An exploratory study of red raspberry ( L.) (poly)phenols/metabolites in human biological samples

Red raspberry ( Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, form...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 9; no. 2; pp. 86 - 818
Main Authors Zhang, Xuhuiqun, Sandhu, Amandeep, Edirisinghe, Indika, Burton-Freeman, Britt
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Red raspberry ( Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3- O -sophoroside, cyanidin 3- O -glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma. Characterization of red raspberry (poly)phenols in fruit, their metabolism, and presence in human biological samples after acute and chronic intake.
AbstractList Red raspberry ( Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3- O -sophoroside, cyanidin 3- O -glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma. Characterization of red raspberry (poly)phenols in fruit, their metabolism, and presence in human biological samples after acute and chronic intake.
Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-O-sophoroside, cyanidin 3-O-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.
Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-O-sophoroside, cyanidin 3-O-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-O-sophoroside, cyanidin 3-O-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.
Red raspberry ( Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3- O -sophoroside, cyanidin 3- O -glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.
Author Zhang, Xuhuiqun
Edirisinghe, Indika
Sandhu, Amandeep
Burton-Freeman, Britt
AuthorAffiliation Department of Nutrition
University of California
Institute for Food Safety and Health
Center for Nutrition Research
Illinois Institute of Technology
AuthorAffiliation_xml – sequence: 0
  name: Center for Nutrition Research
– sequence: 0
  name: Illinois Institute of Technology
– sequence: 0
  name: Department of Nutrition
– sequence: 0
  name: University of California
– sequence: 0
  name: Institute for Food Safety and Health
Author_xml – sequence: 1
  givenname: Xuhuiqun
  surname: Zhang
  fullname: Zhang, Xuhuiqun
– sequence: 2
  givenname: Amandeep
  surname: Sandhu
  fullname: Sandhu, Amandeep
– sequence: 3
  givenname: Indika
  surname: Edirisinghe
  fullname: Edirisinghe, Indika
– sequence: 4
  givenname: Britt
  surname: Burton-Freeman
  fullname: Burton-Freeman, Britt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29344587$$D View this record in MEDLINE/PubMed
BookMark eNqF0kFrHCEUAGApKU2a5tJ7i9DLprDJU0dHj2Fp0sJCLi30Jo7jJAZHp-pA99930s22EAr1osj33sP3fI2OYooOobcELggwdWnbIQFIxe5eoBMKDV0LDt-PDudGiWN0VsoDLIspJZV8hY6pYk3DZXuCzFXE7ucUUjY15R0ude53OA04ux5nU6bO5eV6hbcX53g1pbA7n-5dTKFcjq6aLgVfXcE-4vt5NBF3PoV0560JuJhxCq68QS8HE4o7e9pP0bfrT183n9fb25svm6vt2jZM1HVPyKD6TiirGDVt1wK0lsqub2lrwRpgQoCkTMDQcDVw3oDouGGU2MZZp9gpWu3zTjn9mF2pevTFuhBMdGkumlIKkhOi6H8pWdrElRKSL_TDM_qQ5hyXh2gKBKSQQj3Wfv-k5m50vZ6yH03e6UOfFwB7YHMqJbtBW19N9SnWbHzQBPTjNPWmvb79Pc2bJeTjs5BD1n_id3uci_3j_n4N9gve_Kaw
CitedBy_id crossref_primary_10_1016_j_bioorg_2018_05_016
crossref_primary_10_1016_j_jep_2022_115870
crossref_primary_10_3390_molecules24234220
crossref_primary_10_1039_D1FO02529E
crossref_primary_10_1016_j_freeradbiomed_2021_03_032
crossref_primary_10_1007_s11557_020_01614_3
crossref_primary_10_1016_j_foodchem_2022_132446
crossref_primary_10_3390_antiox11061192
crossref_primary_10_1111_1541_4337_12836
crossref_primary_10_2174_2210315509666190215101646
crossref_primary_10_1016_j_freeradbiomed_2021_05_036
crossref_primary_10_1039_C8NP00062J
crossref_primary_10_1016_j_foodchem_2020_126996
crossref_primary_10_1021_acs_jafc_3c01142
crossref_primary_10_3390_molecules25204777
crossref_primary_10_1016_j_jpba_2018_12_013
crossref_primary_10_1080_10408398_2020_1791794
crossref_primary_10_1016_j_fbio_2024_103607
crossref_primary_10_3390_foods13081187
crossref_primary_10_3390_metabo11020099
crossref_primary_10_1002_1873_3468_14812
crossref_primary_10_3390_nu11061431
crossref_primary_10_1016_j_chroma_2019_460472
crossref_primary_10_2147_DDDT_S500645
crossref_primary_10_3233_NHA_190072
crossref_primary_10_3390_antiox11081540
crossref_primary_10_3233_JBR_190405
crossref_primary_10_3390_nu11112725
crossref_primary_10_1007_s00394_020_02336_8
crossref_primary_10_3390_foods10092150
crossref_primary_10_3390_nu15143115
crossref_primary_10_1186_s12263_020_00675_z
crossref_primary_10_1007_s42161_022_01068_4
crossref_primary_10_1016_j_indcrop_2019_04_003
crossref_primary_10_1093_nutrit_nuz083
crossref_primary_10_1093_nutrit_nuae034
crossref_primary_10_1155_2018_9864963
crossref_primary_10_1016_j_foodres_2021_110539
crossref_primary_10_1111_1471_0307_12987
crossref_primary_10_1016_j_foodres_2023_113329
crossref_primary_10_3390_app14177622
crossref_primary_10_3390_ijms25084536
crossref_primary_10_1016_j_jff_2019_03_005
crossref_primary_10_3389_fnut_2023_1104685
crossref_primary_10_3390_plants14060888
crossref_primary_10_1016_j_arr_2021_101466
crossref_primary_10_3233_JBR_180316
crossref_primary_10_1002_mnfr_202000898
crossref_primary_10_1038_s41598_022_25410_z
crossref_primary_10_3390_foods13101574
crossref_primary_10_1002_mnfr_202200785
crossref_primary_10_3390_nu12113595
crossref_primary_10_1021_acs_jafc_1c02404
crossref_primary_10_3390_antiox8100479
crossref_primary_10_3390_nu13030833
crossref_primary_10_1016_j_jep_2021_114377
crossref_primary_10_3390_ijms22041668
crossref_primary_10_1093_bbb_zbad007
crossref_primary_10_1016_j_ifset_2020_102569
crossref_primary_10_3390_antiox10050704
crossref_primary_10_1016_j_livsci_2023_105205
crossref_primary_10_3233_JBR_180340
crossref_primary_10_1016_j_bbrc_2024_150344
crossref_primary_10_3390_biology12101333
crossref_primary_10_1016_j_jnutbio_2022_109225
crossref_primary_10_1016_j_scienta_2019_109146
crossref_primary_10_1093_bbb_zbae140
crossref_primary_10_3390_molecules25235522
Cites_doi 10.3389/fphar.2017.00231
10.1021/jf020140n
10.1039/C5FO00274E
10.1021/jf048068b
10.1039/C6FO01330A
10.1021/jf404998k
10.1079/BJN20041126
10.1002/mnfr.201300931
10.1002/mnfr.200900152
10.1021/jf803059z
10.1002/jsfa.6765
10.1016/j.freeradbiomed.2015.10.400
10.1002/mnfr.201300822
10.1002/mnfr.201100677
10.1021/jf904543w
10.1021/ac500565a
10.1016/j.chroma.2015.08.044
10.1021/jf061750g
10.1002/mnfr.201000355
10.1016/S0021-9673(02)00699-4
10.1002/mnfr.201300322
10.1021/jf061833x
10.1111/bph.12676
10.1002/mnfr.201700077
10.1016/j.jchromb.2008.06.032
10.3945/ajcn.112.049247
10.1007/s11101-016-9459-z
10.3945/an.115.009639
10.3945/jn.112.169771
10.1021/jf020141f
10.1093/ajcn/84.1.406
10.3390/molecules200917429
10.1021/jf502259j
10.1124/dmd.111.039651
10.1021/jf203431g
10.1016/j.foodchem.2017.03.130
10.1021/jf049450r
10.1158/1940-6207.CAPR-15-0065
10.1021/jf011405l
10.1016/S0031-9422(03)00281-4
10.1021/jf100315d
10.1055/s-0042-108856
10.1021/jf047880b
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
DOI 10.1039/c7fo00893g
DatabaseName CrossRef
PubMed
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Oncogenes and Growth Factors Abstracts
AGRICOLA
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2042-650X
EndPage 818
ExternalDocumentID 29344587
10_1039_C7FO00893G
c7fo00893g
Genre Journal Article
GrantInformation_xml – fundername: FDA HHS
  grantid: U19 FD005322
GroupedDBID ---
-JG
0-7
0R~
4.4
53G
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
AAYXX
ABIQK
ACRPL
ADNMO
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANBJS
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
HVGLF
J3G
J3H
L-8
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c436t-d11f9db69c932a7b7007c28bd727c0ca0366082360f459f55406b5a321c4ece93
ISSN 2042-6496
2042-650X
IngestDate Fri Jul 11 12:17:30 EDT 2025
Fri Jul 11 13:58:40 EDT 2025
Mon Jun 30 11:55:21 EDT 2025
Wed Mar 05 08:56:23 EST 2025
Thu Apr 24 23:04:06 EDT 2025
Tue Jul 01 03:02:05 EDT 2025
Tue Dec 17 20:59:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-d11f9db69c932a7b7007c28bd727c0ca0366082360f459f55406b5a321c4ece93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2627-4176
0000-0003-2591-4143
0000-0002-3754-9852
0000-0001-8760-7080
PMID 29344587
PQID 2010868699
PQPubID 2047526
PageCount 13
ParticipantIDs crossref_primary_10_1039_C7FO00893G
proquest_miscellaneous_1989599685
proquest_miscellaneous_2220851192
proquest_journals_2010868699
rsc_primary_c7fo00893g
crossref_citationtrail_10_1039_C7FO00893G
pubmed_primary_29344587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180221
PublicationDateYYYYMMDD 2018-02-21
PublicationDate_xml – month: 2
  year: 2018
  text: 20180221
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Marques (C7FO00893G-(cit39)/*[position()=1]) 2016; 82
Mullen (C7FO00893G-(cit9)/*[position()=1]) 2003; 64
Ludwig (C7FO00893G-(cit30)/*[position()=1]) 2015; 89
Czank (C7FO00893G-(cit43)/*[position()=1]) 2013; 97
Paudel (C7FO00893G-(cit36)/*[position()=1]) 2014; 62
McDougall (C7FO00893G-(cit22)/*[position()=1]) 2008; 871
Burton-Freeman (C7FO00893G-(cit1)/*[position()=1]) 2016; 7
Seeram (C7FO00893G-(cit33)/*[position()=1]) 2006; 54
Brindani (C7FO00893G-(cit41)/*[position()=1]) 2017; 61
Cho (C7FO00893G-(cit5)/*[position()=1]) 2015; 6
Giménez-Bastida (C7FO00893G-(cit38)/*[position()=1]) 2012; 56
de Ferrars (C7FO00893G-(cit25)/*[position()=1]) 2014; 171
Mullen (C7FO00893G-(cit7)/*[position()=1]) 2002; 50
Pan (C7FO00893G-(cit4)/*[position()=1]) 2015; 8
García-Villalba (C7FO00893G-(cit31)/*[position()=1]) 2016; 1428
González-Barrio (C7FO00893G-(cit14)/*[position()=1]) 2011; 39
Appeldoorn (C7FO00893G-(cit40)/*[position()=1]) 2009; 57
Wang (C7FO00893G-(cit6)/*[position()=1]) 2015; 95
Mosele (C7FO00893G-(cit15)/*[position()=1]) 2015; 20
de Ferrars (C7FO00893G-(cit28)/*[position()=1]) 2014; 86
Beekwilder (C7FO00893G-(cit20)/*[position()=1]) 2005; 53
Xiao (C7FO00893G-(cit42)/*[position()=1]) 2017; 8
Dincheva (C7FO00893G-(cit8)/*[position()=1]) 2013; 3
Kay (C7FO00893G-(cit12)/*[position()=1]) 2004; 91
Kähkönen (C7FO00893G-(cit11)/*[position()=1]) 2012; 60
Gasperotti (C7FO00893G-(cit10)/*[position()=1]) 2010; 58
Mullen (C7FO00893G-(cit17)/*[position()=1]) 2002; 966
Mueller (C7FO00893G-(cit35)/*[position()=1]) 2017; 231
González-Sarrías (C7FO00893G-(cit37)/*[position()=1]) 2010; 54
Wada (C7FO00893G-(cit32)/*[position()=1]) 2002; 50
Mullen (C7FO00893G-(cit18)/*[position()=1]) 2002; 50
de Ferrars (C7FO00893G-(cit24)/*[position()=1]) 2014; 58
Noratto (C7FO00893G-(cit2)/*[position()=1]) 2016; 7
McDougall (C7FO00893G-(cit29)/*[position()=1]) 2014; 62
Wu (C7FO00893G-(cit21)/*[position()=1]) 2005; 53
Stevens (C7FO00893G-(cit13)/*[position()=1]) 2016; 15
Pimpão (C7FO00893G-(cit26)/*[position()=1]) 2014; 58
Franke (C7FO00893G-(cit44)/*[position()=1]) 2006; 84
Törrönen (C7FO00893G-(cit3)/*[position()=1]) 2013; 143
González-Barrio (C7FO00893G-(cit23)/*[position()=1]) 2010; 58
McGhie (C7FO00893G-(cit34)/*[position()=1]) 2006; 54
Woodward (C7FO00893G-(cit16)/*[position()=1]) 2011; 55
Nuñez-Sánchez (C7FO00893G-(cit27)/*[position()=1]) 2014; 58
Määttä-Riihinen (C7FO00893G-(cit19)/*[position()=1]) 2004; 52
References_xml – volume: 8
  start-page: 231
  year: 2017
  ident: C7FO00893G-(cit42)/*[position()=1]
  publication-title: Tech. Front. Pharmacol.
  doi: 10.3389/fphar.2017.00231
– volume: 50
  start-page: 5191
  year: 2002
  ident: C7FO00893G-(cit7)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf020140n
– volume: 6
  start-page: 1675
  year: 2015
  ident: C7FO00893G-(cit5)/*[position()=1]
  publication-title: Food Funct.
  doi: 10.1039/C5FO00274E
– volume: 53
  start-page: 2589
  year: 2005
  ident: C7FO00893G-(cit21)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf048068b
– volume: 7
  start-page: 4944
  year: 2016
  ident: C7FO00893G-(cit2)/*[position()=1]
  publication-title: Food Funct.
  doi: 10.1039/C6FO01330A
– volume: 62
  start-page: 1989
  year: 2014
  ident: C7FO00893G-(cit36)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf404998k
– volume: 91
  start-page: 933
  year: 2004
  ident: C7FO00893G-(cit12)/*[position()=1]
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN20041126
– volume: 58
  start-page: 1199
  year: 2014
  ident: C7FO00893G-(cit27)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201300931
– volume: 3
  start-page: 127
  year: 2013
  ident: C7FO00893G-(cit8)/*[position()=1]
  publication-title: Int. J. Agric. Sci. Res.
– volume: 54
  start-page: 311
  year: 2010
  ident: C7FO00893G-(cit37)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.200900152
– volume: 57
  start-page: 1084
  year: 2009
  ident: C7FO00893G-(cit40)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf803059z
– volume: 95
  start-page: 936
  year: 2015
  ident: C7FO00893G-(cit6)/*[position()=1]
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.6765
– volume: 89
  start-page: 758
  year: 2015
  ident: C7FO00893G-(cit30)/*[position()=1]
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.10.400
– volume: 58
  start-page: 1414
  year: 2014
  ident: C7FO00893G-(cit26)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201300822
– volume: 56
  start-page: 784
  year: 2012
  ident: C7FO00893G-(cit38)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201100677
– volume: 58
  start-page: 4602
  year: 2010
  ident: C7FO00893G-(cit10)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf904543w
– volume: 86
  start-page: 10052
  year: 2014
  ident: C7FO00893G-(cit28)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac500565a
– volume: 1428
  start-page: 162
  year: 2016
  ident: C7FO00893G-(cit31)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2015.08.044
– volume: 54
  start-page: 9329
  year: 2006
  ident: C7FO00893G-(cit33)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf061750g
– volume: 55
  start-page: 378
  year: 2011
  ident: C7FO00893G-(cit16)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201000355
– volume: 966
  start-page: 63
  year: 2002
  ident: C7FO00893G-(cit17)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(02)00699-4
– volume: 58
  start-page: 490
  year: 2014
  ident: C7FO00893G-(cit24)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201300322
– volume: 54
  start-page: 8756
  year: 2006
  ident: C7FO00893G-(cit34)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf061833x
– volume: 171
  start-page: 3268
  year: 2014
  ident: C7FO00893G-(cit25)/*[position()=1]
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12676
– volume: 61
  start-page: 1700077
  year: 2017
  ident: C7FO00893G-(cit41)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201700077
– volume: 871
  start-page: 362
  year: 2008
  ident: C7FO00893G-(cit22)/*[position()=1]
  publication-title: J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2008.06.032
– volume: 97
  start-page: 995
  year: 2013
  ident: C7FO00893G-(cit43)/*[position()=1]
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.112.049247
– volume: 15
  start-page: 425
  year: 2016
  ident: C7FO00893G-(cit13)/*[position()=1]
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-016-9459-z
– volume: 7
  start-page: 44
  year: 2016
  ident: C7FO00893G-(cit1)/*[position()=1]
  publication-title: Adv. Nutr.
  doi: 10.3945/an.115.009639
– volume: 143
  start-page: 430
  year: 2013
  ident: C7FO00893G-(cit3)/*[position()=1]
  publication-title: J. Nutr.
  doi: 10.3945/jn.112.169771
– volume: 50
  start-page: 5197
  year: 2002
  ident: C7FO00893G-(cit18)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf020141f
– volume: 84
  start-page: 406
  year: 2006
  ident: C7FO00893G-(cit44)/*[position()=1]
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/84.1.406
– volume: 20
  start-page: 17429
  year: 2015
  ident: C7FO00893G-(cit15)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules200917429
– volume: 62
  start-page: 7631
  year: 2014
  ident: C7FO00893G-(cit29)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf502259j
– volume: 39
  start-page: 1680
  year: 2011
  ident: C7FO00893G-(cit14)/*[position()=1]
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.111.039651
– volume: 60
  start-page: 1167
  year: 2012
  ident: C7FO00893G-(cit11)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf203431g
– volume: 231
  start-page: 275
  year: 2017
  ident: C7FO00893G-(cit35)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.03.130
– volume: 52
  start-page: 6178
  year: 2004
  ident: C7FO00893G-(cit19)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf049450r
– volume: 8
  start-page: 743
  year: 2015
  ident: C7FO00893G-(cit4)/*[position()=1]
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-15-0065
– volume: 50
  start-page: 3495
  year: 2002
  ident: C7FO00893G-(cit32)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf011405l
– volume: 64
  start-page: 617
  year: 2003
  ident: C7FO00893G-(cit9)/*[position()=1]
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(03)00281-4
– volume: 58
  start-page: 3933
  year: 2010
  ident: C7FO00893G-(cit23)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf100315d
– volume: 82
  start-page: 1463
  year: 2016
  ident: C7FO00893G-(cit39)/*[position()=1]
  publication-title: Planta Med.
  doi: 10.1055/s-0042-108856
– volume: 53
  start-page: 3313
  year: 2005
  ident: C7FO00893G-(cit20)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf047880b
SSID ssj0000399898
Score 2.425692
Snippet Red raspberry ( Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different...
Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms acute exposure
Anthocyanins
Berries
Biological properties
Biological samples
blood
Blood circulation
Breast
Breast milk
Breastfeeding & lactation
Chronic exposure
cyanidin
Exposure
Fruits
High performance liquid chromatography
humans
Intestinal absorption
Intestine
intestines
Kidneys
Liquid chromatography
Liver
Machinery and equipment
mechanism of action
Metabolism
Metabolites
Microbiota
Microorganisms
Milk
Phenolic compounds
Phenols
Polyphenols
Quadrupoles
Rubus idaeus
Rubus idaeus strigosus
Sulfates
ultra-performance liquid chromatography
Urine
xenobiotics
Title An exploratory study of red raspberry ( L.) (poly)phenols/metabolites in human biological samples
URI https://www.ncbi.nlm.nih.gov/pubmed/29344587
https://www.proquest.com/docview/2010868699
https://www.proquest.com/docview/1989599685
https://www.proquest.com/docview/2220851192
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sIL4jYIDGQEQqumbmkurv1YBt0EY0iwib5VseOsEV1Scnnh9_BDOce5Qoc0eEkrx42Sni_Hn8-VkFfC45EbYfRMKEN0M7ojGQl7JLmvIpdzzRVmI388YycX3vu5Px8MfvailspCHqgf1-aV_I9UYQzkilmy_yDZ9qIwAN9BvnAECcPxRjKemgr9q7R2ledNgWiMKc-CfC11lhlv_v7nUpb5fhwGGj5OD4wtwOHrFPtMCwzzSlcg0NmVLgAUmJZswmSrBn5VnaYqfTLAYsJ5n9HOsCwy4gdXyL5XvzVFz8tlGX8v2xNfgiRclkYpXaEJW69bWg8LbIzGi6WudFcYf-sMBmWG7Y5nmda11RYNG0XfbDHmJg183Gk3B_OCmCfqOti9Md-e99Wz6KHQ6alabrP-ql1p8Y0FwXaxnurRZPYJyI5wj7tlr3H1_7EatjGKxjvvikX321tk24HNCGjT7emHN8dfW1seTMM2nNjHsHmqphKuKw67C_zOfTY2NEBvsqbtjKE353fJnXpfQqcVyO6RgU7uE-ttrAv6mtbFY1f0rOnd8IAk04T2wEcN-GgaUQAfbcFH96iBHq2gR08PhnQPYTesQXfYgxyNE2ogRzvI0RpyD8nF7N350cmobt4xUp7LilE4HkcilEwo2CEEEzkBMqocLkMgzMpWATAnhl5eZkeeLyJgtTaTfuA6Y-VppYW7Q7aSNNGPCZXaZTKMlC-wrL7mIlJaYn8Y4cmAM9siw-ZvXai6sj02WFktNmVokZft3HVVz-XaWbuNdBb1-54vMG6EM86EsMiL9jRoY3SxBYlOy3yBEYhY8Ij7f58DjNzsc4RjkUeV5NtbAfLteT6fWGQHoNAOq0mUmju7fHKj-39Kbnfv3C7ZKrJSPwPyXMjnNXZ_Aaopw00
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exploratory+study+of+red+raspberry+%28+Rubus+idaeus+L.%29+%28poly%29phenols%2Fmetabolites+in+human+biological+samples&rft.jtitle=Food+%26+function&rft.au=Zhang%2C+Xuhuiqun&rft.au=Sandhu%2C+Amandeep&rft.au=Edirisinghe%2C+Indika&rft.au=Burton-Freeman%2C+Britt&rft.date=2018-02-21&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=9&rft.issue=2&rft.spage=806&rft.epage=818&rft_id=info:doi/10.1039%2FC7FO00893G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7FO00893G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon