Principled Approaches to Missing Data in Epidemiologic Studies
Abstract Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576–584 and Am J Epidemiol. 2018;187(3):585–591), we discuss issues pertaini...
Saved in:
Published in | American journal of epidemiology Vol. 187; no. 3; pp. 568 - 575 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.03.2018
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 0002-9262 1476-6256 1476-6256 |
DOI | 10.1093/aje/kwx348 |
Cover
Abstract | Abstract
Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576–584 and Am J Epidemiol. 2018;187(3):585–591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the “true” full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research. |
---|---|
AbstractList | Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (
Am J Epidemiol.
2018;187(3):576–584 and
Am J Epidemiol.
2018;187(3):585–591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the “true” full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research. Abstract Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576–584 and Am J Epidemiol. 2018;187(3):585–591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the “true” full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research. Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576-584 and Am J Epidemiol. 2018;187(3):585-591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the "true" full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research. Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576-584 and Am J Epidemiol. 2018;187(3):585-591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the "true" full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research.Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In this and 2 companion papers (Am J Epidemiol. 2018;187(3):576-584 and Am J Epidemiol. 2018;187(3):585-591), we discuss issues pertaining to missing data in the epidemiologic literature. We provide details regarding missing-data mechanisms and nomenclature and encourage the conduct of principled analyses through a detailed comparison of multiple imputation and inverse probability weighting. Data from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are used to create a masked data-analytical challenge with missing data induced by known mechanisms. We illustrate the deleterious effects of missing data with naive methods and show how principled methods can sometimes mitigate such effects. For example, when data were missing at random, naive methods showed a spurious protective effect of smoking on the risk of spontaneous abortion (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.19, 0.93), while implementation of principled methods multiple imputation (OR = 1.30, 95% CI: 0.95, 1.77) or augmented inverse probability weighting (OR = 1.40, 95% CI: 1.00, 1.97) provided estimates closer to the "true" full-data effect (OR = 1.31, 95% CI: 1.05, 1.64). We call for greater acknowledgement of and attention to missing data and for the broad use of principled missing-data methods in epidemiologic research. |
Author | Tchetgen Tchetgen, Eric J Perkins, Neil J Sun, BaoLuo Cole, Stephen R Mitchell, Emily M Schisterman, Enrique F Harel, Ofer |
AuthorAffiliation | 3 Department of Statistics, College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut 5 Agency for Healthcare Research and Quality, Rockville, Maryland 4 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 1 Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland 2 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina |
AuthorAffiliation_xml | – name: 1 Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland – name: 4 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts – name: 3 Department of Statistics, College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut – name: 5 Agency for Healthcare Research and Quality, Rockville, Maryland – name: 2 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina |
Author_xml | – sequence: 1 givenname: Neil J surname: Perkins fullname: Perkins, Neil J organization: Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland – sequence: 2 givenname: Stephen R surname: Cole fullname: Cole, Stephen R organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina – sequence: 3 givenname: Ofer surname: Harel fullname: Harel, Ofer organization: Department of Statistics, College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut – sequence: 4 givenname: Eric J surname: Tchetgen Tchetgen fullname: Tchetgen Tchetgen, Eric J organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts – sequence: 5 givenname: BaoLuo surname: Sun fullname: Sun, BaoLuo organization: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts – sequence: 6 givenname: Emily M surname: Mitchell fullname: Mitchell, Emily M organization: Agency for Healthcare Research and Quality, Rockville, Maryland – sequence: 7 givenname: Enrique F surname: Schisterman fullname: Schisterman, Enrique F email: schistee@mail.nih.gov organization: Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29165572$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1LHDEUxYMoulpf_ANkoBSKMHqTycfmRRA_akFpoe1zyCSZNdvZZExmavvfN7JWrJQ-3Yf7O4dz79lFmyEGh9ABhmMMsjnRS3fy_eFnQ-cbaIap4DUnjG-iGQCQWhJOdtBuzksAjCWDbbRDJOaMCTJDp5-TD8YPvbPV2TCkqM2dy9UYq1ufsw-L6kKPuvKhuhy8dSsf-7jwpvoyTta7_AZtdbrPbv9p7qFvV5dfz6_rm08fPp6f3dSGNnysrW3mkkigGgNpwFBGmWXSmZaYDkPXtZi1nAgDLesoMMGt4VwL4JIKi7tmD52ufYepXTlrXBiT7tWQ_EqnXypqr_7eBH-nFvGHYnMOjeDF4P2TQYr3k8ujWvlsXN_r4OKUFZZc0JJgDgV9-wpdximFcp4q2TlpJAhSqMOXiZ6j_HltAY7WgEkx5-S6ZwSDeuxNld7UurcCwyvY-FGPPj5e4_t_S96tJXEa_mf9GwFyqEk |
CitedBy_id | crossref_primary_10_1007_s13042_018_00904_3 crossref_primary_10_1007_s10654_022_00934_w crossref_primary_10_1016_j_sciaf_2022_e01299 crossref_primary_10_1080_15389588_2022_2083612 crossref_primary_10_1289_EHP10248 crossref_primary_10_1002_jso_25671 crossref_primary_10_3390_curroncol30020186 crossref_primary_10_1093_aje_kwae159 crossref_primary_10_1016_j_cmi_2022_03_006 crossref_primary_10_1016_j_socscimed_2019_112586 crossref_primary_10_1016_j_jpeds_2024_114305 crossref_primary_10_1161_CIRCULATIONAHA_121_055393 crossref_primary_10_1097_JOM_0000000000002693 crossref_primary_10_1002_pds_5245 crossref_primary_10_3389_fpubh_2023_1055440 crossref_primary_10_1007_s40801_022_00294_7 crossref_primary_10_1016_j_mayocpiqo_2020_09_006 crossref_primary_10_3390_sym12101594 crossref_primary_10_1093_aje_kwaa124 crossref_primary_10_1016_j_heliyon_2021_e07727 crossref_primary_10_1097_EDE_0000000000001141 crossref_primary_10_1016_j_cdnut_2023_102019 crossref_primary_10_1177_10556656221138895 crossref_primary_10_1001_jamapsychiatry_2021_0350 crossref_primary_10_1111_acem_13915 crossref_primary_10_1016_j_echo_2024_10_012 crossref_primary_10_1016_j_socscimed_2018_05_037 crossref_primary_10_1016_j_hpb_2019_12_005 crossref_primary_10_1136_bmjph_2024_000900 crossref_primary_10_1371_journal_pone_0286984 crossref_primary_10_1093_fampra_cmaa134 crossref_primary_10_1097_EDE_0000000000001314 crossref_primary_10_1097_EDE_0000000000001677 crossref_primary_10_1038_s41598_021_04531_x crossref_primary_10_1186_s12889_021_11748_y crossref_primary_10_1093_gerona_glad092 crossref_primary_10_1093_aje_kwx349 crossref_primary_10_1080_01639625_2022_2118088 crossref_primary_10_1016_j_resuscitation_2021_08_005 crossref_primary_10_1093_ajhp_zxz245 crossref_primary_10_1177_0898264319861001 crossref_primary_10_1016_j_spasta_2023_100730 crossref_primary_10_1093_ije_dyab205 crossref_primary_10_1016_j_jclinepi_2022_10_015 crossref_primary_10_1016_j_jclinepi_2021_02_019 crossref_primary_10_1016_j_socscimed_2022_115293 crossref_primary_10_1097_OLQ_0000000000001340 crossref_primary_10_1007_s10742_020_00225_5 crossref_primary_10_1093_ejo_cjz080 crossref_primary_10_1016_j_jhlto_2024_100075 crossref_primary_10_1002_pds_5547 crossref_primary_10_1016_j_jclinepi_2019_06_011 crossref_primary_10_1016_j_socscimed_2018_10_021 crossref_primary_10_1186_s12874_023_01837_4 crossref_primary_10_1093_aje_kwaa103 crossref_primary_10_1016_j_clinthera_2019_11_003 crossref_primary_10_1093_aje_kwad216 crossref_primary_10_1016_j_radonc_2021_09_030 crossref_primary_10_1055_a_2097_1468 crossref_primary_10_1111_bcpt_13668 crossref_primary_10_1214_22_AOAS1711 crossref_primary_10_1371_journal_pgph_0002661 crossref_primary_10_1111_ppe_12821 crossref_primary_10_1177_10556656241233234 crossref_primary_10_1080_01621459_2021_1942011 crossref_primary_10_1002_pds_5382 crossref_primary_10_1089_neu_2020_7218 crossref_primary_10_1093_aje_kwx350 crossref_primary_10_18553_jmcp_2021_27_10_1403 crossref_primary_10_3389_fevo_2021_669477 crossref_primary_10_1111_cea_13668 crossref_primary_10_7326_M19_0873 crossref_primary_10_1136_oemed_2023_109043 crossref_primary_10_1371_journal_pone_0254720 crossref_primary_10_1016_j_jacig_2023_100122 crossref_primary_10_1186_s12879_023_08146_7 crossref_primary_10_3390_app13106209 crossref_primary_10_1183_13993003_00168_2020 crossref_primary_10_1186_s12874_022_01639_0 crossref_primary_10_1097_EDE_0000000000001215 crossref_primary_10_1159_000535874 crossref_primary_10_1371_journal_pone_0267122 crossref_primary_10_1093_aje_kwac179 crossref_primary_10_1016_j_jhep_2020_09_015 crossref_primary_10_1016_j_msksp_2021_102424 crossref_primary_10_20960_nh_04846 crossref_primary_10_1080_00952990_2023_2171300 crossref_primary_10_2147_CLEP_S368303 crossref_primary_10_1177_0898264319851661 crossref_primary_10_1002_sim_9860 crossref_primary_10_1097_CCM_0000000000005314 crossref_primary_10_1093_humrep_deac070 crossref_primary_10_1289_EHP12500 crossref_primary_10_3389_fpubh_2021_672473 crossref_primary_10_1186_s12872_021_02339_1 crossref_primary_10_1097_QAI_0000000000003016 crossref_primary_10_1159_000527444 crossref_primary_10_1371_journal_pone_0282999 crossref_primary_10_1002_pds_4758 crossref_primary_10_1016_j_jsp_2024_101348 crossref_primary_10_1136_bmjopen_2020_042121 crossref_primary_10_3390_atmos12081016 crossref_primary_10_1001_jama_2019_7924 crossref_primary_10_1007_s10940_023_09577_w crossref_primary_10_1016_j_surg_2024_109062 crossref_primary_10_1371_journal_pgph_0000701 crossref_primary_10_1136_bmjopen_2020_037709 crossref_primary_10_1016_j_neucom_2019_12_145 crossref_primary_10_1111_1745_9133_12626 crossref_primary_10_12688_gatesopenres_13716_2 crossref_primary_10_12688_gatesopenres_13716_1 crossref_primary_10_1371_journal_pone_0236456 crossref_primary_10_1371_journal_pone_0307296 crossref_primary_10_1093_bjsw_bcac049 crossref_primary_10_1097_EDE_0000000000001465 crossref_primary_10_1371_journal_pntd_0010653 crossref_primary_10_1038_s42003_024_06561_3 crossref_primary_10_1016_j_surg_2020_05_019 crossref_primary_10_3389_fimmu_2020_596173 crossref_primary_10_1007_s40615_025_02351_7 crossref_primary_10_1007_s40572_019_00230_y crossref_primary_10_1186_s13047_019_0351_0 crossref_primary_10_1186_s13071_021_04984_z crossref_primary_10_1016_j_heliyon_2023_e14648 crossref_primary_10_1177_09622802211011197 crossref_primary_10_1177_0898264319862419 crossref_primary_10_1177_0898264318800919 crossref_primary_10_1109_ACCESS_2024_3416321 crossref_primary_10_1371_journal_pone_0244108 crossref_primary_10_1016_j_annepidem_2025_02_013 crossref_primary_10_1016_j_psyneuen_2022_106000 crossref_primary_10_1016_j_jclinepi_2022_11_011 crossref_primary_10_1007_s13571_023_00308_6 crossref_primary_10_1136_bmjopen_2024_087248 crossref_primary_10_1371_journal_pone_0292941 crossref_primary_10_1007_s11886_019_1222_9 crossref_primary_10_1016_j_jclinepi_2021_01_003 crossref_primary_10_3233_JND_190399 crossref_primary_10_1186_s12911_020_1020_8 crossref_primary_10_1136_bmjopen_2022_068561 crossref_primary_10_1016_j_conctc_2020_100586 crossref_primary_10_1017_S0950268823000286 crossref_primary_10_1111_dom_16115 crossref_primary_10_1177_00111287231180126 crossref_primary_10_1177_0898264319831513 crossref_primary_10_1002_pds_5500 crossref_primary_10_1093_ije_dyab086 crossref_primary_10_1097_EDE_0000000000001480 crossref_primary_10_1093_occmed_kqac050 crossref_primary_10_1371_journal_pone_0241868 crossref_primary_10_1093_ije_dyz032 crossref_primary_10_1093_geronb_gbz151 crossref_primary_10_1161_CIRCOUTCOMES_121_007960 crossref_primary_10_1080_09649069_2021_1953856 crossref_primary_10_1016_j_cmpb_2022_106905 crossref_primary_10_1177_09622802241254195 crossref_primary_10_1002_ajim_23568 crossref_primary_10_1016_j_healun_2021_06_003 crossref_primary_10_1007_s00228_021_03169_y crossref_primary_10_1186_s12911_023_02345_7 crossref_primary_10_1038_s41598_021_83775_z crossref_primary_10_1186_s12874_019_0879_5 crossref_primary_10_5888_pcd17_190380 crossref_primary_10_1111_dar_13231 crossref_primary_10_1093_aje_kwae065 crossref_primary_10_3389_fphar_2023_1160168 crossref_primary_10_1016_j_dcn_2021_101033 crossref_primary_10_1002_cncr_32663 crossref_primary_10_3390_ijerph19010270 crossref_primary_10_2478_amns_2024_0994 crossref_primary_10_1016_j_focus_2023_100120 crossref_primary_10_1093_aje_kwab071 crossref_primary_10_1109_TBDATA_2022_3227089 crossref_primary_10_5334_gh_1146 |
Cites_doi | 10.1201/9781420011180 10.1201/9781439821862 10.1080/01621459.1994.10476818 10.2105/AJPH.2012.300904 10.1056/NEJMsr1203730 10.1080/01621459.1993.10594302 10.1097/EDE.0b013e31823b6296 10.1214/12-AOAS555 10.1007/978-1-4684-6316-3_14 10.1002/9780470510445 10.1093/aje/kwv114 10.1097/EDE.0b013e3182576cdb 10.1093/aje/kwn071 10.1093/biomet/63.3.581 10.1007/s10461-011-0125-6 10.1093/biomet/87.1.113 10.1191/1740774504cn032oa 10.1093/aje/kwx349 10.1093/aje/kwx350 10.1093/biomet/85.4.935 10.1136/bmj.b2393 10.1016/j.jclinepi.2006.01.015 10.1177/0962280210394469 10.1002/9780470316696 10.1016/S1047-2797(02)00479-9 10.4135/9781412985079 10.1080/01621459.1996.10476908 10.1093/aje/kwp026 |
ContentType | Journal Article |
Copyright | Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2018 Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US. |
Copyright_xml | – notice: Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2018 – notice: Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T2 7TK 7U7 7U9 C1K H94 K9. NAPCQ 7X8 5PM |
DOI | 10.1093/aje/kwx348 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Health and Safety Science Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Virology and AIDS Abstracts Toxicology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Safety Science Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1476-6256 |
EndPage | 575 |
ExternalDocumentID | PMC5860376 29165572 10_1093_aje_kwx348 10.1093/aje/kwx348 |
Genre | Multicenter Study Research Support, N.I.H., Intramural Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: American Chemistry Council funderid: 10.13039/100007824 – fundername: National Institutes of Health grantid: K01MH087219 funderid: 10.13039/100000002 – fundername: National Institute of Mental Health funderid: 10.13039/100000025 – fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development funderid: 10.13039/100009633 – fundername: NIMH NIH HHS grantid: K01 MH087219 – fundername: ; ; ; – fundername: ; ; ; grantid: K01MH087219 |
GroupedDBID | --- -DZ -E4 -~X ..I .2P .I3 .XZ .ZR 0R~ 1TH 23M 2WC 4.4 482 48X 5GY 5RE 5VS 5WA 5WD 6J9 70D 85S AABZA AACZT AAILS AAJKP AAJQQ AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPTD ABQLI ABVGC ABXVV ABZBJ ACGFO ACGFS ACGOD ACPRK ACUFI ACUTJ ACUTO ADBBV ADCFL ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMHG ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHKS AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CS3 CZ4 DAKXR DIK DILTD D~K E3Z EBS EE~ EJD EMOBN F5P F9B FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z ML0 N9A NGC NOMLY NOYVH O9- OAWHX OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TR2 UHB UPT W8F WOQ X7H YAYTL YF5 YKOAZ YOC YROCO YSK YXANX ZKX ~91 AAYXX ADGHP AGORE AJBYB CITATION CGR CUY CVF ECM EIF NPM 7QP 7T2 7TK 7U7 7U9 C1K H94 K9. NAPCQ 7X8 5PM NVLIB |
ID | FETCH-LOGICAL-c436t-dd3892904a10230c4545d59ecb2cf10ffb15b627c0b5f40576dc66a706947d1f3 |
ISSN | 0002-9262 1476-6256 |
IngestDate | Thu Aug 21 14:13:22 EDT 2025 Fri Jul 11 13:56:26 EDT 2025 Mon Jun 30 08:59:31 EDT 2025 Mon Jul 21 05:53:22 EDT 2025 Tue Jul 01 02:56:00 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Wed Apr 02 07:01:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | complete-case analysis multiple imputation bias (epidemiology) inverse probability weighting missing data |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-dd3892904a10230c4545d59ecb2cf10ffb15b627c0b5f40576dc66a706947d1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/aje/article-pdf/187/3/568/24134556/kwx348.pdf |
PMID | 29165572 |
PQID | 2306239072 |
PQPubID | 41038 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5860376 proquest_miscellaneous_1967462780 proquest_journals_2306239072 pubmed_primary_29165572 crossref_primary_10_1093_aje_kwx348 crossref_citationtrail_10_1093_aje_kwx348 oup_primary_10_1093_aje_kwx348 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | American journal of epidemiology |
PublicationTitleAlternate | Am J Epidemiol |
PublicationYear | 2018 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Little ( key 20180328173150_kwx348C27) 1987 Robins ( key 20180328173150_kwx348C29) 1994; 89 Harel ( key 20180328173150_kwx348C14) 2018; 187 Rubin ( key 20180328173150_kwx348C28) 1996; 91 Stuart ( key 20180328173150_kwx348C6) 2009; 169 Rubin ( key 20180328173150_kwx348C17) 1987 Schafer ( key 20180328173150_kwx348C12) 1997 Klebanoff ( key 20180328173150_kwx348C4) 2008; 168 Pearl ( key 20180328173150_kwx348C23) 2000 Little ( key 20180328173150_kwx348C24) 2013 Harel ( key 20180328173150_kwx348C10) 2012; 16 Rubin ( key 20180328173150_kwx348C16) 1976; 63 Wood ( key 20180328173150_kwx348C9) 2004; 1 Eekhout ( key 20180328173150_kwx348C2) 2012; 23 Siddique ( key 20180328173150_kwx348C20) 2012; 6 Bartlett ( key 20180328173150_kwx348C26) 2015; 182 Tsiatis ( key 20180328173150_kwx348C30) 2006 Little ( key 20180328173150_kwx348C1) 2012; 367 Harel ( key 20180328173150_kwx348C3) 2013; 103 Little ( key 20180328173150_kwx348C25) 1993; 88 Westreich ( key 20180328173150_kwx348C8) 2012; 23 Allison ( key 20180328173150_kwx348C11) 2002 Robins ( key 20180328173150_kwx348C31) 2000; 87 Hardy ( key 20180328173150_kwx348C13) 2003; 13 Molenberghs ( key 20180328173150_kwx348C19) 2007 van der Heijden ( key 20180328173150_kwx348C7) 2006; 59 Sun ( key 20180328173150_kwx348C15) 2018; 187 Sterne ( key 20180328173150_kwx348C5) 2009; 338 Wang ( key 20180328173150_kwx348C32) 1998; 85 Daniel ( key 20180328173150_kwx348C22) 2012; 21 Daniels ( key 20180328173150_kwx348C21) 2008 Sun ( key 20180328173150_kwx348C33) Gill ( key 20180328173150_kwx348C18) 1997 |
References_xml | – volume-title: Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis year: 2008 ident: key 20180328173150_kwx348C21 doi: 10.1201/9781420011180 – volume-title: Semiparametric Theory and Missing Data year: 2006 ident: key 20180328173150_kwx348C30 – volume-title: Analysis of Incomplete Multivariate Data year: 1997 ident: key 20180328173150_kwx348C12 doi: 10.1201/9781439821862 – volume: 89 start-page: 846 issue: 427 year: 1994 ident: key 20180328173150_kwx348C29 article-title: Estimation of regression coefficients when some regressors are not always observed publication-title: J Am Stat Assoc doi: 10.1080/01621459.1994.10476818 – volume: 103 start-page: 200 issue: 2 year: 2013 ident: key 20180328173150_kwx348C3 article-title: Mi??ing data: should we c?re? publication-title: Am J Public Health doi: 10.2105/AJPH.2012.300904 – volume: 367 start-page: 1355 issue: 14 year: 2012 ident: key 20180328173150_kwx348C1 article-title: The prevention and treatment of missing data in clinical trials publication-title: N Engl J Med doi: 10.1056/NEJMsr1203730 – volume-title: Statistical Analysis With Missing Data year: 1987 ident: key 20180328173150_kwx348C27 – volume: 88 start-page: 125 issue: 421 year: 1993 ident: key 20180328173150_kwx348C25 article-title: Pattern-mixture models for multivariate incomplete data publication-title: J Am Stat Assoc doi: 10.1080/01621459.1993.10594302 – volume: 23 start-page: 159 issue: 1 year: 2012 ident: key 20180328173150_kwx348C8 article-title: Berkson’s bias, selection bias, and missing data publication-title: Epidemiology doi: 10.1097/EDE.0b013e31823b6296 – volume: 6 start-page: 1814 issue: 4 year: 2012 ident: key 20180328173150_kwx348C20 article-title: Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial publication-title: Ann Appl Stat doi: 10.1214/12-AOAS555 – start-page: 255 volume-title: Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis year: 1997 ident: key 20180328173150_kwx348C18 doi: 10.1007/978-1-4684-6316-3_14 – volume-title: Causality: Models, Reasoning, and Interence year: 2000 ident: key 20180328173150_kwx348C23 – volume-title: Missing Data in Clinical Studies year: 2007 ident: key 20180328173150_kwx348C19 doi: 10.1002/9780470510445 – volume: 182 start-page: 730 issue: 8 year: 2015 ident: key 20180328173150_kwx348C26 article-title: Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression publication-title: Am J Epidemiol doi: 10.1093/aje/kwv114 – ident: key 20180328173150_kwx348C33 article-title: On inverse probability weighting for nonmonotone missing at random data publication-title: arXiv.org – volume: 23 start-page: 729 issue: 5 year: 2012 ident: key 20180328173150_kwx348C2 article-title: Missing data: a systematic review of how they are reported and handled publication-title: Epidemiology doi: 10.1097/EDE.0b013e3182576cdb – volume: 168 start-page: 355 issue: 4 year: 2008 ident: key 20180328173150_kwx348C4 article-title: Use of multiple imputation in the epidemiologic literature publication-title: Am J Epidemiol doi: 10.1093/aje/kwn071 – volume: 63 start-page: 581 issue: 3 year: 1976 ident: key 20180328173150_kwx348C16 article-title: Inference and missing data publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 16 start-page: 1382 issue: 6 year: 2012 ident: key 20180328173150_kwx348C10 article-title: Are we missing the importance of missing values in HIV prevention randomized clinical trials? Review and recommendations publication-title: AIDS Behav doi: 10.1007/s10461-011-0125-6 – volume: 87 start-page: 113 issue: 1 year: 2000 ident: key 20180328173150_kwx348C31 article-title: Inference for imputation estimators publication-title: Biometrika doi: 10.1093/biomet/87.1.113 – volume: 1 start-page: 368 issue: 4 year: 2004 ident: key 20180328173150_kwx348C9 article-title: Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals publication-title: Clin Trials doi: 10.1191/1740774504cn032oa – volume: 187 start-page: 576 issue: 3 year: 2018 ident: key 20180328173150_kwx348C14 article-title: Multiple imputation for incomplete data in epidemiologic studies publication-title: Am J Epidemiol doi: 10.1093/aje/kwx349 – volume: 187 start-page: 585 issue: 3 year: 2018 ident: key 20180328173150_kwx348C15 article-title: Inverse-probability-weighted estimation for monotone and nonmonotone missing data publication-title: Am J Epidemiol doi: 10.1093/aje/kwx350 – year: 2013 ident: key 20180328173150_kwx348C24 – volume: 85 start-page: 935 issue: 4 year: 1998 ident: key 20180328173150_kwx348C32 article-title: Large-sample theory for parametric multiple imputation procedures publication-title: Biometrika doi: 10.1093/biomet/85.4.935 – volume: 338 start-page: b2393 year: 2009 ident: key 20180328173150_kwx348C5 article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls publication-title: BMJ doi: 10.1136/bmj.b2393 – volume: 59 start-page: 1102 issue: 10 year: 2006 ident: key 20180328173150_kwx348C7 article-title: Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2006.01.015 – volume: 21 start-page: 243 issue: 3 year: 2012 ident: key 20180328173150_kwx348C22 article-title: Using causal diagrams to guide analysis in missing data problems publication-title: Stat Methods Med Res doi: 10.1177/0962280210394469 – volume-title: Multiple Imputation for Nonresponse in Surveys year: 1987 ident: key 20180328173150_kwx348C17 doi: 10.1002/9780470316696 – volume: 13 start-page: 303 issue: 5 year: 2003 ident: key 20180328173150_kwx348C13 article-title: The Collaborative Perinatal Project: lessons and legacy publication-title: Ann Epidemiol doi: 10.1016/S1047-2797(02)00479-9 – volume-title: Missing Data year: 2002 ident: key 20180328173150_kwx348C11 doi: 10.4135/9781412985079 – volume: 91 start-page: 473 issue: 434 year: 1996 ident: key 20180328173150_kwx348C28 article-title: Multiple imputation after 18+ years publication-title: J Am Stat Assoc doi: 10.1080/01621459.1996.10476908 – volume: 169 start-page: 1133 issue: 9 year: 2009 ident: key 20180328173150_kwx348C6 article-title: Multiple imputation with large data sets: a case study of the Children’s Mental Health Initiative publication-title: Am J Epidemiol doi: 10.1093/aje/kwp026 |
SSID | ssj0011950 |
Score | 2.6192608 |
Snippet | Abstract
Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains... Principled methods with which to appropriately analyze missing data have long existed; however, broad implementation of these methods remains challenging. In... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 568 |
SubjectTerms | Confidence intervals Data Accuracy Data analysis Data Interpretation, Statistical Epidemiologic Research Design Epidemiologic Studies Epidemiology Female Humans Miscarriage Missing data Nomenclature Practice of Epidemiology Pregnancy Smoking Statistical analysis Weighting |
Title | Principled Approaches to Missing Data in Epidemiologic Studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29165572 https://www.proquest.com/docview/2306239072 https://www.proquest.com/docview/1967462780 https://pubmed.ncbi.nlm.nih.gov/PMC5860376 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEkhKC8AqUyggtCoYmfyQUJLS0rpIUettLeosSJ1eWRrdqsePwR_i7j2ImTUlXQSxQlThx7vozH45nPCL0gROlUSBEWLNYhUwkNExrzUNJSa0JKJhKT7zz_KGZH7MOSLyeT34OopU1TvFa_LswruYpU4RrI1WTJ_odk-5fCBTgH-cIRJAzHf5LxYecpL4012eZGWcaGOXSn8QG8y5vceDT2_T6wKzWKHewIaLuFmwGTROUf-uk1qPGtt7I37mO_qDRd27hkFzXm4xBn-akNBPikfSDwAj60gWa96k46lexe6NwQceLjsC5Lbzyneg05oR14rLZlABKYgImxOpYD3NGBcuV2Ax43TnO748pfQ4Clx8o_Q6MPvnz_QS2R5wANJ99aOBAwjDmXxA-EfXji4XzKExGB7r2GrhMp2_X_98s-dqjdO7ebV5k2dby3Kd2DivdstYZn2tUxMnpGiZSD-cz5sNyBnbO4g267CQp-a9F2F02qehvdmLsQjG10yzp6sc1fu4feeBBiD0LcrLEDITYgxKsaj0CIHQjvo6OD_cV0FrpNOULFqGjCsgQTl6QRyw3pR6QYmOAlTytVwF8fR1oXMS8EkSoquDazAVEqIXJpEqxlGWv6AG3V67p6hHAac01UkpRpAXatYnlamZcoFYukiCsWoJddr2XKMdabjVO-ZjZygmbQ2Znt7AA978ueWJ6WC0vtQudfWmCnk0vmfrizzMzSCU0jSQL0rL8NatisreV1td6cZTCQSQbNTqIAPbRi7KvpUBAgORJwX8BQvI_v1KvjlurdwfDxlZ98gm76v3UHbTWnm-opmNFNsdtC-g8GM8v7 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principled+Approaches+to+Missing+Data+in+Epidemiologic+Studies&rft.jtitle=American+journal+of+epidemiology&rft.au=Perkins%2C+Neil+J&rft.au=Cole%2C+Stephen+R&rft.au=Harel%2C+Ofer&rft.au=Tchetgen+Tchetgen%2C+Eric+J&rft.date=2018-03-01&rft.pub=Oxford+University+Press&rft.issn=0002-9262&rft.eissn=1476-6256&rft.volume=187&rft.issue=3&rft.spage=568&rft.epage=575&rft_id=info:doi/10.1093%2Faje%2Fkwx348&rft_id=info%3Apmid%2F29165572&rft.externalDocID=PMC5860376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9262&client=summon |