Brain color-coded diffusion imaging: Utility of ACPC reorientation of gradients in healthy subjects and patients

•The orientation of diffusion gradients depends on MRI manufacturer.•Interpretation of diffusion color encoded (DCE) maps depends on brain orientation.•The ACPC system reliably reflects the anatomic physiologic brain orientation.•The most important angle mismatch between brain and gradients was the...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 257; p. 108449
Main Authors Ouachikh, Omar, Chaix, Remi, Sontheimer, Anna, Coste, Jerome, Aider, Omar Ait, Dautkulova, Aigerim, Abdelouahab, Kamel, Hafidi, Aziz, Salah, Maha Ben, Pereira, Bruno, Lemaire, Jean-Jacques
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.12.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The orientation of diffusion gradients depends on MRI manufacturer.•Interpretation of diffusion color encoded (DCE) maps depends on brain orientation.•The ACPC system reliably reflects the anatomic physiologic brain orientation.•The most important angle mismatch between brain and gradients was the pitch.•ACPC reorientation of gradients improved the interpretation of DCE maps. The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure – posterior commissure (ACPC) system on the RGB derivatives. We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics). Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower. DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.
AbstractList The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure - posterior commissure (ACPC) system on the RGB derivatives.BACKGROUND AND OBJECTIVEThe common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure - posterior commissure (ACPC) system on the RGB derivatives.We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics).METHODSWe measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics).Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower.RESULTSPitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower.DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.CONCLUSIONSDCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.
The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure - posterior commissure (ACPC) system on the RGB derivatives. We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics). Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower. DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.
•The orientation of diffusion gradients depends on MRI manufacturer.•Interpretation of diffusion color encoded (DCE) maps depends on brain orientation.•The ACPC system reliably reflects the anatomic physiologic brain orientation.•The most important angle mismatch between brain and gradients was the pitch.•ACPC reorientation of gradients improved the interpretation of DCE maps. The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure – posterior commissure (ACPC) system on the RGB derivatives. We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics). Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower. DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.
Background and ObjectiveThe common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure – posterior commissure (ACPC) system on the RGB derivatives.MethodsWe measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics).ResultsPitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower.ConclusionsDCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.
ArticleNumber 108449
Author Hafidi, Aziz
Sontheimer, Anna
Pereira, Bruno
Ouachikh, Omar
Coste, Jerome
Chaix, Remi
Lemaire, Jean-Jacques
Abdelouahab, Kamel
Aider, Omar Ait
Dautkulova, Aigerim
Salah, Maha Ben
Author_xml – sequence: 1
  givenname: Omar
  surname: Ouachikh
  fullname: Ouachikh, Omar
  organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 2
  givenname: Remi
  orcidid: 0000-0002-9654-4840
  surname: Chaix
  fullname: Chaix, Remi
  organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 3
  givenname: Anna
  surname: Sontheimer
  fullname: Sontheimer, Anna
  organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 4
  givenname: Jerome
  orcidid: 0000-0002-3262-0867
  surname: Coste
  fullname: Coste, Jerome
  organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 5
  givenname: Omar Ait
  surname: Aider
  fullname: Aider, Omar Ait
  organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 6
  givenname: Aigerim
  orcidid: 0009-0000-2432-5465
  surname: Dautkulova
  fullname: Dautkulova, Aigerim
  organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 7
  givenname: Kamel
  surname: Abdelouahab
  fullname: Abdelouahab, Kamel
  organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 8
  givenname: Aziz
  surname: Hafidi
  fullname: Hafidi, Aziz
  organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 9
  givenname: Maha Ben
  surname: Salah
  fullname: Salah, Maha Ben
  organization: Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
– sequence: 10
  givenname: Bruno
  orcidid: 0000-0003-3778-7161
  surname: Pereira
  fullname: Pereira, Bruno
  organization: Direction de la Recherche Clinique et de l'Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
– sequence: 11
  givenname: Jean-Jacques
  orcidid: 0000-0003-4395-5328
  surname: Lemaire
  fullname: Lemaire, Jean-Jacques
  email: jjlemaire@chu-clermontferrand.fr
  organization: Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39378632$$D View this record in MEDLINE/PubMed
https://uca.hal.science/hal-04718173$$DView record in HAL
BookMark eNqFkc9v0zAYhi00tHVj_wAH5CMcUvwjTuKJS6kYQ6q0HdjZcu0vrYsbBzuZ1P8eR9l24AAnS6-e95P8vJforAsdIPSekiUltPp8WJpjv10ywsocNGUp36AFbWpW1KISZ2iRIVmwitQX6DKlAyGECVGdowsued1UnC1Q_zVq12ETfIiFCRYstq5tx-RCh91R71y3u8GPg_NuOOHQ4tX6YY0jhOigG_QwYTndRW2nIOF8bA_aD_sTTuP2ACZnurO4z-wEvENvW-0TXD-_V-jx9tvP9V2xuf_-Y73aFKbk1VBYAsQILaFhmlYVo6UxjJDSCN5aIyhoY6Esray1ZJxw2W6tpFIwTVqgQvIr9Gm-u9de9TF_JZ5U0E7drTZqykhZ04bW_Ilm9uPM9jH8HiEN6uiSAe91B2FMilOa5WbBIqMfntFxewT7evnFaAbYDJgYUorQviKUqGk2dVDTbGqaTc2z5dKXuQTZyJODqJLJtgxYF7NBZYP7d_3mr7rxrnNG-19w-l_5D38bsww
Cites_doi 10.1016/j.mri.2013.06.009
10.1002/hbm.21077
10.1016/j.compbiomed.2014.05.004
10.1111/j.1552-6569.2011.00702.x
10.1017/S0033291719001120
10.1016/0022-3913(76)90026-3
10.1016/j.nicl.2017.02.012
10.1038/nrn1119
10.1016/j.neuroimage.2021.118502
10.1162/imag_a_00012
10.1109/VISUAL.1996.567777
10.1016/j.nec.2010.12.004
10.1007/s00330-019-06267-9
10.1002/nbm.1543
10.1186/s12967-023-04222-3
10.1016/j.jns.2021.117481
10.1002/ima.20232
10.1007/s00429-023-02653-8
10.1002/mrm.20508
10.1038/s41588-020-0610-9
10.1371/journal.pone.0187939
10.1007/s11060-004-3340-4
10.1007/s40120-021-00233-8
10.3389/fneur.2021.694286
10.1002/(SICI)1522-2594(199909)42:3<526::AID-MRM15>3.0.CO;2-J
10.1007/s11604-022-01370-2
10.3390/curroncol29040230
10.1016/j.brs.2011.10.007
10.1016/j.neuroimage.2007.02.016
10.3233/JAD-2012-120412
10.1016/j.mri.2012.05.001
10.1109/TVCG.2009.125
10.1016/S1361-8415(02)00053-1
10.1016/j.cag.2016.08.006
10.1002/nbm.778
10.3390/brainsci13101497
10.1093/brain/awx338
10.4103/0971-6203.31148
10.1007/s12311-015-0682-8
10.1097/00004728-199111000-00003
10.1007/s00134-021-06583-z
10.1016/j.media.2014.05.012
10.1038/s41598-018-34940-4
10.1016/j.nurt.2007.05.011
10.1016/j.cmpb.2023.107630
10.3389/fnins.2021.670287
10.1155/2024/4102461
10.1155/2017/9372050
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: Attribution - NonCommercial - NoDerivatives
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1016/j.cmpb.2024.108449
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID oai_HAL_hal_04718173v1
39378632
10_1016_j_cmpb_2024_108449
S0169260724004425
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
6I.
AACTN
AAFTH
ABTAH
AFCTW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
ID FETCH-LOGICAL-c436t-d0e0c5a9e82a166214cc2004c53fdc51eacde44d97a923039fbd91952a0fe1593
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Fri May 09 12:15:07 EDT 2025
Tue Aug 05 10:14:20 EDT 2025
Fri Jun 20 01:35:07 EDT 2025
Tue Jul 01 05:18:35 EDT 2025
Sun Apr 06 06:53:07 EDT 2025
Tue Aug 26 19:03:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DTI
Color encoding
Diffusion gradient
Brain
color encoding
brain
diffusion gradient
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-d0e0c5a9e82a166214cc2004c53fdc51eacde44d97a923039fbd91952a0fe1593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3778-7161
0000-0002-3262-0867
0000-0003-4395-5328
0009-0000-2432-5465
0000-0002-9654-4840
0000-0002-9833-8485
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0169260724004425
PMID 39378632
PQID 3114498445
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_04718173v1
proquest_miscellaneous_3114498445
pubmed_primary_39378632
crossref_primary_10_1016_j_cmpb_2024_108449
elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108449
elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hrabe, Kaur, Guilfoyle (bib0003) 2007; 32
Tournier, Calamante, Connelly (bib0006) 2007; 35
Bansal, Kaushik, Bihonegn, Slovák (bib0007) 2023; 240
Archer, Coombes, Chu, Chung, Burciu, Okun, Shukla, Vaillancourt (bib0038) 2018; 141
Butt, Kamtchum-Tatuene, Khan, Shuaib, Jickling, Miyasaki, Smith, Camicioli (bib0036) 2021; 426
Bihan, Iima (bib0048) 2015; 13
M. Zockler, D. Stalling, H.-C. Hege, Interactive visualization of 3D-vector fields using illuminated stream lines, in: Proceedings of Seventh Annual IEEE Visualization ’96, ACM, San Francisco, CA, USA, 1996: pp. 107–113,.
Mandal, Mahajan, Dinov (bib0021) 2012; 31
Sun, Huang, Wang, Hong, Zhao (bib0034) 2023; 13
Aganj (bib0026) 2018; 8
Ingalhalikar, Yang, Davatzikos, Verma (bib0054) 2010; 20
Puybasset, Perlbarg, Unrug, Cassereau, Galanaud, Torkomian, Battisti, Lefort, Velly, Degos, Citerio, Bayen, Pelegrini-Issac (bib0049) 2022; 48
A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J.V. Miller, S. Pieper, R. Kikinis, 3D Slicer as an image computing platform for the Quantitative Imaging Network, Magnetic Resonance Imaging 30 (2012) 1323–1341.
Bryois, Skene, Hansen, Kogelman, Watson, Liu (bib0035) 2020; 52
Zheng, Guo, Meng, Nan, Xu (bib0018) 2024; 2024
Lin, Wang, Lan, Fan (bib0040) 2017; 2017
Van Den Munckhof, Bot, Schuurman (bib0043) 2021; 10
Jensen, Helpern, Ramani, Lu, Kaczynski (bib0005) 2005; 53
Capobianco, Dominietto (bib0046) 2023; 21
Beppu, Inoue, Kuzu, Ogasawara, Ogawa, Sasaki (bib0009) 2005; 73
Jeurissen, Leemans, Sijbers (bib0027) 2014; 18
Klein, Lorenz, Kang, Baudrexel, Seifried, van de Loo, Steinmetz, Deichmann, Hilker (bib0032) 2011; 32
Bouza, Yang, Vemuri (bib0056) 2023; 13939
.
Arfanakis, Haughton, Carew, Rogers, Dempsey, Meyerand (bib0029) 2002; 23
Vassal, Coste, Derost, Mendes, Gabrillargues, Nuti, Durif, Lemaire (bib0044) 2012; 5
Kleban, Jones, Tax (bib0008) 2023; 1
Kamagata, Tomiyama, Motoi, Kano, Abe, Ito, Shimoji, Suzuki, Hori, Nakanishi, Kuwatsuru, Sasai, Aoki, Hattori (bib0031) 2013; 31
Ellmore, Murphy, Cruz, Castriotta, Schiess (bib0053) 2014; 51
Liu, Dawant (bib0052) 2014; 2014
Le Bihan (bib0002) 2003; 4
Edwards, Goyal, Rusheen, Kouzani, Lee (bib0051) 2021; 15
Alexander, Lee, Lazar, Field (bib0001) 2007; 4
Pajevic, Pierpaoli (bib0012) 1999; 42
DiPietro, Moergeli (bib0023) 1976; 36
Westin, Maier, Mamata, Nabavi, Jolesz, Kikinis (bib0014) 2002; 6
Shin, Lee, Lee, Huh, Youn, Louis, Cho (bib0033) 2016; 15
El Ouadih, Pereira, Biau, Claise, Chaix, Verrelle, Khalil, Durando, Lemaire (bib0047) 2022; 29
C.7.6.2 Image Plane Module, (n.d.).
Cohen, Assaf (bib0004) 2002; 15
Douek, Turner, Pekar, Patronas, Bihan (bib0013) 1991; 15
Chiang, Hsu, Shang, Tseng, Gau (bib0050) 2020; 50
Jones, Cercignani (bib0042) 2010; 23
Becktepe, Busse, Jensen-Kondering, Toedt, Wolff, Zeuner, Berg, Granert, Deuschl (bib0039) 2021; 12
O'Donnell, Westin (bib0010) 2011; 22
(accessed February 20, 2024).
Talairach, Tournoux (bib0022) 1988
Dejerine (bib0028) 1901
Tatekawa, Matsushita, Ueda, Takita, Horiuchi, Atsukawa, Morishita, Tsukamoto, Shimono, Miki (bib0024) 2023; 41
Uwano, Sasaki, Kudo, Fujiwara, Yamaguchi, Saito, Ogasawara, Ogawa (bib0016) 2013; 23
Wu, Voltoline, Yasuda (bib0015) 2016; 60
K.G. Schilling, F. Rheault, L. Petit, C.B. Hansen, V. Nath, F.-C. Yeh, G. Girard, M. Barakovic, J. Rafael-Patino, T. Yu, E. Fischi-Gomez, M. Pizzolato, M. Ocampo-Pineda, S. Schiavi, E.J. Canales-Rodríguez, A. Daducci, C. Granziera, G. Innocenti, J.-P. Thiran, L. Mancini, S. Wastling, S. Cocozza, M. Petracca, G. Pontillo, M. Mancini, S.B. Vos, V.N. Vakharia, J.S. Duncan, H. Melero, L. Manzanedo, E. Sanz-Morales, Á. Peña-Melián, F. Calamante, A. Attyé, R.P. Cabeen, L. Korobova, A.W. Toga, A.A. Vijayakumari, D. Parker, R. Verma, A. Radwan, S. Sunaert, L. Emsell, A. De Luca, A. Leemans, C.J. Bajada, H. Haroon, H. Azadbakht, M. Chamberland, S. Genc, C.M.W. Tax, P.-H. Yeh, R. Srikanchana, C.D. Mcknight, J.Y.-M. Yang, J. Chen, C.E. Kelly, C.-H. Yeh, J. Cochereau, J.J. Maller, T. Welton, F. Almairac, K.K. Seunarine, C.A. Clark, F. Zhang, N. Makris, A. Golby, Y. Rathi, L.J. O'Donnell, Y. Xia, D.B. Aydogan, Y. Shi, F.G. Fernandes, M. Raemaekers, S. Warrington, S. Michielse, A. Ramírez-Manzanares, L. Concha, R. Aranda, M.R. Meraz, G. Lerma-Usabiaga, L. Roitman, L.S. Fekonja, N. Calarco, M. Joseph, H. Nakua, A.N. Voineskos, P. Karan, G. Grenier, J.H. Legarreta, N. Adluru, V.A. Nair, V. Prabhakaran, A.L. Alexander, K. Kamagata, Y. Saito, W. Uchida, C. Andica, M. Abe, R.G. Bayrak, .A.M.Gandini Wheeler-Kingshott, E. D'Angelo, F. Palesi, G. Savini, N. Rolandi, P. Guevara, J. Houenou, N. López-López, J.-F. Mangin, C. Poupon, C. Román, A. Vázquez, C. Maffei, M. Arantes, J.P. Andrade, S.M. Silva, V.D. Calhoun, E. Caverzasi, S. Sacco, M. Lauricella, F. Pestilli, D. Bullock, Y. Zhan, E. Brignoni-Perez, C. Lebel, J.E. Reynolds, I. Nestrasil, R. Labounek, C. Lenglet, A. Paulson, S. Aulicka, S.R. Heilbronner, K. Heuer, B.Q. Chandio, J. Guaje, W. Tang, E. Garyfallidis, R. Raja, A.W. Anderson, B.A. Landman, M. Descoteaux, Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?, Neuroimage 243 (2021) 118502.
Rektor, Svátková, Vojtíšek, Zikmundová, Vaníček, Király, Szabó (bib0037) 2018; 13
Demiralp, Hughes, Laidlaw (bib0017) 2009; 15
Chung, Burciu, Ofori, Shukla, Okun, Hess, Vaillancourt (bib0030) 2017; 14
Uwano, Sasaki, Kudo, Fujiwara, Yamaguchi, Saito, Ogasawara, Ogawa (bib0045) 2013; 23
Schira, Isherwood, Kassem, Barth, Shaw, Roberts, Paxinos (bib0055) 2023; 228
Pietracupa, Bologna, Bharti, Pasqua, Tommasin, Elifani, Paparella, Petsas, Grillea, Berardelli, Pantano (bib0041) 2019; 29
Wu (10.1016/j.cmpb.2024.108449_bib0015) 2016; 60
Pajevic (10.1016/j.cmpb.2024.108449_bib0012) 1999; 42
El Ouadih (10.1016/j.cmpb.2024.108449_bib0047) 2022; 29
Bansal (10.1016/j.cmpb.2024.108449_bib0007) 2023; 240
Uwano (10.1016/j.cmpb.2024.108449_bib0045) 2013; 23
Edwards (10.1016/j.cmpb.2024.108449_bib0051) 2021; 15
Douek (10.1016/j.cmpb.2024.108449_bib0013) 1991; 15
Ingalhalikar (10.1016/j.cmpb.2024.108449_bib0054) 2010; 20
DiPietro (10.1016/j.cmpb.2024.108449_bib0023) 1976; 36
Shin (10.1016/j.cmpb.2024.108449_bib0033) 2016; 15
Vassal (10.1016/j.cmpb.2024.108449_bib0044) 2012; 5
Bouza (10.1016/j.cmpb.2024.108449_bib0056) 2023; 13939
Rektor (10.1016/j.cmpb.2024.108449_bib0037) 2018; 13
10.1016/j.cmpb.2024.108449_bib0011
Hrabe (10.1016/j.cmpb.2024.108449_bib0003) 2007; 32
Schira (10.1016/j.cmpb.2024.108449_bib0055) 2023; 228
Aganj (10.1016/j.cmpb.2024.108449_bib0026) 2018; 8
Chiang (10.1016/j.cmpb.2024.108449_bib0050) 2020; 50
Alexander (10.1016/j.cmpb.2024.108449_bib0001) 2007; 4
Sun (10.1016/j.cmpb.2024.108449_bib0034) 2023; 13
Butt (10.1016/j.cmpb.2024.108449_bib0036) 2021; 426
Zheng (10.1016/j.cmpb.2024.108449_bib0018) 2024; 2024
Tatekawa (10.1016/j.cmpb.2024.108449_bib0024) 2023; 41
Dejerine (10.1016/j.cmpb.2024.108449_bib0028) 1901
Beppu (10.1016/j.cmpb.2024.108449_bib0009) 2005; 73
Jeurissen (10.1016/j.cmpb.2024.108449_bib0027) 2014; 18
Bihan (10.1016/j.cmpb.2024.108449_bib0048) 2015; 13
Capobianco (10.1016/j.cmpb.2024.108449_bib0046) 2023; 21
Jones (10.1016/j.cmpb.2024.108449_bib0042) 2010; 23
Kamagata (10.1016/j.cmpb.2024.108449_bib0031) 2013; 31
Liu (10.1016/j.cmpb.2024.108449_bib0052) 2014; 2014
Mandal (10.1016/j.cmpb.2024.108449_bib0021) 2012; 31
Puybasset (10.1016/j.cmpb.2024.108449_bib0049) 2022; 48
Ellmore (10.1016/j.cmpb.2024.108449_bib0053) 2014; 51
Demiralp (10.1016/j.cmpb.2024.108449_bib0017) 2009; 15
Pietracupa (10.1016/j.cmpb.2024.108449_bib0041) 2019; 29
Bryois (10.1016/j.cmpb.2024.108449_bib0035) 2020; 52
Lin (10.1016/j.cmpb.2024.108449_bib0040) 2017; 2017
Jensen (10.1016/j.cmpb.2024.108449_bib0005) 2005; 53
O'Donnell (10.1016/j.cmpb.2024.108449_bib0010) 2011; 22
Chung (10.1016/j.cmpb.2024.108449_bib0030) 2017; 14
10.1016/j.cmpb.2024.108449_bib0019
Uwano (10.1016/j.cmpb.2024.108449_bib0016) 2013; 23
Talairach (10.1016/j.cmpb.2024.108449_bib0022) 1988
Van Den Munckhof (10.1016/j.cmpb.2024.108449_bib0043) 2021; 10
Arfanakis (10.1016/j.cmpb.2024.108449_bib0029) 2002; 23
Becktepe (10.1016/j.cmpb.2024.108449_bib0039) 2021; 12
Westin (10.1016/j.cmpb.2024.108449_bib0014) 2002; 6
Klein (10.1016/j.cmpb.2024.108449_bib0032) 2011; 32
Archer (10.1016/j.cmpb.2024.108449_bib0038) 2018; 141
Kleban (10.1016/j.cmpb.2024.108449_bib0008) 2023; 1
10.1016/j.cmpb.2024.108449_bib0020
Tournier (10.1016/j.cmpb.2024.108449_bib0006) 2007; 35
Le Bihan (10.1016/j.cmpb.2024.108449_bib0002) 2003; 4
10.1016/j.cmpb.2024.108449_bib0025
Cohen (10.1016/j.cmpb.2024.108449_bib0004) 2002; 15
References_xml – volume: 51
  start-page: 104
  year: 2014
  end-page: 110
  ident: bib0053
  article-title: Averaging of diffusion tensor imaging direction-encoded color maps for localizing substantia nigra
  publication-title: Comput. Biol. Med.
– volume: 22
  start-page: 185
  year: 2011
  end-page: 196
  ident: bib0010
  article-title: An introduction to diffusion tensor image analysis
  publication-title: Neurosurg. Clin. N. Am.
– volume: 2014
  start-page: 1505
  year: 2014
  end-page: 1508
  ident: bib0052
  article-title: Automatic Detection of the Anterior and Posterior Commissures on MRI Scans using Regression Forests
  publication-title: Conf. Proc. IEEe Eng. Med. Biol. Soc.
– volume: 15
  start-page: 923
  year: 1991
  end-page: 929
  ident: bib0013
  article-title: MR color mapping of myelin fiber orientation
  publication-title: J. Comput. Assist. Tomogr.
– volume: 50
  start-page: 1203
  year: 2020
  end-page: 1213
  ident: bib0050
  article-title: White matter endophenotype candidates for ADHD: a diffusion imaging tractography study with sibling design
  publication-title: Psychol. Med.
– reference: A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J.V. Miller, S. Pieper, R. Kikinis, 3D Slicer as an image computing platform for the Quantitative Imaging Network, Magnetic Resonance Imaging 30 (2012) 1323–1341.
– volume: 13939
  start-page: 563
  year: 2023
  end-page: 575
  ident: bib0056
  article-title: Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images
  publication-title: Inf. Process. Med. ImAging
– volume: 23
  start-page: 794
  year: 2002
  end-page: 802
  ident: bib0029
  article-title: Diffusion tensor MR imaging in diffuse axonal injury
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 2024
  year: 2024
  ident: bib0018
  article-title: White matter fiber tracking method with adaptive correction of tracking direction
  publication-title: Int. J. Biomed. ImAging
– volume: 31
  start-page: S169
  year: 2012
  end-page: S188
  ident: bib0021
  article-title: Structural brain atlases: design, rationale, and applications in normal and pathological cohorts
  publication-title: J. Alzheimers. Dis.
– reference: K.G. Schilling, F. Rheault, L. Petit, C.B. Hansen, V. Nath, F.-C. Yeh, G. Girard, M. Barakovic, J. Rafael-Patino, T. Yu, E. Fischi-Gomez, M. Pizzolato, M. Ocampo-Pineda, S. Schiavi, E.J. Canales-Rodríguez, A. Daducci, C. Granziera, G. Innocenti, J.-P. Thiran, L. Mancini, S. Wastling, S. Cocozza, M. Petracca, G. Pontillo, M. Mancini, S.B. Vos, V.N. Vakharia, J.S. Duncan, H. Melero, L. Manzanedo, E. Sanz-Morales, Á. Peña-Melián, F. Calamante, A. Attyé, R.P. Cabeen, L. Korobova, A.W. Toga, A.A. Vijayakumari, D. Parker, R. Verma, A. Radwan, S. Sunaert, L. Emsell, A. De Luca, A. Leemans, C.J. Bajada, H. Haroon, H. Azadbakht, M. Chamberland, S. Genc, C.M.W. Tax, P.-H. Yeh, R. Srikanchana, C.D. Mcknight, J.Y.-M. Yang, J. Chen, C.E. Kelly, C.-H. Yeh, J. Cochereau, J.J. Maller, T. Welton, F. Almairac, K.K. Seunarine, C.A. Clark, F. Zhang, N. Makris, A. Golby, Y. Rathi, L.J. O'Donnell, Y. Xia, D.B. Aydogan, Y. Shi, F.G. Fernandes, M. Raemaekers, S. Warrington, S. Michielse, A. Ramírez-Manzanares, L. Concha, R. Aranda, M.R. Meraz, G. Lerma-Usabiaga, L. Roitman, L.S. Fekonja, N. Calarco, M. Joseph, H. Nakua, A.N. Voineskos, P. Karan, G. Grenier, J.H. Legarreta, N. Adluru, V.A. Nair, V. Prabhakaran, A.L. Alexander, K. Kamagata, Y. Saito, W. Uchida, C. Andica, M. Abe, R.G. Bayrak, .A.M.Gandini Wheeler-Kingshott, E. D'Angelo, F. Palesi, G. Savini, N. Rolandi, P. Guevara, J. Houenou, N. López-López, J.-F. Mangin, C. Poupon, C. Román, A. Vázquez, C. Maffei, M. Arantes, J.P. Andrade, S.M. Silva, V.D. Calhoun, E. Caverzasi, S. Sacco, M. Lauricella, F. Pestilli, D. Bullock, Y. Zhan, E. Brignoni-Perez, C. Lebel, J.E. Reynolds, I. Nestrasil, R. Labounek, C. Lenglet, A. Paulson, S. Aulicka, S.R. Heilbronner, K. Heuer, B.Q. Chandio, J. Guaje, W. Tang, E. Garyfallidis, R. Raja, A.W. Anderson, B.A. Landman, M. Descoteaux, Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?, Neuroimage 243 (2021) 118502.
– volume: 23
  start-page: 803
  year: 2010
  end-page: 820
  ident: bib0042
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed.
– reference: C.7.6.2 Image Plane Module, (n.d.).
– volume: 20
  start-page: 99
  year: 2010
  end-page: 107
  ident: bib0054
  article-title: DTI-DROID: diffusion tensor imaging-deformable registration using orientation and intensity descriptors
  publication-title: Int J Imaging Syst Tech
– volume: 14
  start-page: 417
  year: 2017
  end-page: 421
  ident: bib0030
  article-title: Parkinson's disease diffusion MRI is not affected by acute antiparkinsonian medication
  publication-title: Neuroimage Clin.
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bib0006
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
– volume: 12
  year: 2021
  ident: bib0039
  article-title: White Matter Hyperintensities Are Associated With Severity of Essential Tremor in the Elderly
  publication-title: Front. Neurol.
– volume: 15
  start-page: 174
  year: 2016
  end-page: 181
  ident: bib0033
  article-title: Atrophy of the Cerebellar Vermis in Essential Tremor: segmental Volumetric MRI Analysis
  publication-title: Cerebellum.
– volume: 5
  start-page: 625
  year: 2012
  end-page: 633
  ident: bib0044
  article-title: Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence
  publication-title: Brain Stimul.
– volume: 23
  start-page: 197
  year: 2013
  end-page: 201
  ident: bib0045
  article-title: Diffusion Anisotropy Color-Coded Map of Cerebral White Matter: quantitative Comparison between Orthogonal Anisotropic Diffusion-Weighted Imaging and Diffusion Tensor Imaging
  publication-title: Journal of Neuroimaging
– volume: 141
  start-page: 472
  year: 2018
  end-page: 485
  ident: bib0038
  article-title: A widespread visually-sensitive functional network relates to symptoms in essential tremor
  publication-title: Brain
– volume: 41
  start-page: 393
  year: 2023
  end-page: 400
  ident: bib0024
  article-title: Improved reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) index: an analysis of reorientation technique of the OASIS-3 dataset
  publication-title: Jpn. J. Radiol.
– volume: 32
  start-page: 896
  year: 2011
  end-page: 904
  ident: bib0032
  article-title: Diffusion tensor imaging of white matter involvement in essential tremor
  publication-title: Hum. Brain Mapp.
– volume: 426
  year: 2021
  ident: bib0036
  article-title: White matter hyperintensities in patients with Parkinson's disease: a systematic review and meta-analysis
  publication-title: J. Neurol. Sci.
– volume: 21
  start-page: 385
  year: 2023
  ident: bib0046
  article-title: Assessment of brain cancer atlas maps with multimodal imaging features
  publication-title: J. Transl. Med.
– year: 1901
  ident: bib0028
  article-title: Anatomie des centres nerveux (Tomes 1 and 2)
  publication-title: Rueff et Cie
– volume: 15
  start-page: 516
  year: 2002
  end-page: 542
  ident: bib0004
  article-title: High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues - a technical review
  publication-title: NMR Biomed.
– reference: (accessed February 20, 2024).
– volume: 15
  year: 2021
  ident: bib0051
  article-title: DeepNavNet: automated Landmark Localization for Neuronavigation
  publication-title: Front. Neurosci.
– reference: M. Zockler, D. Stalling, H.-C. Hege, Interactive visualization of 3D-vector fields using illuminated stream lines, in: Proceedings of Seventh Annual IEEE Visualization ’96, ACM, San Francisco, CA, USA, 1996: pp. 107–113,.
– volume: 15
  start-page: 1457
  year: 2009
  end-page: 1463
  ident: bib0017
  article-title: Coloring 3D line fields using Boy's real projective plane immersion
  publication-title: IEEe Trans. Vis. Comput. Graph.
– volume: 6
  start-page: 93
  year: 2002
  end-page: 108
  ident: bib0014
  article-title: Processing and visualization for diffusion tensor MRI
  publication-title: Med. Image Anal.
– volume: 4
  start-page: 316
  year: 2007
  end-page: 329
  ident: bib0001
  article-title: Diffusion tensor imaging of the brain
  publication-title: Neurotherapeutics.
– volume: 4
  start-page: 469
  year: 2003
  end-page: 480
  ident: bib0002
  article-title: Looking into the functional architecture of the brain with diffusion MRI
  publication-title: Nat. Rev. Neurosci.
– volume: 13
  year: 2015
  ident: bib0048
  article-title: Diffusion Magnetic Resonance Imaging: what Water Tells Us about Biological Tissues
  publication-title: PLoS. Biol.
– volume: 36
  start-page: 624
  year: 1976
  end-page: 635
  ident: bib0023
  article-title: Significance of the Frankfort-mandibular plane angle to prosthodontics
  publication-title: J. Prosthet. Dent.
– volume: 1
  start-page: 1
  year: 2023
  end-page: 17
  ident: bib0008
  article-title: The impact of head orientation with respect to B0 on diffusion tensor MRI measures
  publication-title: Imag. Neurosci.
– volume: 23
  start-page: 197
  year: 2013
  end-page: 201
  ident: bib0016
  article-title: Diffusion anisotropy color-coded map of cerebral white matter: quantitative comparison between orthogonal anisotropic diffusion-weighted imaging and diffusion tensor imaging
  publication-title: J. Neuroimaging
– volume: 13
  start-page: 1497
  year: 2023
  ident: bib0034
  article-title: Research Progress in Diffusion Spectrum Imaging
  publication-title: Brain Sci.
– volume: 10
  start-page: 61
  year: 2021
  end-page: 73
  ident: bib0043
  article-title: Targeting of the Subthalamic Nucleus in Patients with Parkinson's Disease Undergoing Deep Brain Stimulation Surgery
  publication-title: Neurol. Ther.
– volume: 60
  start-page: 66
  year: 2016
  end-page: 75
  ident: bib0015
  article-title: A view-independent line-coding colormap for diffusion tensor imaging
  publication-title: Comput. Graph.
– volume: 240
  year: 2023
  ident: bib0007
  article-title: Automatic tractography and segmentation using finsler geometry based on higher-order tensor fields
  publication-title: Comput. Methods Programs Biomed.
– volume: 8
  start-page: 16541
  year: 2018
  ident: bib0026
  article-title: Automatic verification of the gradient table in diffusion-weighted MRI Based on Fiber Continuity
  publication-title: Sci. Rep.
– volume: 48
  start-page: 201
  year: 2022
  end-page: 212
  ident: bib0049
  article-title: MRI-COMA Investigators CENTER-TBI MRI Participants and MRI Only Investigators, Prognostic value of global deep white matter DTI metrics for 1-year outcome prediction in ICU traumatic brain injury patients: an MRI-COMA and CENTER-TBI combined study
  publication-title: Intensive Care Med.
– volume: 52
  start-page: 482
  year: 2020
  end-page: 493
  ident: bib0035
  article-title: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease
  publication-title: Nat. Genet.
– year: 1988
  ident: bib0022
  article-title: Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging
– volume: 32
  start-page: 34
  year: 2007
  ident: bib0003
  article-title: Principles and limitations of NMR diffusion measurements
  publication-title: J. Med. Phys.
– volume: 228
  start-page: 1849
  year: 2023
  end-page: 1863
  ident: bib0055
  article-title: HumanBrainAtlas: an in vivo MRI dataset for detailed segmentations
  publication-title: Brain Struct. Funct.
– volume: 29
  start-page: 6634
  year: 2019
  end-page: 6642
  ident: bib0041
  article-title: White matter rather than gray matter damage characterizes essential tremor
  publication-title: Eur. Radiol.
– volume: 29
  start-page: 2823
  year: 2022
  end-page: 2834
  ident: bib0047
  article-title: DTI Abnormalities Related to Glioblastoma: a Prospective Comparative Study with Metastasis and Healthy Subjects
  publication-title: Curr. Oncol.
– reference: .
– volume: 2017
  year: 2017
  ident: bib0040
  article-title: Multiple Factors Involved in the Pathogenesis of White Matter Lesions
  publication-title: Biomed. Res. Int.
– volume: 73
  start-page: 137
  year: 2005
  end-page: 144
  ident: bib0009
  article-title: Utility of three-dimensional anisotropy contrast magnetic resonance axonography for determining condition of the pyramidal tract in glioblastoma patients with hemiparesis
  publication-title: J. Neurooncol.
– volume: 18
  start-page: 953
  year: 2014
  end-page: 962
  ident: bib0027
  article-title: Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI
  publication-title: Med. Image Anal.
– volume: 53
  start-page: 1432
  year: 2005
  end-page: 1440
  ident: bib0005
  article-title: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 31
  start-page: 1501
  year: 2013
  end-page: 1506
  ident: bib0031
  article-title: Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: comparison with conventional diffusion tensor imaging
  publication-title: Magn. Reson. ImAging
– volume: 13
  year: 2018
  ident: bib0037
  article-title: White matter alterations in Parkinson's disease with normal cognition precede grey matter atrophy
  publication-title: PLoS. One
– volume: 42
  start-page: 526
  year: 1999
  end-page: 540
  ident: bib0012
  article-title: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain
  publication-title: Magn. Reson. Med.
– volume: 31
  start-page: 1501
  year: 2013
  ident: 10.1016/j.cmpb.2024.108449_bib0031
  article-title: Diffusional kurtosis imaging of cingulate fibers in Parkinson disease: comparison with conventional diffusion tensor imaging
  publication-title: Magn. Reson. ImAging
  doi: 10.1016/j.mri.2013.06.009
– volume: 32
  start-page: 896
  year: 2011
  ident: 10.1016/j.cmpb.2024.108449_bib0032
  article-title: Diffusion tensor imaging of white matter involvement in essential tremor
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21077
– volume: 51
  start-page: 104
  year: 2014
  ident: 10.1016/j.cmpb.2024.108449_bib0053
  article-title: Averaging of diffusion tensor imaging direction-encoded color maps for localizing substantia nigra
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.05.004
– volume: 23
  start-page: 197
  year: 2013
  ident: 10.1016/j.cmpb.2024.108449_bib0016
  article-title: Diffusion anisotropy color-coded map of cerebral white matter: quantitative comparison between orthogonal anisotropic diffusion-weighted imaging and diffusion tensor imaging
  publication-title: J. Neuroimaging
  doi: 10.1111/j.1552-6569.2011.00702.x
– volume: 50
  start-page: 1203
  year: 2020
  ident: 10.1016/j.cmpb.2024.108449_bib0050
  article-title: White matter endophenotype candidates for ADHD: a diffusion imaging tractography study with sibling design
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291719001120
– volume: 36
  start-page: 624
  year: 1976
  ident: 10.1016/j.cmpb.2024.108449_bib0023
  article-title: Significance of the Frankfort-mandibular plane angle to prosthodontics
  publication-title: J. Prosthet. Dent.
  doi: 10.1016/0022-3913(76)90026-3
– volume: 14
  start-page: 417
  year: 2017
  ident: 10.1016/j.cmpb.2024.108449_bib0030
  article-title: Parkinson's disease diffusion MRI is not affected by acute antiparkinsonian medication
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.02.012
– volume: 4
  start-page: 469
  year: 2003
  ident: 10.1016/j.cmpb.2024.108449_bib0002
  article-title: Looking into the functional architecture of the brain with diffusion MRI
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1119
– ident: 10.1016/j.cmpb.2024.108449_bib0019
  doi: 10.1016/j.neuroimage.2021.118502
– volume: 1
  start-page: 1
  year: 2023
  ident: 10.1016/j.cmpb.2024.108449_bib0008
  article-title: The impact of head orientation with respect to B0 on diffusion tensor MRI measures
  publication-title: Imag. Neurosci.
  doi: 10.1162/imag_a_00012
– year: 1988
  ident: 10.1016/j.cmpb.2024.108449_bib0022
– ident: 10.1016/j.cmpb.2024.108449_bib0020
  doi: 10.1109/VISUAL.1996.567777
– volume: 22
  start-page: 185
  year: 2011
  ident: 10.1016/j.cmpb.2024.108449_bib0010
  article-title: An introduction to diffusion tensor image analysis
  publication-title: Neurosurg. Clin. N. Am.
  doi: 10.1016/j.nec.2010.12.004
– volume: 23
  start-page: 794
  year: 2002
  ident: 10.1016/j.cmpb.2024.108449_bib0029
  article-title: Diffusion tensor MR imaging in diffuse axonal injury
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 29
  start-page: 6634
  year: 2019
  ident: 10.1016/j.cmpb.2024.108449_bib0041
  article-title: White matter rather than gray matter damage characterizes essential tremor
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06267-9
– volume: 23
  start-page: 803
  year: 2010
  ident: 10.1016/j.cmpb.2024.108449_bib0042
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1543
– volume: 21
  start-page: 385
  year: 2023
  ident: 10.1016/j.cmpb.2024.108449_bib0046
  article-title: Assessment of brain cancer atlas maps with multimodal imaging features
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-023-04222-3
– volume: 426
  year: 2021
  ident: 10.1016/j.cmpb.2024.108449_bib0036
  article-title: White matter hyperintensities in patients with Parkinson's disease: a systematic review and meta-analysis
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2021.117481
– volume: 13
  year: 2015
  ident: 10.1016/j.cmpb.2024.108449_bib0048
  article-title: Diffusion Magnetic Resonance Imaging: what Water Tells Us about Biological Tissues
  publication-title: PLoS. Biol.
– volume: 20
  start-page: 99
  year: 2010
  ident: 10.1016/j.cmpb.2024.108449_bib0054
  article-title: DTI-DROID: diffusion tensor imaging-deformable registration using orientation and intensity descriptors
  publication-title: Int J Imaging Syst Tech
  doi: 10.1002/ima.20232
– ident: 10.1016/j.cmpb.2024.108449_bib0011
– volume: 228
  start-page: 1849
  year: 2023
  ident: 10.1016/j.cmpb.2024.108449_bib0055
  article-title: HumanBrainAtlas: an in vivo MRI dataset for detailed segmentations
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-023-02653-8
– volume: 53
  start-page: 1432
  year: 2005
  ident: 10.1016/j.cmpb.2024.108449_bib0005
  article-title: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20508
– volume: 13939
  start-page: 563
  year: 2023
  ident: 10.1016/j.cmpb.2024.108449_bib0056
  article-title: Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images
  publication-title: Inf. Process. Med. ImAging
– volume: 52
  start-page: 482
  year: 2020
  ident: 10.1016/j.cmpb.2024.108449_bib0035
  article-title: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0610-9
– volume: 13
  year: 2018
  ident: 10.1016/j.cmpb.2024.108449_bib0037
  article-title: White matter alterations in Parkinson's disease with normal cognition precede grey matter atrophy
  publication-title: PLoS. One
  doi: 10.1371/journal.pone.0187939
– volume: 73
  start-page: 137
  year: 2005
  ident: 10.1016/j.cmpb.2024.108449_bib0009
  article-title: Utility of three-dimensional anisotropy contrast magnetic resonance axonography for determining condition of the pyramidal tract in glioblastoma patients with hemiparesis
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-004-3340-4
– volume: 10
  start-page: 61
  year: 2021
  ident: 10.1016/j.cmpb.2024.108449_bib0043
  article-title: Targeting of the Subthalamic Nucleus in Patients with Parkinson's Disease Undergoing Deep Brain Stimulation Surgery
  publication-title: Neurol. Ther.
  doi: 10.1007/s40120-021-00233-8
– volume: 12
  year: 2021
  ident: 10.1016/j.cmpb.2024.108449_bib0039
  article-title: White Matter Hyperintensities Are Associated With Severity of Essential Tremor in the Elderly
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.694286
– volume: 42
  start-page: 526
  year: 1999
  ident: 10.1016/j.cmpb.2024.108449_bib0012
  article-title: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199909)42:3<526::AID-MRM15>3.0.CO;2-J
– volume: 41
  start-page: 393
  year: 2023
  ident: 10.1016/j.cmpb.2024.108449_bib0024
  article-title: Improved reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) index: an analysis of reorientation technique of the OASIS-3 dataset
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-022-01370-2
– volume: 29
  start-page: 2823
  year: 2022
  ident: 10.1016/j.cmpb.2024.108449_bib0047
  article-title: DTI Abnormalities Related to Glioblastoma: a Prospective Comparative Study with Metastasis and Healthy Subjects
  publication-title: Curr. Oncol.
  doi: 10.3390/curroncol29040230
– volume: 5
  start-page: 625
  year: 2012
  ident: 10.1016/j.cmpb.2024.108449_bib0044
  article-title: Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2011.10.007
– volume: 35
  start-page: 1459
  year: 2007
  ident: 10.1016/j.cmpb.2024.108449_bib0006
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– year: 1901
  ident: 10.1016/j.cmpb.2024.108449_bib0028
  article-title: Anatomie des centres nerveux (Tomes 1 and 2)
  publication-title: Rueff et Cie
– volume: 31
  start-page: S169
  issue: Suppl 3
  year: 2012
  ident: 10.1016/j.cmpb.2024.108449_bib0021
  article-title: Structural brain atlases: design, rationale, and applications in normal and pathological cohorts
  publication-title: J. Alzheimers. Dis.
  doi: 10.3233/JAD-2012-120412
– ident: 10.1016/j.cmpb.2024.108449_bib0025
  doi: 10.1016/j.mri.2012.05.001
– volume: 15
  start-page: 1457
  year: 2009
  ident: 10.1016/j.cmpb.2024.108449_bib0017
  article-title: Coloring 3D line fields using Boy's real projective plane immersion
  publication-title: IEEe Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2009.125
– volume: 6
  start-page: 93
  year: 2002
  ident: 10.1016/j.cmpb.2024.108449_bib0014
  article-title: Processing and visualization for diffusion tensor MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(02)00053-1
– volume: 2014
  start-page: 1505
  year: 2014
  ident: 10.1016/j.cmpb.2024.108449_bib0052
  article-title: Automatic Detection of the Anterior and Posterior Commissures on MRI Scans using Regression Forests
  publication-title: Conf. Proc. IEEe Eng. Med. Biol. Soc.
– volume: 60
  start-page: 66
  year: 2016
  ident: 10.1016/j.cmpb.2024.108449_bib0015
  article-title: A view-independent line-coding colormap for diffusion tensor imaging
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2016.08.006
– volume: 15
  start-page: 516
  year: 2002
  ident: 10.1016/j.cmpb.2024.108449_bib0004
  article-title: High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues - a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.778
– volume: 13
  start-page: 1497
  year: 2023
  ident: 10.1016/j.cmpb.2024.108449_bib0034
  article-title: Research Progress in Diffusion Spectrum Imaging
  publication-title: Brain Sci.
  doi: 10.3390/brainsci13101497
– volume: 141
  start-page: 472
  year: 2018
  ident: 10.1016/j.cmpb.2024.108449_bib0038
  article-title: A widespread visually-sensitive functional network relates to symptoms in essential tremor
  publication-title: Brain
  doi: 10.1093/brain/awx338
– volume: 32
  start-page: 34
  year: 2007
  ident: 10.1016/j.cmpb.2024.108449_bib0003
  article-title: Principles and limitations of NMR diffusion measurements
  publication-title: J. Med. Phys.
  doi: 10.4103/0971-6203.31148
– volume: 15
  start-page: 174
  year: 2016
  ident: 10.1016/j.cmpb.2024.108449_bib0033
  article-title: Atrophy of the Cerebellar Vermis in Essential Tremor: segmental Volumetric MRI Analysis
  publication-title: Cerebellum.
  doi: 10.1007/s12311-015-0682-8
– volume: 15
  start-page: 923
  year: 1991
  ident: 10.1016/j.cmpb.2024.108449_bib0013
  article-title: MR color mapping of myelin fiber orientation
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199111000-00003
– volume: 48
  start-page: 201
  year: 2022
  ident: 10.1016/j.cmpb.2024.108449_bib0049
  article-title: MRI-COMA Investigators CENTER-TBI MRI Participants and MRI Only Investigators, Prognostic value of global deep white matter DTI metrics for 1-year outcome prediction in ICU traumatic brain injury patients: an MRI-COMA and CENTER-TBI combined study
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-021-06583-z
– volume: 18
  start-page: 953
  year: 2014
  ident: 10.1016/j.cmpb.2024.108449_bib0027
  article-title: Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.05.012
– volume: 8
  start-page: 16541
  year: 2018
  ident: 10.1016/j.cmpb.2024.108449_bib0026
  article-title: Automatic verification of the gradient table in diffusion-weighted MRI Based on Fiber Continuity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34940-4
– volume: 4
  start-page: 316
  year: 2007
  ident: 10.1016/j.cmpb.2024.108449_bib0001
  article-title: Diffusion tensor imaging of the brain
  publication-title: Neurotherapeutics.
  doi: 10.1016/j.nurt.2007.05.011
– volume: 240
  year: 2023
  ident: 10.1016/j.cmpb.2024.108449_bib0007
  article-title: Automatic tractography and segmentation using finsler geometry based on higher-order tensor fields
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2023.107630
– volume: 15
  year: 2021
  ident: 10.1016/j.cmpb.2024.108449_bib0051
  article-title: DeepNavNet: automated Landmark Localization for Neuronavigation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.670287
– volume: 23
  start-page: 197
  year: 2013
  ident: 10.1016/j.cmpb.2024.108449_bib0045
  article-title: Diffusion Anisotropy Color-Coded Map of Cerebral White Matter: quantitative Comparison between Orthogonal Anisotropic Diffusion-Weighted Imaging and Diffusion Tensor Imaging
  publication-title: Journal of Neuroimaging
  doi: 10.1111/j.1552-6569.2011.00702.x
– volume: 2024
  year: 2024
  ident: 10.1016/j.cmpb.2024.108449_bib0018
  article-title: White matter fiber tracking method with adaptive correction of tracking direction
  publication-title: Int. J. Biomed. ImAging
  doi: 10.1155/2024/4102461
– volume: 2017
  year: 2017
  ident: 10.1016/j.cmpb.2024.108449_bib0040
  article-title: Multiple Factors Involved in the Pathogenesis of White Matter Lesions
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2017/9372050
SSID ssj0002556
Score 2.4050777
Snippet •The orientation of diffusion gradients depends on MRI manufacturer.•Interpretation of diffusion color encoded (DCE) maps depends on brain orientation.•The...
The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is...
Background and ObjectiveThe common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 108449
SubjectTerms Adult
Aged
Bioengineering
Brain
Cognitive science
Color
Color encoding
Diffusion gradient
Diffusion Magnetic Resonance Imaging - methods
Diffusion Magnetic Resonance Imaging - standards
DTI
Essential Tremor - diagnostic imaging
Female
Healthy Volunteers
Humans
Image Processing, Computer-Assisted - methods
Imaging
Life Sciences
Male
Middle Aged
Neuroimaging - methods
Neuroimaging - standards
Neuroscience
Parkinson Disease - diagnostic imaging
Young Adult
Title Brain color-coded diffusion imaging: Utility of ACPC reorientation of gradients in healthy subjects and patients
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724004425
https://dx.doi.org/10.1016/j.cmpb.2024.108449
https://www.ncbi.nlm.nih.gov/pubmed/39378632
https://www.proquest.com/docview/3114498445
https://uca.hal.science/hal-04718173
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEA7rCuJFXJ-j7hLFm7TT3Uk_4m12cBkfuwg6sLeQ5zrC9gzdPcJe_O1WddKzCD7AY4ckHVKVSiX56itCXqaWFdpXWeJ9WSYclltSewfryqXeG5tp5fGgeHpWLpb8_XlxvkfmYywMwiqj7Q82fbDWsWQaZ3O6Wa2mn5FHBLzxClGQHFQPI9jhZ6DTr39cwzyQYivwe4sEa8fAmYDxMpcbDWfEnCPUjiOf5u83pxtfESX5Jxd02IpO7pI70YekszDMA7Lnmnvk1ml8Jb9PNseY94EiH3WbYMy6pZgHZYsXY3R1OeQlekOXPcJir-ja09n805y2bt2uYiRSg6UX7QAH6zsKnYV4ySvabTXe3HRUNZZGUtbuAVmevP0yXyQxs0JiOCv7xKYuNYUSrs5VVpZ5xo3B5WIK5q0pMrDG1nFuRaXAAUyZ8NqKTBS5Sr0DB4g9JPvNunGPCa3BKsChzXhlNRc6r12aGicqqKwFs2pCXo1TKjeBQEOOyLJvEgUgUQAyCGBC2DjrcgwNBWMmwb7_tVWxa_WL8vyz3QsQ7G5YyLS9mH2UWJbipp1V7Hs2Ic9HuUtYevieohq33naSwVmSC-iomJBHQSF2fSHPYF2y_Ml_Du0puY1fATjzjOz37dYdgvvT66NBv4_Izdm7D4uznycdAs4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IQEvaNxGYQODeEOhTuxczFtXMRVoJyRWaW9WfIMiLa2SFGkv_HbOSZwiJC4Sr05sWT4XH9vf-Q4hL5nlqfZ5HHmfZZEAc4sK78CuHPPe2FiXHg-Ki_NsthTvL9PLPTIdcmEQVhl8f-_TO28dWsZhNceb1Wr8CXlEIBrPEQUpQPX2yQ0B5otlDF5__4nzQI6tnuBbRvh7yJzpQV7maqPhkJgIxNoJJNT8_e60_wVhkn-KQbu96OyQ3AlBJJ3087xL9lx1j9xchGfy-2RzioUfKBJS1xEmrVuKhVC2eDNGV1ddYaI3dNkiLvaarj2dTD9Oae3W9SqkIlXY-rnu8GBtQ2GwPmHymjZbjVc3DS0rSwMra_OALM_eXkxnUSitEBnBszayzDGTltIVSRlnWRILY9BeTMq9NWkM7tg6IazMS4gAGZdeWxnLNCmZdxAB8YfkoFpX7hGhBbgFOLUZX1otpE4Kx5hxMoefteS2HJFXw5KqTc-goQZo2VeFAlAoANULYET4sOpqyA0Fb6bAwf-1V7rr9Yv2_LPfCxDsblpItT2bzBW2Mdy145x_i0fk-SB3BbaHDypl5dbbRnE4TAoJA6UjctQrxG4sJBosMp48_s-pPSO3ZheLuZq_O__whNzGLz2K5pgctPXWnUAs1Oqnna7_AP_sBFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+color-coded+diffusion+imaging%3A+Utility+of+ACPC+reorientation+of+gradients+in+healthy+subjects+and+patients&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Ouachikh%2C+Omar&rft.au=Chaix%2C+R%C3%A9mi&rft.au=Sontheimer%2C+Anna&rft.au=Coste%2C+Jerome&rft.date=2024-12-01&rft.pub=Elsevier&rft.issn=0169-2607&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108449&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04718173v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon