Principled Approaches to Missing Data in Epidemiologic Studies

Abstract Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576–584 and Am J Epidemiol. 2018;187(3):585–591), we discuss issues pertaini...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of epidemiology Vol. 187; no. 3; pp. 568 - 575
Main Authors Perkins, Neil J, Cole, Stephen R, Harel, Ofer, Tchetgen Tchetgen, Eric J, Sun, BaoLuo, Mitchell, Emily M, Schisterman, Enrique F
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.03.2018
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN0002-9262
1476-6256
1476-6256
DOI10.1093/aje/kwx348

Cover

Abstract Abstract Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576–584 and Am J Epidemiol. 2018;187(3):585–591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the “true” full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research.
AbstractList Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers ( Am J Epidemiol. 2018;187(3):576–584 and Am J Epidemiol. 2018;187(3):585–591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the “true” full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research.
Abstract Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576–584 and Am J Epidemiol. 2018;187(3):585–591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the “true” full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research.
Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576-584 and Am J Epidemiol. 2018;187(3):585-591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the "true" full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research.
Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576-584 and Am J Epidemiol. 2018;187(3):585-591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the "true" full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research.Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576-584 and Am J Epidemiol. 2018;187(3):585-591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the "true" full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research.
Author Tchetgen Tchetgen, Eric J
Perkins, Neil J
Sun, BaoLuo
Cole, Stephen R
Mitchell, Emily M
Schisterman, Enrique F
Harel, Ofer
AuthorAffiliation 3 Department of Statistics, College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut
5 Agency for Healthcare Research and Quality, Rockville, Maryland
4 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
1 Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland
2 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
AuthorAffiliation_xml – name: 1 Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland
– name: 4 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
– name: 3 Department of Statistics, College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut
– name: 5 Agency for Healthcare Research and Quality, Rockville, Maryland
– name: 2 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
Author_xml – sequence: 1
  givenname: Neil J
  surname: Perkins
  fullname: Perkins, Neil J
  organization: Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland
– sequence: 2
  givenname: Stephen R
  surname: Cole
  fullname: Cole, Stephen R
  organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
– sequence: 3
  givenname: Ofer
  surname: Harel
  fullname: Harel, Ofer
  organization: Department of Statistics, College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut
– sequence: 4
  givenname: Eric J
  surname: Tchetgen Tchetgen
  fullname: Tchetgen Tchetgen, Eric J
  organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
– sequence: 5
  givenname: BaoLuo
  surname: Sun
  fullname: Sun, BaoLuo
  organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
– sequence: 6
  givenname: Emily M
  surname: Mitchell
  fullname: Mitchell, Emily M
  organization: Agency for Healthcare Research and Quality, Rockville, Maryland
– sequence: 7
  givenname: Enrique F
  surname: Schisterman
  fullname: Schisterman, Enrique F
  email: schistee@mail.nih.gov
  organization: Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29165572$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1LHDEUxYMoulpf_ANkoBSKMHqTycfmRRA_akFpoe1zyCSZNdvZZExmavvfN7JWrJQ-3Yf7O4dz79lFmyEGh9ABhmMMsjnRS3fy_eFnQ-cbaIap4DUnjG-iGQCQWhJOdtBuzksAjCWDbbRDJOaMCTJDp5-TD8YPvbPV2TCkqM2dy9UYq1ufsw-L6kKPuvKhuhy8dSsf-7jwpvoyTta7_AZtdbrPbv9p7qFvV5dfz6_rm08fPp6f3dSGNnysrW3mkkigGgNpwFBGmWXSmZaYDkPXtZi1nAgDLesoMMGt4VwL4JIKi7tmD52ufYepXTlrXBiT7tWQ_EqnXypqr_7eBH-nFvGHYnMOjeDF4P2TQYr3k8ujWvlsXN_r4OKUFZZc0JJgDgV9-wpdximFcp4q2TlpJAhSqMOXiZ6j_HltAY7WgEkx5-S6ZwSDeuxNld7UurcCwyvY-FGPPj5e4_t_S96tJXEa_mf9GwFyqEk
CitedBy_id crossref_primary_10_1007_s13042_018_00904_3
crossref_primary_10_1007_s10654_022_00934_w
crossref_primary_10_1016_j_sciaf_2022_e01299
crossref_primary_10_1080_15389588_2022_2083612
crossref_primary_10_1289_EHP10248
crossref_primary_10_1002_jso_25671
crossref_primary_10_3390_curroncol30020186
crossref_primary_10_1093_aje_kwae159
crossref_primary_10_1016_j_cmi_2022_03_006
crossref_primary_10_1016_j_socscimed_2019_112586
crossref_primary_10_1016_j_jpeds_2024_114305
crossref_primary_10_1161_CIRCULATIONAHA_121_055393
crossref_primary_10_1097_JOM_0000000000002693
crossref_primary_10_1002_pds_5245
crossref_primary_10_3389_fpubh_2023_1055440
crossref_primary_10_1007_s40801_022_00294_7
crossref_primary_10_1016_j_mayocpiqo_2020_09_006
crossref_primary_10_3390_sym12101594
crossref_primary_10_1093_aje_kwaa124
crossref_primary_10_1016_j_heliyon_2021_e07727
crossref_primary_10_1097_EDE_0000000000001141
crossref_primary_10_1016_j_cdnut_2023_102019
crossref_primary_10_1177_10556656221138895
crossref_primary_10_1001_jamapsychiatry_2021_0350
crossref_primary_10_1111_acem_13915
crossref_primary_10_1016_j_echo_2024_10_012
crossref_primary_10_1016_j_socscimed_2018_05_037
crossref_primary_10_1016_j_hpb_2019_12_005
crossref_primary_10_1136_bmjph_2024_000900
crossref_primary_10_1371_journal_pone_0286984
crossref_primary_10_1093_fampra_cmaa134
crossref_primary_10_1097_EDE_0000000000001314
crossref_primary_10_1097_EDE_0000000000001677
crossref_primary_10_1038_s41598_021_04531_x
crossref_primary_10_1186_s12889_021_11748_y
crossref_primary_10_1093_gerona_glad092
crossref_primary_10_1093_aje_kwx349
crossref_primary_10_1080_01639625_2022_2118088
crossref_primary_10_1016_j_resuscitation_2021_08_005
crossref_primary_10_1093_ajhp_zxz245
crossref_primary_10_1177_0898264319861001
crossref_primary_10_1016_j_spasta_2023_100730
crossref_primary_10_1093_ije_dyab205
crossref_primary_10_1016_j_jclinepi_2022_10_015
crossref_primary_10_1016_j_jclinepi_2021_02_019
crossref_primary_10_1016_j_socscimed_2022_115293
crossref_primary_10_1097_OLQ_0000000000001340
crossref_primary_10_1007_s10742_020_00225_5
crossref_primary_10_1093_ejo_cjz080
crossref_primary_10_1016_j_jhlto_2024_100075
crossref_primary_10_1002_pds_5547
crossref_primary_10_1016_j_jclinepi_2019_06_011
crossref_primary_10_1016_j_socscimed_2018_10_021
crossref_primary_10_1186_s12874_023_01837_4
crossref_primary_10_1093_aje_kwaa103
crossref_primary_10_1016_j_clinthera_2019_11_003
crossref_primary_10_1093_aje_kwad216
crossref_primary_10_1016_j_radonc_2021_09_030
crossref_primary_10_1055_a_2097_1468
crossref_primary_10_1111_bcpt_13668
crossref_primary_10_1214_22_AOAS1711
crossref_primary_10_1371_journal_pgph_0002661
crossref_primary_10_1111_ppe_12821
crossref_primary_10_1177_10556656241233234
crossref_primary_10_1080_01621459_2021_1942011
crossref_primary_10_1002_pds_5382
crossref_primary_10_1089_neu_2020_7218
crossref_primary_10_1093_aje_kwx350
crossref_primary_10_18553_jmcp_2021_27_10_1403
crossref_primary_10_3389_fevo_2021_669477
crossref_primary_10_1111_cea_13668
crossref_primary_10_7326_M19_0873
crossref_primary_10_1136_oemed_2023_109043
crossref_primary_10_1371_journal_pone_0254720
crossref_primary_10_1016_j_jacig_2023_100122
crossref_primary_10_1186_s12879_023_08146_7
crossref_primary_10_3390_app13106209
crossref_primary_10_1183_13993003_00168_2020
crossref_primary_10_1186_s12874_022_01639_0
crossref_primary_10_1097_EDE_0000000000001215
crossref_primary_10_1159_000535874
crossref_primary_10_1371_journal_pone_0267122
crossref_primary_10_1093_aje_kwac179
crossref_primary_10_1016_j_jhep_2020_09_015
crossref_primary_10_1016_j_msksp_2021_102424
crossref_primary_10_20960_nh_04846
crossref_primary_10_1080_00952990_2023_2171300
crossref_primary_10_2147_CLEP_S368303
crossref_primary_10_1177_0898264319851661
crossref_primary_10_1002_sim_9860
crossref_primary_10_1097_CCM_0000000000005314
crossref_primary_10_1093_humrep_deac070
crossref_primary_10_1289_EHP12500
crossref_primary_10_3389_fpubh_2021_672473
crossref_primary_10_1186_s12872_021_02339_1
crossref_primary_10_1097_QAI_0000000000003016
crossref_primary_10_1159_000527444
crossref_primary_10_1371_journal_pone_0282999
crossref_primary_10_1002_pds_4758
crossref_primary_10_1016_j_jsp_2024_101348
crossref_primary_10_1136_bmjopen_2020_042121
crossref_primary_10_3390_atmos12081016
crossref_primary_10_1001_jama_2019_7924
crossref_primary_10_1007_s10940_023_09577_w
crossref_primary_10_1016_j_surg_2024_109062
crossref_primary_10_1371_journal_pgph_0000701
crossref_primary_10_1136_bmjopen_2020_037709
crossref_primary_10_1016_j_neucom_2019_12_145
crossref_primary_10_1111_1745_9133_12626
crossref_primary_10_12688_gatesopenres_13716_2
crossref_primary_10_12688_gatesopenres_13716_1
crossref_primary_10_1371_journal_pone_0236456
crossref_primary_10_1371_journal_pone_0307296
crossref_primary_10_1093_bjsw_bcac049
crossref_primary_10_1097_EDE_0000000000001465
crossref_primary_10_1371_journal_pntd_0010653
crossref_primary_10_1038_s42003_024_06561_3
crossref_primary_10_1016_j_surg_2020_05_019
crossref_primary_10_3389_fimmu_2020_596173
crossref_primary_10_1007_s40615_025_02351_7
crossref_primary_10_1007_s40572_019_00230_y
crossref_primary_10_1186_s13047_019_0351_0
crossref_primary_10_1186_s13071_021_04984_z
crossref_primary_10_1016_j_heliyon_2023_e14648
crossref_primary_10_1177_09622802211011197
crossref_primary_10_1177_0898264319862419
crossref_primary_10_1177_0898264318800919
crossref_primary_10_1109_ACCESS_2024_3416321
crossref_primary_10_1371_journal_pone_0244108
crossref_primary_10_1016_j_annepidem_2025_02_013
crossref_primary_10_1016_j_psyneuen_2022_106000
crossref_primary_10_1016_j_jclinepi_2022_11_011
crossref_primary_10_1007_s13571_023_00308_6
crossref_primary_10_1136_bmjopen_2024_087248
crossref_primary_10_1371_journal_pone_0292941
crossref_primary_10_1007_s11886_019_1222_9
crossref_primary_10_1016_j_jclinepi_2021_01_003
crossref_primary_10_3233_JND_190399
crossref_primary_10_1186_s12911_020_1020_8
crossref_primary_10_1136_bmjopen_2022_068561
crossref_primary_10_1016_j_conctc_2020_100586
crossref_primary_10_1017_S0950268823000286
crossref_primary_10_1111_dom_16115
crossref_primary_10_1177_00111287231180126
crossref_primary_10_1177_0898264319831513
crossref_primary_10_1002_pds_5500
crossref_primary_10_1093_ije_dyab086
crossref_primary_10_1097_EDE_0000000000001480
crossref_primary_10_1093_occmed_kqac050
crossref_primary_10_1371_journal_pone_0241868
crossref_primary_10_1093_ije_dyz032
crossref_primary_10_1093_geronb_gbz151
crossref_primary_10_1161_CIRCOUTCOMES_121_007960
crossref_primary_10_1080_09649069_2021_1953856
crossref_primary_10_1016_j_cmpb_2022_106905
crossref_primary_10_1177_09622802241254195
crossref_primary_10_1002_ajim_23568
crossref_primary_10_1016_j_healun_2021_06_003
crossref_primary_10_1007_s00228_021_03169_y
crossref_primary_10_1186_s12911_023_02345_7
crossref_primary_10_1038_s41598_021_83775_z
crossref_primary_10_1186_s12874_019_0879_5
crossref_primary_10_5888_pcd17_190380
crossref_primary_10_1111_dar_13231
crossref_primary_10_1093_aje_kwae065
crossref_primary_10_3389_fphar_2023_1160168
crossref_primary_10_1016_j_dcn_2021_101033
crossref_primary_10_1002_cncr_32663
crossref_primary_10_3390_ijerph19010270
crossref_primary_10_2478_amns_2024_0994
crossref_primary_10_1016_j_focus_2023_100120
crossref_primary_10_1093_aje_kwab071
crossref_primary_10_1109_TBDATA_2022_3227089
crossref_primary_10_5334_gh_1146
Cites_doi 10.1201/9781420011180
10.1201/9781439821862
10.1080/01621459.1994.10476818
10.2105/AJPH.2012.300904
10.1056/NEJMsr1203730
10.1080/01621459.1993.10594302
10.1097/EDE.0b013e31823b6296
10.1214/12-AOAS555
10.1007/978-1-4684-6316-3_14
10.1002/9780470510445
10.1093/aje/kwv114
10.1097/EDE.0b013e3182576cdb
10.1093/aje/kwn071
10.1093/biomet/63.3.581
10.1007/s10461-011-0125-6
10.1093/biomet/87.1.113
10.1191/1740774504cn032oa
10.1093/aje/kwx349
10.1093/aje/kwx350
10.1093/biomet/85.4.935
10.1136/bmj.b2393
10.1016/j.jclinepi.2006.01.015
10.1177/0962280210394469
10.1002/9780470316696
10.1016/S1047-2797(02)00479-9
10.4135/9781412985079
10.1080/01621459.1996.10476908
10.1093/aje/kwp026
ContentType Journal Article
Copyright Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2018
Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Copyright_xml – notice: Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2018
– notice: Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T2
7TK
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
DOI 10.1093/aje/kwx348
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Toxicology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Safety Science Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1476-6256
EndPage 575
ExternalDocumentID PMC5860376
29165572
10_1093_aje_kwx348
10.1093/aje/kwx348
Genre Multicenter Study
Research Support, N.I.H., Intramural
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Chemistry Council
  funderid: 10.13039/100007824
– fundername: National Institutes of Health
  grantid: K01MH087219
  funderid: 10.13039/100000002
– fundername: National Institute of Mental Health
  funderid: 10.13039/100000025
– fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development
  funderid: 10.13039/100009633
– fundername: NIMH NIH HHS
  grantid: K01 MH087219
– fundername: ; ; ;
– fundername: ; ; ;
  grantid: K01MH087219
GroupedDBID ---
-DZ
-E4
-~X
..I
.2P
.I3
.XZ
.ZR
0R~
1TH
23M
2WC
4.4
482
48X
5GY
5RE
5VS
5WA
5WD
6J9
70D
85S
AABZA
AACZT
AAILS
AAJKP
AAJQQ
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABVGC
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADCFL
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMHG
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHKS
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
ML0
N9A
NGC
NOMLY
NOYVH
O9-
OAWHX
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TR2
UHB
UPT
W8F
WOQ
X7H
YAYTL
YF5
YKOAZ
YOC
YROCO
YSK
YXANX
ZKX
~91
AAYXX
ADGHP
AGORE
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T2
7TK
7U7
7U9
C1K
H94
K9.
NAPCQ
7X8
5PM
NVLIB
ID FETCH-LOGICAL-c436t-dd3892904a10230c4545d59ecb2cf10ffb15b627c0b5f40576dc66a706947d1f3
ISSN 0002-9262
1476-6256
IngestDate Thu Aug 21 14:13:22 EDT 2025
Fri Jul 11 13:56:26 EDT 2025
Mon Jun 30 08:59:31 EDT 2025
Mon Jul 21 05:53:22 EDT 2025
Tue Jul 01 02:56:00 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Wed Apr 02 07:01:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords complete-case analysis
multiple imputation
bias (epidemiology)
inverse probability weighting
missing data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-dd3892904a10230c4545d59ecb2cf10ffb15b627c0b5f40576dc66a706947d1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://academic.oup.com/aje/article-pdf/187/3/568/24134556/kwx348.pdf
PMID 29165572
PQID 2306239072
PQPubID 41038
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5860376
proquest_miscellaneous_1967462780
proquest_journals_2306239072
pubmed_primary_29165572
crossref_primary_10_1093_aje_kwx348
crossref_citationtrail_10_1093_aje_kwx348
oup_primary_10_1093_aje_kwx348
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle American journal of epidemiology
PublicationTitleAlternate Am J Epidemiol
PublicationYear 2018
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Little ( key 20180328173150_kwx348C27) 1987
Robins ( key 20180328173150_kwx348C29) 1994; 89
Harel ( key 20180328173150_kwx348C14) 2018; 187
Rubin ( key 20180328173150_kwx348C28) 1996; 91
Stuart ( key 20180328173150_kwx348C6) 2009; 169
Rubin ( key 20180328173150_kwx348C17) 1987
Schafer ( key 20180328173150_kwx348C12) 1997
Klebanoff ( key 20180328173150_kwx348C4) 2008; 168
Pearl ( key 20180328173150_kwx348C23) 2000
Little ( key 20180328173150_kwx348C24) 2013
Harel ( key 20180328173150_kwx348C10) 2012; 16
Rubin ( key 20180328173150_kwx348C16) 1976; 63
Wood ( key 20180328173150_kwx348C9) 2004; 1
Eekhout ( key 20180328173150_kwx348C2) 2012; 23
Siddique ( key 20180328173150_kwx348C20) 2012; 6
Bartlett ( key 20180328173150_kwx348C26) 2015; 182
Tsiatis ( key 20180328173150_kwx348C30) 2006
Little ( key 20180328173150_kwx348C1) 2012; 367
Harel ( key 20180328173150_kwx348C3) 2013; 103
Little ( key 20180328173150_kwx348C25) 1993; 88
Westreich ( key 20180328173150_kwx348C8) 2012; 23
Allison ( key 20180328173150_kwx348C11) 2002
Robins ( key 20180328173150_kwx348C31) 2000; 87
Hardy ( key 20180328173150_kwx348C13) 2003; 13
Molenberghs ( key 20180328173150_kwx348C19) 2007
van der Heijden ( key 20180328173150_kwx348C7) 2006; 59
Sun ( key 20180328173150_kwx348C15) 2018; 187
Sterne ( key 20180328173150_kwx348C5) 2009; 338
Wang ( key 20180328173150_kwx348C32) 1998; 85
Daniel ( key 20180328173150_kwx348C22) 2012; 21
Daniels ( key 20180328173150_kwx348C21) 2008
Sun ( key 20180328173150_kwx348C33)
Gill ( key 20180328173150_kwx348C18) 1997
References_xml – volume-title: Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis
  year: 2008
  ident: key 20180328173150_kwx348C21
  doi: 10.1201/9781420011180
– volume-title: Semiparametric Theory and Missing Data
  year: 2006
  ident: key 20180328173150_kwx348C30
– volume-title: Analysis of Incomplete Multivariate Data
  year: 1997
  ident: key 20180328173150_kwx348C12
  doi: 10.1201/9781439821862
– volume: 89
  start-page: 846
  issue: 427
  year: 1994
  ident: key 20180328173150_kwx348C29
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1994.10476818
– volume: 103
  start-page: 200
  issue: 2
  year: 2013
  ident: key 20180328173150_kwx348C3
  article-title: Mi??ing data: should we c?re?
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.2012.300904
– volume: 367
  start-page: 1355
  issue: 14
  year: 2012
  ident: key 20180328173150_kwx348C1
  article-title: The prevention and treatment of missing data in clinical trials
  publication-title: N Engl J Med
  doi: 10.1056/NEJMsr1203730
– volume-title: Statistical Analysis With Missing Data
  year: 1987
  ident: key 20180328173150_kwx348C27
– volume: 88
  start-page: 125
  issue: 421
  year: 1993
  ident: key 20180328173150_kwx348C25
  article-title: Pattern-mixture models for multivariate incomplete data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10594302
– volume: 23
  start-page: 159
  issue: 1
  year: 2012
  ident: key 20180328173150_kwx348C8
  article-title: Berkson’s bias, selection bias, and missing data
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31823b6296
– volume: 6
  start-page: 1814
  issue: 4
  year: 2012
  ident: key 20180328173150_kwx348C20
  article-title: Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial
  publication-title: Ann Appl Stat
  doi: 10.1214/12-AOAS555
– start-page: 255
  volume-title: Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis
  year: 1997
  ident: key 20180328173150_kwx348C18
  doi: 10.1007/978-1-4684-6316-3_14
– volume-title: Causality: Models, Reasoning, and Interence
  year: 2000
  ident: key 20180328173150_kwx348C23
– volume-title: Missing Data in Clinical Studies
  year: 2007
  ident: key 20180328173150_kwx348C19
  doi: 10.1002/9780470510445
– volume: 182
  start-page: 730
  issue: 8
  year: 2015
  ident: key 20180328173150_kwx348C26
  article-title: Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwv114
– ident: key 20180328173150_kwx348C33
  article-title: On inverse probability weighting for nonmonotone missing at random data
  publication-title: arXiv.org
– volume: 23
  start-page: 729
  issue: 5
  year: 2012
  ident: key 20180328173150_kwx348C2
  article-title: Missing data: a systematic review of how they are reported and handled
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3182576cdb
– volume: 168
  start-page: 355
  issue: 4
  year: 2008
  ident: key 20180328173150_kwx348C4
  article-title: Use of multiple imputation in the epidemiologic literature
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwn071
– volume: 63
  start-page: 581
  issue: 3
  year: 1976
  ident: key 20180328173150_kwx348C16
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 16
  start-page: 1382
  issue: 6
  year: 2012
  ident: key 20180328173150_kwx348C10
  article-title: Are we missing the importance of missing values in HIV prevention randomized clinical trials? Review and recommendations
  publication-title: AIDS Behav
  doi: 10.1007/s10461-011-0125-6
– volume: 87
  start-page: 113
  issue: 1
  year: 2000
  ident: key 20180328173150_kwx348C31
  article-title: Inference for imputation estimators
  publication-title: Biometrika
  doi: 10.1093/biomet/87.1.113
– volume: 1
  start-page: 368
  issue: 4
  year: 2004
  ident: key 20180328173150_kwx348C9
  article-title: Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals
  publication-title: Clin Trials
  doi: 10.1191/1740774504cn032oa
– volume: 187
  start-page: 576
  issue: 3
  year: 2018
  ident: key 20180328173150_kwx348C14
  article-title: Multiple imputation for incomplete data in epidemiologic studies
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwx349
– volume: 187
  start-page: 585
  issue: 3
  year: 2018
  ident: key 20180328173150_kwx348C15
  article-title: Inverse-probability-weighted estimation for monotone and nonmonotone missing data
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwx350
– year: 2013
  ident: key 20180328173150_kwx348C24
– volume: 85
  start-page: 935
  issue: 4
  year: 1998
  ident: key 20180328173150_kwx348C32
  article-title: Large-sample theory for parametric multiple imputation procedures
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.935
– volume: 338
  start-page: b2393
  year: 2009
  ident: key 20180328173150_kwx348C5
  article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
  publication-title: BMJ
  doi: 10.1136/bmj.b2393
– volume: 59
  start-page: 1102
  issue: 10
  year: 2006
  ident: key 20180328173150_kwx348C7
  article-title: Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.015
– volume: 21
  start-page: 243
  issue: 3
  year: 2012
  ident: key 20180328173150_kwx348C22
  article-title: Using causal diagrams to guide analysis in missing data problems
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280210394469
– volume-title: Multiple Imputation for Nonresponse in Surveys
  year: 1987
  ident: key 20180328173150_kwx348C17
  doi: 10.1002/9780470316696
– volume: 13
  start-page: 303
  issue: 5
  year: 2003
  ident: key 20180328173150_kwx348C13
  article-title: The Collaborative Perinatal Project: lessons and legacy
  publication-title: Ann Epidemiol
  doi: 10.1016/S1047-2797(02)00479-9
– volume-title: Missing Data
  year: 2002
  ident: key 20180328173150_kwx348C11
  doi: 10.4135/9781412985079
– volume: 91
  start-page: 473
  issue: 434
  year: 1996
  ident: key 20180328173150_kwx348C28
  article-title: Multiple imputation after 18+ years
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476908
– volume: 169
  start-page: 1133
  issue: 9
  year: 2009
  ident: key 20180328173150_kwx348C6
  article-title: Multiple imputation with large data sets: a case study of the Children’s Mental Health Initiative
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp026
SSID ssj0011950
Score 2.6192608
Snippet Abstract Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains...
Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 568
SubjectTerms Confidence intervals
Data Accuracy
Data analysis
Data Interpretation, Statistical
Epidemiologic Research Design
Epidemiologic Studies
Epidemiology
Female
Humans
Miscarriage
Missing data
Nomenclature
Practice of Epidemiology
Pregnancy
Smoking
Statistical analysis
Weighting
Title Principled Approaches to Missing Data in Epidemiologic Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/29165572
https://www.proquest.com/docview/2306239072
https://www.proquest.com/docview/1967462780
https://pubmed.ncbi.nlm.nih.gov/PMC5860376
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEkhKC8AqUyggtCoYmfyQUJLS0rpIUettLeosSJ1eWRrdqsePwR_i7j2ImTUlXQSxQlThx7vozH45nPCL0gROlUSBEWLNYhUwkNExrzUNJSa0JKJhKT7zz_KGZH7MOSLyeT34OopU1TvFa_LswruYpU4RrI1WTJ_odk-5fCBTgH-cIRJAzHf5LxYecpL4012eZGWcaGOXSn8QG8y5vceDT2_T6wKzWKHewIaLuFmwGTROUf-uk1qPGtt7I37mO_qDRd27hkFzXm4xBn-akNBPikfSDwAj60gWa96k46lexe6NwQceLjsC5Lbzyneg05oR14rLZlABKYgImxOpYD3NGBcuV2Ax43TnO748pfQ4Clx8o_Q6MPvnz_QS2R5wANJ99aOBAwjDmXxA-EfXji4XzKExGB7r2GrhMp2_X_98s-dqjdO7ebV5k2dby3Kd2DivdstYZn2tUxMnpGiZSD-cz5sNyBnbO4g267CQp-a9F2F02qehvdmLsQjG10yzp6sc1fu4feeBBiD0LcrLEDITYgxKsaj0CIHQjvo6OD_cV0FrpNOULFqGjCsgQTl6QRyw3pR6QYmOAlTytVwF8fR1oXMS8EkSoquDazAVEqIXJpEqxlGWv6AG3V67p6hHAac01UkpRpAXatYnlamZcoFYukiCsWoJddr2XKMdabjVO-ZjZygmbQ2Znt7AA978ueWJ6WC0vtQudfWmCnk0vmfrizzMzSCU0jSQL0rL8NatisreV1td6cZTCQSQbNTqIAPbRi7KvpUBAgORJwX8BQvI_v1KvjlurdwfDxlZ98gm76v3UHbTWnm-opmNFNsdtC-g8GM8v7
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principled+Approaches+to+Missing+Data+in+Epidemiologic+Studies&rft.jtitle=American+journal+of+epidemiology&rft.au=Perkins%2C+Neil+J&rft.au=Cole%2C+Stephen+R&rft.au=Harel%2C+Ofer&rft.au=Tchetgen+Tchetgen%2C+Eric+J&rft.date=2018-03-01&rft.pub=Oxford+University+Press&rft.issn=0002-9262&rft.eissn=1476-6256&rft.volume=187&rft.issue=3&rft.spage=568&rft.epage=575&rft_id=info:doi/10.1093%2Faje%2Fkwx348&rft_id=info%3Apmid%2F29165572&rft.externalDocID=PMC5860376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9262&client=summon