Domesticated rice alters the rhizosphere microbiome, reducing nitrogen fixation and increasing nitrous oxide emissions
Crop domestication has revolutionized food production but increased agriculture’s reliance on fertilizers and pesticides. We investigate differences in the rhizosphere microbiome functions of wild and domesticated rice, focusing on nitrogen (N) cycling genes. Shotgun metagenomics and real-time PCR r...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 2038 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.02.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crop domestication has revolutionized food production but increased agriculture’s reliance on fertilizers and pesticides. We investigate differences in the rhizosphere microbiome functions of wild and domesticated rice, focusing on nitrogen (N) cycling genes. Shotgun metagenomics and real-time PCR reveal a higher abundance of N-fixing genes in the wild rice rhizosphere microbiomes. Validation through transplanting rhizosphere microbiome suspensions shows the highest nitrogenase activity in soils with wild rice suspensions, regardless of planted rice type. Domesticated rice, however, exhibits an increased number of genes associated with nitrous oxide (N
2
O) production. Measurements of N
2
O emissions in soils with wild and domesticated rice are significantly higher in soil with domesticated rice compared to wild rice. Comparative root metabolomics between wild and domesticated rice further show that wild rice root exudates positively correlate with the frequency and abundance of microbial N-fixing genes, as indicated by metagenomic and qPCR, respectively. To confirm, we add wild and domesticated rice root metabolites to black soil, and qPCR shows that wild rice exudates maximize microbial N-fixing gene abundances and nitrogenase activity. Collectively, these findings suggest that rice domestication negatively impacts N-fixing bacteria and enriches bacteria that produce the greenhouse gas N
2
O, highlighting the environmental trade-offs associated with crop domestication.
Domestication of crops has boosted food production but increased dependence on fertilizers and pesticides. This study shows that wild rice harbors a higher abundance of nitrogen-fixing genes in the rhizosphere, while domesticated rice has more genes associated with nitrous oxide production. |
---|---|
AbstractList | Abstract Crop domestication has revolutionized food production but increased agriculture’s reliance on fertilizers and pesticides. We investigate differences in the rhizosphere microbiome functions of wild and domesticated rice, focusing on nitrogen (N) cycling genes. Shotgun metagenomics and real-time PCR reveal a higher abundance of N-fixing genes in the wild rice rhizosphere microbiomes. Validation through transplanting rhizosphere microbiome suspensions shows the highest nitrogenase activity in soils with wild rice suspensions, regardless of planted rice type. Domesticated rice, however, exhibits an increased number of genes associated with nitrous oxide (N2O) production. Measurements of N2O emissions in soils with wild and domesticated rice are significantly higher in soil with domesticated rice compared to wild rice. Comparative root metabolomics between wild and domesticated rice further show that wild rice root exudates positively correlate with the frequency and abundance of microbial N-fixing genes, as indicated by metagenomic and qPCR, respectively. To confirm, we add wild and domesticated rice root metabolites to black soil, and qPCR shows that wild rice exudates maximize microbial N-fixing gene abundances and nitrogenase activity. Collectively, these findings suggest that rice domestication negatively impacts N-fixing bacteria and enriches bacteria that produce the greenhouse gas N2O, highlighting the environmental trade-offs associated with crop domestication. Crop domestication has revolutionized food production but increased agriculture’s reliance on fertilizers and pesticides. We investigate differences in the rhizosphere microbiome functions of wild and domesticated rice, focusing on nitrogen (N) cycling genes. Shotgun metagenomics and real-time PCR reveal a higher abundance of N-fixing genes in the wild rice rhizosphere microbiomes. Validation through transplanting rhizosphere microbiome suspensions shows the highest nitrogenase activity in soils with wild rice suspensions, regardless of planted rice type. Domesticated rice, however, exhibits an increased number of genes associated with nitrous oxide (N2O) production. Measurements of N2O emissions in soils with wild and domesticated rice are significantly higher in soil with domesticated rice compared to wild rice. Comparative root metabolomics between wild and domesticated rice further show that wild rice root exudates positively correlate with the frequency and abundance of microbial N-fixing genes, as indicated by metagenomic and qPCR, respectively. To confirm, we add wild and domesticated rice root metabolites to black soil, and qPCR shows that wild rice exudates maximize microbial N-fixing gene abundances and nitrogenase activity. Collectively, these findings suggest that rice domestication negatively impacts N-fixing bacteria and enriches bacteria that produce the greenhouse gas N2O, highlighting the environmental trade-offs associated with crop domestication.Domestication of crops has boosted food production but increased dependence on fertilizers and pesticides. This study shows that wild rice harbors a higher abundance of nitrogen-fixing genes in the rhizosphere, while domesticated rice has more genes associated with nitrous oxide production. Crop domestication has revolutionized food production but increased agriculture’s reliance on fertilizers and pesticides. We investigate differences in the rhizosphere microbiome functions of wild and domesticated rice, focusing on nitrogen (N) cycling genes. Shotgun metagenomics and real-time PCR reveal a higher abundance of N-fixing genes in the wild rice rhizosphere microbiomes. Validation through transplanting rhizosphere microbiome suspensions shows the highest nitrogenase activity in soils with wild rice suspensions, regardless of planted rice type. Domesticated rice, however, exhibits an increased number of genes associated with nitrous oxide (N 2 O) production. Measurements of N 2 O emissions in soils with wild and domesticated rice are significantly higher in soil with domesticated rice compared to wild rice. Comparative root metabolomics between wild and domesticated rice further show that wild rice root exudates positively correlate with the frequency and abundance of microbial N-fixing genes, as indicated by metagenomic and qPCR, respectively. To confirm, we add wild and domesticated rice root metabolites to black soil, and qPCR shows that wild rice exudates maximize microbial N-fixing gene abundances and nitrogenase activity. Collectively, these findings suggest that rice domestication negatively impacts N-fixing bacteria and enriches bacteria that produce the greenhouse gas N 2 O, highlighting the environmental trade-offs associated with crop domestication. Domestication of crops has boosted food production but increased dependence on fertilizers and pesticides. This study shows that wild rice harbors a higher abundance of nitrogen-fixing genes in the rhizosphere, while domesticated rice has more genes associated with nitrous oxide production. Crop domestication has revolutionized food production but increased agriculture's reliance on fertilizers and pesticides. We investigate differences in the rhizosphere microbiome functions of wild and domesticated rice, focusing on nitrogen (N) cycling genes. Shotgun metagenomics and real-time PCR reveal a higher abundance of N-fixing genes in the wild rice rhizosphere microbiomes. Validation through transplanting rhizosphere microbiome suspensions shows the highest nitrogenase activity in soils with wild rice suspensions, regardless of planted rice type. Domesticated rice, however, exhibits an increased number of genes associated with nitrous oxide (N2O) production. Measurements of N2O emissions in soils with wild and domesticated rice are significantly higher in soil with domesticated rice compared to wild rice. Comparative root metabolomics between wild and domesticated rice further show that wild rice root exudates positively correlate with the frequency and abundance of microbial N-fixing genes, as indicated by metagenomic and qPCR, respectively. To confirm, we add wild and domesticated rice root metabolites to black soil, and qPCR shows that wild rice exudates maximize microbial N-fixing gene abundances and nitrogenase activity. Collectively, these findings suggest that rice domestication negatively impacts N-fixing bacteria and enriches bacteria that produce the greenhouse gas N2O, highlighting the environmental trade-offs associated with crop domestication.Crop domestication has revolutionized food production but increased agriculture's reliance on fertilizers and pesticides. We investigate differences in the rhizosphere microbiome functions of wild and domesticated rice, focusing on nitrogen (N) cycling genes. Shotgun metagenomics and real-time PCR reveal a higher abundance of N-fixing genes in the wild rice rhizosphere microbiomes. Validation through transplanting rhizosphere microbiome suspensions shows the highest nitrogenase activity in soils with wild rice suspensions, regardless of planted rice type. Domesticated rice, however, exhibits an increased number of genes associated with nitrous oxide (N2O) production. Measurements of N2O emissions in soils with wild and domesticated rice are significantly higher in soil with domesticated rice compared to wild rice. Comparative root metabolomics between wild and domesticated rice further show that wild rice root exudates positively correlate with the frequency and abundance of microbial N-fixing genes, as indicated by metagenomic and qPCR, respectively. To confirm, we add wild and domesticated rice root metabolites to black soil, and qPCR shows that wild rice exudates maximize microbial N-fixing gene abundances and nitrogenase activity. Collectively, these findings suggest that rice domestication negatively impacts N-fixing bacteria and enriches bacteria that produce the greenhouse gas N2O, highlighting the environmental trade-offs associated with crop domestication. Crop domestication has revolutionized food production but increased agriculture's reliance on fertilizers and pesticides. We investigate differences in the rhizosphere microbiome functions of wild and domesticated rice, focusing on nitrogen (N) cycling genes. Shotgun metagenomics and real-time PCR reveal a higher abundance of N-fixing genes in the wild rice rhizosphere microbiomes. Validation through transplanting rhizosphere microbiome suspensions shows the highest nitrogenase activity in soils with wild rice suspensions, regardless of planted rice type. Domesticated rice, however, exhibits an increased number of genes associated with nitrous oxide (N O) production. Measurements of N O emissions in soils with wild and domesticated rice are significantly higher in soil with domesticated rice compared to wild rice. Comparative root metabolomics between wild and domesticated rice further show that wild rice root exudates positively correlate with the frequency and abundance of microbial N-fixing genes, as indicated by metagenomic and qPCR, respectively. To confirm, we add wild and domesticated rice root metabolites to black soil, and qPCR shows that wild rice exudates maximize microbial N-fixing gene abundances and nitrogenase activity. Collectively, these findings suggest that rice domestication negatively impacts N-fixing bacteria and enriches bacteria that produce the greenhouse gas N O, highlighting the environmental trade-offs associated with crop domestication. |
ArticleNumber | 2038 |
Author | Rong, Jun Song, Zhiping Wang, Jilin Pang, Yingnan Tian, Chunjie Tian, Lei Wang, Changji Chen, Dazhou Yao, Zongmu Ye, Libo Raaijmakers, Jos M. Cai, Yaohui Sun, Yu Ji, Li Chang, Jingjing Wang, Enze Zhang, Jianfeng Shi, Shaohua Chen, Hongping Costa, Ohana Y. A. Kuramae, Eiko E. |
Author_xml | – sequence: 1 givenname: Jingjing surname: Chang fullname: Chang, Jingjing organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) – sequence: 2 givenname: Ohana Y. A. surname: Costa fullname: Costa, Ohana Y. A. organization: Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) – sequence: 3 givenname: Yu surname: Sun fullname: Sun, Yu organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences – sequence: 4 givenname: Jilin surname: Wang fullname: Wang, Jilin organization: Super-rice Research and Development Center, National Engineering Laboratory for Rice – sequence: 5 givenname: Lei surname: Tian fullname: Tian, Lei organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences – sequence: 6 givenname: Shaohua surname: Shi fullname: Shi, Shaohua organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences – sequence: 7 givenname: Enze surname: Wang fullname: Wang, Enze organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences – sequence: 8 givenname: Li surname: Ji fullname: Ji, Li organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) – sequence: 9 givenname: Changji orcidid: 0009-0003-4415-5119 surname: Wang fullname: Wang, Changji organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences – sequence: 10 givenname: Yingnan surname: Pang fullname: Pang, Yingnan organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, School of Resources and Environment, Jilin Agricultural University, Changchun – sequence: 11 givenname: Zongmu surname: Yao fullname: Yao, Zongmu organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences – sequence: 12 givenname: Libo surname: Ye fullname: Ye, Libo organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, School of Resources and Environment, Jilin Agricultural University, Changchun – sequence: 13 givenname: Jianfeng surname: Zhang fullname: Zhang, Jianfeng organization: Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, School of Resources and Environment, Jilin Agricultural University, Changchun – sequence: 14 givenname: Hongping surname: Chen fullname: Chen, Hongping organization: Super-rice Research and Development Center, National Engineering Laboratory for Rice – sequence: 15 givenname: Yaohui surname: Cai fullname: Cai, Yaohui organization: Super-rice Research and Development Center, National Engineering Laboratory for Rice – sequence: 16 givenname: Dazhou surname: Chen fullname: Chen, Dazhou organization: Super-rice Research and Development Center, National Engineering Laboratory for Rice – sequence: 17 givenname: Zhiping surname: Song fullname: Song, Zhiping organization: School of Life Science, Fudan University – sequence: 18 givenname: Jun orcidid: 0000-0003-1408-2898 surname: Rong fullname: Rong, Jun organization: Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University – sequence: 19 givenname: Jos M. orcidid: 0000-0003-1608-6614 surname: Raaijmakers fullname: Raaijmakers, Jos M. organization: Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) – sequence: 20 givenname: Chunjie orcidid: 0000-0003-1792-6005 surname: Tian fullname: Tian, Chunjie email: tiancj@iga.ac.cn organization: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, School of Resources and Environment, Jilin Agricultural University, Changchun – sequence: 21 givenname: Eiko E. orcidid: 0000-0001-6701-8668 surname: Kuramae fullname: Kuramae, Eiko E. email: E.Kuramae@nioo.knaw.nl organization: Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40016229$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhi1URMvQF2CBLLFhQcC3OMkSlVulSmxgbTn2yYxHiT3YSTXw9Jw2ZUAs8MbW0Xcu__H_lJzFFIGQ55y94Uy2b4viSjcVE3VVN4LL6viIXAimeMUbIc_-ep-Ty1L2DI_seKvUE3KuGONaiO6C3L5PE5Q5ODuDpzk4oHacIRc674DmXfiZymEHGegUXE59QPw1zeAXF-KWxjDntIVIh3C0c0iR2uhpiC6DLSdgKTQdgwcKUygFqfKMPB7sWODy4d6Qbx8_fL36XN18-XR99e6mckrqufKiBsHapnceBqbZoARvB8FQFgYG4bnjDThgddMMmnvBtK5t0zJZAxNqkBtyvdb1ye7NIYfJ5h8m2WDuAylvjc2ofgTja9H6rvNO971ytreq6XAKoXjrVVtLrPVqrXXI6fuCSzOoxsE42ggo0UicSui2kxrRl_-g-7TkiErvKN61miO3IS8eqKWfwJ_G-_07CIgVwM2XkmE4IZyZOxeY1QUGXWDuXWCOmCTXpIJw3EL-0_s_Wb8AnP21aA |
Cites_doi | 10.1111/gcbb.12519 10.1038/nature08883 10.1038/nmeth.3103 10.1016/j.plaphy.2018.04.009 10.3389/fmicb.2018.03349 10.1016/j.soilbio.2022.108563 10.1016/j.geoderma.2020.114917 10.1186/2049-2618-2-26 10.1016/j.apsoil.2016.07.009 10.1111/evo.12594 10.1111/j.1574-6976.2000.tb00552.x 10.3390/microorganisms9010175 10.1016/j.soilbio.2020.108042 10.1038/s41586-020-03091-w 10.1007/s11103-015-0337-7 10.1016/j.soilbio.2004.04.006 10.1016/j.envpol.2020.114862 10.1038/nplants.2017.83 10.1038/s41396-021-00923-z 10.1016/j.resconrec.2020.104924 10.3389/fmicb.2021.610823 10.1111/j.1365-2486.2012.02639.x 10.1186/s40168-024-01770-8 10.1007/s13199-021-00787-z 10.1016/j.soilbio.2021.108541 10.1007/s13199-020-00679-8 10.1007/s00248-017-1108-6 10.1007/s11104-021-05036-2 10.1264/jsme2.ME09160 10.1073/pnas.1414592112 10.1126/science.abn6350 10.1038/ismej.2017.126 10.1007/s00203-019-01638-8 10.1186/s12284-016-0111-8 10.1038/s41564-018-0171-1 10.1111/aab.12045 10.1016/j.scitotenv.2021.150131 10.3389/fmicb.2018.00674 10.1007/978-1-4939-8850-1 10.1093/bioinformatics/btr026 10.1093/nar/28.1.27 10.1093/bioinformatics/btv033 10.1016/j.tree.2020.01.006 10.1111/nph.16760 10.7717/peerj.1165 10.1093/nar/gkv1248 10.1186/s40168-022-01360-6 10.1021/es8031055 10.1128/AEM.01250-10 10.1016/j.scitotenv.2016.05.134 10.1016/j.soilbio.2020.107741 10.1016/S0038-0717(02)00143-8 10.1128/AEM.01488-17 10.1038/nmeth.3176 10.1093/bioinformatics/btu170 10.1007/s00203-016-1325-2 10.1186/1471-2105-11-119 10.1093/bioinformatics/btu153 10.1016/j.agwat.2021.106739 10.1016/j.soilbio.2021.108391 10.1038/s41587-019-0104-4 10.1007/s00284-023-03213-3 10.1016/j.tim.2015.10.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-025-57213-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_d528d99dc6bb4caba479c432418d4853 40016229 10_1038_s41467_025_57213_x |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c436t-d25e2087bcdef060f4218f20172deff2d1c17ece0577f61d20665a78035e024f3 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:19 EDT 2025 Thu Jul 10 22:51:44 EDT 2025 Wed Aug 13 04:07:36 EDT 2025 Mon May 12 02:38:44 EDT 2025 Tue Jul 01 05:28:08 EDT 2025 Fri Feb 28 01:53:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-d25e2087bcdef060f4218f20172deff2d1c17ece0577f61d20665a78035e024f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1792-6005 0000-0003-1608-6614 0000-0001-6701-8668 0000-0003-1408-2898 0009-0003-4415-5119 |
OpenAccessLink | https://www.proquest.com/docview/3171986189?pq-origsite=%requestingapplication% |
PMID | 40016229 |
PQID | 3171986189 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d528d99dc6bb4caba479c432418d4853 proquest_miscellaneous_3172268936 proquest_journals_3171986189 pubmed_primary_40016229 crossref_primary_10_1038_s41467_025_57213_x springer_journals_10_1038_s41467_025_57213_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-27 |
PublicationDateYYYYMMDD | 2025-02-27 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | KS Ramirez (57213_CR16) 2012; 18 IR Kennedy (57213_CR8) 2004; 36 M Andrews (57213_CR1) 2013; 163 M Yoshida (57213_CR30) 2009; 25 MFA Leite (57213_CR25) 2020; 151 PJ Mouser (57213_CR34) 2009; 43 SS Porter (57213_CR14) 2020; 35 S Zhu (57213_CR9) 2016; 107 DD Kang (57213_CR54) 2015; 3 AM Bolger (57213_CR45) 2014; 30 M Kanehisa (57213_CR50) 2000; 28 JE Pérez-Jaramillo (57213_CR13) 2016; 90 T Seemann (57213_CR49) 2014; 30 KS Lourenço (57213_CR32) 2018; 9 CH Orr (57213_CR12) 2011; 77 J Chang (57213_CR24) 2021; 9 CH Xu (57213_CR37) 2023; 80 L Tian (57213_CR19) 2018; 128 GX Xing (57213_CR29) 2002; 34 MR Olm (57213_CR56) 2017; 11 P Remigi (57213_CR10) 2016; 24 R Schmieder (57213_CR46) 2011; 27 H Yue (57213_CR63) 2024; 12 TR Schlemper (57213_CR66) 2018; 76 D Li (57213_CR47) 2015; 31 KF Ettwig (57213_CR31) 2010; 464 L Tian (57213_CR22) 2022; 803 S Shi (57213_CR28) 2019; 201 MJ Beltran-Garcia (57213_CR5) 2021; 84 YW Wu (57213_CR53) 2014; 2 Y Liu (57213_CR4) 2021; 590 O Steenhoudt (57213_CR11) 2000; 24 57213_CR51 H Liu (57213_CR26) 2017; 3 L Liu (57213_CR40) 2020; 265 JM Raaijmakers (57213_CR38) 2022; 378 KS Lourenço (57213_CR60) 2018; 10 P Piromyou (57213_CR35) 2017; 83 Y Sun (57213_CR23) 2021; 466 Y Zhong (57213_CR21) 2020; 143 57213_CR2 N Ramdani (57213_CR36) 2020; 81 Y Xia (57213_CR41) 2016; 566 Y Liu (57213_CR39) 2022; 165 57213_CR59 L Tian (57213_CR18) 2017; 199 AKA Suleiman (57213_CR61) 2020; 161 DJ Weese (57213_CR15) 2015; 69 J Tamames (57213_CR44) 2019; 9 J Chang (57213_CR33) 2022; 10 J Lu (57213_CR3) 2021; 247 J Edwards (57213_CR43) 2015; 112 A Williams (57213_CR64) 2021; 161 A Favela (57213_CR42) 2021; 15 J Alneberg (57213_CR52) 2014; 11 J Oksanen (57213_CR65) 2013; 2 H Qin (57213_CR6) 2021; 385 CM Sieber (57213_CR55) 2018; 3 J Zhang (57213_CR20) 2019; 37 D Hyatt (57213_CR48) 2010; 11 L Henneron (57213_CR7) 2020; 228 J Huerta-Cepas (57213_CR58) 2016; 44 M Shenton (57213_CR27) 2016; 9 KS Lourenço (57213_CR62) 2022; 166 B Buchfink (57213_CR57) 2015; 12 J Chang (57213_CR17) 2021; 12 |
References_xml | – volume: 10 start-page: 645 year: 2018 ident: 57213_CR60 publication-title: GCB Bioenergy doi: 10.1111/gcbb.12519 – volume: 464 start-page: 543 year: 2010 ident: 57213_CR31 publication-title: Nature doi: 10.1038/nature08883 – volume: 11 start-page: 1144 year: 2014 ident: 57213_CR52 publication-title: Nat. Methods doi: 10.1038/nmeth.3103 – volume: 128 start-page: 134 year: 2018 ident: 57213_CR19 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.04.009 – volume: 9 start-page: 3349 year: 2019 ident: 57213_CR44 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.03349 – volume: 166 start-page: 108563 year: 2022 ident: 57213_CR62 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2022.108563 – volume: 385 year: 2021 ident: 57213_CR6 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114917 – volume: 2 start-page: 1 year: 2014 ident: 57213_CR53 publication-title: Microbiome doi: 10.1186/2049-2618-2-26 – volume: 107 start-page: 324 year: 2016 ident: 57213_CR9 publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.07.009 – volume: 69 start-page: 631 year: 2015 ident: 57213_CR15 publication-title: Evolution doi: 10.1111/evo.12594 – volume: 24 start-page: 487 year: 2000 ident: 57213_CR11 publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2000.tb00552.x – volume: 9 start-page: 175 year: 2021 ident: 57213_CR24 publication-title: Microorganisms doi: 10.3390/microorganisms9010175 – volume: 151 start-page: 108042 year: 2020 ident: 57213_CR25 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108042 – volume: 590 start-page: 600 year: 2021 ident: 57213_CR4 publication-title: Nature doi: 10.1038/s41586-020-03091-w – volume: 90 start-page: 635 year: 2016 ident: 57213_CR13 publication-title: Plant Mol. Biol. doi: 10.1007/s11103-015-0337-7 – volume: 36 start-page: 1229 year: 2004 ident: 57213_CR8 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.04.006 – volume: 265 start-page: 114862 year: 2020 ident: 57213_CR40 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114862 – volume: 3 start-page: 1 year: 2017 ident: 57213_CR26 publication-title: Nat. Plants doi: 10.1038/nplants.2017.83 – volume: 15 start-page: 2454 year: 2021 ident: 57213_CR42 publication-title: ISME J. doi: 10.1038/s41396-021-00923-z – volume: 161 start-page: 104924 year: 2020 ident: 57213_CR61 publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2020.104924 – volume: 12 start-page: 610823 year: 2021 ident: 57213_CR17 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.610823 – volume: 18 start-page: 1918 year: 2012 ident: 57213_CR16 publication-title: Global Change Biol. doi: 10.1111/j.1365-2486.2012.02639.x – ident: 57213_CR51 – volume: 12 start-page: 44 year: 2024 ident: 57213_CR63 publication-title: Microbiome doi: 10.1186/s40168-024-01770-8 – volume: 84 start-page: 379 year: 2021 ident: 57213_CR5 publication-title: Symbiosis doi: 10.1007/s13199-021-00787-z – volume: 165 start-page: 108541 year: 2022 ident: 57213_CR39 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108541 – volume: 81 start-page: 25 year: 2020 ident: 57213_CR36 publication-title: Symbiosis doi: 10.1007/s13199-020-00679-8 – volume: 76 start-page: 205 year: 2018 ident: 57213_CR66 publication-title: Microb. Ecol. doi: 10.1007/s00248-017-1108-6 – volume: 466 start-page: 81 year: 2021 ident: 57213_CR23 publication-title: Plant Soil doi: 10.1007/s11104-021-05036-2 – volume: 25 start-page: 45 year: 2009 ident: 57213_CR30 publication-title: Microbes Environ. doi: 10.1264/jsme2.ME09160 – volume: 112 start-page: E911 year: 2015 ident: 57213_CR43 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1414592112 – ident: 57213_CR2 – volume: 378 start-page: 599 year: 2022 ident: 57213_CR38 publication-title: Science doi: 10.1126/science.abn6350 – volume: 11 start-page: 2864 year: 2017 ident: 57213_CR56 publication-title: ISME J. doi: 10.1038/ismej.2017.126 – volume: 201 start-page: 879 year: 2019 ident: 57213_CR28 publication-title: Arch. Microbiol. doi: 10.1007/s00203-019-01638-8 – volume: 9 year: 2016 ident: 57213_CR27 publication-title: Rice doi: 10.1186/s12284-016-0111-8 – volume: 3 start-page: 836 year: 2018 ident: 57213_CR55 publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0171-1 – volume: 163 start-page: 174 year: 2013 ident: 57213_CR1 publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12045 – volume: 803 start-page: 150131 year: 2022 ident: 57213_CR22 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150131 – volume: 9 start-page: 674 year: 2018 ident: 57213_CR32 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00674 – ident: 57213_CR59 doi: 10.1007/978-1-4939-8850-1 – volume: 27 start-page: 863 year: 2011 ident: 57213_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr026 – volume: 28 start-page: 27 year: 2000 ident: 57213_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.27 – volume: 2 start-page: 1 year: 2013 ident: 57213_CR65 publication-title: version – volume: 31 start-page: 1674 year: 2015 ident: 57213_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 – volume: 35 start-page: 426 year: 2020 ident: 57213_CR14 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2020.01.006 – volume: 228 start-page: 1269 year: 2020 ident: 57213_CR7 publication-title: New Phytol. doi: 10.1111/nph.16760 – volume: 3 start-page: e1165 year: 2015 ident: 57213_CR54 publication-title: PeerJ doi: 10.7717/peerj.1165 – volume: 44 start-page: D286 year: 2016 ident: 57213_CR58 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1248 – volume: 10 start-page: 1 year: 2022 ident: 57213_CR33 publication-title: Microbiome doi: 10.1186/s40168-022-01360-6 – volume: 43 start-page: 4386 year: 2009 ident: 57213_CR34 publication-title: Environ. Sci. Technol. doi: 10.1021/es8031055 – volume: 77 start-page: 911 year: 2011 ident: 57213_CR12 publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.01250-10 – volume: 566 start-page: 1094 year: 2016 ident: 57213_CR41 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.134 – volume: 143 start-page: 107741 year: 2020 ident: 57213_CR21 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107741 – volume: 34 start-page: 1593 year: 2002 ident: 57213_CR29 publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00143-8 – volume: 83 start-page: e01488 year: 2017 ident: 57213_CR35 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01488-17 – volume: 12 start-page: 59 year: 2015 ident: 57213_CR57 publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 30 start-page: 2114 year: 2014 ident: 57213_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 199 start-page: 1 year: 2017 ident: 57213_CR18 publication-title: Arch. Microbiol. doi: 10.1007/s00203-016-1325-2 – volume: 11 start-page: 1 year: 2010 ident: 57213_CR48 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-119 – volume: 30 start-page: 2068 year: 2014 ident: 57213_CR49 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu153 – volume: 247 start-page: 106739 year: 2021 ident: 57213_CR3 publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2021.106739 – volume: 161 year: 2021 ident: 57213_CR64 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108391 – volume: 37 start-page: 676 year: 2019 ident: 57213_CR20 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0104-4 – volume: 80 start-page: 113 year: 2023 ident: 57213_CR37 publication-title: Curr. Microbiol. doi: 10.1007/s00284-023-03213-3 – volume: 24 start-page: 63 year: 2016 ident: 57213_CR10 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2015.10.007 |
SSID | ssj0000391844 |
Score | 2.485409 |
Snippet | Crop domestication has revolutionized food production but increased agriculture’s reliance on fertilizers and pesticides. We investigate differences in the... Crop domestication has revolutionized food production but increased agriculture's reliance on fertilizers and pesticides. We investigate differences in the... Abstract Crop domestication has revolutionized food production but increased agriculture’s reliance on fertilizers and pesticides. We investigate differences... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 2038 |
SubjectTerms | 45/22 45/23 45/41 45/77 631/326/2565/855 704/158/2456 704/844/685 Abundance Agrochemicals Bacteria Bacteria - genetics Bacteria - metabolism Crops Domestication Emission measurements Emissions Exudates Fertilizers Food Food production Genes Greenhouse gases Humanities and Social Sciences Metabolites Metabolomics Metagenomics Microbiomes Microbiota - genetics Microorganisms multidisciplinary Nitrogen Nitrogen - metabolism Nitrogen fixation Nitrogen Fixation - genetics Nitrogenase Nitrogenase - genetics Nitrogenase - metabolism Nitrogenation Nitrous oxide Nitrous Oxide - metabolism Oryza - genetics Oryza - metabolism Oryza - microbiology Pesticides Plant Roots - metabolism Plant Roots - microbiology Real time Rhizosphere Rice Science Science (multidisciplinary) Soil - chemistry Soil Microbiology Soils |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuqAUKoQtyJW40avwZ51haVlUlOLHS3qzEnkh72Gy12VbLv--Mk12KCuLCLXKcxJ4Ze97E9hvGPjWxjELWMofgVK6NcLlzAq9UAVEQAV5Dh5O_fbfXM30zN_NHqb5oT9hADzwI7jwa6WJVxWCbRoe6qXVZBaKREy5q9DU0-6LPexRMpTlYVRi66PGUTKHcea_TnEDZWw1GPSrf_uaJEmH_n1DmkxXS5Himh-zliBj5xdDSI_YMulfs-ZBD8udrdn-1WhJTBu1sipwognhaAe85Qju-pi11PVEHAF8uBtKlJZzxNTG24uc4juj1Co2It4ttUhKvu8gXHYHJfl_hruer7SICp-xw9H-tf8Nm068_Lq_zMZlCjtKymzxKA7JwZRMitIUtWo3OvZUUAmJBK6MIooQAiN_K1opINO-mLl2hDKAfb9UxO-hWHbxjXJYOAirYgKaDqY0TNoYojFMtWFCQsc87wfrbgTPDp7Vu5fygBo9q8EkNfpuxLyT7fU3iu04FaAV-tAL_LyvI2GSnOT8Owt4jNBKVs8JVGTvd30Y50ZpI3QEKj-ogAEXQZjP2dtD4viWa8LCU-PTZzgR-vfzvHXr_Pzp0wl5IslU6PF9O2MFmfQcfEP5smo_J0h8AY-EBHA priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuqLwDBRmJG42In3GOsFBVSHCiUm9WYk_QHjZByRYt_74zzgMhyoFb5NiJMzOOP9sz3zD2pollFLKWOQSncm2Ey50TeKUKiIII8BoKTv7y1V5c6s9X5uqIySUWJjntJ0rL9JtevMPejToNaUq-anDRonLEjXeIup2semM3674KMZ47ref4mEK5W5r-MQclqv7b8OVfZ6Npyjk_YfdnrMjfT717wI6ge8juTtkjfz1iPz_2O-LIIJ-myIkciKez75EjqOMDOdONRBoAfLed6JZ2cMYH4mrF13Ecy0OP5sPb7SGph9dd5NuOYOS4VrgeeX_YRuCUF4521sbH7PL807fNRT6nUciDVnafR2lAFq5sQoS2sEWrcVpvJS3-sKCVUQRRQgBEbmVrRSSCd1OXrlAGcAZv1RN23PUdPGNclg4CqtaAppDUxgkbQxTGqRYsKMjY20Ww_sfEluHTKbdyflKDRzX4pAZ_yNgHkv1ak5iuU0E_fPez5n000sWqisE2jQ51U-uyCkQjKFzUiDUydrpozs_Db_QIikTlrHBVxl6vt1FOdBpSd4DCozoIPRGu2Yw9nTS-9kQTEpYSW58tJvD74f_-oOf_V_0FuyfJKilAvjxlx_vhGl4ixNk3r5JN3wBghva2 priority: 102 providerName: Springer Nature |
Title | Domesticated rice alters the rhizosphere microbiome, reducing nitrogen fixation and increasing nitrous oxide emissions |
URI | https://link.springer.com/article/10.1038/s41467-025-57213-x https://www.ncbi.nlm.nih.gov/pubmed/40016229 https://www.proquest.com/docview/3171986189 https://www.proquest.com/docview/3172268936 https://doaj.org/article/d528d99dc6bb4caba479c432418d4853 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8CozISbyxa_BHbfUJdWZkqMSFgUt-sxHamPjQZSYfKf8-dk2ZCfLw0leN8-c6-n-_s3xHytvTaM17wNDgjUpkzkxrD4J_IgmdIgFfi5uRPF-r8Ui5X-WpwuHXDssr9mBgHat849JGfgJ2D-bFiZvr--nuKWaMwujqk0LhLDpG6DJd06ZUefSzIfm6kHPbKZMKcdDKODJjDNYe5j0h3v9mjSNv_N6z5R5w0mp_FQ_JgwI101gv6EbkT6sfkXp9J8ucT8uNDs0G-DFzf5CkSBdEYB-8oADza4sK6DgkEAt2se-qlTTimLfK2wuMo9Ou2AVWi1XoXRUWL2tN1jZCyGyvcdLTZrX2gmCMOvWzdU3K5OPs2P0-HlAqpk0JtU8_zwDOjS-dDlamskmDiK44TQSiouGeO6eACoDhdKeaR7D0vtMlEHsCaV-IZOaibOrwglGsTHIg5DxK3p5aGKe88y42oggoiJOTdvmHtdc-cYWPEWxjbi8GCGGwUg90l5BTbfqyJrNexoGmv7NCJrM-58dOpd6ospSvKQuqpQ0pBZrwE3JGQo73k7NAVO3urOAl5M56GdsLISFEHaDysAzAUoJtKyPNe4uObSETFnMPVx3sVuL35vz_o5f_f5RW5z1ELcXO8PiIH2_YmvAZ4sy0nUYfh1yw-TsjhbLb8uoTj6dnF5y9QOlfzSXQc_AJWgv5c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviGcJFDASnGjU-JHEOSAElGVLH6dW6s0ktoP2sEmbbGH7p_iNzCSbVIjHrbcocV4zY89nj-cbgFeFSx0XuQi91TJUMdeh1hyPZOQdJwK8gpKTD4-S6Yn6chqfrsHPIReGtlUOY2I3ULva0hr5Dvo5nB8nXGfvzs5DqhpF0dWhhEZvFvv-8gdO2dq3e7uo39dCTD4df5yGq6oCoVUyWYROxF5EOi2s82WURKVCL1cKmgvhiVI4bnnqrUcgk5YJd8R3HuepjmTs0aGVEp97A24qKTPqUXryeVzTIbZ1rdQqNyeSeqdV3UhENWNjnGvJcPmb_-vKBPwN2_4Rl-3c3eQu3FnhVPa-N6x7sOar-3Crr1x5-QC-79Zz4ueg_VSOETER6-LuLUNAyRrayNcSYYFn81lP9TT326whnlh8HcNxpKnRdFk5W3amwfLKsVlFELYdG1y0rF7OnGdUk45W9dqHcHItwn4E61Vd-cfARKq9RbOKvaJ02ELzxFnHYy1Ln3jpA3gzCNac9UwdpouwS216NRhUg-nUYJYBfCDZjy2JZbs7UTffzKrTGhcL7bLM2aQolM2LXKWZJQpDrp1CnBPA1qA5s-r6rbky1ABejpdRThSJySuPwqM2CHsRKiYBbPYaH79EEQoXAu_eHkzg6uH__qEn__-WF3B7enx4YA72jvafwoYgi6TE_HQL1hfNhX-G0GpRPO_smcHX6-5AvwDXUjS5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k1KASPBiUYbv2LvASFgWbUUKg5U2ptJbAftYZM22cL2r_HrmMmrQjxuva2y3mwyM5757PF8Q8jz3GvPeMbj4IyIpWImNobBJ5EEz5AAL8fi5E9H6f6x_LBQiy3yc6iFwWOVg09sHbWvHO6RTyDOwfo4ZWY6KfpjEZ9n89cnpzF2kMJM69BOozORw3D-A5ZvzauDGej6Befz91_e7cd9h4HYSZGuY89V4InRufOhSNKkkBDxCo7rIrhQcM8c08EFADW6SJlH7nOVaZMIFSC4FQLue4Vc1UIxnGN6ocf9HWReN1L2dTqJMJNGtl4J-8cqWHeJePNbLGxbBvwN5_6Ro21D3_wWudljVvqmM7LbZCuUd8i1rovl-V3yfVatkKsDz1Z5iiRFtM3BNxTAJa3xUF-D5AWBrpYd7dMq7NEaOWPh7yj4lLoCM6bFctOaCc1KT5clwtlmHHDW0Gqz9IFifzrc4WvukeNLEfZ9sl1WZXhIKNcmODAxFSSWxuaGpd55powoQhpEiMjLQbD2pGPtsG22XRjbqcGCGmyrBruJyFuU_TgSGbfbC1X9zfYT2HrFjZ9OvUvzXLosz6SeOqQzZMZLwDwR2R00Z3s30NgLo43Is_FrkBNmZbIygPBwDEBggI1pRB50Gh-fRCIi5xx-vTeYwMXN__1CO_9_lqfkOkwd-_Hg6PARucHRILFGX--S7XV9Fh4DylrnT1pzpuTrZc-fXwzJOOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domesticated+rice+alters+the+rhizosphere+microbiome%2C+reducing+nitrogen+fixation+and+increasing+nitrous+oxide+emissions&rft.jtitle=Nature+communications&rft.date=2025-02-27&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=2038&rft_id=info:doi/10.1038%2Fs41467-025-57213-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |