Brain color-coded diffusion imaging: Utility of ACPC reorientation of gradients in healthy subjects and patients
•The orientation of diffusion gradients depends on MRI manufacturer.•Interpretation of diffusion color encoded (DCE) maps depends on brain orientation.•The ACPC system reliably reflects the anatomic physiologic brain orientation.•The most important angle mismatch between brain and gradients was the...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 257; p. 108449 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.12.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The orientation of diffusion gradients depends on MRI manufacturer.•Interpretation of diffusion color encoded (DCE) maps depends on brain orientation.•The ACPC system reliably reflects the anatomic physiologic brain orientation.•The most important angle mismatch between brain and gradients was the pitch.•ACPC reorientation of gradients improved the interpretation of DCE maps.
The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure – posterior commissure (ACPC) system on the RGB derivatives.
We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics).
Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower.
DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified. |
---|---|
AbstractList | The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure - posterior commissure (ACPC) system on the RGB derivatives.BACKGROUND AND OBJECTIVEThe common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure - posterior commissure (ACPC) system on the RGB derivatives.We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics).METHODSWe measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics).Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower.RESULTSPitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower.DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.CONCLUSIONSDCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified. The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure - posterior commissure (ACPC) system on the RGB derivatives. We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics). Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower. DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified. •The orientation of diffusion gradients depends on MRI manufacturer.•Interpretation of diffusion color encoded (DCE) maps depends on brain orientation.•The ACPC system reliably reflects the anatomic physiologic brain orientation.•The most important angle mismatch between brain and gradients was the pitch.•ACPC reorientation of gradients improved the interpretation of DCE maps. The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure – posterior commissure (ACPC) system on the RGB derivatives. We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics). Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower. DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified. Background and ObjectiveThe common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure – posterior commissure (ACPC) system on the RGB derivatives.MethodsWe measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics).ResultsPitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower.ConclusionsDCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified. |
ArticleNumber | 108449 |
Author | Hafidi, Aziz Sontheimer, Anna Pereira, Bruno Ouachikh, Omar Coste, Jerome Chaix, Remi Lemaire, Jean-Jacques Abdelouahab, Kamel Aider, Omar Ait Dautkulova, Aigerim Salah, Maha Ben |
Author_xml | – sequence: 1 givenname: Omar surname: Ouachikh fullname: Ouachikh, Omar organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 2 givenname: Remi orcidid: 0000-0002-9654-4840 surname: Chaix fullname: Chaix, Remi organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 3 givenname: Anna surname: Sontheimer fullname: Sontheimer, Anna organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 4 givenname: Jerome orcidid: 0000-0002-3262-0867 surname: Coste fullname: Coste, Jerome organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 5 givenname: Omar Ait surname: Aider fullname: Aider, Omar Ait organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 6 givenname: Aigerim orcidid: 0009-0000-2432-5465 surname: Dautkulova fullname: Dautkulova, Aigerim organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 7 givenname: Kamel surname: Abdelouahab fullname: Abdelouahab, Kamel organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 8 givenname: Aziz surname: Hafidi fullname: Hafidi, Aziz organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 9 givenname: Maha Ben surname: Salah fullname: Salah, Maha Ben organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France – sequence: 10 givenname: Bruno orcidid: 0000-0003-3778-7161 surname: Pereira fullname: Pereira, Bruno organization: Direction de la Recherche Clinique et de l'Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France – sequence: 11 givenname: Jean-Jacques orcidid: 0000-0003-4395-5328 surname: Lemaire fullname: Lemaire, Jean-Jacques email: jjlemaire@chu-clermontferrand.fr organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39378632$$D View this record in MEDLINE/PubMed https://uca.hal.science/hal-04718173$$DView record in HAL |
BookMark | eNqFkc9v0zAYhi00tHVj_wAH5CMcUvwjTuKJS6kYQ6q0HdjZcu0vrYsbBzuZ1P8eR9l24AAnS6-e95P8vJforAsdIPSekiUltPp8WJpjv10ywsocNGUp36AFbWpW1KISZ2iRIVmwitQX6DKlAyGECVGdowsued1UnC1Q_zVq12ETfIiFCRYstq5tx-RCh91R71y3u8GPg_NuOOHQ4tX6YY0jhOigG_QwYTndRW2nIOF8bA_aD_sTTuP2ACZnurO4z-wEvENvW-0TXD-_V-jx9tvP9V2xuf_-Y73aFKbk1VBYAsQILaFhmlYVo6UxjJDSCN5aIyhoY6Esray1ZJxw2W6tpFIwTVqgQvIr9Gm-u9de9TF_JZ5U0E7drTZqykhZ04bW_Ilm9uPM9jH8HiEN6uiSAe91B2FMilOa5WbBIqMfntFxewT7evnFaAbYDJgYUorQviKUqGk2dVDTbGqaTc2z5dKXuQTZyJODqJLJtgxYF7NBZYP7d_3mr7rxrnNG-19w-l_5D38bsww |
Cites_doi | 10.1016/j.mri.2013.06.009 10.1002/hbm.21077 10.1016/j.compbiomed.2014.05.004 10.1111/j.1552-6569.2011.00702.x 10.1017/S0033291719001120 10.1016/0022-3913(76)90026-3 10.1016/j.nicl.2017.02.012 10.1038/nrn1119 10.1016/j.neuroimage.2021.118502 10.1162/imag_a_00012 10.1109/VISUAL.1996.567777 10.1016/j.nec.2010.12.004 10.1007/s00330-019-06267-9 10.1002/nbm.1543 10.1186/s12967-023-04222-3 10.1016/j.jns.2021.117481 10.1002/ima.20232 10.1007/s00429-023-02653-8 10.1002/mrm.20508 10.1038/s41588-020-0610-9 10.1371/journal.pone.0187939 10.1007/s11060-004-3340-4 10.1007/s40120-021-00233-8 10.3389/fneur.2021.694286 10.1002/(SICI)1522-2594(199909)42:3<526::AID-MRM15>3.0.CO;2-J 10.1007/s11604-022-01370-2 10.3390/curroncol29040230 10.1016/j.brs.2011.10.007 10.1016/j.neuroimage.2007.02.016 10.3233/JAD-2012-120412 10.1016/j.mri.2012.05.001 10.1109/TVCG.2009.125 10.1016/S1361-8415(02)00053-1 10.1016/j.cag.2016.08.006 10.1002/nbm.778 10.3390/brainsci13101497 10.1093/brain/awx338 10.4103/0971-6203.31148 10.1007/s12311-015-0682-8 10.1097/00004728-199111000-00003 10.1007/s00134-021-06583-z 10.1016/j.media.2014.05.012 10.1038/s41598-018-34940-4 10.1016/j.nurt.2007.05.011 10.1016/j.cmpb.2023.107630 10.3389/fnins.2021.670287 10.1155/2024/4102461 10.1155/2017/9372050 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. – notice: Attribution - NonCommercial - NoDerivatives |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1016/j.cmpb.2024.108449 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
ExternalDocumentID | oai_HAL_hal_04718173v1 39378632 10_1016_j_cmpb_2024_108449 S0169260724004425 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- 6I. AACTN AAFTH ABTAH AFCTW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c436t-d0e0c5a9e82a166214cc2004c53fdc51eacde44d97a923039fbd91952a0fe1593 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Fri May 09 12:15:07 EDT 2025 Tue Aug 05 10:14:20 EDT 2025 Fri Jun 20 01:35:07 EDT 2025 Tue Jul 01 05:18:35 EDT 2025 Sun Apr 06 06:53:07 EDT 2025 Tue Aug 26 19:03:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DTI Color encoding Diffusion gradient Brain color encoding brain diffusion gradient |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-d0e0c5a9e82a166214cc2004c53fdc51eacde44d97a923039fbd91952a0fe1593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3778-7161 0000-0002-3262-0867 0000-0003-4395-5328 0009-0000-2432-5465 0000-0002-9654-4840 0000-0002-9833-8485 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0169260724004425 |
PMID | 39378632 |
PQID | 3114498445 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_04718173v1 proquest_miscellaneous_3114498445 pubmed_primary_39378632 crossref_primary_10_1016_j_cmpb_2024_108449 elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108449 elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hrabe, Kaur, Guilfoyle (bib0003) 2007; 32 Tournier, Calamante, Connelly (bib0006) 2007; 35 Bansal, Kaushik, Bihonegn, Slovák (bib0007) 2023; 240 Archer, Coombes, Chu, Chung, Burciu, Okun, Shukla, Vaillancourt (bib0038) 2018; 141 Butt, Kamtchum-Tatuene, Khan, Shuaib, Jickling, Miyasaki, Smith, Camicioli (bib0036) 2021; 426 Bihan, Iima (bib0048) 2015; 13 M. Zockler, D. Stalling, H.-C. Hege, Interactive visualization of 3D-vector fields using illuminated stream lines, in: Proceedings of Seventh Annual IEEE Visualization ’96, ACM, San Francisco, CA, USA, 1996: pp. 107–113,. Mandal, Mahajan, Dinov (bib0021) 2012; 31 Sun, Huang, Wang, Hong, Zhao (bib0034) 2023; 13 Aganj (bib0026) 2018; 8 Ingalhalikar, Yang, Davatzikos, Verma (bib0054) 2010; 20 Puybasset, Perlbarg, Unrug, Cassereau, Galanaud, Torkomian, Battisti, Lefort, Velly, Degos, Citerio, Bayen, Pelegrini-Issac (bib0049) 2022; 48 A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J.V. Miller, S. Pieper, R. Kikinis, 3D Slicer as an image computing platform for the Quantitative Imaging Network, Magnetic Resonance Imaging 30 (2012) 1323–1341. Bryois, Skene, Hansen, Kogelman, Watson, Liu (bib0035) 2020; 52 Zheng, Guo, Meng, Nan, Xu (bib0018) 2024; 2024 Lin, Wang, Lan, Fan (bib0040) 2017; 2017 Van Den Munckhof, Bot, Schuurman (bib0043) 2021; 10 Jensen, Helpern, Ramani, Lu, Kaczynski (bib0005) 2005; 53 Capobianco, Dominietto (bib0046) 2023; 21 Beppu, Inoue, Kuzu, Ogasawara, Ogawa, Sasaki (bib0009) 2005; 73 Jeurissen, Leemans, Sijbers (bib0027) 2014; 18 Klein, Lorenz, Kang, Baudrexel, Seifried, van de Loo, Steinmetz, Deichmann, Hilker (bib0032) 2011; 32 Bouza, Yang, Vemuri (bib0056) 2023; 13939 . Arfanakis, Haughton, Carew, Rogers, Dempsey, Meyerand (bib0029) 2002; 23 Vassal, Coste, Derost, Mendes, Gabrillargues, Nuti, Durif, Lemaire (bib0044) 2012; 5 Kleban, Jones, Tax (bib0008) 2023; 1 Kamagata, Tomiyama, Motoi, Kano, Abe, Ito, Shimoji, Suzuki, Hori, Nakanishi, Kuwatsuru, Sasai, Aoki, Hattori (bib0031) 2013; 31 Ellmore, Murphy, Cruz, Castriotta, Schiess (bib0053) 2014; 51 Liu, Dawant (bib0052) 2014; 2014 Le Bihan (bib0002) 2003; 4 Edwards, Goyal, Rusheen, Kouzani, Lee (bib0051) 2021; 15 Alexander, Lee, Lazar, Field (bib0001) 2007; 4 Pajevic, Pierpaoli (bib0012) 1999; 42 DiPietro, Moergeli (bib0023) 1976; 36 Westin, Maier, Mamata, Nabavi, Jolesz, Kikinis (bib0014) 2002; 6 Shin, Lee, Lee, Huh, Youn, Louis, Cho (bib0033) 2016; 15 El Ouadih, Pereira, Biau, Claise, Chaix, Verrelle, Khalil, Durando, Lemaire (bib0047) 2022; 29 C.7.6.2 Image Plane Module, (n.d.). Cohen, Assaf (bib0004) 2002; 15 Douek, Turner, Pekar, Patronas, Bihan (bib0013) 1991; 15 Chiang, Hsu, Shang, Tseng, Gau (bib0050) 2020; 50 Jones, Cercignani (bib0042) 2010; 23 Becktepe, Busse, Jensen-Kondering, Toedt, Wolff, Zeuner, Berg, Granert, Deuschl (bib0039) 2021; 12 O'Donnell, Westin (bib0010) 2011; 22 (accessed February 20, 2024). Talairach, Tournoux (bib0022) 1988 Dejerine (bib0028) 1901 Tatekawa, Matsushita, Ueda, Takita, Horiuchi, Atsukawa, Morishita, Tsukamoto, Shimono, Miki (bib0024) 2023; 41 Uwano, Sasaki, Kudo, Fujiwara, Yamaguchi, Saito, Ogasawara, Ogawa (bib0016) 2013; 23 Wu, Voltoline, Yasuda (bib0015) 2016; 60 K.G. Schilling, F. Rheault, L. Petit, C.B. Hansen, V. Nath, F.-C. Yeh, G. Girard, M. Barakovic, J. Rafael-Patino, T. Yu, E. Fischi-Gomez, M. Pizzolato, M. Ocampo-Pineda, S. Schiavi, E.J. Canales-Rodríguez, A. Daducci, C. Granziera, G. Innocenti, J.-P. Thiran, L. Mancini, S. Wastling, S. Cocozza, M. Petracca, G. Pontillo, M. Mancini, S.B. Vos, V.N. Vakharia, J.S. Duncan, H. Melero, L. Manzanedo, E. Sanz-Morales, Á. Peña-Melián, F. Calamante, A. Attyé, R.P. Cabeen, L. Korobova, A.W. Toga, A.A. Vijayakumari, D. Parker, R. Verma, A. Radwan, S. Sunaert, L. Emsell, A. De Luca, A. Leemans, C.J. Bajada, H. Haroon, H. Azadbakht, M. Chamberland, S. Genc, C.M.W. Tax, P.-H. Yeh, R. Srikanchana, C.D. Mcknight, J.Y.-M. Yang, J. Chen, C.E. Kelly, C.-H. Yeh, J. Cochereau, J.J. Maller, T. Welton, F. Almairac, K.K. Seunarine, C.A. Clark, F. Zhang, N. Makris, A. Golby, Y. Rathi, L.J. O'Donnell, Y. Xia, D.B. Aydogan, Y. Shi, F.G. Fernandes, M. Raemaekers, S. Warrington, S. Michielse, A. Ramírez-Manzanares, L. Concha, R. Aranda, M.R. Meraz, G. Lerma-Usabiaga, L. Roitman, L.S. Fekonja, N. Calarco, M. Joseph, H. Nakua, A.N. Voineskos, P. Karan, G. Grenier, J.H. Legarreta, N. Adluru, V.A. Nair, V. Prabhakaran, A.L. Alexander, K. Kamagata, Y. Saito, W. Uchida, C. Andica, M. Abe, R.G. Bayrak, .A.M.Gandini Wheeler-Kingshott, E. D'Angelo, F. Palesi, G. Savini, N. Rolandi, P. Guevara, J. Houenou, N. López-López, J.-F. Mangin, C. Poupon, C. Román, A. Vázquez, C. Maffei, M. Arantes, J.P. Andrade, S.M. Silva, V.D. Calhoun, E. Caverzasi, S. Sacco, M. Lauricella, F. Pestilli, D. Bullock, Y. Zhan, E. Brignoni-Perez, C. Lebel, J.E. Reynolds, I. Nestrasil, R. Labounek, C. Lenglet, A. Paulson, S. Aulicka, S.R. Heilbronner, K. Heuer, B.Q. Chandio, J. Guaje, W. Tang, E. Garyfallidis, R. Raja, A.W. Anderson, B.A. Landman, M. Descoteaux, Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?, Neuroimage 243 (2021) 118502. Rektor, Svátková, Vojtíšek, Zikmundová, Vaníček, Király, Szabó (bib0037) 2018; 13 Demiralp, Hughes, Laidlaw (bib0017) 2009; 15 Chung, Burciu, Ofori, Shukla, Okun, Hess, Vaillancourt (bib0030) 2017; 14 Uwano, Sasaki, Kudo, Fujiwara, Yamaguchi, Saito, Ogasawara, Ogawa (bib0045) 2013; 23 Schira, Isherwood, Kassem, Barth, Shaw, Roberts, Paxinos (bib0055) 2023; 228 Pietracupa, Bologna, Bharti, Pasqua, Tommasin, Elifani, Paparella, Petsas, Grillea, Berardelli, Pantano (bib0041) 2019; 29 Wu (10.1016/j.cmpb.2024.108449_bib0015) 2016; 60 Pajevic (10.1016/j.cmpb.2024.108449_bib0012) 1999; 42 El Ouadih (10.1016/j.cmpb.2024.108449_bib0047) 2022; 29 Bansal (10.1016/j.cmpb.2024.108449_bib0007) 2023; 240 Uwano (10.1016/j.cmpb.2024.108449_bib0045) 2013; 23 Edwards (10.1016/j.cmpb.2024.108449_bib0051) 2021; 15 Douek (10.1016/j.cmpb.2024.108449_bib0013) 1991; 15 Ingalhalikar (10.1016/j.cmpb.2024.108449_bib0054) 2010; 20 DiPietro (10.1016/j.cmpb.2024.108449_bib0023) 1976; 36 Shin (10.1016/j.cmpb.2024.108449_bib0033) 2016; 15 Vassal (10.1016/j.cmpb.2024.108449_bib0044) 2012; 5 Bouza (10.1016/j.cmpb.2024.108449_bib0056) 2023; 13939 Rektor (10.1016/j.cmpb.2024.108449_bib0037) 2018; 13 10.1016/j.cmpb.2024.108449_bib0011 Hrabe (10.1016/j.cmpb.2024.108449_bib0003) 2007; 32 Schira (10.1016/j.cmpb.2024.108449_bib0055) 2023; 228 Aganj (10.1016/j.cmpb.2024.108449_bib0026) 2018; 8 Chiang (10.1016/j.cmpb.2024.108449_bib0050) 2020; 50 Alexander (10.1016/j.cmpb.2024.108449_bib0001) 2007; 4 Sun (10.1016/j.cmpb.2024.108449_bib0034) 2023; 13 Butt (10.1016/j.cmpb.2024.108449_bib0036) 2021; 426 Zheng (10.1016/j.cmpb.2024.108449_bib0018) 2024; 2024 Tatekawa (10.1016/j.cmpb.2024.108449_bib0024) 2023; 41 Dejerine (10.1016/j.cmpb.2024.108449_bib0028) 1901 Beppu (10.1016/j.cmpb.2024.108449_bib0009) 2005; 73 Jeurissen (10.1016/j.cmpb.2024.108449_bib0027) 2014; 18 Bihan (10.1016/j.cmpb.2024.108449_bib0048) 2015; 13 Capobianco (10.1016/j.cmpb.2024.108449_bib0046) 2023; 21 Jones (10.1016/j.cmpb.2024.108449_bib0042) 2010; 23 Kamagata (10.1016/j.cmpb.2024.108449_bib0031) 2013; 31 Liu (10.1016/j.cmpb.2024.108449_bib0052) 2014; 2014 Mandal (10.1016/j.cmpb.2024.108449_bib0021) 2012; 31 Puybasset (10.1016/j.cmpb.2024.108449_bib0049) 2022; 48 Ellmore (10.1016/j.cmpb.2024.108449_bib0053) 2014; 51 Demiralp (10.1016/j.cmpb.2024.108449_bib0017) 2009; 15 Pietracupa (10.1016/j.cmpb.2024.108449_bib0041) 2019; 29 Bryois (10.1016/j.cmpb.2024.108449_bib0035) 2020; 52 Lin (10.1016/j.cmpb.2024.108449_bib0040) 2017; 2017 Jensen (10.1016/j.cmpb.2024.108449_bib0005) 2005; 53 O'Donnell (10.1016/j.cmpb.2024.108449_bib0010) 2011; 22 Chung (10.1016/j.cmpb.2024.108449_bib0030) 2017; 14 10.1016/j.cmpb.2024.108449_bib0019 Uwano (10.1016/j.cmpb.2024.108449_bib0016) 2013; 23 Talairach (10.1016/j.cmpb.2024.108449_bib0022) 1988 Van Den Munckhof (10.1016/j.cmpb.2024.108449_bib0043) 2021; 10 Arfanakis (10.1016/j.cmpb.2024.108449_bib0029) 2002; 23 Becktepe (10.1016/j.cmpb.2024.108449_bib0039) 2021; 12 Westin (10.1016/j.cmpb.2024.108449_bib0014) 2002; 6 Klein (10.1016/j.cmpb.2024.108449_bib0032) 2011; 32 Archer (10.1016/j.cmpb.2024.108449_bib0038) 2018; 141 Kleban (10.1016/j.cmpb.2024.108449_bib0008) 2023; 1 10.1016/j.cmpb.2024.108449_bib0020 Tournier (10.1016/j.cmpb.2024.108449_bib0006) 2007; 35 Le Bihan (10.1016/j.cmpb.2024.108449_bib0002) 2003; 4 10.1016/j.cmpb.2024.108449_bib0025 Cohen (10.1016/j.cmpb.2024.108449_bib0004) 2002; 15 |
References_xml | – volume: 51 start-page: 104 year: 2014 end-page: 110 ident: bib0053 article-title: Averaging of diffusion tensor imaging direction-encoded color maps for localizing substantia nigra publication-title: Comput. Biol. Med. – volume: 22 start-page: 185 year: 2011 end-page: 196 ident: bib0010 article-title: An introduction to diffusion tensor image analysis publication-title: Neurosurg. Clin. N. Am. – volume: 2014 start-page: 1505 year: 2014 end-page: 1508 ident: bib0052 article-title: Automatic Detection of the Anterior and Posterior Commissures on MRI Scans using Regression Forests publication-title: Conf. Proc. IEEe Eng. Med. Biol. Soc. – volume: 15 start-page: 923 year: 1991 end-page: 929 ident: bib0013 article-title: MR color mapping of myelin fiber orientation publication-title: J. Comput. Assist. Tomogr. – volume: 50 start-page: 1203 year: 2020 end-page: 1213 ident: bib0050 article-title: White matter endophenotype candidates for ADHD: a diffusion imaging tractography study with sibling design publication-title: Psychol. Med. – reference: A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J.V. Miller, S. Pieper, R. Kikinis, 3D Slicer as an image computing platform for the Quantitative Imaging Network, Magnetic Resonance Imaging 30 (2012) 1323–1341. – volume: 13939 start-page: 563 year: 2023 end-page: 575 ident: bib0056 article-title: Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images publication-title: Inf. Process. Med. ImAging – volume: 23 start-page: 794 year: 2002 end-page: 802 ident: bib0029 article-title: Diffusion tensor MR imaging in diffuse axonal injury publication-title: AJNR Am. J. Neuroradiol. – volume: 2024 year: 2024 ident: bib0018 article-title: White matter fiber tracking method with adaptive correction of tracking direction publication-title: Int. J. Biomed. ImAging – volume: 31 start-page: S169 year: 2012 end-page: S188 ident: bib0021 article-title: Structural brain atlases: design, rationale, and applications in normal and pathological cohorts publication-title: J. Alzheimers. Dis. – reference: K.G. Schilling, F. Rheault, L. Petit, C.B. Hansen, V. Nath, F.-C. Yeh, G. Girard, M. Barakovic, J. Rafael-Patino, T. Yu, E. Fischi-Gomez, M. Pizzolato, M. Ocampo-Pineda, S. Schiavi, E.J. Canales-Rodríguez, A. Daducci, C. Granziera, G. Innocenti, J.-P. Thiran, L. Mancini, S. Wastling, S. Cocozza, M. Petracca, G. Pontillo, M. Mancini, S.B. Vos, V.N. Vakharia, J.S. Duncan, H. Melero, L. Manzanedo, E. Sanz-Morales, Á. Peña-Melián, F. Calamante, A. Attyé, R.P. Cabeen, L. Korobova, A.W. Toga, A.A. Vijayakumari, D. Parker, R. Verma, A. Radwan, S. Sunaert, L. Emsell, A. De Luca, A. Leemans, C.J. Bajada, H. Haroon, H. Azadbakht, M. Chamberland, S. Genc, C.M.W. Tax, P.-H. Yeh, R. Srikanchana, C.D. Mcknight, J.Y.-M. Yang, J. Chen, C.E. Kelly, C.-H. Yeh, J. Cochereau, J.J. Maller, T. Welton, F. Almairac, K.K. Seunarine, C.A. Clark, F. Zhang, N. Makris, A. Golby, Y. Rathi, L.J. O'Donnell, Y. Xia, D.B. Aydogan, Y. Shi, F.G. Fernandes, M. Raemaekers, S. Warrington, S. Michielse, A. Ramírez-Manzanares, L. Concha, R. Aranda, M.R. Meraz, G. Lerma-Usabiaga, L. Roitman, L.S. Fekonja, N. Calarco, M. Joseph, H. Nakua, A.N. Voineskos, P. Karan, G. Grenier, J.H. Legarreta, N. Adluru, V.A. Nair, V. Prabhakaran, A.L. Alexander, K. Kamagata, Y. Saito, W. Uchida, C. Andica, M. Abe, R.G. Bayrak, .A.M.Gandini Wheeler-Kingshott, E. D'Angelo, F. Palesi, G. Savini, N. Rolandi, P. Guevara, J. Houenou, N. López-López, J.-F. Mangin, C. Poupon, C. Román, A. Vázquez, C. Maffei, M. Arantes, J.P. Andrade, S.M. Silva, V.D. Calhoun, E. Caverzasi, S. Sacco, M. Lauricella, F. Pestilli, D. Bullock, Y. Zhan, E. Brignoni-Perez, C. Lebel, J.E. Reynolds, I. Nestrasil, R. Labounek, C. Lenglet, A. Paulson, S. Aulicka, S.R. Heilbronner, K. Heuer, B.Q. Chandio, J. Guaje, W. Tang, E. Garyfallidis, R. Raja, A.W. Anderson, B.A. Landman, M. Descoteaux, Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?, Neuroimage 243 (2021) 118502. – volume: 23 start-page: 803 year: 2010 end-page: 820 ident: bib0042 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. – reference: C.7.6.2 Image Plane Module, (n.d.). – volume: 20 start-page: 99 year: 2010 end-page: 107 ident: bib0054 article-title: DTI-DROID: diffusion tensor imaging-deformable registration using orientation and intensity descriptors publication-title: Int J Imaging Syst Tech – volume: 14 start-page: 417 year: 2017 end-page: 421 ident: bib0030 article-title: Parkinson's disease diffusion MRI is not affected by acute antiparkinsonian medication publication-title: Neuroimage Clin. – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bib0006 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage – volume: 12 year: 2021 ident: bib0039 article-title: White Matter Hyperintensities Are Associated With Severity of Essential Tremor in the Elderly publication-title: Front. Neurol. – volume: 15 start-page: 174 year: 2016 end-page: 181 ident: bib0033 article-title: Atrophy of the Cerebellar Vermis in Essential Tremor: segmental Volumetric MRI Analysis publication-title: Cerebellum. – volume: 5 start-page: 625 year: 2012 end-page: 633 ident: bib0044 article-title: Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence publication-title: Brain Stimul. – volume: 23 start-page: 197 year: 2013 end-page: 201 ident: bib0045 article-title: Diffusion Anisotropy Color-Coded Map of Cerebral White Matter: quantitative Comparison between Orthogonal Anisotropic Diffusion-Weighted Imaging and Diffusion Tensor Imaging publication-title: Journal of Neuroimaging – volume: 141 start-page: 472 year: 2018 end-page: 485 ident: bib0038 article-title: A widespread visually-sensitive functional network relates to symptoms in essential tremor publication-title: Brain – volume: 41 start-page: 393 year: 2023 end-page: 400 ident: bib0024 article-title: Improved reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) index: an analysis of reorientation technique of the OASIS-3 dataset publication-title: Jpn. J. Radiol. – volume: 32 start-page: 896 year: 2011 end-page: 904 ident: bib0032 article-title: Diffusion tensor imaging of white matter involvement in essential tremor publication-title: Hum. Brain Mapp. – volume: 426 year: 2021 ident: bib0036 article-title: White matter hyperintensities in patients with Parkinson's disease: a systematic review and meta-analysis publication-title: J. Neurol. Sci. – volume: 21 start-page: 385 year: 2023 ident: bib0046 article-title: Assessment of brain cancer atlas maps with multimodal imaging features publication-title: J. Transl. Med. – year: 1901 ident: bib0028 article-title: Anatomie des centres nerveux (Tomes 1 and 2) publication-title: Rueff et Cie – volume: 15 start-page: 516 year: 2002 end-page: 542 ident: bib0004 article-title: High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues - a technical review publication-title: NMR Biomed. – reference: (accessed February 20, 2024). – volume: 15 year: 2021 ident: bib0051 article-title: DeepNavNet: automated Landmark Localization for Neuronavigation publication-title: Front. Neurosci. – reference: M. Zockler, D. Stalling, H.-C. Hege, Interactive visualization of 3D-vector fields using illuminated stream lines, in: Proceedings of Seventh Annual IEEE Visualization ’96, ACM, San Francisco, CA, USA, 1996: pp. 107–113,. – volume: 15 start-page: 1457 year: 2009 end-page: 1463 ident: bib0017 article-title: Coloring 3D line fields using Boy's real projective plane immersion publication-title: IEEe Trans. Vis. Comput. Graph. – volume: 6 start-page: 93 year: 2002 end-page: 108 ident: bib0014 article-title: Processing and visualization for diffusion tensor MRI publication-title: Med. Image Anal. – volume: 4 start-page: 316 year: 2007 end-page: 329 ident: bib0001 article-title: Diffusion tensor imaging of the brain publication-title: Neurotherapeutics. – volume: 4 start-page: 469 year: 2003 end-page: 480 ident: bib0002 article-title: Looking into the functional architecture of the brain with diffusion MRI publication-title: Nat. Rev. Neurosci. – volume: 13 year: 2015 ident: bib0048 article-title: Diffusion Magnetic Resonance Imaging: what Water Tells Us about Biological Tissues publication-title: PLoS. Biol. – volume: 36 start-page: 624 year: 1976 end-page: 635 ident: bib0023 article-title: Significance of the Frankfort-mandibular plane angle to prosthodontics publication-title: J. Prosthet. Dent. – volume: 1 start-page: 1 year: 2023 end-page: 17 ident: bib0008 article-title: The impact of head orientation with respect to B0 on diffusion tensor MRI measures publication-title: Imag. Neurosci. – volume: 23 start-page: 197 year: 2013 end-page: 201 ident: bib0016 article-title: Diffusion anisotropy color-coded map of cerebral white matter: quantitative comparison between orthogonal anisotropic diffusion-weighted imaging and diffusion tensor imaging publication-title: J. Neuroimaging – volume: 13 start-page: 1497 year: 2023 ident: bib0034 article-title: Research Progress in Diffusion Spectrum Imaging publication-title: Brain Sci. – volume: 10 start-page: 61 year: 2021 end-page: 73 ident: bib0043 article-title: Targeting of the Subthalamic Nucleus in Patients with Parkinson's Disease Undergoing Deep Brain Stimulation Surgery publication-title: Neurol. Ther. – volume: 60 start-page: 66 year: 2016 end-page: 75 ident: bib0015 article-title: A view-independent line-coding colormap for diffusion tensor imaging publication-title: Comput. Graph. – volume: 240 year: 2023 ident: bib0007 article-title: Automatic tractography and segmentation using finsler geometry based on higher-order tensor fields publication-title: Comput. Methods Programs Biomed. – volume: 8 start-page: 16541 year: 2018 ident: bib0026 article-title: Automatic verification of the gradient table in diffusion-weighted MRI Based on Fiber Continuity publication-title: Sci. Rep. – volume: 48 start-page: 201 year: 2022 end-page: 212 ident: bib0049 article-title: MRI-COMA Investigators CENTER-TBI MRI Participants and MRI Only Investigators, Prognostic value of global deep white matter DTI metrics for 1-year outcome prediction in ICU traumatic brain injury patients: an MRI-COMA and CENTER-TBI combined study publication-title: Intensive Care Med. – volume: 52 start-page: 482 year: 2020 end-page: 493 ident: bib0035 article-title: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease publication-title: Nat. Genet. – year: 1988 ident: bib0022 article-title: Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging – volume: 32 start-page: 34 year: 2007 ident: bib0003 article-title: Principles and limitations of NMR diffusion measurements publication-title: J. Med. Phys. – volume: 228 start-page: 1849 year: 2023 end-page: 1863 ident: bib0055 article-title: HumanBrainAtlas: an in vivo MRI dataset for detailed segmentations publication-title: Brain Struct. Funct. – volume: 29 start-page: 6634 year: 2019 end-page: 6642 ident: bib0041 article-title: White matter rather than gray matter damage characterizes essential tremor publication-title: Eur. Radiol. – volume: 29 start-page: 2823 year: 2022 end-page: 2834 ident: bib0047 article-title: DTI Abnormalities Related to Glioblastoma: a Prospective Comparative Study with Metastasis and Healthy Subjects publication-title: Curr. Oncol. – reference: . – volume: 2017 year: 2017 ident: bib0040 article-title: Multiple Factors Involved in the Pathogenesis of White Matter Lesions publication-title: Biomed. Res. Int. – volume: 73 start-page: 137 year: 2005 end-page: 144 ident: bib0009 article-title: Utility of three-dimensional anisotropy contrast magnetic resonance axonography for determining condition of the pyramidal tract in glioblastoma patients with hemiparesis publication-title: J. Neurooncol. – volume: 18 start-page: 953 year: 2014 end-page: 962 ident: bib0027 article-title: Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI publication-title: Med. Image Anal. – volume: 53 start-page: 1432 year: 2005 end-page: 1440 ident: bib0005 article-title: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 31 start-page: 1501 year: 2013 end-page: 1506 ident: bib0031 article-title: Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: comparison with conventional diffusion tensor imaging publication-title: Magn. Reson. ImAging – volume: 13 year: 2018 ident: bib0037 article-title: White matter alterations in Parkinson's disease with normal cognition precede grey matter atrophy publication-title: PLoS. One – volume: 42 start-page: 526 year: 1999 end-page: 540 ident: bib0012 article-title: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain publication-title: Magn. Reson. Med. – volume: 31 start-page: 1501 year: 2013 ident: 10.1016/j.cmpb.2024.108449_bib0031 article-title: Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: comparison with conventional diffusion tensor imaging publication-title: Magn. Reson. ImAging doi: 10.1016/j.mri.2013.06.009 – volume: 32 start-page: 896 year: 2011 ident: 10.1016/j.cmpb.2024.108449_bib0032 article-title: Diffusion tensor imaging of white matter involvement in essential tremor publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21077 – volume: 51 start-page: 104 year: 2014 ident: 10.1016/j.cmpb.2024.108449_bib0053 article-title: Averaging of diffusion tensor imaging direction-encoded color maps for localizing substantia nigra publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.05.004 – volume: 23 start-page: 197 year: 2013 ident: 10.1016/j.cmpb.2024.108449_bib0016 article-title: Diffusion anisotropy color-coded map of cerebral white matter: quantitative comparison between orthogonal anisotropic diffusion-weighted imaging and diffusion tensor imaging publication-title: J. Neuroimaging doi: 10.1111/j.1552-6569.2011.00702.x – volume: 50 start-page: 1203 year: 2020 ident: 10.1016/j.cmpb.2024.108449_bib0050 article-title: White matter endophenotype candidates for ADHD: a diffusion imaging tractography study with sibling design publication-title: Psychol. Med. doi: 10.1017/S0033291719001120 – volume: 36 start-page: 624 year: 1976 ident: 10.1016/j.cmpb.2024.108449_bib0023 article-title: Significance of the Frankfort-mandibular plane angle to prosthodontics publication-title: J. Prosthet. Dent. doi: 10.1016/0022-3913(76)90026-3 – volume: 14 start-page: 417 year: 2017 ident: 10.1016/j.cmpb.2024.108449_bib0030 article-title: Parkinson's disease diffusion MRI is not affected by acute antiparkinsonian medication publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.02.012 – volume: 4 start-page: 469 year: 2003 ident: 10.1016/j.cmpb.2024.108449_bib0002 article-title: Looking into the functional architecture of the brain with diffusion MRI publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1119 – ident: 10.1016/j.cmpb.2024.108449_bib0019 doi: 10.1016/j.neuroimage.2021.118502 – volume: 1 start-page: 1 year: 2023 ident: 10.1016/j.cmpb.2024.108449_bib0008 article-title: The impact of head orientation with respect to B0 on diffusion tensor MRI measures publication-title: Imag. Neurosci. doi: 10.1162/imag_a_00012 – year: 1988 ident: 10.1016/j.cmpb.2024.108449_bib0022 – ident: 10.1016/j.cmpb.2024.108449_bib0020 doi: 10.1109/VISUAL.1996.567777 – volume: 22 start-page: 185 year: 2011 ident: 10.1016/j.cmpb.2024.108449_bib0010 article-title: An introduction to diffusion tensor image analysis publication-title: Neurosurg. Clin. N. Am. doi: 10.1016/j.nec.2010.12.004 – volume: 23 start-page: 794 year: 2002 ident: 10.1016/j.cmpb.2024.108449_bib0029 article-title: Diffusion tensor MR imaging in diffuse axonal injury publication-title: AJNR Am. J. Neuroradiol. – volume: 29 start-page: 6634 year: 2019 ident: 10.1016/j.cmpb.2024.108449_bib0041 article-title: White matter rather than gray matter damage characterizes essential tremor publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06267-9 – volume: 23 start-page: 803 year: 2010 ident: 10.1016/j.cmpb.2024.108449_bib0042 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. doi: 10.1002/nbm.1543 – volume: 21 start-page: 385 year: 2023 ident: 10.1016/j.cmpb.2024.108449_bib0046 article-title: Assessment of brain cancer atlas maps with multimodal imaging features publication-title: J. Transl. Med. doi: 10.1186/s12967-023-04222-3 – volume: 426 year: 2021 ident: 10.1016/j.cmpb.2024.108449_bib0036 article-title: White matter hyperintensities in patients with Parkinson's disease: a systematic review and meta-analysis publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2021.117481 – volume: 13 year: 2015 ident: 10.1016/j.cmpb.2024.108449_bib0048 article-title: Diffusion Magnetic Resonance Imaging: what Water Tells Us about Biological Tissues publication-title: PLoS. Biol. – volume: 20 start-page: 99 year: 2010 ident: 10.1016/j.cmpb.2024.108449_bib0054 article-title: DTI-DROID: diffusion tensor imaging-deformable registration using orientation and intensity descriptors publication-title: Int J Imaging Syst Tech doi: 10.1002/ima.20232 – ident: 10.1016/j.cmpb.2024.108449_bib0011 – volume: 228 start-page: 1849 year: 2023 ident: 10.1016/j.cmpb.2024.108449_bib0055 article-title: HumanBrainAtlas: an in vivo MRI dataset for detailed segmentations publication-title: Brain Struct. Funct. doi: 10.1007/s00429-023-02653-8 – volume: 53 start-page: 1432 year: 2005 ident: 10.1016/j.cmpb.2024.108449_bib0005 article-title: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20508 – volume: 13939 start-page: 563 year: 2023 ident: 10.1016/j.cmpb.2024.108449_bib0056 article-title: Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images publication-title: Inf. Process. Med. ImAging – volume: 52 start-page: 482 year: 2020 ident: 10.1016/j.cmpb.2024.108449_bib0035 article-title: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease publication-title: Nat. Genet. doi: 10.1038/s41588-020-0610-9 – volume: 13 year: 2018 ident: 10.1016/j.cmpb.2024.108449_bib0037 article-title: White matter alterations in Parkinson's disease with normal cognition precede grey matter atrophy publication-title: PLoS. One doi: 10.1371/journal.pone.0187939 – volume: 73 start-page: 137 year: 2005 ident: 10.1016/j.cmpb.2024.108449_bib0009 article-title: Utility of three-dimensional anisotropy contrast magnetic resonance axonography for determining condition of the pyramidal tract in glioblastoma patients with hemiparesis publication-title: J. Neurooncol. doi: 10.1007/s11060-004-3340-4 – volume: 10 start-page: 61 year: 2021 ident: 10.1016/j.cmpb.2024.108449_bib0043 article-title: Targeting of the Subthalamic Nucleus in Patients with Parkinson's Disease Undergoing Deep Brain Stimulation Surgery publication-title: Neurol. Ther. doi: 10.1007/s40120-021-00233-8 – volume: 12 year: 2021 ident: 10.1016/j.cmpb.2024.108449_bib0039 article-title: White Matter Hyperintensities Are Associated With Severity of Essential Tremor in the Elderly publication-title: Front. Neurol. doi: 10.3389/fneur.2021.694286 – volume: 42 start-page: 526 year: 1999 ident: 10.1016/j.cmpb.2024.108449_bib0012 article-title: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199909)42:3<526::AID-MRM15>3.0.CO;2-J – volume: 41 start-page: 393 year: 2023 ident: 10.1016/j.cmpb.2024.108449_bib0024 article-title: Improved reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) index: an analysis of reorientation technique of the OASIS-3 dataset publication-title: Jpn. J. Radiol. doi: 10.1007/s11604-022-01370-2 – volume: 29 start-page: 2823 year: 2022 ident: 10.1016/j.cmpb.2024.108449_bib0047 article-title: DTI Abnormalities Related to Glioblastoma: a Prospective Comparative Study with Metastasis and Healthy Subjects publication-title: Curr. Oncol. doi: 10.3390/curroncol29040230 – volume: 5 start-page: 625 year: 2012 ident: 10.1016/j.cmpb.2024.108449_bib0044 article-title: Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence publication-title: Brain Stimul. doi: 10.1016/j.brs.2011.10.007 – volume: 35 start-page: 1459 year: 2007 ident: 10.1016/j.cmpb.2024.108449_bib0006 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – year: 1901 ident: 10.1016/j.cmpb.2024.108449_bib0028 article-title: Anatomie des centres nerveux (Tomes 1 and 2) publication-title: Rueff et Cie – volume: 31 start-page: S169 issue: Suppl 3 year: 2012 ident: 10.1016/j.cmpb.2024.108449_bib0021 article-title: Structural brain atlases: design, rationale, and applications in normal and pathological cohorts publication-title: J. Alzheimers. Dis. doi: 10.3233/JAD-2012-120412 – ident: 10.1016/j.cmpb.2024.108449_bib0025 doi: 10.1016/j.mri.2012.05.001 – volume: 15 start-page: 1457 year: 2009 ident: 10.1016/j.cmpb.2024.108449_bib0017 article-title: Coloring 3D line fields using Boy's real projective plane immersion publication-title: IEEe Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2009.125 – volume: 6 start-page: 93 year: 2002 ident: 10.1016/j.cmpb.2024.108449_bib0014 article-title: Processing and visualization for diffusion tensor MRI publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(02)00053-1 – volume: 2014 start-page: 1505 year: 2014 ident: 10.1016/j.cmpb.2024.108449_bib0052 article-title: Automatic Detection of the Anterior and Posterior Commissures on MRI Scans using Regression Forests publication-title: Conf. Proc. IEEe Eng. Med. Biol. Soc. – volume: 60 start-page: 66 year: 2016 ident: 10.1016/j.cmpb.2024.108449_bib0015 article-title: A view-independent line-coding colormap for diffusion tensor imaging publication-title: Comput. Graph. doi: 10.1016/j.cag.2016.08.006 – volume: 15 start-page: 516 year: 2002 ident: 10.1016/j.cmpb.2024.108449_bib0004 article-title: High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues - a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.778 – volume: 13 start-page: 1497 year: 2023 ident: 10.1016/j.cmpb.2024.108449_bib0034 article-title: Research Progress in Diffusion Spectrum Imaging publication-title: Brain Sci. doi: 10.3390/brainsci13101497 – volume: 141 start-page: 472 year: 2018 ident: 10.1016/j.cmpb.2024.108449_bib0038 article-title: A widespread visually-sensitive functional network relates to symptoms in essential tremor publication-title: Brain doi: 10.1093/brain/awx338 – volume: 32 start-page: 34 year: 2007 ident: 10.1016/j.cmpb.2024.108449_bib0003 article-title: Principles and limitations of NMR diffusion measurements publication-title: J. Med. Phys. doi: 10.4103/0971-6203.31148 – volume: 15 start-page: 174 year: 2016 ident: 10.1016/j.cmpb.2024.108449_bib0033 article-title: Atrophy of the Cerebellar Vermis in Essential Tremor: segmental Volumetric MRI Analysis publication-title: Cerebellum. doi: 10.1007/s12311-015-0682-8 – volume: 15 start-page: 923 year: 1991 ident: 10.1016/j.cmpb.2024.108449_bib0013 article-title: MR color mapping of myelin fiber orientation publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199111000-00003 – volume: 48 start-page: 201 year: 2022 ident: 10.1016/j.cmpb.2024.108449_bib0049 article-title: MRI-COMA Investigators CENTER-TBI MRI Participants and MRI Only Investigators, Prognostic value of global deep white matter DTI metrics for 1-year outcome prediction in ICU traumatic brain injury patients: an MRI-COMA and CENTER-TBI combined study publication-title: Intensive Care Med. doi: 10.1007/s00134-021-06583-z – volume: 18 start-page: 953 year: 2014 ident: 10.1016/j.cmpb.2024.108449_bib0027 article-title: Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.05.012 – volume: 8 start-page: 16541 year: 2018 ident: 10.1016/j.cmpb.2024.108449_bib0026 article-title: Automatic verification of the gradient table in diffusion-weighted MRI Based on Fiber Continuity publication-title: Sci. Rep. doi: 10.1038/s41598-018-34940-4 – volume: 4 start-page: 316 year: 2007 ident: 10.1016/j.cmpb.2024.108449_bib0001 article-title: Diffusion tensor imaging of the brain publication-title: Neurotherapeutics. doi: 10.1016/j.nurt.2007.05.011 – volume: 240 year: 2023 ident: 10.1016/j.cmpb.2024.108449_bib0007 article-title: Automatic tractography and segmentation using finsler geometry based on higher-order tensor fields publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2023.107630 – volume: 15 year: 2021 ident: 10.1016/j.cmpb.2024.108449_bib0051 article-title: DeepNavNet: automated Landmark Localization for Neuronavigation publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.670287 – volume: 23 start-page: 197 year: 2013 ident: 10.1016/j.cmpb.2024.108449_bib0045 article-title: Diffusion Anisotropy Color-Coded Map of Cerebral White Matter: quantitative Comparison between Orthogonal Anisotropic Diffusion-Weighted Imaging and Diffusion Tensor Imaging publication-title: Journal of Neuroimaging doi: 10.1111/j.1552-6569.2011.00702.x – volume: 2024 year: 2024 ident: 10.1016/j.cmpb.2024.108449_bib0018 article-title: White matter fiber tracking method with adaptive correction of tracking direction publication-title: Int. J. Biomed. ImAging doi: 10.1155/2024/4102461 – volume: 2017 year: 2017 ident: 10.1016/j.cmpb.2024.108449_bib0040 article-title: Multiple Factors Involved in the Pathogenesis of White Matter Lesions publication-title: Biomed. Res. Int. doi: 10.1155/2017/9372050 |
SSID | ssj0002556 |
Score | 2.4050777 |
Snippet | •The orientation of diffusion gradients depends on MRI manufacturer.•Interpretation of diffusion color encoded (DCE) maps depends on brain orientation.•The... The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is... Background and ObjectiveThe common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 108449 |
SubjectTerms | Adult Aged Bioengineering Brain Cognitive science Color Color encoding Diffusion gradient Diffusion Magnetic Resonance Imaging - methods Diffusion Magnetic Resonance Imaging - standards DTI Essential Tremor - diagnostic imaging Female Healthy Volunteers Humans Image Processing, Computer-Assisted - methods Imaging Life Sciences Male Middle Aged Neuroimaging - methods Neuroimaging - standards Neuroscience Parkinson Disease - diagnostic imaging Young Adult |
Title | Brain color-coded diffusion imaging: Utility of ACPC reorientation of gradients in healthy subjects and patients |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724004425 https://dx.doi.org/10.1016/j.cmpb.2024.108449 https://www.ncbi.nlm.nih.gov/pubmed/39378632 https://www.proquest.com/docview/3114498445 https://uca.hal.science/hal-04718173 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEA7rCuJFXJ-j7hLFm7TT3Uk_4m12cBkfuwg6sLeQ5zrC9gzdPcJe_O1WddKzCD7AY4ckHVKVSiX56itCXqaWFdpXWeJ9WSYclltSewfryqXeG5tp5fGgeHpWLpb8_XlxvkfmYywMwiqj7Q82fbDWsWQaZ3O6Wa2mn5FHBLzxClGQHFQPI9jhZ6DTr39cwzyQYivwe4sEa8fAmYDxMpcbDWfEnCPUjiOf5u83pxtfESX5Jxd02IpO7pI70YekszDMA7Lnmnvk1ml8Jb9PNseY94EiH3WbYMy6pZgHZYsXY3R1OeQlekOXPcJir-ja09n805y2bt2uYiRSg6UX7QAH6zsKnYV4ySvabTXe3HRUNZZGUtbuAVmevP0yXyQxs0JiOCv7xKYuNYUSrs5VVpZ5xo3B5WIK5q0pMrDG1nFuRaXAAUyZ8NqKTBS5Sr0DB4g9JPvNunGPCa3BKsChzXhlNRc6r12aGicqqKwFs2pCXo1TKjeBQEOOyLJvEgUgUQAyCGBC2DjrcgwNBWMmwb7_tVWxa_WL8vyz3QsQ7G5YyLS9mH2UWJbipp1V7Hs2Ic9HuUtYevieohq33naSwVmSC-iomJBHQSF2fSHPYF2y_Ml_Du0puY1fATjzjOz37dYdgvvT66NBv4_Izdm7D4uznycdAs4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IQEvaNxGYQODeEOhTuxczFtXMRVoJyRWaW9WfIMiLa2SFGkv_HbOSZwiJC4Sr05sWT4XH9vf-Q4hL5nlqfZ5HHmfZZEAc4sK78CuHPPe2FiXHg-Ki_NsthTvL9PLPTIdcmEQVhl8f-_TO28dWsZhNceb1Wr8CXlEIBrPEQUpQPX2yQ0B5otlDF5__4nzQI6tnuBbRvh7yJzpQV7maqPhkJgIxNoJJNT8_e60_wVhkn-KQbu96OyQ3AlBJJ3087xL9lx1j9xchGfy-2RzioUfKBJS1xEmrVuKhVC2eDNGV1ddYaI3dNkiLvaarj2dTD9Oae3W9SqkIlXY-rnu8GBtQ2GwPmHymjZbjVc3DS0rSwMra_OALM_eXkxnUSitEBnBszayzDGTltIVSRlnWRILY9BeTMq9NWkM7tg6IazMS4gAGZdeWxnLNCmZdxAB8YfkoFpX7hGhBbgFOLUZX1otpE4Kx5hxMoefteS2HJFXw5KqTc-goQZo2VeFAlAoANULYET4sOpqyA0Fb6bAwf-1V7rr9Yv2_LPfCxDsblpItT2bzBW2Mdy145x_i0fk-SB3BbaHDypl5dbbRnE4TAoJA6UjctQrxG4sJBosMp48_s-pPSO3ZheLuZq_O__whNzGLz2K5pgctPXWnUAs1Oqnna7_AP_sBFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+color-coded+diffusion+imaging%3A+Utility+of+ACPC+reorientation+of+gradients+in+healthy+subjects+and+patients&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Ouachikh%2C+Omar&rft.au=Chaix%2C+R%C3%A9mi&rft.au=Sontheimer%2C+Anna&rft.au=Coste%2C+Jerome&rft.date=2024-12-01&rft.pub=Elsevier&rft.issn=0169-2607&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108449&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04718173v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |