Multi-View Point-Based Registration for Native Knee Kinematics Measurement with Feature Transfer Learning
Deep-learning methods provide a promising approach for measuring in-vivo knee joint motion from fast registration of two-dimensional (2D) to three-dimensional (3D) data with a broad range of capture. However, if there are insufficient data for training, the data-driven approach will fail. We propose...
Saved in:
Cover
Loading…
Summary: | Deep-learning methods provide a promising approach for measuring in-vivo knee joint motion from fast registration of two-dimensional (2D) to three-dimensional (3D) data with a broad range of capture. However, if there are insufficient data for training, the data-driven approach will fail. We propose a feature-based transfer-learning method to extract features from fluoroscopic images. With three subjects and fewer than 100 pairs of real fluoroscopic images, we achieved a mean registration success rate of up to 40%. The proposed method provides a promising solution, using a learning-based registration method when only a limited number of real fluoroscopic images is available. |
---|---|
ISSN: | 2095-8099 |
DOI: | 10.1016/j.eng.2020.03.016 |