An exploratory study of red raspberry ( L.) (poly)phenols/metabolites in human biological samples
Red raspberry ( Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, form...
Saved in:
Published in | Food & function Vol. 9; no. 2; pp. 86 - 818 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Red raspberry (
Rubus idaeus
L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-
O
-sophoroside, cyanidin 3-
O
-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.
Characterization of red raspberry (poly)phenols in fruit, their metabolism, and presence in human biological samples after acute and chronic intake. |
---|---|
AbstractList | Red raspberry (
Rubus idaeus
L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-
O
-sophoroside, cyanidin 3-
O
-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.
Characterization of red raspberry (poly)phenols in fruit, their metabolism, and presence in human biological samples after acute and chronic intake. Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-O-sophoroside, cyanidin 3-O-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma. Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-O-sophoroside, cyanidin 3-O-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-O-sophoroside, cyanidin 3-O-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma. Red raspberry ( Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3- O -sophoroside, cyanidin 3- O -glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma. |
Author | Zhang, Xuhuiqun Edirisinghe, Indika Sandhu, Amandeep Burton-Freeman, Britt |
AuthorAffiliation | Department of Nutrition University of California Institute for Food Safety and Health Center for Nutrition Research Illinois Institute of Technology |
AuthorAffiliation_xml | – sequence: 0 name: Center for Nutrition Research – sequence: 0 name: Illinois Institute of Technology – sequence: 0 name: Department of Nutrition – sequence: 0 name: University of California – sequence: 0 name: Institute for Food Safety and Health |
Author_xml | – sequence: 1 givenname: Xuhuiqun surname: Zhang fullname: Zhang, Xuhuiqun – sequence: 2 givenname: Amandeep surname: Sandhu fullname: Sandhu, Amandeep – sequence: 3 givenname: Indika surname: Edirisinghe fullname: Edirisinghe, Indika – sequence: 4 givenname: Britt surname: Burton-Freeman fullname: Burton-Freeman, Britt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29344587$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0kFrHCEUAGApKU2a5tJ7i9DLprDJU0dHj2Fp0sJCLi30Jo7jJAZHp-pA99930s22EAr1osj33sP3fI2OYooOobcELggwdWnbIQFIxe5eoBMKDV0LDt-PDudGiWN0VsoDLIspJZV8hY6pYk3DZXuCzFXE7ucUUjY15R0ude53OA04ux5nU6bO5eV6hbcX53g1pbA7n-5dTKFcjq6aLgVfXcE-4vt5NBF3PoV0560JuJhxCq68QS8HE4o7e9pP0bfrT183n9fb25svm6vt2jZM1HVPyKD6TiirGDVt1wK0lsqub2lrwRpgQoCkTMDQcDVw3oDouGGU2MZZp9gpWu3zTjn9mF2pevTFuhBMdGkumlIKkhOi6H8pWdrElRKSL_TDM_qQ5hyXh2gKBKSQQj3Wfv-k5m50vZ6yH03e6UOfFwB7YHMqJbtBW19N9SnWbHzQBPTjNPWmvb79Pc2bJeTjs5BD1n_id3uci_3j_n4N9gve_Kaw |
CitedBy_id | crossref_primary_10_1016_j_bioorg_2018_05_016 crossref_primary_10_1016_j_jep_2022_115870 crossref_primary_10_3390_molecules24234220 crossref_primary_10_1039_D1FO02529E crossref_primary_10_1016_j_freeradbiomed_2021_03_032 crossref_primary_10_1007_s11557_020_01614_3 crossref_primary_10_1016_j_foodchem_2022_132446 crossref_primary_10_3390_antiox11061192 crossref_primary_10_1111_1541_4337_12836 crossref_primary_10_2174_2210315509666190215101646 crossref_primary_10_1016_j_freeradbiomed_2021_05_036 crossref_primary_10_1039_C8NP00062J crossref_primary_10_1016_j_foodchem_2020_126996 crossref_primary_10_1021_acs_jafc_3c01142 crossref_primary_10_3390_molecules25204777 crossref_primary_10_1016_j_jpba_2018_12_013 crossref_primary_10_1080_10408398_2020_1791794 crossref_primary_10_1016_j_fbio_2024_103607 crossref_primary_10_3390_foods13081187 crossref_primary_10_3390_metabo11020099 crossref_primary_10_1002_1873_3468_14812 crossref_primary_10_3390_nu11061431 crossref_primary_10_1016_j_chroma_2019_460472 crossref_primary_10_2147_DDDT_S500645 crossref_primary_10_3233_NHA_190072 crossref_primary_10_3390_antiox11081540 crossref_primary_10_3233_JBR_190405 crossref_primary_10_3390_nu11112725 crossref_primary_10_1007_s00394_020_02336_8 crossref_primary_10_3390_foods10092150 crossref_primary_10_3390_nu15143115 crossref_primary_10_1186_s12263_020_00675_z crossref_primary_10_1007_s42161_022_01068_4 crossref_primary_10_1016_j_indcrop_2019_04_003 crossref_primary_10_1093_nutrit_nuz083 crossref_primary_10_1093_nutrit_nuae034 crossref_primary_10_1155_2018_9864963 crossref_primary_10_1016_j_foodres_2021_110539 crossref_primary_10_1111_1471_0307_12987 crossref_primary_10_1016_j_foodres_2023_113329 crossref_primary_10_3390_app14177622 crossref_primary_10_3390_ijms25084536 crossref_primary_10_1016_j_jff_2019_03_005 crossref_primary_10_3389_fnut_2023_1104685 crossref_primary_10_3390_plants14060888 crossref_primary_10_1016_j_arr_2021_101466 crossref_primary_10_3233_JBR_180316 crossref_primary_10_1002_mnfr_202000898 crossref_primary_10_1038_s41598_022_25410_z crossref_primary_10_3390_foods13101574 crossref_primary_10_1002_mnfr_202200785 crossref_primary_10_3390_nu12113595 crossref_primary_10_1021_acs_jafc_1c02404 crossref_primary_10_3390_antiox8100479 crossref_primary_10_3390_nu13030833 crossref_primary_10_1016_j_jep_2021_114377 crossref_primary_10_3390_ijms22041668 crossref_primary_10_1093_bbb_zbad007 crossref_primary_10_1016_j_ifset_2020_102569 crossref_primary_10_3390_antiox10050704 crossref_primary_10_1016_j_livsci_2023_105205 crossref_primary_10_3233_JBR_180340 crossref_primary_10_1016_j_bbrc_2024_150344 crossref_primary_10_3390_biology12101333 crossref_primary_10_1016_j_jnutbio_2022_109225 crossref_primary_10_1016_j_scienta_2019_109146 crossref_primary_10_1093_bbb_zbae140 crossref_primary_10_3390_molecules25235522 |
Cites_doi | 10.3389/fphar.2017.00231 10.1021/jf020140n 10.1039/C5FO00274E 10.1021/jf048068b 10.1039/C6FO01330A 10.1021/jf404998k 10.1079/BJN20041126 10.1002/mnfr.201300931 10.1002/mnfr.200900152 10.1021/jf803059z 10.1002/jsfa.6765 10.1016/j.freeradbiomed.2015.10.400 10.1002/mnfr.201300822 10.1002/mnfr.201100677 10.1021/jf904543w 10.1021/ac500565a 10.1016/j.chroma.2015.08.044 10.1021/jf061750g 10.1002/mnfr.201000355 10.1016/S0021-9673(02)00699-4 10.1002/mnfr.201300322 10.1021/jf061833x 10.1111/bph.12676 10.1002/mnfr.201700077 10.1016/j.jchromb.2008.06.032 10.3945/ajcn.112.049247 10.1007/s11101-016-9459-z 10.3945/an.115.009639 10.3945/jn.112.169771 10.1021/jf020141f 10.1093/ajcn/84.1.406 10.3390/molecules200917429 10.1021/jf502259j 10.1124/dmd.111.039651 10.1021/jf203431g 10.1016/j.foodchem.2017.03.130 10.1021/jf049450r 10.1158/1940-6207.CAPR-15-0065 10.1021/jf011405l 10.1016/S0031-9422(03)00281-4 10.1021/jf100315d 10.1055/s-0042-108856 10.1021/jf047880b |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
DOI | 10.1039/c7fo00893g |
DatabaseName | CrossRef PubMed Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oncogenes and Growth Factors Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts AGRICOLA MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 818 |
ExternalDocumentID | 29344587 10_1039_C7FO00893G c7fo00893g |
Genre | Journal Article |
GrantInformation_xml | – fundername: FDA HHS grantid: U19 FD005322 |
GroupedDBID | --- -JG 0-7 0R~ 4.4 53G 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF AAYXX ABIQK ACRPL ADNMO AFRZK AGQPQ AHGXI AKMSF ALSGL ANBJS ANLMG ASPBG AVWKF CAG CITATION COF FEDTE HVGLF J3G J3H L-8 NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-d11f9db69c932a7b7007c28bd727c0ca0366082360f459f55406b5a321c4ece93 |
ISSN | 2042-6496 2042-650X |
IngestDate | Fri Jul 11 12:17:30 EDT 2025 Fri Jul 11 13:58:40 EDT 2025 Mon Jun 30 11:55:21 EDT 2025 Wed Mar 05 08:56:23 EST 2025 Thu Apr 24 23:04:06 EDT 2025 Tue Jul 01 03:02:05 EDT 2025 Tue Dec 17 20:59:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-d11f9db69c932a7b7007c28bd727c0ca0366082360f459f55406b5a321c4ece93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2627-4176 0000-0003-2591-4143 0000-0002-3754-9852 0000-0001-8760-7080 |
PMID | 29344587 |
PQID | 2010868699 |
PQPubID | 2047526 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1039_C7FO00893G proquest_miscellaneous_1989599685 proquest_miscellaneous_2220851192 proquest_journals_2010868699 rsc_primary_c7fo00893g crossref_citationtrail_10_1039_C7FO00893G pubmed_primary_29344587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180221 |
PublicationDateYYYYMMDD | 2018-02-21 |
PublicationDate_xml | – month: 2 year: 2018 text: 20180221 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Marques (C7FO00893G-(cit39)/*[position()=1]) 2016; 82 Mullen (C7FO00893G-(cit9)/*[position()=1]) 2003; 64 Ludwig (C7FO00893G-(cit30)/*[position()=1]) 2015; 89 Czank (C7FO00893G-(cit43)/*[position()=1]) 2013; 97 Paudel (C7FO00893G-(cit36)/*[position()=1]) 2014; 62 McDougall (C7FO00893G-(cit22)/*[position()=1]) 2008; 871 Burton-Freeman (C7FO00893G-(cit1)/*[position()=1]) 2016; 7 Seeram (C7FO00893G-(cit33)/*[position()=1]) 2006; 54 Brindani (C7FO00893G-(cit41)/*[position()=1]) 2017; 61 Cho (C7FO00893G-(cit5)/*[position()=1]) 2015; 6 Giménez-Bastida (C7FO00893G-(cit38)/*[position()=1]) 2012; 56 de Ferrars (C7FO00893G-(cit25)/*[position()=1]) 2014; 171 Mullen (C7FO00893G-(cit7)/*[position()=1]) 2002; 50 Pan (C7FO00893G-(cit4)/*[position()=1]) 2015; 8 García-Villalba (C7FO00893G-(cit31)/*[position()=1]) 2016; 1428 González-Barrio (C7FO00893G-(cit14)/*[position()=1]) 2011; 39 Appeldoorn (C7FO00893G-(cit40)/*[position()=1]) 2009; 57 Wang (C7FO00893G-(cit6)/*[position()=1]) 2015; 95 Mosele (C7FO00893G-(cit15)/*[position()=1]) 2015; 20 de Ferrars (C7FO00893G-(cit28)/*[position()=1]) 2014; 86 Beekwilder (C7FO00893G-(cit20)/*[position()=1]) 2005; 53 Xiao (C7FO00893G-(cit42)/*[position()=1]) 2017; 8 Dincheva (C7FO00893G-(cit8)/*[position()=1]) 2013; 3 Kay (C7FO00893G-(cit12)/*[position()=1]) 2004; 91 Kähkönen (C7FO00893G-(cit11)/*[position()=1]) 2012; 60 Gasperotti (C7FO00893G-(cit10)/*[position()=1]) 2010; 58 Mullen (C7FO00893G-(cit17)/*[position()=1]) 2002; 966 Mueller (C7FO00893G-(cit35)/*[position()=1]) 2017; 231 González-Sarrías (C7FO00893G-(cit37)/*[position()=1]) 2010; 54 Wada (C7FO00893G-(cit32)/*[position()=1]) 2002; 50 Mullen (C7FO00893G-(cit18)/*[position()=1]) 2002; 50 de Ferrars (C7FO00893G-(cit24)/*[position()=1]) 2014; 58 Noratto (C7FO00893G-(cit2)/*[position()=1]) 2016; 7 McDougall (C7FO00893G-(cit29)/*[position()=1]) 2014; 62 Wu (C7FO00893G-(cit21)/*[position()=1]) 2005; 53 Stevens (C7FO00893G-(cit13)/*[position()=1]) 2016; 15 Pimpão (C7FO00893G-(cit26)/*[position()=1]) 2014; 58 Franke (C7FO00893G-(cit44)/*[position()=1]) 2006; 84 Törrönen (C7FO00893G-(cit3)/*[position()=1]) 2013; 143 González-Barrio (C7FO00893G-(cit23)/*[position()=1]) 2010; 58 McGhie (C7FO00893G-(cit34)/*[position()=1]) 2006; 54 Woodward (C7FO00893G-(cit16)/*[position()=1]) 2011; 55 Nuñez-Sánchez (C7FO00893G-(cit27)/*[position()=1]) 2014; 58 Määttä-Riihinen (C7FO00893G-(cit19)/*[position()=1]) 2004; 52 |
References_xml | – volume: 8 start-page: 231 year: 2017 ident: C7FO00893G-(cit42)/*[position()=1] publication-title: Tech. Front. Pharmacol. doi: 10.3389/fphar.2017.00231 – volume: 50 start-page: 5191 year: 2002 ident: C7FO00893G-(cit7)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf020140n – volume: 6 start-page: 1675 year: 2015 ident: C7FO00893G-(cit5)/*[position()=1] publication-title: Food Funct. doi: 10.1039/C5FO00274E – volume: 53 start-page: 2589 year: 2005 ident: C7FO00893G-(cit21)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf048068b – volume: 7 start-page: 4944 year: 2016 ident: C7FO00893G-(cit2)/*[position()=1] publication-title: Food Funct. doi: 10.1039/C6FO01330A – volume: 62 start-page: 1989 year: 2014 ident: C7FO00893G-(cit36)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf404998k – volume: 91 start-page: 933 year: 2004 ident: C7FO00893G-(cit12)/*[position()=1] publication-title: Br. J. Nutr. doi: 10.1079/BJN20041126 – volume: 58 start-page: 1199 year: 2014 ident: C7FO00893G-(cit27)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201300931 – volume: 3 start-page: 127 year: 2013 ident: C7FO00893G-(cit8)/*[position()=1] publication-title: Int. J. Agric. Sci. Res. – volume: 54 start-page: 311 year: 2010 ident: C7FO00893G-(cit37)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200900152 – volume: 57 start-page: 1084 year: 2009 ident: C7FO00893G-(cit40)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf803059z – volume: 95 start-page: 936 year: 2015 ident: C7FO00893G-(cit6)/*[position()=1] publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.6765 – volume: 89 start-page: 758 year: 2015 ident: C7FO00893G-(cit30)/*[position()=1] publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2015.10.400 – volume: 58 start-page: 1414 year: 2014 ident: C7FO00893G-(cit26)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201300822 – volume: 56 start-page: 784 year: 2012 ident: C7FO00893G-(cit38)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201100677 – volume: 58 start-page: 4602 year: 2010 ident: C7FO00893G-(cit10)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf904543w – volume: 86 start-page: 10052 year: 2014 ident: C7FO00893G-(cit28)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac500565a – volume: 1428 start-page: 162 year: 2016 ident: C7FO00893G-(cit31)/*[position()=1] publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2015.08.044 – volume: 54 start-page: 9329 year: 2006 ident: C7FO00893G-(cit33)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf061750g – volume: 55 start-page: 378 year: 2011 ident: C7FO00893G-(cit16)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201000355 – volume: 966 start-page: 63 year: 2002 ident: C7FO00893G-(cit17)/*[position()=1] publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(02)00699-4 – volume: 58 start-page: 490 year: 2014 ident: C7FO00893G-(cit24)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201300322 – volume: 54 start-page: 8756 year: 2006 ident: C7FO00893G-(cit34)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf061833x – volume: 171 start-page: 3268 year: 2014 ident: C7FO00893G-(cit25)/*[position()=1] publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12676 – volume: 61 start-page: 1700077 year: 2017 ident: C7FO00893G-(cit41)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201700077 – volume: 871 start-page: 362 year: 2008 ident: C7FO00893G-(cit22)/*[position()=1] publication-title: J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2008.06.032 – volume: 97 start-page: 995 year: 2013 ident: C7FO00893G-(cit43)/*[position()=1] publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.112.049247 – volume: 15 start-page: 425 year: 2016 ident: C7FO00893G-(cit13)/*[position()=1] publication-title: Phytochem. Rev. doi: 10.1007/s11101-016-9459-z – volume: 7 start-page: 44 year: 2016 ident: C7FO00893G-(cit1)/*[position()=1] publication-title: Adv. Nutr. doi: 10.3945/an.115.009639 – volume: 143 start-page: 430 year: 2013 ident: C7FO00893G-(cit3)/*[position()=1] publication-title: J. Nutr. doi: 10.3945/jn.112.169771 – volume: 50 start-page: 5197 year: 2002 ident: C7FO00893G-(cit18)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf020141f – volume: 84 start-page: 406 year: 2006 ident: C7FO00893G-(cit44)/*[position()=1] publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/84.1.406 – volume: 20 start-page: 17429 year: 2015 ident: C7FO00893G-(cit15)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules200917429 – volume: 62 start-page: 7631 year: 2014 ident: C7FO00893G-(cit29)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf502259j – volume: 39 start-page: 1680 year: 2011 ident: C7FO00893G-(cit14)/*[position()=1] publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.111.039651 – volume: 60 start-page: 1167 year: 2012 ident: C7FO00893G-(cit11)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf203431g – volume: 231 start-page: 275 year: 2017 ident: C7FO00893G-(cit35)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.03.130 – volume: 52 start-page: 6178 year: 2004 ident: C7FO00893G-(cit19)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf049450r – volume: 8 start-page: 743 year: 2015 ident: C7FO00893G-(cit4)/*[position()=1] publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-15-0065 – volume: 50 start-page: 3495 year: 2002 ident: C7FO00893G-(cit32)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf011405l – volume: 64 start-page: 617 year: 2003 ident: C7FO00893G-(cit9)/*[position()=1] publication-title: Phytochemistry doi: 10.1016/S0031-9422(03)00281-4 – volume: 58 start-page: 3933 year: 2010 ident: C7FO00893G-(cit23)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf100315d – volume: 82 start-page: 1463 year: 2016 ident: C7FO00893G-(cit39)/*[position()=1] publication-title: Planta Med. doi: 10.1055/s-0042-108856 – volume: 53 start-page: 3313 year: 2005 ident: C7FO00893G-(cit20)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf047880b |
SSID | ssj0000399898 |
Score | 2.425692 |
Snippet | Red raspberry (
Rubus idaeus
L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different... Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | acute exposure Anthocyanins Berries Biological properties Biological samples blood Blood circulation Breast Breast milk Breastfeeding & lactation Chronic exposure cyanidin Exposure Fruits High performance liquid chromatography humans Intestinal absorption Intestine intestines Kidneys Liquid chromatography Liver Machinery and equipment mechanism of action Metabolism Metabolites Microbiota Microorganisms Milk Phenolic compounds Phenols Polyphenols Quadrupoles Rubus idaeus Rubus idaeus strigosus Sulfates ultra-performance liquid chromatography Urine xenobiotics |
Title | An exploratory study of red raspberry ( L.) (poly)phenols/metabolites in human biological samples |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29344587 https://www.proquest.com/docview/2010868699 https://www.proquest.com/docview/1989599685 https://www.proquest.com/docview/2220851192 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sIL4jYIDGQEQqumbmkurv1YBt0EY0iwib5VseOsEV1Scnnh9_BDOce5Qoc0eEkrx42Sni_Hn8-VkFfC45EbYfRMKEN0M7ojGQl7JLmvIpdzzRVmI388YycX3vu5Px8MfvailspCHqgf1-aV_I9UYQzkilmy_yDZ9qIwAN9BvnAECcPxRjKemgr9q7R2ledNgWiMKc-CfC11lhlv_v7nUpb5fhwGGj5OD4wtwOHrFPtMCwzzSlcg0NmVLgAUmJZswmSrBn5VnaYqfTLAYsJ5n9HOsCwy4gdXyL5XvzVFz8tlGX8v2xNfgiRclkYpXaEJW69bWg8LbIzGi6WudFcYf-sMBmWG7Y5nmda11RYNG0XfbDHmJg183Gk3B_OCmCfqOti9Md-e99Wz6KHQ6alabrP-ql1p8Y0FwXaxnurRZPYJyI5wj7tlr3H1_7EatjGKxjvvikX321tk24HNCGjT7emHN8dfW1seTMM2nNjHsHmqphKuKw67C_zOfTY2NEBvsqbtjKE353fJnXpfQqcVyO6RgU7uE-ttrAv6mtbFY1f0rOnd8IAk04T2wEcN-GgaUQAfbcFH96iBHq2gR08PhnQPYTesQXfYgxyNE2ogRzvI0RpyD8nF7N350cmobt4xUp7LilE4HkcilEwo2CEEEzkBMqocLkMgzMpWATAnhl5eZkeeLyJgtTaTfuA6Y-VppYW7Q7aSNNGPCZXaZTKMlC-wrL7mIlJaYn8Y4cmAM9siw-ZvXai6sj02WFktNmVokZft3HVVz-XaWbuNdBb1-54vMG6EM86EsMiL9jRoY3SxBYlOy3yBEYhY8Ij7f58DjNzsc4RjkUeV5NtbAfLteT6fWGQHoNAOq0mUmju7fHKj-39Kbnfv3C7ZKrJSPwPyXMjnNXZ_Aaopw00 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exploratory+study+of+red+raspberry+%28+Rubus+idaeus+L.%29+%28poly%29phenols%2Fmetabolites+in+human+biological+samples&rft.jtitle=Food+%26+function&rft.au=Zhang%2C+Xuhuiqun&rft.au=Sandhu%2C+Amandeep&rft.au=Edirisinghe%2C+Indika&rft.au=Burton-Freeman%2C+Britt&rft.date=2018-02-21&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=9&rft.issue=2&rft.spage=806&rft.epage=818&rft_id=info:doi/10.1039%2FC7FO00893G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7FO00893G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |