Control of Cell Proliferation by Progress in Differentiation: Clues to Mechanisms of Aging, Cancer Causation and Therapy

In multicellular organisms, the control of cell proliferation occurs, in part, by modulating the progress in differentiation. In normal and neoplastic cells, for example, progress towards terminal differentiation concludes cell proliferation, whereas arrest of progress in differentiation causes unco...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical biology Vol. 193; no. 4; pp. 663 - 678
Main Authors von Wagenheim, Karl-Hartmut, Peterson, Hans-Peter
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 21.08.1998
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In multicellular organisms, the control of cell proliferation occurs, in part, by modulating the progress in differentiation. In normal and neoplastic cells, for example, progress towards terminal differentiation concludes cell proliferation, whereas arrest of progress in differentiation causes uncontrolled cell proliferation. Evidence is presented according to which the progress in differentiation depends on an increase in the ratio between mitochondrial differentiation promoting activity and nuclear differentiation preventing activity. This ratio is low in embryonic cells and in stem cells, due to low mitochondrical content, but increases by a rate of mitochondrial multipliation that is larger than a doubling of mitochondrial content per cell cycle. The rate of mitochondrical multiplication, thus, decides on the progress in differentiation and controls the number of amplification divisions between cell determination and terminal differentiation. This rate is modifiable by extracellular signals and cellular defects. Mutations for example in nuclear genes coding for mitochondrial proteins, are likely to decrease the rate so much that differentiation is arrested with ensuing neoplastic growth. Agents used in differentiation therapy and ionizing radiation overcome this arrest: the cell cycle is sensitive to these agents, but not the mitochondria which multiply during the transitory cell cycle inhibition, thus increasing the differentiation promoting activity. Differentiation arrest can be circumvented also by direct inhibition of nuclear differentiation preventing activity at the level of transcription or translation, whereas corresponding inhibition of mitochondrial differentiation promoting activity prevents differentiation. Accumulation of non-specific genetic damage causes persisting cell cycle prolongation and enhancement of differentiation which, apparently, are involved in senescence. The recent finding of increase in mitochondrial mass prior to release of cytochrome c, induction of differentiation and apoptosis points to similarities in the initial molecular pathways of differentiation and apoptosis.
AbstractList In multicellular organisms, the control of cell proliferation occurs, in part, by modulating the progress in differentiation. In normal and neoplastic cells, for example, progress towards terminal differentiation concludes cell proliferation, whereas arrest of progress in differentiation causes uncontrolled cell proliferation. Evidence is presented according to which the progress in differentiation depends on an increase in the ratio between mitochondrial differentiation promoting activity and nuclear differentiation preventing activity. This ratio is low in embryonic cells and in stem cells, due to low mitochondrial content, but increases by a rate of mitochondrial multiplication that is larger than a doubling of mitochondrial content per cell cycle. The rate of mitochondrial multiplication, thus, decides on the progress in differentiation and controls the number of amplification divisions between cell determination and terminal differentiation. This rate is modifiable by extracellular signals and cellular defects. Mutations, for example in nuclear genes coding for mitochondrial proteins, are likely to decrease the rate so much that differentiation is arrested with ensuing neoplastic growth. Agents used in differentiation therapy and ionizing radiation overcome this arrest: the cell cycle is sensitive to these agents, but not the mitochondria which multiply during the transitory cell cycle inhibition, thus increasing the differentiation promoting activity. Differentiation arrest can be circumvented also by direct inhibition of nuclear differentiation preventing activity at the level of transcription or translation, whereas corresponding inhibition of mitochondrial differentiation promoting activity prevents differentiation. Accumulation of non-specific genetic damage causes persisting cell cycle prolongation and enhancement of differentiation which, apparently, are involved in senescence. The recent finding of increase in mitochondrial mass prior to release of cytochrome c, induction of differentiation, and apoptosis points to similarities in the initial molecular pathways of differentiation and apoptosis.
In multicellular organisms, the control of cell proliferation occurs, in part, by modulating the progress in differentiation. In normal and neoplastic cells, for example, progress towards terminal differentiation concludes cell proliferation, whereas arrest of progress in differentiation causes uncontrolled cell proliferation. Evidence is presented according to which the progress in differentiation depends on an increase in the ratio between mitochondrial differentiation promoting activity and nuclear differentiation preventing activity. This ratio is low in embryonic cells and in stem cells, due to low mitochondrical content, but increases by a rate of mitochondrial multipliation that is larger than a doubling of mitochondrial content per cell cycle. The rate of mitochondrical multiplication, thus, decides on the progress in differentiation and controls the number of amplification divisions between cell determination and terminal differentiation. This rate is modifiable by extracellular signals and cellular defects. Mutations for example in nuclear genes coding for mitochondrial proteins, are likely to decrease the rate so much that differentiation is arrested with ensuing neoplastic growth. Agents used in differentiation therapy and ionizing radiation overcome this arrest: the cell cycle is sensitive to these agents, but not the mitochondria which multiply during the transitory cell cycle inhibition, thus increasing the differentiation promoting activity. Differentiation arrest can be circumvented also by direct inhibition of nuclear differentiation preventing activity at the level of transcription or translation, whereas corresponding inhibition of mitochondrial differentiation promoting activity prevents differentiation. Accumulation of non-specific genetic damage causes persisting cell cycle prolongation and enhancement of differentiation which, apparently, are involved in senescence. The recent finding of increase in mitochondrial mass prior to release of cytochrome c, induction of differentiation and apoptosis points to similarities in the initial molecular pathways of differentiation and apoptosis.
Author Peterson, Hans-Peter
von Wagenheim, Karl-Hartmut
Author_xml – sequence: 1
  givenname: Karl-Hartmut
  surname: von Wagenheim
  fullname: von Wagenheim, Karl-Hartmut
– sequence: 2
  givenname: Hans-Peter
  surname: Peterson
  fullname: Peterson, Hans-Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9745759$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS3UqmwLV25IPnEi23EcxzG3KuWjUis4lLPlOOOtq6y92FnE_vc47Iob4jQav-efZuZdkrMQAxLyhsGaAbTXz_Pg10ypbg2SsxdkxUCJqhMNOyMrgLquBFP8JbnM-RkAVMPbC3KhZCOkUCvyq49hTnGi0dEep4l-K413mMzsY6DDYXnYJMyZ-kBvvSsShtn_kT_QftpjpnOkD2ifTPB5mxfSzcaHzXvam2AxlbLPR5wJI318KvDd4RU5d2bK-PpUr8j3Tx8f-y_V_dfPd_3NfWXLpHM1Ng3U3CgmoRPS1DUXzrqySNsoCYZZ3iIfuBRWtR1IOXTgBDdWSumaoav5FXl35O5S_FGGnfXWZ1s2NQHjPmvJFYCA5r9GJplQrVqI66PRpphzQqd3yW9NOmgGeslEL5noJRO9ZFI-vD2R98MWx7_2UwhF7446ljv89Jh0th7L6Uaf0M56jP5f6N_c5Jwi
CitedBy_id crossref_primary_10_1016_j_bbamcr_2007_10_001
crossref_primary_10_1269_jrr_11099
crossref_primary_10_1186_s12858_015_0044_7
crossref_primary_10_1007_s00259_008_1024_6
crossref_primary_10_1002_jcp_21392
crossref_primary_10_1016_j_pharmthera_2008_11_002
crossref_primary_10_1152_ajpheart_00700_2002
crossref_primary_10_1016_S1040_8428_02_00121_X
crossref_primary_10_1089_ars_2009_2513
crossref_primary_10_1089_rej_1_1998_1_375
crossref_primary_10_1016_j_ejphar_2019_04_048
crossref_primary_10_1290_1071_2690_2002_038_0123_MIECIP_2_0_CO_2
crossref_primary_10_1006_excr_2000_4810
crossref_primary_10_1111_bph_12253
crossref_primary_10_1186_1742_4682_5_23
crossref_primary_10_1038_s41419_022_04736_6
crossref_primary_10_1007_s00418_011_0786_2
crossref_primary_10_1016_j_mehy_2006_10_055
crossref_primary_10_1111_j_0014_3820_2003_tb00306_x
crossref_primary_10_1016_S0378_5122_00_00190_0
crossref_primary_10_1002_bit_20936
crossref_primary_10_1007_s10522_008_9209_8
crossref_primary_10_3168_jds_S0022_0302_03_73880_6
crossref_primary_10_1002_advs_202307554
crossref_primary_10_1016_j_diff_2008_12_004
crossref_primary_10_1016_j_jphotochem_2012_11_010
crossref_primary_10_1139_w00_096
crossref_primary_10_7554_eLife_49683
crossref_primary_10_1016_j_gene_2005_03_020
crossref_primary_10_1007_s00432_008_0381_7
crossref_primary_10_1554_0014_3820_2003_057_0939_PMSASA_2_0_CO_2
crossref_primary_10_1667_RR2725_1
crossref_primary_10_1002_adhm_201500441
crossref_primary_10_1016_j_ydbio_2004_03_014
crossref_primary_10_1038_sj_bjc_6603868
crossref_primary_10_1093_jrr_rrs125
crossref_primary_10_1242_jcs_114_5_1011
crossref_primary_10_1371_journal_pone_0124833
crossref_primary_10_1006_jtbi_2001_2342
crossref_primary_10_1016_j_mrfmmm_2007_06_002
crossref_primary_10_1073_pnas_0603363103
crossref_primary_10_1177_107327480701400104
crossref_primary_10_1371_journal_pcbi_0030250
crossref_primary_10_1002__SICI_1097_0215_19991029_83_3_359__AID_IJC11_3_0_CO_2_6
crossref_primary_10_1006_jsbi_1999_4147
crossref_primary_10_1016_j_nano_2007_08_004
crossref_primary_10_1016_S0378_1119_00_00582_5
crossref_primary_10_1038_sj_bjc_6600959
ContentType Journal Article
Copyright 1998 Academic Press
Copyright_xml – notice: 1998 Academic Press
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
DOI 10.1006/jtbi.1998.0731
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8541
EndPage 678
ExternalDocumentID 10_1006_jtbi_1998_0731
9745759
S0022519398907317
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-~X
.GJ
.~1
1B1
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFRF
ABJNI
ABMAC
ABTAH
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
HLV
HVGLF
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
OAUVE
OZT
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSZ
T5K
TN5
VH1
XPP
YQT
ZMT
ZU3
ZY4
~02
~G-
~KM
AAXKI
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
0R~
AAYXX
ABFNM
ABGRD
ABXDB
AEBSH
AFJKZ
CITATION
FA8
G-2
GBLVA
HZ~
H~9
MVM
O9-
OHT
P-8
RIG
RNS
SEW
UQL
WUQ
ZGI
ZXP
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c436t-d44023a9170857a2235fcf00064970a1c36e3b375c968077b80f53ac777f4b823
IEDL.DBID .~1
ISSN 0022-5193
IngestDate Fri Aug 16 22:04:13 EDT 2024
Fri Aug 16 21:36:57 EDT 2024
Thu Sep 26 16:24:45 EDT 2024
Sat Sep 28 08:36:58 EDT 2024
Fri Feb 23 02:22:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-d44023a9170857a2235fcf00064970a1c36e3b375c968077b80f53ac777f4b823
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Feature-3
ObjectType-Review-1
PMID 9745759
PQID 17159692
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_73900504
proquest_miscellaneous_17159692
crossref_primary_10_1006_jtbi_1998_0731
pubmed_primary_9745759
elsevier_sciencedirect_doi_10_1006_jtbi_1998_0731
PublicationCentury 1900
PublicationDate 1998-08-21
PublicationDateYYYYMMDD 1998-08-21
PublicationDate_xml – month: 08
  year: 1998
  text: 1998-08-21
  day: 21
PublicationDecade 1990
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of theoretical biology
PublicationTitleAlternate J Theor Biol
PublicationYear 1998
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
SSID ssj0009436
Score 1.8307699
SecondaryResourceType review_article
Snippet In multicellular organisms, the control of cell proliferation occurs, in part, by modulating the progress in differentiation. In normal and neoplastic cells,...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 663
SubjectTerms Aging - pathology
Animals
Cell Differentiation - drug effects
Cell Differentiation - physiology
Cell Differentiation - radiation effects
Cell Division - physiology
Cell Nucleus - physiology
Cell Transformation, Neoplastic - pathology
Cellular Senescence - physiology
Humans
Mitochondria - physiology
Neoplasms - therapy
Title Control of Cell Proliferation by Progress in Differentiation: Clues to Mechanisms of Aging, Cancer Causation and Therapy
URI https://dx.doi.org/10.1006/jtbi.1998.0731
https://www.ncbi.nlm.nih.gov/pubmed/9745759
https://search.proquest.com/docview/17159692
https://search.proquest.com/docview/73900504
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJ67PHAQvdnfbpEnrbanKquziQWFvIWkbqKxdcbugF3-7M02reNiLp0Jo2vDNdB50vhlCzq1vLUTGxrM6jjzOpfFMGFkPPBELjAgli5GNPBqL4TO_n4STFZK0XBgsq2xsv7PptbVuVnoNmr23okCOb4C0SxZHkOCBG0QGOzgj0Onu12-ZR8zrMYF11Tre3TZu7IveS2UKZOtFXdy_zDEtCzxrB3S7RTabyJEO3OG2yUpe7pB1N0vyc5d8JK7onM4sTfLplD7iPB6bOwlT84kLdXJNi5JeN3NRKieZK5pM4eW0mtFRjlzgYv46xycNcIbRJU1QN97hsnDFP1SXGX1yDQn2yPPtzVMy9JqxCl4KWFRexiFnZBryNOxur0EqoU1tHZzEsq_9lImcGSbDNBZRX0oT9W3IdCqltNxEAdsnq-WszA8INRH3AxMLmWWWC18by1NhjIa0x4RpJjvkosVUvbnuGcr1SRYK0VeIvkL0O8RvIVd_5K_AtC_dc9bKRsFHgX86dJnPFnPlS4jSRBwsvwN0EFvf8A7Zd0L9OR8kWDi09PAfBzoiG46yCMbHPyar1fsiP4GYpTKntVKekrXB3cNw_A1EP-sB
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Sh9JeStI21G2T7KGQS1Rb2tWu1JtREpyHTQ4O5LbsSlpQcOUQy9D8-85opYYefMlJILSr5ZvRPNB8MwA_XOgcRsY2cCZNAiGUDWycuAA9EY-sjBVPiY08m8vpnbi6j-93IOu5MFRW2dl-b9Nba93dGXVojh6riji-EdEueZpggodu8A3siliFYgC7k8vr6fyl965oJwW2heu0oO_dOJajh8ZWRNhLftIW23zTttiz9UEXe_ChCx7ZxJ9vH3bK-iO89eMknz_Bn8zXnbOVY1m5XLJbGsnjSi9kZp_pRptfs6pmZ91olMYL5xfLlvhy1qzYrCQ6cLX-vaadJjTG6JRlpB5PeNn4-h9m6oItfE-Cz3B3cb7IpkE3WSHIEYsmKASmjdxgqkYN7g0KJna5a-OTVI1NmHNZcstVnKcyGStlk7GLucmVUk7YJOIHMKhXdfkFmE1EGNlUqqJwQobGOpFLaw1mPjbOCzWEkx5T_egbaGjfKllqQl8T-prQH0LYQ67_UwGN1n3rmuNeNhq_C_rZYepytVnrUGGgJtNo-xOohtT9RgzhwAv13_kwx6K5pV9fcaBjeDddzG70zeX8-hu89wxGtEXhdxg0T5vyEEOYxh51KvoXY2Tttw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Cell+Proliferation+by+Progress+in+Differentiation%3A+Clues+to+Mechanisms+of+Aging%2C+Cancer+Causation+and+Therapy&rft.jtitle=Journal+of+theoretical+biology&rft.au=von+Wagenheim%2C+Karl-Hartmut&rft.au=Peterson%2C+Hans-Peter&rft.date=1998-08-21&rft.issn=0022-5193&rft.volume=193&rft.issue=4&rft.spage=663&rft.epage=678&rft_id=info:doi/10.1006%2Fjtbi.1998.0731&rft.externalDBID=n%2Fa&rft.externalDocID=10_1006_jtbi_1998_0731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon