume: 64
  year: 2019
  ident: bib21
  article-title: Towards real-time respiratory motion prediction based on long short-term memory neural networks
  publication-title: Phys. Med. Biol.
– volume: 39
  start-page: 3386
  year: 2012
  end-page: 3395
  ident: bib11
  article-title: Patient specific respiratory motion modeling using a 3D patient’s external surface
  publication-title: Med. Phys.
– volume: 123
  year: 2020
  ident: bib6
  article-title: Generation of a local lung respiratory motion model using a weighted sparse algorithm and motion prior-based registration
  publication-title: Comput. Bio Med.
– volume: 35
  start-page: 83
  year: 2017
  end-page: 100
  ident: bib2
  article-title: Autoadaptive motion modelling for MR-based respiratory motion estimation
  publication-title: Med. Image Anal.
– volume: 57
  start-page: 4175
  year: 2012
  end-page: 4193
  ident: bib32
  article-title: Accuracy of dynamic patient surface monitoring using a time-of-flight camera and B-spline modeling for respiratory motion characterization
  publication-title: Phys. Med Biol.
– volume: 86
  start-page: 77
  year: 2008
  end-page: 85
  ident: bib3
  article-title: A study of tumor motion management in the conformal radiotherapy of lung cancer
  publication-title: Radiother. Oncol.
– volume: 108
  start-page: e321
  year: 2020
  end-page: e322
  ident: bib7
  article-title: Three-dimensional versus four-dimensional dose calculation for breast intensity-modulated radiation therapy
  publication-title: BJR
– volume: 17
  start-page: 1751
  year: 2022
  end-page: 1764
  ident: bib31
  article-title: A personalized image-guided intervention system for peripheral lung cancer on patient-specific respiratory motion model
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 59
  start-page: 173e181
  year: 2018
  ident: bib24
  article-title: Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation
  publication-title: J. Radiat. Res
– volume: 17
  start-page: 19
  year: 2013
  end-page: 42
  ident: bib22
  article-title: Respiratory motion models: a review
  publication-title: Med. Image Anal.
– volume: 11073
  start-page: 81
  year: 2018
  end-page: 88
  ident: bib14
  article-title: Respiratory Motion Modelling Using cGANs
  publication-title: MICCAI 2018, LNCS
– volume: 6891
  start-page: 532
  year: 2011
  end-page: 539
  ident: bib34
  article-title: Estimating the 4D respiratory lung motion by spatiotemporal registration and building super-resolution image
  publication-title: MICCAI 2011, Part I. LNCS
– volume: 6
  start-page: 51262
  year: 2018
  end-page: 51268
  ident: bib29
  article-title: A feasibility of respiration prediction based on deep bi-LSTM for real-time tumor tracking
  publication-title: IEEE Access
– volume: 115
  year: 2024
  ident: bib15
  article-title: A novel approach for estimating lung tumor motion based on dynamic features in 4D-CT
  publication-title: Comput. Med Imaging Graph
– volume: 233
  start-page: 444
  year: 2019
  end-page: 463
  ident: bib37
  article-title: Devices for image-guided lung interventions: State-of-the-art review
  publication-title: J. Eng. Med.
– volume: 59
  start-page: 173e181
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102557_bib24
  article-title: Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation
  publication-title: J. Radiat. Res
  doi: 10.1093/jrr/rrx098
– volume: 35
  start-page: 83
  year: 2017
  ident: 10.1016/j.compmedimag.2025.102557_bib2
  article-title: Autoadaptive motion modelling for MR-based respiratory motion estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.005
– volume: 48
  start-page: 1187
  year: 2000
  ident: 10.1016/j.compmedimag.2025.102557_bib27
  article-title: Physical aspects of a real-time tumor-tracking system for gated radiotherapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(00)00748-3
– volume: 60
  start-page: 2034
  issue: 7
  year: 2013
  ident: 10.1016/j.compmedimag.2025.102557_bib28
  article-title: A fast CT and CT-fluoroscopy registration algorithm with respiratory motion compensation for image-guided lung intervention
  publication-title: IEEE Trans. Biomed. Eng. Jul.
  doi: 10.1109/TBME.2013.2245895
– volume: 34
  start-page: 4772
  year: 2007
  ident: 10.1016/j.compmedimag.2025.102557_bib36
  article-title: A patient-specific respiratory model of anatomical motion for radiation treatment planning
  publication-title: Med. Phys.
  doi: 10.1118/1.2804576
– volume: 62
  start-page: 7855
  issue: 19
  year: 2017
  ident: 10.1016/j.compmedimag.2025.102557_bib5
  article-title: Lung respiration motion modeling: a sparse motion field presentation method using biplane X-ray images
  publication-title: Phys. Med Biol.
  doi: 10.1088/1361-6560/aa8841
– volume: 123
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102557_bib6
  article-title: Generation of a local lung respiratory motion model using a weighted sparse algorithm and motion prior-based registration
  publication-title: Comput. Bio Med.
  doi: 10.1016/j.compbiomed.2020.103913
– volume: 57
  start-page: 4175
  year: 2012
  ident: 10.1016/j.compmedimag.2025.102557_bib32
  article-title: Accuracy of dynamic patient surface monitoring using a time-of-flight camera and B-spline modeling for respiratory motion characterization
  publication-title: Phys. Med Biol.
  doi: 10.1088/0031-9155/57/13/4175
– volume: 8674
  start-page: 138
  year: 2014
  ident: 10.1016/j.compmedimag.2025.102557_bib16
  article-title: Estimating dynamic lung images from high-dimension chest surface motion using 4D statistical model
  publication-title: Proc. Med. Image Comput. Comput. -Assist. Interv. MICCAI, Part II, LNCS
– volume: 6363
  start-page: 327
  year: 2010
  ident: 10.1016/j.compmedimag.2025.102557_bib20
  article-title: Prediction framework for statistical respiratory motion modeling
  publication-title: MICCAI 2010, Part III. LNCS
– volume: 54
  start-page: 1849
  year: 2009
  ident: 10.1016/j.compmedimag.2025.102557_bib4
  article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/7/001
– volume: 62
  start-page: 5823
  year: 2017
  ident: 10.1016/j.compmedimag.2025.102557_bib33
  article-title: Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa70cc
– volume: 64
  year: 2019
  ident: 10.1016/j.compmedimag.2025.102557_bib21
  article-title: Towards real-time respiratory motion prediction based on long short-term memory neural networks
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab13fa
– volume: 11073
  start-page: 81
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102557_bib14
  article-title: Respiratory Motion Modelling Using cGANs
  publication-title: MICCAI 2018, LNCS
– volume: 39
  start-page: 3386
  issue: 6
  year: 2012
  ident: 10.1016/j.compmedimag.2025.102557_bib11
  article-title: Patient specific respiratory motion modeling using a 3D patient’s external surface
  publication-title: Med. Phys.
  doi: 10.1118/1.4718578
– volume: 21
  start-page: 6445
  issue: 19
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102557_bib35
  article-title: Dorsal Hand Vein Image Enhancement Using Fusion of CLAHE and Fuzzy Adaptive Gamma
  publication-title: Sensors
  doi: 10.3390/s21196445
– volume: 108
  start-page: e321
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102557_bib7
  article-title: Three-dimensional versus four-dimensional dose calculation for breast intensity-modulated radiation therapy
  publication-title: BJR
– start-page: 55
  year: 2011
  ident: 10.1016/j.compmedimag.2025.102557_bib9
  article-title: Sparse manifold clustering and embedding
  publication-title: Proc. NIPS
– volume: 951
  start-page: 227
  year: 2014
  ident: 10.1016/j.compmedimag.2025.102557_bib17
  article-title: Automatic method for determining cluster number based on silhouette coefficient
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.951.227
– volume: 42
  start-page: 1603
  year: 2023
  ident: 10.1016/j.compmedimag.2025.102557_bib26
  article-title: Conditional-Based Transformer Network with Learnable Queries for 4D Deformation Forecasting and Tracking
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3234046
– volume: 33
  start-page: 3874
  issue: 10
  year: 2006
  ident: 10.1016/j.compmedimag.2025.102557_bib19
  article-title: The management of respiratory motion in radiation oncology report of AAPM task group 76
  publication-title: Med Phys.
  doi: 10.1118/1.2349696
– volume: 17
  start-page: 19
  year: 2013
  ident: 10.1016/j.compmedimag.2025.102557_bib22
  article-title: Respiratory motion models: a review
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.09.005
– volume: 17
  start-page: 1751
  year: 2022
  ident: 10.1016/j.compmedimag.2025.102557_bib31
  article-title: A personalized image-guided intervention system for peripheral lung cancer on patient-specific respiratory motion model
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-022-02676-2
– volume: 88
  start-page: 182
  issue: 1
  year: 2014
  ident: 10.1016/j.compmedimag.2025.102557_bib10
  article-title: Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate
  publication-title: Int J. Radiat. Oncol.
  doi: 10.1016/j.ijrobp.2013.09.026
– volume: 86
  start-page: 77
  issue: 1
  year: 2008
  ident: 10.1016/j.compmedimag.2025.102557_bib3
  article-title: A study of tumor motion management in the conformal radiotherapy of lung cancer
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2007.11.017
– volume: 51
  start-page: 4271
  issue: 6
  year: 2024
  ident: 10.1016/j.compmedimag.2025.102557_bib13
  article-title: Deep learning-based target decomposition for markerless lung tumor tracking in radiotherapy
  publication-title: Med Phys.
  doi: 10.1002/mp.17039
– volume: 6
  start-page: 51262
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102557_bib29
  article-title: A feasibility of respiration prediction based on deep bi-LSTM for real-time tumor tracking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869780
– start-page: 488
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102557_bib30
  article-title: Patient specific respiratory motion model using two static CT images
  publication-title: Proc. 2nd Int. Symp. . Artif. Intell. Med. Sci. (ISAIMS)
– start-page: 849
  year: 2002
  ident: 10.1016/j.compmedimag.2025.102557_bib1
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Proc. NIPS
– volume: 6891
  start-page: 532
  year: 2011
  ident: 10.1016/j.compmedimag.2025.102557_bib34
  article-title: Estimating the 4D respiratory lung motion by spatiotemporal registration and building super-resolution image
  publication-title: MICCAI 2011, Part I. LNCS
– volume: 45
  start-page: 3043
  issue: 7
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102557_bib12
  article-title: A 4D global respiratory motion model of the thorax based on CT images: a proof of concept
  publication-title: Med. Phys.
  doi: 10.1002/mp.12982
– volume: 62
  start-page: 4273
  year: 2017
  ident: 10.1016/j.compmedimag.2025.102557_bib23
  article-title: A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa6070
– volume: 242
  year: 2024
  ident: 10.1016/j.compmedimag.2025.102557_bib38
  article-title: A high-dimensional respiratory motion modeling method based on machine learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122757
– year: 2024
  ident: 10.1016/j.compmedimag.2025.102557_bib18
  article-title: A back propagation neural network based respiratory motion modelling method
  publication-title: Int J. Med Robot
  doi: 10.1007/978-981-97-1484-1
– volume: 233
  start-page: 444
  year: 2019
  ident: 10.1016/j.compmedimag.2025.102557_bib37
  article-title: Devices for image-guided lung interventions: State-of-the-art review
  publication-title: J. Eng. Med.
  doi: 10.1177/0954411919832042
– volume: 115
  year: 2024
  ident: 10.1016/j.compmedimag.2025.102557_bib15
  article-title: A novel approach for estimating lung tumor motion based on dynamic features in 4D-CT
  publication-title: Comput. Med Imaging Graph
  doi: 10.1016/j.compmedimag.2024.102385
– volume: 30
  start-page: 251
  year: 2011
  ident: 10.1016/j.compmedimag.2025.102557_bib8
  article-title: Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2010.2076299
– volume: 18
  start-page: 1015
  year: 2014
  ident: 10.1016/j.compmedimag.2025.102557_bib25
  article-title: Personalising population-based respiratory motion models of the heart using neighbourhood approximation based on learnt anatomical features
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.05.013
SSID ssj0002071
Score 2.4047575
Snippet Accurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory motion...
AbstractAccurate tracking of lung nodule movement is a critical challenge for image-guided interventions. Current approaches typically rely on respiratory...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 102557
SubjectTerms Algorithms
Four-Dimensional Computed Tomography - methods
Humans
Image-guided lung intervention
Internal Medicine
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - surgery
Movement
Other
Population characteristic
Reproducibility of Results
Respiratory motion model
Sparse manifold cluster
Tomography, X-Ray Computed - methods
Weighted sparse algorithm
Title A novel population-characteristic weighted sparse model for accurate respiratory motion prediction in CT-guided lung cancer interventions
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895611125000667
https://www.clinicalkey.es/playcontent/1-s2.0-S0895611125000667
https://dx.doi.org/10.1016/j.compmedimag.2025.102557
https://www.ncbi.nlm.nih.gov/pubmed/40262374
https://www.proquest.com/docview/3193713796
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqGX0ne3j6BAr-pq9bBWIZdladgkNJcmkJvQy8El8S72bnvrPf86kh-7CU0hkJttJMtoRt-MPJ9mAL56rli0mzm2TlHMnSPYBG6xy4ywuchN1rItTrPZOT--EBdbMO3PwiRaZYf9LaY3aN09GXazOVwUxfAnGadDmdFfEI3hTCfKOZdJy7_93dA8KGk2XakxTq13YG_D8Uq07RTDvjaXcatIRUpkIJKlethG_c8HbWzR4Ut40TmRaNJ-5yvYCuVr2PnRhcnfwM0ElfPf4Qot1uW5sLuXmRn9aX6JBo8iolR1QE1FHBQ9WGScW6X8EajaROFRW-wHLao0RnNZlGh6hi9XhY8vuYqQgVxSoAoVd1iU9Vs4P_x-Np3hruYCdpxlS-zzBIHUCpcJap1gJgge1Fgyp3wefUVLckUMFV5Sy1hmOA0j5oIV3hkpJXsH2-W8DB8AUcOJi29QNppAroglmWLeK-Wtt24sB0D7WdaLNrWG7jlnv_Qd0egkGt2KZgD7vTx0f3Y0op2OBuAxneVDnUPdrdtaj3RNNdH_6NYADtY976nnYwfe61VHx-WbYjKmDPNVrSMCMjliUmUDeN_q1Hoy4tY-OqeSf3za4J_gebprOcafYXtZrcKX6Ekt7W6zVHbh2eToZHZ6C3a7IeQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xIjFeJvZJt7EZaa9WU3_E9bSXqgKVAX1ZkXiz_BUUxNIqabe_Yf_17HwUEExC2luU5OzId_7dXe58B_DFMUmD3sywsZJgZm2CtWcG21Rzk_FMp022xSydXrDvl_xyCybdWZiYVtlif4PpNVq3dwbtag6WeT74kYziocxgL_BacYpnsB2rU_EebI9PTqezDSCTpPa74vs4EuzA4W2aV8zcjmHsn_oqeIuEx1oGPCqrx9XUv8zQWh0d78GL1o5E4-ZTX8KWL17BznkbKX8Nf8aoWPzyN2i56dCF7b3izOh3_VfUOxRApaw8qpvioGDEIm3tOpaQQOVtIB41_X7Qsoxz1Jd5gSZzfLXOXRjkJqAGslGGSpTfSaSs3sDF8dF8MsVt2wVsGU1X2GURBYnhNuXEWE6158zLkaBWuiyYiybJZKIJd4IYSlPNiB9S6w13Vgsh6FvoFYvC7wMimiU2jCBN0IJMJiZJJXVOSmecsSPRB9Ktslo21TVUl3Z2re6wRkXWqIY1ffja8UN1x0cD4KmgA55CLB4j9lW7dSs1VBVRiXogXn34tqG8J6FPnfiwEx0VdnAMy-jCL9aVCiBIxZAKmfbhXSNTm8UI3n2wTwV7_3-Tf4bn0_n5mTo7mZ1-gN34pEk5_gi9Vbn2B8GwWplP7cb5C0fwJJU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+population-characteristic+weighted+sparse+model+for+accurate+respiratory+motion+prediction+in+CT-guided+lung+cancer+interventions&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Xia%2C+Guo-Ren&rft.au=Wang%2C+Tengfei&rft.au=Xu%2C+Jun&rft.au=Li%2C+Xiaoyang&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0895-6111&rft.volume=123&rft_id=info:doi/10.1016%2Fj.compmedimag.2025.102557&rft.externalDocID=S0895611125000667
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611125X00045%2Fcov150h.gif