Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight
A novel Z-scheme system of CeO2–Ag/AgBr heterostructure photocatalyst exhibits excellent ability to eliminate ciprofloxacin under visible light irradiation. [Display omitted] •Novel Z-scheme CeO2–Ag/AgBr photocatalysts were prepared.•Superior photocatalytic activity for the degradation of ciprofloxa...
Saved in:
Published in | Journal of catalysis Vol. 358; pp. 141 - 154 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel Z-scheme system of CeO2–Ag/AgBr heterostructure photocatalyst exhibits excellent ability to eliminate ciprofloxacin under visible light irradiation.
[Display omitted]
•Novel Z-scheme CeO2–Ag/AgBr photocatalysts were prepared.•Superior photocatalytic activity for the degradation of ciprofloxacin (CIP) refractory pollutants was obtained.•The factors affecting the photocatalytic performance were investigated.•A plausible degradation pathway for CIP was proposed.•A Z-scheme photocatalytic mechanism was proposed.
In this study, CeO2–Ag/AgBr composite photocatalysts with a Z-scheme configuration were fabricated by in situ interspersal of AgBr on CeO2 and subsequent photoreduction process. The CeO2–Ag/AgBr composites exhibited enhanced photocatalytic activity for the photodegradation of ciprofloxacin (CIP) under visible light irradiation. The effects of initial CIP concentration and various inorganic salts were investigated in detail. Three-dimensional excitation–emission matrix fluorescence spectra were used to further monitor the CIP molecule degradation. Plausible degradation pathways for CIP were proposed based on LC-MS instruments. Photoluminescence, electrochemical impedance spectroscopy, and photocurrent tests indicated the rapid transfer and migration of electrons–holes can be achieved in this ternary photocatalytic system. The enhanced photocatalytic performances of CeO2–Ag/AgBr could be credited to the accelerated interfacial charge transfer process and the improved separation of the photogenerated electron–hole pairs. The existence of a small amount of metallic Ag is conducive to the formation of a stable Z-scheme photocatalytic system. This work would pave the route for the design of novel Z-scheme photocatalytic systems for application in solar-to-fuel conversion and photocatalytic water treatment. |
---|---|
AbstractList | In this study, CeO2–Ag/AgBr composite photocatalysts with a Z-scheme configuration were fabricated by in situ interspersal of AgBr on CeO2 and subsequent photoreduction process. The CeO2–Ag/AgBr composites exhibited enhanced photocatalytic activity for the photodegradation of ciprofloxacin (CIP) under visible light irradiation. The effects of initial CIP concentration and various inorganic salts were investigated in detail. Three-dimensional excitation–emission matrix fluorescence spectra were used to further monitor the CIP molecule degradation. Plausible degradation pathways for CIP were proposed based on LC-MS instruments. Photoluminescence, electrochemical impedance spectroscopy, and photocurrent tests indicated the rapid transfer and migration of electrons–holes can be achieved in this ternary photocatalytic system. The enhanced photocatalytic performances of CeO2–Ag/AgBr could be credited to the accelerated interfacial charge transfer process and the improved separation of the photogenerated electron–hole pairs. The existence of a small amount of metallic Ag is conducive to the formation of a stable Z-scheme photocatalytic system. This work would pave the route for the design of novel Z-scheme photocatalytic systems for application in solar-to-fuel conversion and photocatalytic water treatment. A novel Z-scheme system of CeO2–Ag/AgBr heterostructure photocatalyst exhibits excellent ability to eliminate ciprofloxacin under visible light irradiation. [Display omitted] •Novel Z-scheme CeO2–Ag/AgBr photocatalysts were prepared.•Superior photocatalytic activity for the degradation of ciprofloxacin (CIP) refractory pollutants was obtained.•The factors affecting the photocatalytic performance were investigated.•A plausible degradation pathway for CIP was proposed.•A Z-scheme photocatalytic mechanism was proposed. In this study, CeO2–Ag/AgBr composite photocatalysts with a Z-scheme configuration were fabricated by in situ interspersal of AgBr on CeO2 and subsequent photoreduction process. The CeO2–Ag/AgBr composites exhibited enhanced photocatalytic activity for the photodegradation of ciprofloxacin (CIP) under visible light irradiation. The effects of initial CIP concentration and various inorganic salts were investigated in detail. Three-dimensional excitation–emission matrix fluorescence spectra were used to further monitor the CIP molecule degradation. Plausible degradation pathways for CIP were proposed based on LC-MS instruments. Photoluminescence, electrochemical impedance spectroscopy, and photocurrent tests indicated the rapid transfer and migration of electrons–holes can be achieved in this ternary photocatalytic system. The enhanced photocatalytic performances of CeO2–Ag/AgBr could be credited to the accelerated interfacial charge transfer process and the improved separation of the photogenerated electron–hole pairs. The existence of a small amount of metallic Ag is conducive to the formation of a stable Z-scheme photocatalytic system. This work would pave the route for the design of novel Z-scheme photocatalytic systems for application in solar-to-fuel conversion and photocatalytic water treatment. |
Author | Wen, Xiao-Ju Liang, Chao Guo, Hai Zeng, Guang-Ming Zhang, Lei Niu, Cheng-Gang |
Author_xml | – sequence: 1 givenname: Xiao-Ju surname: Wen fullname: Wen, Xiao-Ju email: wenxiaoju1990@126.com – sequence: 2 givenname: Cheng-Gang surname: Niu fullname: Niu, Cheng-Gang email: cgniu@hnu.edu.cn – sequence: 3 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 4 givenname: Chao surname: Liang fullname: Liang, Chao – sequence: 5 givenname: Hai surname: Guo fullname: Guo, Hai – sequence: 6 givenname: Guang-Ming surname: Zeng fullname: Zeng, Guang-Ming |
BookMark | eNp9kU1uFDEQhS0UJCaBC7DykgXdsbvdf4jNMCIQKVJYwIaNVe0ud3vUbQ-2JzA77pBDcC9OgodBQrDIqhb1vld69c7JmXUWCXnOWc4Zry-3-VZBzAvGm5zznBXdI7LirGNZUXfijKwYK3jWVbx5Qs5D2DLGeVW1K_Ljw-SiSyzMh2gUHXD0MEA0zlKnqTI77_TsvoEylvYHCtS6O5zp5yyoCRekG7wtfn6_X4-X6_GNp7u_diG-otdWz3u0CR6pBhWdDy_pzoVg-hn_ObaDOH2FQ1qDHeiCagJrwkKNDWac4lPyWMMc8NmfeUE-Xb39uHmf3dy-u96sbzIlyjpmAwo9NFjWdduLqh6E0L1ua9FWBdSl4oq1vOvrpseiKqHqulYNoqqgb3inkUF5QV6cfFPuL3sMUS4mKJxnsOj2QRasFUyIkrEkbU9S5VMgj1oqE3-HiR7MLDmTx27kVh67kcduJOcydZPQ4j90580C_vAw9PoEYcp_Z9DLoEz6LQ7Go4pycOYh_Bcm8a8s |
CitedBy_id | crossref_primary_10_1016_j_envres_2022_113069 crossref_primary_10_1016_j_jcis_2021_03_034 crossref_primary_10_1016_j_jssc_2022_123252 crossref_primary_10_1016_j_ceramint_2018_12_119 crossref_primary_10_1016_j_jwpe_2023_104558 crossref_primary_10_1016_j_jclepro_2021_128279 crossref_primary_10_1016_j_ceramint_2020_10_004 crossref_primary_10_1016_j_apcatb_2019_117966 crossref_primary_10_1039_D0CY02371J crossref_primary_10_1007_s11356_023_27674_y crossref_primary_10_1016_j_cej_2019_123612 crossref_primary_10_1016_j_seppur_2022_121758 crossref_primary_10_1016_j_optmat_2023_113888 crossref_primary_10_1016_j_ijbiomac_2021_12_120 crossref_primary_10_1002_cctc_201900529 crossref_primary_10_1016_j_jallcom_2022_164294 crossref_primary_10_1038_s41598_020_76997_0 crossref_primary_10_1039_D0TA09173A crossref_primary_10_1016_j_mssp_2020_105329 crossref_primary_10_1016_j_matpr_2023_03_630 crossref_primary_10_1016_j_seppur_2023_125042 crossref_primary_10_1016_j_cattod_2018_11_016 crossref_primary_10_1016_j_ijhydene_2020_04_002 crossref_primary_10_1021_acsanm_2c00140 crossref_primary_10_1007_s10854_024_12561_0 crossref_primary_10_1007_s13204_023_02845_y crossref_primary_10_1007_s10854_021_06764_y crossref_primary_10_1016_j_seppur_2022_121502 crossref_primary_10_1021_acsapm_2c00934 crossref_primary_10_1016_j_ceramint_2019_05_103 crossref_primary_10_1186_s40712_024_00183_7 crossref_primary_10_1016_j_ijhydene_2022_09_071 crossref_primary_10_1016_j_inoche_2022_110250 crossref_primary_10_1016_j_jwpe_2025_107167 crossref_primary_10_1016_j_cej_2021_132096 crossref_primary_10_1016_j_cej_2021_133069 crossref_primary_10_1016_j_apcatb_2022_122084 crossref_primary_10_1021_acs_langmuir_3c01692 crossref_primary_10_1038_s41598_025_85268_9 crossref_primary_10_1039_C9NJ01580A crossref_primary_10_1016_j_jics_2022_100480 crossref_primary_10_1016_j_seppur_2022_121898 crossref_primary_10_1021_acsami_1c09651 crossref_primary_10_1016_j_aca_2021_338295 crossref_primary_10_1016_j_jiec_2023_05_035 crossref_primary_10_1016_j_apsusc_2023_158601 crossref_primary_10_1016_j_surfin_2023_103412 crossref_primary_10_1016_j_optmat_2023_113861 crossref_primary_10_1016_j_mssp_2020_105310 crossref_primary_10_1021_acssuschemeng_0c04205 crossref_primary_10_1007_s11356_020_10218_z crossref_primary_10_1016_j_jcis_2019_12_128 crossref_primary_10_1016_j_jcis_2024_07_008 crossref_primary_10_1002_inc2_12023 crossref_primary_10_3390_ma15072564 crossref_primary_10_1016_j_chemosphere_2022_134040 crossref_primary_10_1039_C9NR10511E crossref_primary_10_1016_j_colcom_2020_100359 crossref_primary_10_1016_j_jece_2024_113740 crossref_primary_10_1016_j_seppur_2022_121794 crossref_primary_10_1002_slct_202300957 crossref_primary_10_1016_j_optmat_2020_110500 crossref_primary_10_1016_j_jhazmat_2019_06_018 crossref_primary_10_1016_j_envres_2020_110390 crossref_primary_10_1016_j_jwpe_2023_104353 crossref_primary_10_1016_j_scitotenv_2020_142879 crossref_primary_10_1016_j_molliq_2020_114831 crossref_primary_10_1021_acsanm_0c03261 crossref_primary_10_1016_j_jcis_2018_09_008 crossref_primary_10_1088_1361_6528_ac1094 crossref_primary_10_1016_j_apcatb_2019_03_023 crossref_primary_10_1016_j_jcis_2018_03_056 crossref_primary_10_1002_admi_202000548 crossref_primary_10_1038_s41598_024_82926_2 crossref_primary_10_1039_D0RA09315G crossref_primary_10_1080_03067319_2024_2313660 crossref_primary_10_1016_j_jcis_2023_07_081 crossref_primary_10_1021_acs_langmuir_4c03078 crossref_primary_10_1016_j_seppur_2021_120194 crossref_primary_10_1016_j_cej_2023_142500 crossref_primary_10_1016_j_mssp_2020_105258 crossref_primary_10_1016_j_jcis_2020_10_033 crossref_primary_10_1021_acsami_2c04988 crossref_primary_10_1016_j_apsusc_2025_162866 crossref_primary_10_1016_j_ceja_2025_100706 crossref_primary_10_1039_D1EN00254F crossref_primary_10_1007_s11581_020_03749_5 crossref_primary_10_1016_j_jiec_2018_03_023 crossref_primary_10_1016_j_diamond_2022_109026 crossref_primary_10_1016_j_jece_2022_107737 crossref_primary_10_1021_acs_langmuir_4c04175 crossref_primary_10_1016_j_cossms_2021_100941 crossref_primary_10_1016_j_jece_2024_114852 crossref_primary_10_1039_D4TC01183J crossref_primary_10_1016_j_chemosphere_2020_125910 crossref_primary_10_1007_s11356_020_09635_x crossref_primary_10_1016_j_jcis_2019_04_043 crossref_primary_10_1016_j_physb_2021_413493 crossref_primary_10_1016_j_cej_2022_138958 crossref_primary_10_1039_C8RA06923A crossref_primary_10_1016_j_jwpe_2024_104849 crossref_primary_10_1039_D4SU00681J crossref_primary_10_1016_j_jclepro_2023_137603 crossref_primary_10_1039_C9CY00281B crossref_primary_10_1016_j_jmst_2024_11_059 crossref_primary_10_1016_j_electacta_2023_142385 crossref_primary_10_1016_j_colsurfa_2019_123968 crossref_primary_10_1016_j_jallcom_2022_167469 crossref_primary_10_3390_catal13020225 crossref_primary_10_1016_j_jcat_2023_115189 crossref_primary_10_1016_j_molstruc_2024_140013 crossref_primary_10_1039_D2EN00028H crossref_primary_10_1016_j_apcatb_2022_121182 crossref_primary_10_1021_acssuschemeng_8b02241 crossref_primary_10_1016_j_envres_2022_114568 crossref_primary_10_1016_S1872_2067_22_64110_X crossref_primary_10_1016_j_renene_2024_121173 crossref_primary_10_1016_j_jphotochem_2023_114897 crossref_primary_10_1016_j_cattod_2020_03_018 crossref_primary_10_1016_j_chemosphere_2020_129417 crossref_primary_10_1016_j_cej_2021_130167 crossref_primary_10_1088_1402_4896_acf24d crossref_primary_10_1016_j_envpol_2024_123325 crossref_primary_10_1016_j_mssp_2024_108312 crossref_primary_10_1557_jmr_2020_144 crossref_primary_10_1002_aesr_202000097 crossref_primary_10_1002_jctb_7061 crossref_primary_10_1016_j_ceramint_2024_08_397 crossref_primary_10_1016_j_seppur_2024_127692 crossref_primary_10_1155_2022_5771628 crossref_primary_10_1016_j_ijhydene_2024_08_090 crossref_primary_10_1016_j_inoche_2021_108982 crossref_primary_10_1016_j_inoche_2023_111001 crossref_primary_10_1016_j_jwpe_2024_106729 crossref_primary_10_1016_j_jallcom_2025_178456 crossref_primary_10_1016_j_chemosphere_2020_128434 crossref_primary_10_1002_crat_202000240 crossref_primary_10_1016_j_jallcom_2020_154093 crossref_primary_10_1002_smll_202207234 crossref_primary_10_1021_acs_biomac_0c00163 crossref_primary_10_1016_j_jece_2022_108220 crossref_primary_10_1016_j_colsurfa_2022_129846 crossref_primary_10_1016_j_jhazmat_2021_125934 crossref_primary_10_1007_s10853_020_05139_8 crossref_primary_10_1016_j_mssp_2019_05_036 crossref_primary_10_1016_j_physb_2021_413222 crossref_primary_10_1016_j_seppur_2023_123264 crossref_primary_10_1016_j_ceramint_2023_05_101 crossref_primary_10_1016_j_seppur_2023_123149 crossref_primary_10_1016_j_apcatb_2023_123642 crossref_primary_10_1016_j_cej_2020_125311 crossref_primary_10_3390_catal12091027 crossref_primary_10_1016_j_jece_2022_108693 crossref_primary_10_1016_j_jtice_2024_105550 crossref_primary_10_1016_j_chemosphere_2023_140197 crossref_primary_10_1016_j_jhazmat_2020_124908 crossref_primary_10_1016_j_ijhydene_2024_06_265 crossref_primary_10_1016_j_chemosphere_2022_135520 crossref_primary_10_1016_j_materresbull_2024_113178 crossref_primary_10_1016_j_jiec_2024_09_045 crossref_primary_10_1016_j_catcom_2023_106745 crossref_primary_10_1142_S1793604720500071 crossref_primary_10_1016_j_colsurfa_2022_130846 crossref_primary_10_1016_j_jcis_2018_10_061 crossref_primary_10_1016_j_jcis_2020_12_043 crossref_primary_10_1007_s11356_024_32679_2 crossref_primary_10_1016_j_cej_2020_124339 crossref_primary_10_1016_j_jclepro_2022_134509 crossref_primary_10_1016_j_solidstatesciences_2022_106960 crossref_primary_10_1016_j_apsusc_2019_03_246 crossref_primary_10_1016_j_jallcom_2022_164671 crossref_primary_10_1016_j_chemosphere_2022_134684 crossref_primary_10_1021_acs_langmuir_4c01829 crossref_primary_10_1016_j_seppur_2022_120717 crossref_primary_10_1016_j_chphi_2024_100630 crossref_primary_10_1016_j_jphotochemrev_2021_100437 crossref_primary_10_1016_j_solener_2019_08_063 crossref_primary_10_1016_j_arabjc_2024_105615 crossref_primary_10_1016_j_psep_2020_02_030 crossref_primary_10_1016_j_scitotenv_2022_154109 crossref_primary_10_1016_j_solidstatesciences_2021_106709 crossref_primary_10_1016_j_jwpe_2024_105442 crossref_primary_10_1021_acsanm_9b01452 crossref_primary_10_1016_j_jmst_2021_01_022 crossref_primary_10_1016_j_seppur_2025_132176 crossref_primary_10_1016_j_enmm_2021_100466 crossref_primary_10_1021_acsmaterialslett_4c02463 crossref_primary_10_1016_j_chemosphere_2020_129334 crossref_primary_10_1016_j_jcis_2018_10_018 crossref_primary_10_1016_j_jece_2022_108557 crossref_primary_10_1016_j_jece_2021_106498 crossref_primary_10_1016_j_apcata_2023_119284 crossref_primary_10_3390_w16121739 crossref_primary_10_1016_j_colsurfa_2021_128032 crossref_primary_10_1039_D0CE00674B crossref_primary_10_1016_j_apt_2024_104458 crossref_primary_10_1016_j_materresbull_2021_111650 crossref_primary_10_2139_ssrn_4045307 crossref_primary_10_1002_slct_202003991 crossref_primary_10_1021_acs_langmuir_4c01732 crossref_primary_10_1016_j_ceramint_2019_08_226 crossref_primary_10_1016_j_apsusc_2021_149555 crossref_primary_10_1371_journal_pone_0231045 crossref_primary_10_1007_s11356_022_19268_x crossref_primary_10_1016_j_jece_2021_106264 crossref_primary_10_1016_j_colsurfa_2019_124321 crossref_primary_10_1016_j_jallcom_2023_173254 crossref_primary_10_1016_j_cej_2018_12_092 crossref_primary_10_1016_j_optmat_2021_111947 crossref_primary_10_2166_wst_2020_452 crossref_primary_10_1016_j_electacta_2019_135062 crossref_primary_10_1016_j_surfin_2024_105365 crossref_primary_10_3390_s22093344 crossref_primary_10_1016_j_jwpe_2024_105543 crossref_primary_10_1016_j_nxmate_2024_100348 crossref_primary_10_1016_j_jwpe_2024_106630 crossref_primary_10_1016_j_gee_2020_11_013 crossref_primary_10_3390_ijms24119564 crossref_primary_10_1016_j_colsurfa_2020_124758 crossref_primary_10_1016_j_jallcom_2024_173665 crossref_primary_10_1016_j_envres_2025_121100 crossref_primary_10_1039_D2EN00393G crossref_primary_10_1016_j_diamond_2023_110711 crossref_primary_10_1016_j_jphotochem_2022_114275 crossref_primary_10_2139_ssrn_3985155 crossref_primary_10_1016_j_cej_2018_04_170 crossref_primary_10_1007_s10653_019_00392_6 crossref_primary_10_1016_j_ceramint_2024_09_041 crossref_primary_10_1016_j_ijbiomac_2024_136854 crossref_primary_10_1016_j_apsusc_2019_143655 crossref_primary_10_1016_j_cej_2019_123083 crossref_primary_10_1007_s10562_018_2518_x crossref_primary_10_1016_j_apcatb_2022_121107 crossref_primary_10_1016_j_diamond_2022_109560 crossref_primary_10_1016_j_matpr_2022_10_303 crossref_primary_10_2174_2405461508666230329100850 crossref_primary_10_1007_s10904_021_02184_x crossref_primary_10_1007_s00339_022_05684_w crossref_primary_10_1016_j_apsusc_2021_152074 crossref_primary_10_1016_j_envres_2024_119721 crossref_primary_10_1016_j_jece_2023_109440 crossref_primary_10_1002_ep_13559 crossref_primary_10_1016_j_jphotochem_2019_05_013 crossref_primary_10_1016_j_apcata_2020_117869 crossref_primary_10_1016_j_seppur_2019_115859 crossref_primary_10_1016_j_seppur_2020_118109 crossref_primary_10_1016_j_electacta_2018_07_009 crossref_primary_10_1016_j_chemosphere_2021_131182 crossref_primary_10_1039_D1RA00803J crossref_primary_10_1016_j_jclepro_2025_145060 crossref_primary_10_1007_s10853_019_04089_0 crossref_primary_10_1016_j_jtice_2024_105818 crossref_primary_10_3390_nano9111643 crossref_primary_10_1016_j_micromeso_2024_113424 crossref_primary_10_1016_j_apcata_2019_117282 crossref_primary_10_1016_j_jece_2019_103607 crossref_primary_10_1016_j_jece_2021_105405 crossref_primary_10_2139_ssrn_3995337 crossref_primary_10_1016_j_seppur_2021_118992 crossref_primary_10_1016_j_surfin_2024_104109 crossref_primary_10_1016_j_apt_2022_103441 crossref_primary_10_1016_j_jcis_2020_06_075 crossref_primary_10_1016_j_jcat_2019_05_028 crossref_primary_10_1016_j_jcis_2019_01_011 crossref_primary_10_1016_j_rineng_2024_103396 crossref_primary_10_1016_j_apsusc_2020_145374 crossref_primary_10_1016_j_apsusc_2020_148521 crossref_primary_10_1016_j_psep_2022_11_030 crossref_primary_10_1016_j_envres_2022_113736 crossref_primary_10_1016_j_cej_2019_05_069 crossref_primary_10_1016_j_jhazmat_2018_11_069 crossref_primary_10_1016_j_optmat_2022_112861 crossref_primary_10_1016_j_apsusc_2022_154993 crossref_primary_10_1002_anie_201914925 crossref_primary_10_1016_j_jtice_2019_08_002 crossref_primary_10_1016_j_cej_2020_124868 crossref_primary_10_1007_s11431_023_2429_8 crossref_primary_10_1016_j_envres_2021_112032 crossref_primary_10_1021_acs_jpcc_3c02592 crossref_primary_10_1016_j_jmrt_2022_04_046 crossref_primary_10_1039_C9CY01776C crossref_primary_10_1016_j_molliq_2021_115540 crossref_primary_10_1080_08927014_2019_1653453 crossref_primary_10_1039_D0RA06107G crossref_primary_10_3390_catal13010191 crossref_primary_10_1016_j_cej_2023_147540 crossref_primary_10_1039_D2NJ03301A crossref_primary_10_1002_ange_201914925 crossref_primary_10_1016_j_cej_2023_146448 crossref_primary_10_1007_s13762_020_02971_y crossref_primary_10_1016_j_ijhydene_2019_07_096 crossref_primary_10_1080_03067319_2022_2059362 crossref_primary_10_1016_j_apt_2022_103428 crossref_primary_10_1016_j_cclet_2020_11_069 crossref_primary_10_1016_j_chemosphere_2023_138027 crossref_primary_10_1039_D3LF00142C crossref_primary_10_1039_D3NJ01686B crossref_primary_10_1016_j_molliq_2021_115311 crossref_primary_10_1016_j_pnsc_2023_11_001 crossref_primary_10_1039_D2EW00894G crossref_primary_10_1039_C9NR03004B crossref_primary_10_1016_j_jenvman_2025_124610 crossref_primary_10_1016_j_seppur_2023_123573 crossref_primary_10_1016_j_mtchem_2022_101334 crossref_primary_10_1016_j_cej_2021_129010 crossref_primary_10_1039_D1EN00998B crossref_primary_10_1016_j_jiec_2022_08_023 crossref_primary_10_1016_j_jcou_2020_101176 crossref_primary_10_1039_C9QI00782B crossref_primary_10_1016_j_jhazmat_2020_122128 crossref_primary_10_1016_j_seppur_2024_126393 crossref_primary_10_1016_j_watres_2022_118558 crossref_primary_10_1016_j_apsadv_2025_100721 crossref_primary_10_1016_j_cej_2020_124304 crossref_primary_10_1016_j_chemosphere_2019_124728 crossref_primary_10_1016_j_jwpe_2024_105382 crossref_primary_10_1016_j_chemosphere_2024_142733 crossref_primary_10_1016_j_cej_2024_156981 crossref_primary_10_1016_j_jwpe_2021_102355 crossref_primary_10_1016_j_seppur_2024_130764 crossref_primary_10_1016_j_jmst_2020_10_084 crossref_primary_10_1039_C9NJ05801J crossref_primary_10_1039_C8NR09616C crossref_primary_10_1007_s11144_020_01792_x crossref_primary_10_1016_j_jallcom_2020_154340 crossref_primary_10_1007_s10854_023_11026_0 crossref_primary_10_1016_j_molliq_2019_111342 crossref_primary_10_1016_j_mseb_2021_115295 crossref_primary_10_1016_j_jwpe_2024_105033 crossref_primary_10_1016_j_cej_2020_125981 crossref_primary_10_1007_s10854_019_00930_z crossref_primary_10_1016_j_chemosphere_2019_124737 crossref_primary_10_1016_j_jphotochem_2023_114725 crossref_primary_10_1016_j_colsurfa_2023_131088 crossref_primary_10_1016_j_scitotenv_2021_148931 crossref_primary_10_1016_j_scitotenv_2021_146754 crossref_primary_10_1016_j_psep_2022_03_078 crossref_primary_10_1016_j_apsusc_2022_152516 crossref_primary_10_1016_j_chemosphere_2021_132162 crossref_primary_10_1016_j_molliq_2025_127450 crossref_primary_10_2139_ssrn_4014206 crossref_primary_10_1016_j_chemosphere_2018_09_182 crossref_primary_10_1016_j_apsusc_2021_150955 crossref_primary_10_1016_j_seppur_2024_129768 crossref_primary_10_15251_CL_2024_213_217 crossref_primary_10_1016_j_matlet_2018_04_071 crossref_primary_10_1007_s10661_024_12837_2 crossref_primary_10_1002_asia_202400235 crossref_primary_10_1021_acssuschemeng_8b01448 crossref_primary_10_1039_C9RA04860J crossref_primary_10_1007_s11664_021_09114_0 crossref_primary_10_1080_02772248_2018_1545128 crossref_primary_10_1016_j_ijbiomac_2020_08_133 crossref_primary_10_1016_j_jcat_2022_06_004 crossref_primary_10_1007_s10311_022_01533_7 crossref_primary_10_1016_j_jcis_2023_09_069 crossref_primary_10_1016_j_jenvman_2019_01_024 crossref_primary_10_1016_j_diamond_2021_108424 crossref_primary_10_1016_j_cej_2018_11_229 crossref_primary_10_1080_15569543_2023_2213319 crossref_primary_10_1016_j_jpcs_2024_111867 crossref_primary_10_1016_j_molliq_2022_119489 crossref_primary_10_1021_acsami_2c13956 crossref_primary_10_1016_j_jiec_2018_12_015 crossref_primary_10_1038_s41598_024_52430_8 crossref_primary_10_1016_j_seppur_2018_10_058 crossref_primary_10_1016_j_jhazmat_2021_126466 crossref_primary_10_1016_j_chemosphere_2020_129089 crossref_primary_10_3365_KJMM_2024_62_10_803 crossref_primary_10_1016_j_matlet_2022_132769 crossref_primary_10_1016_j_seppur_2025_131557 crossref_primary_10_1002_slct_202203348 crossref_primary_10_1016_j_jallcom_2024_174128 crossref_primary_10_1016_j_jcis_2022_12_065 crossref_primary_10_1039_D4EW00410H crossref_primary_10_1007_s10854_019_00898_w crossref_primary_10_1016_j_diamond_2024_111539 crossref_primary_10_1016_j_colsurfa_2020_125330 crossref_primary_10_1080_03067319_2022_2107920 crossref_primary_10_1016_j_jhazmat_2019_121508 crossref_primary_10_1016_j_jhazmat_2021_126217 crossref_primary_10_1039_D4NJ00107A crossref_primary_10_1016_j_cej_2021_130502 crossref_primary_10_1016_j_cej_2024_150712 crossref_primary_10_1016_j_jallcom_2019_152349 crossref_primary_10_1016_j_surfin_2023_103389 crossref_primary_10_1111_wej_12477 crossref_primary_10_1039_D0NA00390E crossref_primary_10_1016_j_apr_2022_101542 crossref_primary_10_1016_j_envpol_2023_122409 crossref_primary_10_1007_s10854_021_07579_7 crossref_primary_10_1016_j_cej_2020_127290 crossref_primary_10_1016_j_apcatb_2018_08_063 crossref_primary_10_1016_j_pnsc_2024_02_018 crossref_primary_10_1016_j_jes_2019_06_017 crossref_primary_10_1016_j_jcat_2021_05_033 crossref_primary_10_1016_j_colsurfa_2020_125481 crossref_primary_10_1016_j_jallcom_2020_155990 crossref_primary_10_1007_s10570_020_03241_3 crossref_primary_10_1007_s10853_019_04316_8 crossref_primary_10_3390_ijerph19084793 crossref_primary_10_1016_j_chemosphere_2021_130217 crossref_primary_10_1088_1361_6528_ada1dd crossref_primary_10_1016_j_apcatb_2019_02_034 crossref_primary_10_1016_j_envres_2021_111593 crossref_primary_10_1038_s41598_023_41705_1 crossref_primary_10_1088_1361_6528_ab912f crossref_primary_10_1016_j_mseb_2021_115250 crossref_primary_10_1038_s41598_024_51485_x crossref_primary_10_1016_j_inoche_2023_110962 crossref_primary_10_1016_j_cej_2020_126070 crossref_primary_10_1007_s10854_020_03674_3 crossref_primary_10_1016_j_chemosphere_2021_132765 crossref_primary_10_1002_admi_202101161 crossref_primary_10_1142_S1793292018501308 crossref_primary_10_1016_j_cej_2021_131739 crossref_primary_10_1016_j_scitotenv_2019_06_416 crossref_primary_10_1016_j_jhazmat_2021_125221 crossref_primary_10_1039_D0DT02128H crossref_primary_10_1016_j_jhazmat_2021_126555 crossref_primary_10_1016_j_apsusc_2019_05_316 crossref_primary_10_1002_smll_201900244 crossref_primary_10_1016_j_wse_2024_03_004 crossref_primary_10_1016_j_seppur_2024_130145 crossref_primary_10_1016_j_mcat_2020_110786 crossref_primary_10_1016_j_ijhydene_2024_03_357 crossref_primary_10_1007_s11144_022_02341_4 crossref_primary_10_1016_j_apcatb_2020_119218 crossref_primary_10_1039_D0RA02455D crossref_primary_10_1016_j_surfin_2023_103677 crossref_primary_10_1016_j_inoche_2024_113113 crossref_primary_10_1016_j_seppur_2025_131990 crossref_primary_10_1016_j_apsusc_2020_146775 crossref_primary_10_1016_j_jece_2023_111453 crossref_primary_10_1016_j_solener_2023_112002 crossref_primary_10_1016_j_jhazmat_2022_128905 crossref_primary_10_3390_catal8050185 crossref_primary_10_1016_j_ceja_2022_100240 crossref_primary_10_1016_j_cej_2020_128030 crossref_primary_10_1016_j_jcis_2019_09_017 crossref_primary_10_1016_j_matpr_2023_02_206 crossref_primary_10_1080_10643389_2020_1859289 crossref_primary_10_1016_j_seppur_2019_05_080 crossref_primary_10_1016_j_cej_2020_125918 crossref_primary_10_1016_j_envres_2021_111261 crossref_primary_10_1039_D3NJ02323K crossref_primary_10_1002_pssa_202100581 crossref_primary_10_1016_j_apsusc_2020_146576 crossref_primary_10_1016_j_seppur_2019_03_001 crossref_primary_10_1002_jctb_6238 crossref_primary_10_1016_j_cej_2018_07_102 crossref_primary_10_1016_j_colsurfa_2020_125044 crossref_primary_10_1039_C9NJ05376J crossref_primary_10_1016_j_apcatb_2019_01_052 crossref_primary_10_1016_j_molliq_2019_111063 crossref_primary_10_1016_j_jece_2023_111551 crossref_primary_10_1007_s11356_022_24635_9 crossref_primary_10_1016_j_cej_2020_125902 crossref_primary_10_3390_su142114216 crossref_primary_10_3390_ma12101679 crossref_primary_10_1016_j_apsusc_2024_159471 crossref_primary_10_1016_j_ijbiomac_2024_138364 crossref_primary_10_3390_catal13111440 crossref_primary_10_1016_j_envres_2022_113635 crossref_primary_10_1007_s10853_020_04413_z crossref_primary_10_1016_j_colsurfa_2024_133846 crossref_primary_10_1016_j_susmat_2024_e01018 crossref_primary_10_1016_j_cjsc_2025_100569 crossref_primary_10_1016_j_cej_2021_132728 |
Cites_doi | 10.1039/C6EN00597G 10.1016/j.jcis.2017.06.003 10.1021/es034354c 10.1016/j.jcis.2017.05.108 10.1039/C4DT03905J 10.1016/j.apcatb.2009.12.002 10.1039/b714786b 10.1016/j.catcom.2012.02.008 10.1039/C7DT00106A 10.1016/j.catcom.2016.11.018 10.1016/j.jcat.2016.10.022 10.1002/chem.200802327 10.1016/j.apcatb.2017.03.048 10.1016/j.apcatb.2017.09.059 10.1016/j.talanta.2017.05.053 10.1039/c3ra42712a 10.1016/j.jhazmat.2014.02.023 10.1016/j.apcatb.2016.03.054 10.1016/j.jcat.2016.07.007 10.1021/ja2011498 10.1016/j.apcatb.2014.03.039 10.1016/j.jcat.2017.08.028 10.1016/j.watres.2016.02.024 10.1021/acsami.6b00169 10.1002/fuce.201600180 10.1021/es0262941 10.1016/j.apcatb.2017.09.060 10.1016/j.jcat.2016.03.024 10.1016/j.aca.2004.10.039 10.1016/j.mcat.2017.03.022 10.1002/aoc.3430 10.1039/C4CC09926E 10.1039/C7NJ00162B 10.1016/j.apcatb.2016.10.086 10.1016/j.molcata.2015.05.028 10.1021/es400101f 10.1021/cs300213m 10.1039/c1ra00252j 10.1080/10643380590956966 10.1016/j.cej.2016.01.006 10.1016/j.jcis.2017.04.087 10.1016/j.jcat.2017.10.022 10.1016/j.watres.2015.05.066 10.1016/j.cej.2015.03.077 10.1016/j.catcom.2016.08.029 10.1021/acs.chemrev.5b00603 10.1039/C5RA21453J 10.1016/j.jcis.2017.10.068 10.1021/acssuschemeng.7b00501 10.1016/j.chemosphere.2012.12.072 10.1016/j.cej.2016.09.077 10.1016/j.watres.2015.12.022 10.1016/j.apcatb.2015.12.041 10.1016/j.ceramint.2015.03.169 10.1039/C5RA21359B 10.1021/jp400842r 10.1016/j.watres.2012.07.005 10.1021/am505528c |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. |
Copyright_xml | – notice: 2017 Elsevier Inc. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jcat.2017.11.029 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1090-2694 |
EndPage | 154 |
ExternalDocumentID | 10_1016_j_jcat_2017_11_029 S0021951717304281 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c436t-de4fd7e3668b456d44fbf864852a63c1c0819b67be253a5998cd455ab719fe0a3 |
IEDL.DBID | .~1 |
ISSN | 0021-9517 |
IngestDate | Mon Jul 21 10:12:39 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 Tue Jul 01 03:14:05 EDT 2025 Fri Feb 23 02:27:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photocatalytic Z-scheme Ciprofloxacin Degradation pathway |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-de4fd7e3668b456d44fbf864852a63c1c0819b67be253a5998cd455ab719fe0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2084044300 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2084044300 crossref_citationtrail_10_1016_j_jcat_2017_11_029 crossref_primary_10_1016_j_jcat_2017_11_029 elsevier_sciencedirect_doi_10_1016_j_jcat_2017_11_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of catalysis |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Huang, Zhang, Qin, Jin, Dai, Wang, Wei, Zhan, Wang (b0130) 2009; 15 Ravelli, Dondi, Fagnoni, Albini (b0035) 2009; 38 Ye, Liu, Gong, Tian, Peng, Zan (b0285) 2012; 2 Yang, Guo, Guo, Zhao, Yuan, Guo (b0155) 2014; 271 Ou, Ye, Ma, Wei, Gao, He (b0235) 2016; 289 Liu, Dai, Wang, Sun, Liang, Lu, Shimanoe, Yamazoe (b0075) 2016; 8 Xie, Zhang, Xu, Zhong, Sui, Mao (b0145) 2015; 406 Babic, Perisa, Skoric (b0010) 2013; 91 Porras, Bedoya, Silva-Agredo, Santamaría, Fernández, Torres-Palma (b0015) 2016; 94 Zhang, Yuan, Wang, Chen, Wu, Liu, Gu, Jiang, Zeng (b0055) 2015; 5 Wen, Zhang, Niu, Zhang, Huang, Wang, Zhang, Zeng (b0290) 2016; 6 Wen, Niu, Huang, Zhang, Liang, Zeng (b0230) 2017; 355 Jones, Voulvoulis, Lester (b0005) 2005; 35 Lin, Cao, Luo, Xu, Chen (b0150) 2012; 21 Primo, Marino, Corma, Molinari, Garcia (b0175) 2011; 133 Zhou, Song, Chen, Yin (b0205) 2013; 47 Tian, Huang, He, Guo, Zhang, Zhang (b0295) 2015; 44 Espinosa-Mansilla, de la Pena, Gomez, Salinas (b0245) 2005; 531 Yin, Yao, Wu, Zhang, Wang (b0240) 2017; 174 Guo, Li, Gao, Zhu, Liu, Wei, Zhao, Sun (b0195) 2016; 192 Wen, Niu, Zhang, Liang, Zeng (b0275) 2017; 356 Huang, Li, Xu, Xu, Xia, Wang, Li, Cheng (b0110) 2013; 3 Lin, Zhang, Wang, Zhang, Sun (b0105) 2015; 41 Du, Niu, Zhang, Ruan, Wen, Zhang, Zeng (b0255) 2017; 436 Zeng, Hu, Huang (b0280) 2017; 5 An, Yang, Li, Song, Cooper, Nie (b0025) 2010; 94 Jiang, Du, Liu, Hao, Qian, Dai, Mao, Wang (b0165) 2015; 51 Ng, Zhang, Liu, Huang, Wang, Wong (b0135) 2016; 90 Guan, Niu, Wen, Guo, Deng, Zeng (b0060) 2018; 512 Bott (b0270) 1998; 17 Yang, Niu, Huang, Zhang, Zeng (b0260) 2017; 505 Lu, Xie, Zhai, Zhao, Zhang, Zhang, Tong (b0115) 2011; 1 Zhang, Zhang, Yang, Xue, Dionysiou (b0050) 2016; 344 Liang, Niu, Wen, Yang, Shen, Zeng (b0180) 2017; 41 Saravanakumar, Karthik, Chen, Kumar, Prakash, Muthuraj (b0090) 2017; 504 He, Shao, Zheng, Zheng, Feng, Xu, Zhang, Wang, Wang, Lu (b0125) 2017; 203 Yuan, Wang, Wu, Zeng, Chen, Leng, Wu, Li (b0040) 2016; 30 Chen, Westerhoff, Leenheer, Booksh (b0250) 2003; 37 Wang, Yuan, Wu, Zeng, Dong, Chen, Leng, Wu, Peng (b0200) 2016; 186 Zhang, Li, Jia, Wang, Huang, Chen (b0210) 2015; 274 Li, Liu, Cheng, Tong (b0030) 2003; 37 Chen, Qi, Ding, Li, Cui, Zhang, Li (b0065) 2016; 339 Wen, Niu, Zhang, Liang, Zeng (b0160) 2018; 221 Shi, Guo, Yuan (b0300) 2017; 209 Zhang, Li, Wang, Huang, Zeng, Xu (b0220) 2014; 6 Wen, Niu, Zhang, Zeng (b0100) 2017; 46 Wen, Niu, Zhang, Zeng (b0185) 2017; 5 Jiang, Yuan, Zeng, Wu, Liang, Chen, Leng, Wang, Wang (b0045) 2018; 221 Ding, Liu, Ji, Yang, Chen, Jiang, Cai (b0215) 2017; 308 Dai, Lu, Liang, Liu, Zhu (b0120) 2014; 156 Antonin, Santos, Garcia-Segura, Brillas (b0020) 2015; 83 Kubota, Hashimoto, Shindo, Yashiro, Matsui, Yamaji, Kishimoto, Kawada (b0080) 2017; 17 Wen, Zhang, Niu, Zhang, Zeng, Zhang (b0095) 2017; 90 Zhang, Niu, Wen, Wang, Zeng (b0265) 2016; 86 Zhu, Wang, Lin, Gao, Guo, Du, Xu (b0140) 2013; 117 Tay, Wang, Zhao, Hong, Zhang, Xu, Chen (b0085) 2016; 342 Miao, Ji, Wu, Shen, Wang, Kong, Liu, Song (b0190) 2017; 502 Liu, Nanaboina, Korshin, Jiang (b0225) 2012; 46 Montini, Melchionna, Monai, Fornasiero (b0070) 2016; 116 Yang, Niu, Huang, Zhang, Liang, Zeng (b0170) 2017; 4 He (10.1016/j.jcat.2017.11.029_b0125) 2017; 203 Guo (10.1016/j.jcat.2017.11.029_b0195) 2016; 192 Wang (10.1016/j.jcat.2017.11.029_b0130) 2009; 15 Wen (10.1016/j.jcat.2017.11.029_b0185) 2017; 5 Wen (10.1016/j.jcat.2017.11.029_b0290) 2016; 6 Miao (10.1016/j.jcat.2017.11.029_b0190) 2017; 502 Zhang (10.1016/j.jcat.2017.11.029_b0220) 2014; 6 Zhang (10.1016/j.jcat.2017.11.029_b0050) 2016; 344 Chen (10.1016/j.jcat.2017.11.029_b0250) 2003; 37 Wen (10.1016/j.jcat.2017.11.029_b0230) 2017; 355 Wen (10.1016/j.jcat.2017.11.029_b0160) 2018; 221 An (10.1016/j.jcat.2017.11.029_b0025) 2010; 94 Primo (10.1016/j.jcat.2017.11.029_b0175) 2011; 133 Saravanakumar (10.1016/j.jcat.2017.11.029_b0090) 2017; 504 Liu (10.1016/j.jcat.2017.11.029_b0225) 2012; 46 Du (10.1016/j.jcat.2017.11.029_b0255) 2017; 436 Yin (10.1016/j.jcat.2017.11.029_b0240) 2017; 174 Yang (10.1016/j.jcat.2017.11.029_b0170) 2017; 4 Ye (10.1016/j.jcat.2017.11.029_b0285) 2012; 2 Yang (10.1016/j.jcat.2017.11.029_b0155) 2014; 271 Lin (10.1016/j.jcat.2017.11.029_b0150) 2012; 21 Espinosa-Mansilla (10.1016/j.jcat.2017.11.029_b0245) 2005; 531 Dai (10.1016/j.jcat.2017.11.029_b0120) 2014; 156 Jones (10.1016/j.jcat.2017.11.029_b0005) 2005; 35 Ravelli (10.1016/j.jcat.2017.11.029_b0035) 2009; 38 Lu (10.1016/j.jcat.2017.11.029_b0115) 2011; 1 Montini (10.1016/j.jcat.2017.11.029_b0070) 2016; 116 Porras (10.1016/j.jcat.2017.11.029_b0015) 2016; 94 Xie (10.1016/j.jcat.2017.11.029_b0145) 2015; 406 Tian (10.1016/j.jcat.2017.11.029_b0295) 2015; 44 Shi (10.1016/j.jcat.2017.11.029_b0300) 2017; 209 Wang (10.1016/j.jcat.2017.11.029_b0200) 2016; 186 Kubota (10.1016/j.jcat.2017.11.029_b0080) 2017; 17 Yuan (10.1016/j.jcat.2017.11.029_b0040) 2016; 30 Tay (10.1016/j.jcat.2017.11.029_b0085) 2016; 342 Jiang (10.1016/j.jcat.2017.11.029_b0045) 2018; 221 Li (10.1016/j.jcat.2017.11.029_b0030) 2003; 37 Zhu (10.1016/j.jcat.2017.11.029_b0140) 2013; 117 Huang (10.1016/j.jcat.2017.11.029_b0110) 2013; 3 Zeng (10.1016/j.jcat.2017.11.029_b0280) 2017; 5 Ou (10.1016/j.jcat.2017.11.029_b0235) 2016; 289 Bott (10.1016/j.jcat.2017.11.029_b0270) 1998; 17 Zhang (10.1016/j.jcat.2017.11.029_b0055) 2015; 5 Yang (10.1016/j.jcat.2017.11.029_b0260) 2017; 505 Zhang (10.1016/j.jcat.2017.11.029_b0210) 2015; 274 Chen (10.1016/j.jcat.2017.11.029_b0065) 2016; 339 Ng (10.1016/j.jcat.2017.11.029_b0135) 2016; 90 Antonin (10.1016/j.jcat.2017.11.029_b0020) 2015; 83 Lin (10.1016/j.jcat.2017.11.029_b0105) 2015; 41 Liang (10.1016/j.jcat.2017.11.029_b0180) 2017; 41 Wen (10.1016/j.jcat.2017.11.029_b0095) 2017; 90 Guan (10.1016/j.jcat.2017.11.029_b0060) 2018; 512 Babic (10.1016/j.jcat.2017.11.029_b0010) 2013; 91 Wen (10.1016/j.jcat.2017.11.029_b0100) 2017; 46 Ding (10.1016/j.jcat.2017.11.029_b0215) 2017; 308 Zhou (10.1016/j.jcat.2017.11.029_b0205) 2013; 47 Zhang (10.1016/j.jcat.2017.11.029_b0265) 2016; 86 Wen (10.1016/j.jcat.2017.11.029_b0275) 2017; 356 Liu (10.1016/j.jcat.2017.11.029_b0075) 2016; 8 Jiang (10.1016/j.jcat.2017.11.029_b0165) 2015; 51 |
References_xml | – volume: 2 start-page: 1677 year: 2012 end-page: 1683 ident: b0285 article-title: Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge publication-title: ACS Catal. – volume: 91 start-page: 1635 year: 2013 end-page: 1642 ident: b0010 article-title: Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media publication-title: Chemosphere – volume: 203 start-page: 917 year: 2017 end-page: 926 ident: b0125 article-title: Construction of Z-scheme Cu publication-title: Appl. Catal. B – volume: 342 start-page: 55 year: 2016 end-page: 62 ident: b0085 article-title: Enhanced visible light hydrogen production via a multiple heterojunction structure with defect-engineered g-C publication-title: J. Catal. – volume: 37 start-page: 3989 year: 2003 end-page: 3994 ident: b0030 article-title: Photocatalytic oxidation using a new catalyst TiO publication-title: Environ. Sci. Technol. – volume: 174 start-page: 14 year: 2017 end-page: 20 ident: b0240 article-title: Novel metal nanoparticle-enhanced fluorescence for determination of trace amounts of fluoroquinolone in aqueous solutions publication-title: Talanta – volume: 502 start-page: 24 year: 2017 end-page: 32 ident: b0190 article-title: gC publication-title: J. Colloid Interface Sci. – volume: 356 start-page: 283 year: 2017 end-page: 299 ident: b0275 article-title: An in depth mechanism insight of the degradation of multiple refractory pollutants via a novel SrTiO publication-title: J. Catal. – volume: 5 start-page: 3897 year: 2017 end-page: 3905 ident: b0280 article-title: BiOBr 0. 75I0. 25/BiOIO publication-title: Chem. Eng. – volume: 274 start-page: 290 year: 2015 end-page: 297 ident: b0210 article-title: Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway publication-title: Chem. Eng. J. – volume: 83 start-page: 31 year: 2015 end-page: 41 ident: b0020 article-title: Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix publication-title: Water Res. – volume: 344 start-page: 692 year: 2016 end-page: 700 ident: b0050 article-title: Development of a new efficient visible-light-driven photocatalyst from SnS publication-title: J. Catal. – volume: 90 start-page: 51 year: 2017 end-page: 55 ident: b0095 article-title: Highly enhanced visible light photocatalytic activity of CeO publication-title: Catal. Commun. – volume: 94 start-page: 1 year: 2016 end-page: 9 ident: b0015 article-title: Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water publication-title: Water Res. – volume: 117 start-page: 5894 year: 2013 end-page: 5900 ident: b0140 article-title: Facile synthesis of the novel Ag publication-title: J. Phys. Chem. C – volume: 156 start-page: 331 year: 2014 end-page: 340 ident: b0120 article-title: Heterojunction of facet coupled gC publication-title: Appl. Catal. B – volume: 30 start-page: 289 year: 2016 end-page: 296 ident: b0040 article-title: One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity publication-title: Appl. Organomet. Chem. – volume: 47 start-page: 3833 year: 2013 end-page: 3839 ident: b0205 article-title: Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst publication-title: Environ. Sci. Technol. – volume: 116 start-page: 5987 year: 2016 end-page: 6041 ident: b0070 article-title: Fundamentals and catalytic applications of CeO publication-title: Chem. Rev. – volume: 3 start-page: 22269 year: 2013 end-page: 22279 ident: b0110 article-title: Synthesis and characterization of CeO publication-title: RSC Adv. – volume: 51 start-page: 4451 year: 2015 end-page: 4454 ident: b0165 article-title: Anchoring AgBr nanoparticles on nitrogen-doped graphene for enhancement of electrochemiluminescence and radical stability publication-title: Chem. Commun. – volume: 504 start-page: 514 year: 2017 end-page: 526 ident: b0090 article-title: Construction of novel Pd/CeO publication-title: J. Colloid Interface Sci. – volume: 209 start-page: 720 year: 2017 end-page: 728 ident: b0300 article-title: In situ synthesis of Z-scheme Ag publication-title: Appl. Catal. B – volume: 221 start-page: 715 year: 2018 end-page: 725 ident: b0045 article-title: Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant publication-title: Appl. Catal. B – volume: 35 start-page: 401 year: 2005 end-page: 427 ident: b0005 article-title: Human pharmaceuticals in wastewater treatment processes publication-title: Crit. Rev. Env. Sci. Technol. – volume: 192 start-page: 57 year: 2016 end-page: 71 ident: b0195 article-title: A simple and effective method for fabricating novel p–n heterojunction photocatalyst gC publication-title: Appl. Catal. B – volume: 21 start-page: 91 year: 2012 end-page: 95 ident: b0150 article-title: Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity publication-title: Catal. Commun. – volume: 8 start-page: 6669 year: 2016 end-page: 6677 ident: b0075 article-title: Enhanced gas sensing properties of SnO publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 5134 year: 2017 end-page: 5147 ident: b0185 article-title: Fabrication of SnO publication-title: ACS Sustain. Chem. Eng. – volume: 6 start-page: 4035 year: 2016 end-page: 4042 ident: b0290 article-title: Facile synthesis of a visible light α-Fe publication-title: RSC Adv. – volume: 86 start-page: 124 year: 2016 end-page: 128 ident: b0265 article-title: Enhanced visible light photocatalytic activity of CdMoO publication-title: Catal. Commun. – volume: 308 start-page: 330 year: 2017 end-page: 339 ident: b0215 article-title: Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway publication-title: Chem. Eng. J. – volume: 1 start-page: 1207 year: 2011 end-page: 1210 ident: b0115 article-title: Monodisperse CeO publication-title: RSC Adv. – volume: 289 start-page: 391 year: 2016 end-page: 401 ident: b0235 article-title: Degradation of ciprofloxacin by UV and UV/H publication-title: Chem. Eng. J. – volume: 38 start-page: 1999 year: 2009 end-page: 2011 ident: b0035 article-title: Photocatalysis. A multi-faceted concept for green chemistry publication-title: Chem. Soc. Rev. – volume: 531 start-page: 257 year: 2005 end-page: 266 ident: b0245 article-title: Photoinduced spectrofluorimetric determination of fluoroquinolones in human urine by using three- and two-way spectroscopic data and multivariate calibration publication-title: Anal. Chim. Acta – volume: 436 start-page: 100 year: 2017 end-page: 110 ident: b0255 article-title: Synthesis of Ag/AgCl hollow spheres based on the Cu publication-title: Mol. Catal. – volume: 94 start-page: 288 year: 2010 end-page: 294 ident: b0025 article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water publication-title: Appl. Catal. B – volume: 41 start-page: 8956 year: 2015 end-page: 8963 ident: b0105 article-title: Ultrasound-assisted synthesis of high-efficiency Ag publication-title: Ceram. Int. – volume: 6 start-page: 22116 year: 2014 end-page: 22125 ident: b0220 article-title: In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C publication-title: ACS Appl. Mater. Interfaces – volume: 221 start-page: 701 year: 2018 end-page: 714 ident: b0160 article-title: A novel Ag publication-title: Appl. Catal. B – volume: 15 start-page: 1821 year: 2009 end-page: 1824 ident: b0130 article-title: Highly efficient visible-light plasmonic photocatalyst Ag@AgBr publication-title: Chem. Eur. J. – volume: 17 start-page: 402 year: 2017 end-page: 406 ident: b0080 article-title: Self-modification of Ni metal surfaces with CeO publication-title: Fuel Cells – volume: 44 start-page: 4297 year: 2015 end-page: 4307 ident: b0295 article-title: Mediator-free direct Z-scheme photocatalytic system: BiVO publication-title: Dalton Trans. – volume: 339 start-page: 77 year: 2016 end-page: 83 ident: b0065 article-title: Magnesia interface nanolayer modification of Pt/Ta publication-title: J. Catal. – volume: 46 start-page: 5235 year: 2012 end-page: 5246 ident: b0225 article-title: Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater publication-title: Water Res. – volume: 512 start-page: 272 year: 2018 end-page: 281 ident: b0060 article-title: Enhanced Escherichia coli inactivation and oxytetracycline hydrochloride degradation by a Z-scheme silver iodide decorated bismuth vanadate nanocomposite under visible light irradiation publication-title: J. Colloid Interface Sci. – volume: 186 start-page: 19 year: 2016 end-page: 29 ident: b0200 article-title: In situ synthesis of In publication-title: Appl. Catal. B – volume: 355 start-page: 73 year: 2017 end-page: 86 ident: b0230 article-title: Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO publication-title: J. Catal. – volume: 133 start-page: 6930 year: 2011 end-page: 6933 ident: b0175 article-title: Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO publication-title: J. Am. Chem. Soc. – volume: 505 start-page: 96 year: 2017 end-page: 104 ident: b0260 article-title: Ag/AgCl nanoparticles-modified CdSnO publication-title: J. Colloid Interface Sci. – volume: 406 start-page: 194 year: 2015 end-page: 203 ident: b0145 article-title: Fabrication of Z-scheme photocatalyst Ag–AgBr@ Bi publication-title: J. Mol. Catal. A: Chem. – volume: 37 start-page: 5701 year: 2003 end-page: 5710 ident: b0250 article-title: Fluorescence excitation – emission matrix regional integration to quantify spectra for dissolved organic matter publication-title: Environ. Sci. Technol. – volume: 17 start-page: 87 year: 1998 end-page: 92 ident: b0270 article-title: Electrochemistry of semiconductors publication-title: Curr. Sep. – volume: 5 start-page: 98184 year: 2015 end-page: 98193 ident: b0055 article-title: Facile preparation of an Ag/AgVO publication-title: RSC Adv. – volume: 4 start-page: 585 year: 2017 end-page: 595 ident: b0170 article-title: SrTiO publication-title: Environ. Sci. Nano – volume: 271 start-page: 150 year: 2014 end-page: 159 ident: b0155 article-title: Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/gC publication-title: J. Hazard. Mater. – volume: 46 start-page: 4982 year: 2017 end-page: 4993 ident: b0100 article-title: Novel p-n heterojunction BiOI/CeO publication-title: Dalton Trans. – volume: 41 start-page: 5334 year: 2017 end-page: 5346 ident: b0180 article-title: Effective removal of colourless pollutants and organic dyes by Ag@AgCl nanoparticle-modified CaSn(OH) publication-title: New J. Chem. – volume: 90 start-page: 111 year: 2016 end-page: 118 ident: b0135 article-title: Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe publication-title: Water Res. – volume: 4 start-page: 585 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0170 article-title: SrTiO3 nanocubes decorated with Ag/AgCl nanoparticles as photocatalysts with enhanced visible-light photocatalytic activity towards the degradation of dyes, phenol and bisphenol A publication-title: Environ. Sci. Nano doi: 10.1039/C6EN00597G – volume: 504 start-page: 514 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0090 article-title: Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.06.003 – volume: 37 start-page: 5701 year: 2003 ident: 10.1016/j.jcat.2017.11.029_b0250 article-title: Fluorescence excitation – emission matrix regional integration to quantify spectra for dissolved organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es034354c – volume: 505 start-page: 96 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0260 article-title: Ag/AgCl nanoparticles-modified CdSnO3·3H2O nanocubes photocatalyst for the degradation of methyl orange and antibiotics under visible light irradiation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.05.108 – volume: 44 start-page: 4297 year: 2015 ident: 10.1016/j.jcat.2017.11.029_b0295 article-title: Mediator-free direct Z-scheme photocatalytic system: BiVO4/gC3N4 organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity publication-title: Dalton Trans. doi: 10.1039/C4DT03905J – volume: 94 start-page: 288 year: 2010 ident: 10.1016/j.jcat.2017.11.029_b0025 article-title: Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.12.002 – volume: 38 start-page: 1999 year: 2009 ident: 10.1016/j.jcat.2017.11.029_b0035 article-title: Photocatalysis. A multi-faceted concept for green chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/b714786b – volume: 21 start-page: 91 year: 2012 ident: 10.1016/j.jcat.2017.11.029_b0150 article-title: Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity publication-title: Catal. Commun. doi: 10.1016/j.catcom.2012.02.008 – volume: 46 start-page: 4982 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0100 article-title: Novel p-n heterojunction BiOI/CeO2 photocatalyst for wider spectrum visible-light photocatalytic degradation of refractory pollutants publication-title: Dalton Trans. doi: 10.1039/C7DT00106A – volume: 90 start-page: 51 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0095 article-title: Highly enhanced visible light photocatalytic activity of CeO2 through fabricating a novel p–n junction BiOBr/CeO2 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2016.11.018 – volume: 344 start-page: 692 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0050 article-title: Development of a new efficient visible-light-driven photocatalyst from SnS2 and polyvinyl chloride publication-title: J. Catal. doi: 10.1016/j.jcat.2016.10.022 – volume: 15 start-page: 1821 year: 2009 ident: 10.1016/j.jcat.2017.11.029_b0130 article-title: Highly efficient visible-light plasmonic photocatalyst Ag@AgBr publication-title: Chem. Eur. J. doi: 10.1002/chem.200802327 – volume: 209 start-page: 720 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0300 article-title: In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.03.048 – volume: 221 start-page: 715 year: 2018 ident: 10.1016/j.jcat.2017.11.029_b0045 article-title: Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.09.059 – volume: 174 start-page: 14 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0240 article-title: Novel metal nanoparticle-enhanced fluorescence for determination of trace amounts of fluoroquinolone in aqueous solutions publication-title: Talanta doi: 10.1016/j.talanta.2017.05.053 – volume: 3 start-page: 22269 year: 2013 ident: 10.1016/j.jcat.2017.11.029_b0110 article-title: Synthesis and characterization of CeO2/gC3N4 composites with enhanced visible-light photocatatalytic activity publication-title: RSC Adv. doi: 10.1039/c3ra42712a – volume: 271 start-page: 150 year: 2014 ident: 10.1016/j.jcat.2017.11.029_b0155 article-title: Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/gC3N4 with enhanced visible-light photocatalytic activity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.02.023 – volume: 17 start-page: 87 year: 1998 ident: 10.1016/j.jcat.2017.11.029_b0270 article-title: Electrochemistry of semiconductors publication-title: Curr. Sep. – volume: 192 start-page: 57 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0195 article-title: A simple and effective method for fabricating novel p–n heterojunction photocatalyst gC3N4/Bi4Ti3O12 and its photocatalytic performances publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.03.054 – volume: 342 start-page: 55 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0085 article-title: Enhanced visible light hydrogen production via a multiple heterojunction structure with defect-engineered g-C3N4 and two-phase anatase/brookite TiO2 publication-title: J. Catal. doi: 10.1016/j.jcat.2016.07.007 – volume: 133 start-page: 6930 year: 2011 ident: 10.1016/j.jcat.2017.11.029_b0175 article-title: Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2011498 – volume: 156 start-page: 331 year: 2014 ident: 10.1016/j.jcat.2017.11.029_b0120 article-title: Heterojunction of facet coupled gC3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.03.039 – volume: 355 start-page: 73 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0230 article-title: Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst publication-title: J. Catal. doi: 10.1016/j.jcat.2017.08.028 – volume: 94 start-page: 1 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0015 article-title: Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water publication-title: Water Res. doi: 10.1016/j.watres.2016.02.024 – volume: 8 start-page: 6669 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0075 article-title: Enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nanoparticles heterostructure composite materials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00169 – volume: 17 start-page: 402 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0080 article-title: Self-modification of Ni metal surfaces with CeO2 to suppress carbon deposition at solid oxide fuel cell anodes publication-title: Fuel Cells doi: 10.1002/fuce.201600180 – volume: 37 start-page: 3989 year: 2003 ident: 10.1016/j.jcat.2017.11.029_b0030 article-title: Photocatalytic oxidation using a new catalyst TiO2 microsphere for water and wastewater treatment publication-title: Environ. Sci. Technol. doi: 10.1021/es0262941 – volume: 221 start-page: 701 year: 2018 ident: 10.1016/j.jcat.2017.11.029_b0160 article-title: A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.09.060 – volume: 339 start-page: 77 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0065 article-title: Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation publication-title: J. Catal. doi: 10.1016/j.jcat.2016.03.024 – volume: 531 start-page: 257 year: 2005 ident: 10.1016/j.jcat.2017.11.029_b0245 article-title: Photoinduced spectrofluorimetric determination of fluoroquinolones in human urine by using three- and two-way spectroscopic data and multivariate calibration publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2004.10.039 – volume: 436 start-page: 100 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0255 article-title: Synthesis of Ag/AgCl hollow spheres based on the Cu2O nanospheres as template and their excellent photocatalytic property publication-title: Mol. Catal. doi: 10.1016/j.mcat.2017.03.022 – volume: 30 start-page: 289 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0040 article-title: One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.3430 – volume: 51 start-page: 4451 year: 2015 ident: 10.1016/j.jcat.2017.11.029_b0165 article-title: Anchoring AgBr nanoparticles on nitrogen-doped graphene for enhancement of electrochemiluminescence and radical stability publication-title: Chem. Commun. doi: 10.1039/C4CC09926E – volume: 41 start-page: 5334 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0180 article-title: Effective removal of colourless pollutants and organic dyes by Ag@AgCl nanoparticle-modified CaSn(OH)6 composite under visible light irradiation publication-title: New J. Chem. doi: 10.1039/C7NJ00162B – volume: 203 start-page: 917 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0125 article-title: Construction of Z-scheme Cu2O/Cu/AgBr/Ag photocatalyst with enhanced photocatalytic activity and stability under visible light publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.10.086 – volume: 406 start-page: 194 year: 2015 ident: 10.1016/j.jcat.2017.11.029_b0145 article-title: Fabrication of Z-scheme photocatalyst Ag–AgBr@ Bi20TiO32 and its visible-light photocatalytic activity for the degradation of isoproturon herbicide publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2015.05.028 – volume: 47 start-page: 3833 year: 2013 ident: 10.1016/j.jcat.2017.11.029_b0205 article-title: Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst publication-title: Environ. Sci. Technol. doi: 10.1021/es400101f – volume: 5 start-page: 3897 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0280 article-title: BiOBr 0. 75I0. 25/BiOIO3 as a novel heterojunctional photocatalyst with superior visible-light-driven photocatalytic activity in removing diverse industrial pollutants, ACS Sustain publication-title: Chem. Eng. – volume: 2 start-page: 1677 year: 2012 ident: 10.1016/j.jcat.2017.11.029_b0285 article-title: Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge publication-title: ACS Catal. doi: 10.1021/cs300213m – volume: 1 start-page: 1207 year: 2011 ident: 10.1016/j.jcat.2017.11.029_b0115 article-title: Monodisperse CeO2/CdS heterostructured spheres: one-pot synthesis and enhanced photocatalytic hydrogen activity publication-title: RSC Adv. doi: 10.1039/c1ra00252j – volume: 35 start-page: 401 year: 2005 ident: 10.1016/j.jcat.2017.11.029_b0005 article-title: Human pharmaceuticals in wastewater treatment processes publication-title: Crit. Rev. Env. Sci. Technol. doi: 10.1080/10643380590956966 – volume: 289 start-page: 391 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0235 article-title: Degradation of ciprofloxacin by UV and UV/H2O2 via multiple-wavelength ultraviolet light-emitting diodes: Effectiveness, intermediates and antibacterial activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.01.006 – volume: 502 start-page: 24 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0190 article-title: gC3N4/AgBr nanocomposite decorated with carbon dots as a highly efficient visible-light-driven photocatalyst publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.04.087 – volume: 356 start-page: 283 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0275 article-title: An in depth mechanism insight of the degradation of multiple refractory pollutants via a novel SrTiO3/BiOI heterojunction photocatalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2017.10.022 – volume: 83 start-page: 31 year: 2015 ident: 10.1016/j.jcat.2017.11.029_b0020 article-title: Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix publication-title: Water Res. doi: 10.1016/j.watres.2015.05.066 – volume: 274 start-page: 290 year: 2015 ident: 10.1016/j.jcat.2017.11.029_b0210 article-title: Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.077 – volume: 86 start-page: 124 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0265 article-title: Enhanced visible light photocatalytic activity of CdMoO4 microspheres modified with AgI nanoparticles publication-title: Catal. Commun. doi: 10.1016/j.catcom.2016.08.029 – volume: 116 start-page: 5987 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0070 article-title: Fundamentals and catalytic applications of CeO2-based materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00603 – volume: 5 start-page: 98184 year: 2015 ident: 10.1016/j.jcat.2017.11.029_b0055 article-title: Facile preparation of an Ag/AgVO3/BiOCl composite and its enhanced photocatalytic behavior for methylene blue degradation publication-title: RSC Adv. doi: 10.1039/C5RA21453J – volume: 512 start-page: 272 year: 2018 ident: 10.1016/j.jcat.2017.11.029_b0060 article-title: Enhanced Escherichia coli inactivation and oxytetracycline hydrochloride degradation by a Z-scheme silver iodide decorated bismuth vanadate nanocomposite under visible light irradiation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.10.068 – volume: 5 start-page: 5134 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0185 article-title: Fabrication of SnO2 nanopaticles/BiOI n–p heterostructure for wider spectrum visible-light photocatalytic degradation of antibiotic oxytetracycline hydrochloride publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00501 – volume: 91 start-page: 1635 year: 2013 ident: 10.1016/j.jcat.2017.11.029_b0010 article-title: Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.12.072 – volume: 308 start-page: 330 year: 2017 ident: 10.1016/j.jcat.2017.11.029_b0215 article-title: Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.077 – volume: 90 start-page: 111 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0135 article-title: Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3–AgBr publication-title: Water Res. doi: 10.1016/j.watres.2015.12.022 – volume: 186 start-page: 19 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0200 article-title: In situ synthesis of In2S3@ MIL-125 (Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.12.041 – volume: 41 start-page: 8956 year: 2015 ident: 10.1016/j.jcat.2017.11.029_b0105 article-title: Ultrasound-assisted synthesis of high-efficiency Ag3PO4/CeO2 heterojunction photocatalyst publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.03.169 – volume: 6 start-page: 4035 year: 2016 ident: 10.1016/j.jcat.2017.11.029_b0290 article-title: Facile synthesis of a visible light α-Fe2O3/BiOBr composite with high photocatalytic performance publication-title: RSC Adv. doi: 10.1039/C5RA21359B – volume: 117 start-page: 5894 year: 2013 ident: 10.1016/j.jcat.2017.11.029_b0140 article-title: Facile synthesis of the novel Ag3VO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability publication-title: J. Phys. Chem. C doi: 10.1021/jp400842r – volume: 46 start-page: 5235 year: 2012 ident: 10.1016/j.jcat.2017.11.029_b0225 article-title: Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater publication-title: Water Res. doi: 10.1016/j.watres.2012.07.005 – volume: 6 start-page: 22116 year: 2014 ident: 10.1016/j.jcat.2017.11.029_b0220 article-title: In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505528c |
SSID | ssj0011558 |
Score | 2.670193 |
Snippet | A novel Z-scheme system of CeO2–Ag/AgBr heterostructure photocatalyst exhibits excellent ability to eliminate ciprofloxacin under visible light irradiation.... In this study, CeO2–Ag/AgBr composite photocatalysts with a Z-scheme configuration were fabricated by in situ interspersal of AgBr on CeO2 and subsequent... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 141 |
SubjectTerms | ceric oxide Ciprofloxacin Degradation pathway dielectric spectroscopy electric current fluorescence emission spectroscopy inorganic salts irradiation liquid chromatography mass spectrometry photocatalysis photocatalysts Photocatalytic photoluminescence photolysis silver Z-scheme |
Title | Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight |
URI | https://dx.doi.org/10.1016/j.jcat.2017.11.029 https://www.proquest.com/docview/2084044300 |
Volume | 358 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQHNoeUKEgKC1yJW5t2E1iJ1lu2xVoaQXtASTEJfLPhAbtJis2_OwF9R36EH2vPgkziQOlQhx6TOKfJGPPfLZn5mNsCxG0AhsGHvRM4AkA7WkrMi9G22KimhqFTnQPDqPhsfhyIk_m2KCNhSG3Sqf7G51ea2t3p-P-ZmeS5xTji7NN-nSMTMC_jmAXMY3y7dt7Nw8EPLLRxuSKgKVd4Ezj43VOu3toAuNtyuRZw8wnjdM_arq2PXuv2aIDjbzfvNcSm4Nimb0YtFxty-zVX2kF37Df33-UVVlvzMywBreUEKLhTuJlxk1ORN2j8kaZvOB6xhUvyisY8VMPl7owBj6Ab8Gfn7_6Z53-2ecLPnloblrt8H3Ha4J9cUfX84lPSppcI3jUGdEdX6sZPlaF5WOgKON8OuZ5MaU9gRV2vLd7NBh6jpDBMyKMKs-CyGwMYRQlGoGXFSLTWRKJRAYqCo1vCF_oKNYQyFBJXMkZK6RUOvZ7GXRVuMrmi7KANcYTYXVXmxib00KEWQ-BgvWFinuZNUYG68xvJZEal62cSDNGaeuWdp6S9FKSHi5jUpTeOvt4X2fS5Op4trRsBZw-GnEpGpNn631oR0OKUqbzFVVAeTnFQrhaxo_pdt_-Z9sb7CVeJY1X-Ds2X11cwnsEPZXerEf1Jlvo738dHt4B2IMFfA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaq9lA4oFJAFCgYiRuku0nsJMttu6LaQls4tFLFxfLPpE21m6y6KbCXinfgIfpePAkziVMoQj1wjf-SjD3zjT2ej7FXiKA1uDgKYGCjQACYwDiRBynaFps01Ch0ort_kIyPxPtjebzERt1dGAqr9Lq_1emNtvZPev5v9mZFQXd8cbXJkI6RCfijC7QicPkSjcHW5XWcByIe2apjikXA6v7mTBvkdUbbe2gD0y1K5dngzH9ap7_0dGN8dtbYPY8a-bB9sftsCcp1tjrqyNrW2d0_8go-YFefTqu6anZmFtiCO8oI0ZIn8SrntiCm7kn1Tdui5GbBNS-rLzDhnwP0dWEKfAQfo5_ffwxPesOT7XM--93dvH7Ldz2xCY7FPV_PGz6raHVN4MZgxHf8VS-wWJeOT4GuGRfzKS_KOW0KPGRHO-8OR-PAMzIEVsRJHTgQuUshTpLMIPJyQuQmzxKRyUgnsQ0tAQyTpAYiGWuJrpx1Qkpt0nCQQ1_Hj9hyWZXwmPFMONM3NsXujBBxPkCk4EKh00HurJXRBgs7SSjr05UTa8ZEdXFpZ4qkp0h66McolN4Ge33dZtYm67i1tuwErG5MOYXW5NZ2L7vZoFDKdMCiS6gu5lgJ3WX8mH7_yX_2_YKtjg_399Te7sGHp-wOlmRtiPgztlyfX8AmIqDaPG9m-C-5eQcK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+degradation+of+ciprofloxacin+by+a+novel+Z-scheme+CeO2%E2%80%93Ag%2FAgBr+photocatalyst%3A+Influencing+factors%2C+possible+degradation+pathways%2C+and+mechanism+insight&rft.jtitle=Journal+of+catalysis&rft.au=Wen%2C+Xiao-Ju&rft.au=Niu%2C+Cheng-Gang&rft.au=Zhang%2C+Lei&rft.au=Liang%2C+Chao&rft.date=2018-02-01&rft.issn=0021-9517&rft.volume=358&rft.spage=141&rft.epage=154&rft_id=info:doi/10.1016%2Fj.jcat.2017.11.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcat_2017_11_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |