Building Better Batteries in the Solid State: A Review
Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the...
Saved in:
Published in | Materials Vol. 12; no. 23; p. 3892 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.11.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O2, and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered. |
---|---|
AbstractList | Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O 2 , and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered. Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu , there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O 2 , and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered. Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O2, and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered. Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O2, and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O2, and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered. Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes , there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O , and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered. |
Author | Mauger, Alain Zaghib, Karim Julien, Christian M. Armand, Michel Paolella, Andrea |
AuthorAffiliation | 3 CIC Energigune, Parque Tecnol Alava, 01510 Minano, Spain; michel.armand@gmail.com 2 Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada; paolella.andrea2@ireq.ca 1 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France; alain.mauger@upmc.fr |
AuthorAffiliation_xml | – name: 1 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France; alain.mauger@upmc.fr – name: 2 Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada; paolella.andrea2@ireq.ca – name: 3 CIC Energigune, Parque Tecnol Alava, 01510 Minano, Spain; michel.armand@gmail.com |
Author_xml | – sequence: 1 givenname: Alain surname: Mauger fullname: Mauger, Alain – sequence: 2 givenname: Christian M. orcidid: 0000-0003-4357-3186 surname: Julien fullname: Julien, Christian M. – sequence: 3 givenname: Andrea surname: Paolella fullname: Paolella, Andrea – sequence: 4 givenname: Michel surname: Armand fullname: Armand, Michel – sequence: 5 givenname: Karim surname: Zaghib fullname: Zaghib, Karim |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31775348$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-02474699$$DView record in HAL |
BookMark | eNptkV1LHDEUhoMoftUbf4AM9EaFbfM9SS8Ku2K1sFDottchmzlxI7MTncys-O_NsFrXpbk5IXne9yTvOUK7TWwAoVOCvzCm8delJZQypjTdQYdEazkimvPdjf0BOknpHufFGFFU76MDRspSMK4OkZz0oa5Cc1dMoOugLSZ2KAFSEZqiW0Axi3WoillnO_hWjIvfsArw9AnteVsnOHmtx-jvj-s_V7ej6a-bn1fj6chxJruRc2xOnMO28hX1RICuPBOK-RI77i32FIOXviJYczpnWcSVV1JRpgnmVcmO0fe170M_X0LloOlaW5uHNixt-2yiDebjTRMW5i6ujNRUCiWywcXaYLElux1PzXCGKS-51HpFMnv-2qyNjz2kzixDclDXtoHYJ0MZ0QITLAbbz1vofezbJkdhqOBKciqIytTZ5uv_9X-LPwN4Dbg2ptSCNy7koEMcPhNqQ7AZhmzeh5wll1uSN9f_wC9gjaPf |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179387 crossref_primary_10_1063_1_5132841 crossref_primary_10_1149_1945_7111_ad63cd crossref_primary_10_1016_j_cej_2020_124847 crossref_primary_10_3390_ma14195729 crossref_primary_10_1016_j_mtcomm_2023_105621 crossref_primary_10_1002_inf2_12216 crossref_primary_10_1007_s11581_022_04767_1 crossref_primary_10_1039_D2EE00842D crossref_primary_10_3390_batteries10040125 crossref_primary_10_1039_D3QM00604B crossref_primary_10_1016_j_eurpolymj_2023_112450 crossref_primary_10_1002_smll_202204487 crossref_primary_10_3390_nano11030614 crossref_primary_10_3390_nano10112267 crossref_primary_10_3390_membranes13020201 crossref_primary_10_1002_batt_202100131 crossref_primary_10_3390_batteries10010029 crossref_primary_10_1002_cssc_202200294 crossref_primary_10_1016_j_jpowsour_2021_229919 crossref_primary_10_3390_en13092138 crossref_primary_10_1021_acsami_3c03839 crossref_primary_10_1021_acsenergylett_3c01579 crossref_primary_10_1016_j_est_2023_107703 crossref_primary_10_1021_acsami_1c13913 crossref_primary_10_1038_s41578_021_00320_0 crossref_primary_10_1016_j_nxener_2024_100195 crossref_primary_10_3390_polym14224804 crossref_primary_10_3390_membranes12111111 crossref_primary_10_1016_j_est_2024_114199 crossref_primary_10_1088_1742_6596_1879_3_032066 crossref_primary_10_1021_acs_inorgchem_4c05245 crossref_primary_10_1016_j_jpowsour_2024_234873 crossref_primary_10_1002_adfm_202101380 crossref_primary_10_1039_D4CC06419D crossref_primary_10_1002_adfm_202113118 crossref_primary_10_1002_smsc_202300235 crossref_primary_10_3390_batteries10070255 crossref_primary_10_3390_ma13163453 crossref_primary_10_1021_acsami_2c16174 crossref_primary_10_1002_ente_202000665 crossref_primary_10_1002_smll_202406357 crossref_primary_10_1002_chem_202102920 crossref_primary_10_1016_j_ensm_2022_06_025 crossref_primary_10_1021_acs_jpcc_4c03774 crossref_primary_10_1149_2_0072007JES crossref_primary_10_1016_j_cej_2020_124089 crossref_primary_10_1016_j_matdes_2020_108760 crossref_primary_10_1039_D0EE02797A crossref_primary_10_1134_S1023193524601359 crossref_primary_10_1016_j_joule_2022_02_007 crossref_primary_10_1007_s11367_023_02134_4 crossref_primary_10_3389_fchem_2021_810781 crossref_primary_10_1039_D0CP01334J crossref_primary_10_1039_D4YA00441H crossref_primary_10_1007_s40242_020_9110_9 crossref_primary_10_3390_batteries9080402 crossref_primary_10_3390_polym12020331 crossref_primary_10_1016_j_rser_2023_114136 crossref_primary_10_3390_batteries9040194 crossref_primary_10_1002_adfm_202301670 crossref_primary_10_1021_acsami_4c07428 crossref_primary_10_3390_batteries9080407 crossref_primary_10_3390_nano11010061 crossref_primary_10_3390_inorganics10010005 crossref_primary_10_3390_en13071722 crossref_primary_10_3390_molecules29245832 crossref_primary_10_1007_s11581_022_04659_4 crossref_primary_10_1016_j_jallcom_2021_160420 crossref_primary_10_1016_j_ensm_2021_03_015 crossref_primary_10_1021_acsaem_4c02519 crossref_primary_10_1002_asia_202400062 crossref_primary_10_1016_j_ensm_2021_08_041 crossref_primary_10_3390_batteries10030073 crossref_primary_10_1002_smtd_202200345 crossref_primary_10_1017_S0885715624000290 crossref_primary_10_1002_aenm_202000093 crossref_primary_10_1016_j_device_2024_100370 crossref_primary_10_1007_s12274_022_5345_8 crossref_primary_10_1149_2162_8777_ad0656 crossref_primary_10_1039_D1TA01551F crossref_primary_10_1039_D4CP00105B crossref_primary_10_1016_j_jechem_2021_02_023 crossref_primary_10_1016_j_cej_2023_146409 crossref_primary_10_1021_acsnano_0c03325 crossref_primary_10_1002_celc_202400550 crossref_primary_10_3390_polym13234127 crossref_primary_10_1039_D3TA02781C crossref_primary_10_1016_j_nanoen_2022_107679 crossref_primary_10_1016_j_cej_2024_153588 crossref_primary_10_1039_D3SE00417A crossref_primary_10_1007_s41918_023_00179_5 crossref_primary_10_1016_j_jpowsour_2021_230127 crossref_primary_10_1021_acsami_0c00944 crossref_primary_10_1070_RCR4956 crossref_primary_10_1016_j_ccr_2024_215909 crossref_primary_10_1016_j_jpowsour_2022_231517 crossref_primary_10_1149_1945_7111_ad89ab crossref_primary_10_1016_j_gce_2021_03_001 crossref_primary_10_3390_en17236086 crossref_primary_10_1039_D4TC05159A crossref_primary_10_1039_D1TA10816F crossref_primary_10_3390_polym12112531 crossref_primary_10_1088_1361_6528_ac2e21 crossref_primary_10_1039_D1TA03720J crossref_primary_10_1016_j_jeurceramsoc_2023_12_071 crossref_primary_10_1016_j_nxener_2024_100202 crossref_primary_10_1016_j_ceramint_2022_01_056 crossref_primary_10_1016_j_ensm_2020_07_005 crossref_primary_10_1021_acs_jpcc_0c00387 crossref_primary_10_1002_advs_202101182 crossref_primary_10_1016_j_ensm_2022_11_004 crossref_primary_10_1016_j_jallcom_2023_168870 crossref_primary_10_1016_j_est_2024_114588 crossref_primary_10_1016_j_electacta_2021_139367 crossref_primary_10_1021_acsaem_1c02942 crossref_primary_10_1002_aenm_202002360 crossref_primary_10_1021_acs_energyfuels_3c02373 crossref_primary_10_1134_S0020168522040124 crossref_primary_10_1021_acs_chemmater_1c04396 crossref_primary_10_1007_s10008_024_05900_y crossref_primary_10_1021_acs_chemrev_2c00196 crossref_primary_10_1016_j_mseb_2022_116198 crossref_primary_10_1016_j_jechem_2020_04_025 crossref_primary_10_1039_D0MA01019G crossref_primary_10_3390_molecules25040924 crossref_primary_10_1149_1945_7111_ac22ca crossref_primary_10_1016_j_jpowsour_2022_232412 crossref_primary_10_1016_j_ceramint_2024_01_154 crossref_primary_10_1002_inf2_12197 crossref_primary_10_1039_D2SE01497A crossref_primary_10_1002_adfm_202203551 crossref_primary_10_1016_j_jallcom_2020_156285 crossref_primary_10_1002_idm2_12201 crossref_primary_10_1016_j_cej_2021_130632 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1111_jace_19327 crossref_primary_10_1021_acsaem_0c02255 crossref_primary_10_1016_j_apmate_2024_100181 crossref_primary_10_1002_aenm_202403255 crossref_primary_10_1007_s12613_020_2137_6 crossref_primary_10_3390_nano11040946 crossref_primary_10_3390_batteries7040075 crossref_primary_10_1007_s41918_023_00196_4 crossref_primary_10_1021_acsmacrolett_2c00292 crossref_primary_10_1016_j_nxener_2023_100015 crossref_primary_10_1039_D4TA01341G crossref_primary_10_3390_ma13194222 crossref_primary_10_1021_acs_jpcc_1c07359 crossref_primary_10_1021_acs_macromol_4c02139 crossref_primary_10_1038_s41467_022_30788_5 crossref_primary_10_3390_batteries10120454 crossref_primary_10_1021_acsapm_4c03256 crossref_primary_10_3390_polym12122812 crossref_primary_10_1016_j_etran_2023_100264 crossref_primary_10_3389_fenrg_2021_726738 crossref_primary_10_1002_adma_202002550 crossref_primary_10_1002_aesr_202000061 crossref_primary_10_1039_D2CC00408A crossref_primary_10_2139_ssrn_4061571 crossref_primary_10_1002_cssc_202300303 crossref_primary_10_1007_s11581_021_04149_z crossref_primary_10_1016_j_apsusc_2020_148048 crossref_primary_10_3390_batteries9050269 crossref_primary_10_1021_acsapm_9b01068 crossref_primary_10_1016_j_nanoen_2020_105196 crossref_primary_10_2139_ssrn_4120260 crossref_primary_10_1007_s11581_023_05017_8 crossref_primary_10_1039_D1TA04532F crossref_primary_10_1016_j_mtla_2022_101603 crossref_primary_10_3390_nano10081606 crossref_primary_10_1021_acs_iecr_0c05075 crossref_primary_10_1002_adma_202206402 crossref_primary_10_1088_1361_6528_ad27ad crossref_primary_10_1021_acsami_2c16402 crossref_primary_10_1016_j_enss_2022_07_002 crossref_primary_10_1016_j_jelechem_2025_119035 crossref_primary_10_1021_acsami_2c10666 crossref_primary_10_3390_ma16020729 crossref_primary_10_1016_j_cej_2020_127771 crossref_primary_10_1021_acsami_3c19249 crossref_primary_10_3389_fmats_2022_810575 crossref_primary_10_1007_s11708_022_0833_9 crossref_primary_10_1149_1945_7111_ab8878 crossref_primary_10_15541_jim20220761 crossref_primary_10_3390_nano11102476 crossref_primary_10_1002_smtd_202100891 crossref_primary_10_3390_en16124549 crossref_primary_10_1021_acsapm_4c01877 crossref_primary_10_1016_j_jpowsour_2020_228949 crossref_primary_10_1021_acsami_4c10534 crossref_primary_10_3390_inorganics10060081 crossref_primary_10_3390_polym14040673 crossref_primary_10_1039_D4LF00099D crossref_primary_10_1002_smll_202005762 |
Cites_doi | 10.1063/1.4977885 10.1021/acsami.6b13925 10.1016/j.electacta.2015.03.103 10.1002/adma.201603436 10.1016/j.jpowsour.2014.02.054 10.1002/adfm.201901576 10.1039/C5EE01215E 10.1016/j.ceramint.2016.10.077 10.1134/S2075113317020137 10.1002/aenm.201500353 10.1016/j.jpowsour.2016.05.111 10.1016/j.jpowsour.2013.09.137 10.1021/acsami.8b05393 10.1039/C7TA01648D 10.1149/2.0381712jes 10.1016/j.ssi.2017.08.001 10.1039/C6NR05573G 10.1021/acsapm.9b00068 10.1039/C9TA00356H 10.1021/acs.accounts.8b00566 10.1002/adma.201805574 10.1021/acsenergylett.8b00145 10.1016/j.jpowsour.2015.12.001 10.1021/acsenergylett.7b01105 10.1002/anie.201501214 10.1021/acsami.8b00529 10.1038/s41560-018-0199-8 10.1016/j.jpowsour.2016.03.097 10.1021/jp306718v 10.1016/j.nanoen.2019.01.004 10.1021/acs.jpcc.6b04729 10.1016/j.jpowsour.2017.08.023 10.1016/j.jpowsour.2017.03.013 10.1126/sciadv.aao0713 10.1038/s41560-017-0047-2 10.1002/adfm.201503697 10.1038/ncomms6706 10.1039/C6TA04492A 10.1039/C8TA10771H 10.1016/j.jpowsour.2019.03.081 10.1016/S1452-3981(23)12854-9 10.1016/j.nanoen.2016.02.008 10.1007/s12274-017-1763-4 10.1016/j.ssi.2017.03.024 10.1039/C8TA04619K 10.1002/smll.201602952 10.1039/C4CC05372A 10.1002/adfm.201707570 10.1021/cm401720n 10.1038/s41560-018-0107-2 10.1149/2.1571707jes 10.1038/ncomms12925 10.1016/j.nanoen.2017.10.021 10.1039/C9TA02126D 10.1016/j.electacta.2018.07.191 10.1016/j.joule.2018.03.008 10.1016/j.jpowsour.2015.02.137 10.1016/j.electacta.2014.11.176 10.1021/acsami.8b21770 10.1149/2.0321512jes 10.1016/j.jpowsour.2018.05.048 10.1038/ncomms8892 10.1021/nl5031985 10.1021/acsami.5b07517 10.1021/acs.chemmater.6b03718 10.1038/s41565-019-0371-8 10.1039/C6RA19415J 10.1002/aenm.201802927 10.1002/adfm.201901047 10.1002/adfm.201504437 10.1149/2.0731504jes 10.1002/smtd.201700135 10.1016/j.jpowsour.2018.09.102 10.1021/acsami.7b01137 10.1039/C5EE02867A 10.1016/j.apenergy.2017.07.054 10.1016/j.ssi.2017.12.022 10.1016/j.ssi.2017.07.005 10.1021/acs.macromol.6b00290 10.1039/C5EE02803E 10.1039/C8EE01621F 10.1039/C7TA01147D 10.1021/jacs.6b10088 10.1016/j.jpowsour.2019.04.033 10.1002/aenm.201502214 10.1002/smtd.201700231 10.1016/j.electacta.2016.06.016 10.1039/C8RA08436J 10.1038/nmat1158 10.1039/C7CP08580J 10.1016/j.ensm.2017.06.017 10.1002/adfm.201801806 10.1021/acsami.7b18183 10.1038/nmat3737 10.1002/advs.201700072 10.1016/j.jpowsour.2013.06.097 10.1016/j.electacta.2018.06.169 10.1002/adma.201701169 10.1039/C7RA05035F 10.1038/srep41217 10.1002/aenm.201501802 10.1002/adma.201705702 10.1002/adma.201503025 10.1007/978-3-319-19108-9 10.1038/srep19892 10.1039/C7TA09242C 10.1016/j.jpowsour.2015.10.031 10.1002/adma.201808100 10.1039/C4CP05333H 10.1021/acsmacrolett.8b00406 10.1002/anie.201602504 10.1039/C6TA11165C 10.1016/j.jpowsour.2013.09.051 10.1007/s00542-015-2765-3 10.1016/j.memsci.2019.02.074 10.1016/j.electacta.2017.10.037 10.1038/natrevmats.2016.103 10.1016/j.elecom.2016.07.014 10.1016/j.elecom.2016.02.022 10.1021/acsami.8b07004 10.1002/anie.201901869 10.1021/acs.jpcc.6b11136 10.1021/acsami.6b11773 10.1002/adma.201605531 10.1016/j.mser.2018.10.004 10.1039/C6TA02621D 10.1039/C7TA01820G 10.1126/sciadv.1602396 10.1007/s10800-016-0951-3 10.1016/j.ssi.2015.12.016 10.1039/C4TA03998J 10.1016/j.nanoen.2017.07.038 10.1016/j.jpowsour.2018.04.021 10.1016/j.jpowsour.2018.07.039 10.1021/acsami.6b10119 10.1021/acs.inorgchem.6b00444 10.1002/er.4638 10.1039/C8EE02617C 10.1021/acsami.6b16304 10.1016/j.nanoen.2016.09.002 10.1002/app.47498 10.1039/C6TA02907H 10.1016/j.ensm.2019.03.022 10.1016/j.electacta.2016.03.130 10.1021/ma401686r 10.1016/j.jpowsour.2013.10.116 10.1039/C6TA10056B 10.1039/C7EE02723K 10.1002/adma.201504225 10.1002/smll.201602109 10.1021/ja508794r 10.1021/acs.jpclett.7b00593 10.1149/2.0151514jes 10.1039/C8TA03449D 10.1021/acsami.6b00831 10.1021/acs.chemmater.6b03870 10.1016/j.electacta.2018.11.182 10.1002/aenm.201502237 10.1021/ic500803h 10.1021/cm5040003 10.1002/celc.201600221 10.1002/anie.201408008 10.1016/j.joule.2018.12.019 10.1016/j.jpowsour.2018.02.026 10.1021/jacs.5b11851 10.1039/C6TA10204B 10.1039/C4RA00996G 10.1021/cm5000999 10.1016/j.joule.2018.07.028 10.1016/j.jallcom.2018.05.255 10.1007/s11581-016-1908-6 10.1039/C7TA08233A 10.1016/j.elecom.2017.02.013 10.1002/anie.201701290 10.1016/j.memsci.2018.06.023 10.1002/bbpc.19860900105 10.1002/adfm.201604754 10.1016/j.jpowsour.2013.02.069 10.1021/acsnano.6b02315 10.1002/adfm.201707533 10.1016/j.jpowsour.2017.08.079 10.1016/j.nanoen.2018.09.061 10.1038/srep40036 10.1016/j.ensm.2018.03.015 10.1016/j.ensm.2017.12.002 10.1002/advs.201600445 10.1016/j.jpowsour.2018.05.006 10.1039/C8TA11259B 10.1021/acsami.7b00336 10.1002/aenm.201601196 10.1002/ijch.201400112 10.1016/j.jpowsour.2018.02.066 10.1016/j.ceramint.2017.03.095 10.1002/chem.201704568 10.1038/nchem.1646 10.1021/jp501319e 10.1021/acsami.5b10979 10.1002/celc.201500570 10.1016/j.electacta.2016.05.087 10.1016/j.jpowsour.2016.01.032 10.1021/acscentsci.6b00321 10.1039/C8TA01117F 10.1039/C6CP07757A 10.1021/acsenergylett.6b00660 10.1039/c3ee40702k 10.1016/j.ceramint.2015.09.126 10.1149/1.3531981 10.1039/C8TA02276C 10.1002/anie.201604158 10.1021/acs.nanolett.7b00330 10.1039/C7EE03365F 10.1021/acsami.7b17301 10.1016/j.electacta.2016.03.124 10.1016/j.jpowsour.2016.09.044 10.1021/acs.jpcc.5b11746 10.1007/s10008-016-3284-6 10.1002/celc.201300160 10.1016/j.electacta.2016.10.134 10.1002/aenm.201701437 10.1002/adfm.201605989 10.1016/j.gee.2018.08.002 10.1016/j.electacta.2017.03.219 10.1149/2.0441503jes 10.1021/acsami.8b06912 10.1038/s41570-019-0078-2 10.1016/j.jpowsour.2018.07.008 10.1021/acs.nanolett.7b00715 10.1016/j.electacta.2017.03.064 10.1002/adma.201601186 10.1038/nenergy.2016.141 10.1016/j.jallcom.2017.06.135 10.1021/ja305709z 10.1021/acs.chemmater.5b03656 10.1063/1.5016460 10.1002/adma.201900376 10.1016/j.jpowsour.2018.10.088 10.1039/C7TA06873E 10.1016/j.jpowsour.2013.10.005 10.1016/j.electacta.2015.05.178 10.1021/acsami.6b08435 10.1016/j.electacta.2016.09.141 10.1016/j.jpowsour.2018.05.050 10.1002/smll.201601530 10.1016/j.jpowsour.2017.04.014 10.1021/acsami.6b05301 10.1039/C8SC05178J 10.1039/C5EE01604E 10.1021/acs.jpcc.6b10774 10.1016/j.jallcom.2016.03.009 10.1002/adma.201503169 10.1002/anie.201709305 10.1038/s41467-019-09061-9 10.1038/nnano.2017.16 10.1021/acsami.5b08462 10.1002/app.33963 10.1021/acsenergylett.7b00292 10.1039/C7CP00518K 10.1149/1.1763141 10.1039/C6CC02131J 10.1039/C8TA08391F 10.1002/anie.201608924 10.1039/C6TA02294D 10.1021/jp4051275 10.1039/C7TA07972A 10.1021/acs.chemrev.7b00115 10.1002/aenm.201601392 10.1039/C7EE01004D 10.1039/C6CP00757K 10.1016/j.memsci.2018.07.014 10.1021/acs.jpcc.8b02556 10.1002/aenm.201402235 10.1002/aenm.201501082 10.1021/acs.nanolett.6b03223 10.1038/srep07127 10.1021/acsami.6b09059 10.1016/j.electacta.2014.08.139 10.1016/j.ensm.2018.07.004 10.1039/C5CC08279J 10.1039/C7TA08391B 10.1002/advs.201500359 10.1016/j.nanoen.2018.02.036 10.1016/j.ssi.2015.11.027 10.1039/C8EE02093K 10.1021/acs.inorgchem.8b03300 10.1038/srep33733 10.1007/s10800-016-0940-6 10.1021/acs.accounts.7b00460 10.1039/C6TA00828C 10.1021/acsenergylett.7b00849 10.1016/j.ssi.2019.01.034 10.1126/science.1249625 10.1016/j.ssi.2017.09.018 10.1016/j.electacta.2014.04.099 10.1039/C5TA01037C 10.1021/jz200352v 10.1016/j.jpowsour.2013.03.155 10.1039/C5TA08574H 10.1007/s10008-015-2910-z 10.1016/S0013-4686(01)00458-3 10.1038/nmat3602 10.1002/aenm.201501294 10.1021/acs.chemmater.5b01023 10.1039/C6GC00444J 10.1002/adsu.201700017 10.1016/j.jpowsour.2016.10.033 10.1016/j.jpowsour.2018.03.017 10.1039/C3TA15087A 10.1073/pnas.1600422113 10.1039/C5TA09646D 10.1021/acsami.8b01876 10.1039/C6TA10066J 10.1149/2.1281709jes 10.1021/acs.nanolett.6b03448 10.1002/ppsc.201500193 10.1016/j.memsci.2016.12.011 10.1016/j.jpowsour.2014.11.047 10.1038/nenergy.2017.35 10.1002/aenm.201802235 10.1002/adma.201505008 10.1038/s41467-018-04762-z 10.1021/acsaem.8b00227 10.1016/j.jpowsour.2016.06.003 10.1149/1.1502684 10.1039/C9EE00578A 10.1002/adma.201806082 10.1021/cm901819c 10.1039/C3EE43357A 10.1039/C8TA03358G 10.1016/j.polymer.2015.04.056 10.1021/acs.nanolett.8b01421 10.1002/ange.201707840 10.1002/aenm.201601272 10.1002/aenm.201602923 10.1002/smtd.201700219 10.1021/acs.nanolett.7b00221 10.1016/j.ensm.2016.01.008 10.1016/j.jpowsour.2018.03.016 10.1038/nature25984 10.1149/2.0331701jes 10.1126/sciadv.1601659 10.1021/acsami.7b03806 10.1149/2.0841704jes 10.1039/C6TA06082J 10.1039/C6EE00700G 10.1002/advs.201500306 10.1016/j.apenergy.2016.02.064 10.1016/j.jpowsour.2018.05.003 10.1016/j.electacta.2016.10.173 10.1038/nenergy.2016.114 10.1039/C7TA05832B 10.1039/C7CC00794A 10.1007/s41918-018-0010-3 10.1016/j.polymer.2010.04.022 10.1021/acsami.7b12092 10.1016/j.jpowsour.2018.04.022 10.1038/ncomms11009 10.1002/aenm.201500865 10.1021/acsnano.8b00073 10.1016/j.jpowsour.2018.04.054 10.1016/j.jpowsour.2019.01.082 10.1021/jacs.8b03319 10.1039/C7CS00139H 10.1016/j.progpolymsci.2016.04.003 10.1002/adma.201605512 10.1021/acsami.6b03070 10.1016/j.jpowsour.2015.12.054 10.1021/acs.chemmater.6b00698 10.1016/j.joule.2018.02.007 10.1016/j.electacta.2019.01.039 10.1016/j.jpowsour.2017.04.026 10.1016/j.jpowsour.2015.08.035 10.1039/C7EE02420G 10.1002/adfm.201805301 10.1149/2.0951712jes 10.1016/j.ensm.2016.02.004 10.1016/j.jpowsour.2018.04.020 10.1021/acs.nanolett.5b00600 10.1016/j.jpowsour.2016.08.049 10.1002/cssc.201702031 10.1016/j.nanoen.2018.01.028 10.1002/cssc.201600536 10.1016/j.jpowsour.2018.04.052 10.1038/nature16484 10.1021/nl303087j 10.1002/adma.201804684 10.1149/2.0421701jes 10.1149/2.0201504jes 10.1016/j.ssi.2015.06.001 10.1002/aenm.201703012 10.1016/j.electacta.2016.12.113 10.1016/j.jpowsour.2018.04.019 10.1039/c3ee23966g 10.1038/nenergy.2017.119 10.1039/C8TA09056D 10.1016/j.jallcom.2018.03.027 10.1021/acs.nanolett.6b04695 10.1039/C3CC49588D 10.1039/C5TA10436J 10.1021/acs.jpcc.6b10268 10.1021/nl5035896 10.1002/cphc.201600821 10.1021/acsenergylett.6b00481 10.1002/anie.201604554 10.1016/j.jpowsour.2016.09.099 10.1016/j.nanoen.2017.12.037 10.1021/acsami.6b10358 10.1021/acsami.7b18798 10.1016/j.mser.2017.09.001 10.1002/aenm.201600736 10.1021/acs.nanolett.8b01111 10.1021/jp511794g 10.1016/j.nanoen.2017.01.027 10.1021/cr030203g 10.1016/j.mattod.2018.01.001 10.1002/smll.201804701 10.1007/s11581-016-1905-9 10.1021/acs.jpcc.7b01929 10.1002/anie.201607539 10.1021/acsami.7b18123 10.1002/aenm.201702184 10.1002/anie.201710841 10.1002/adma.201802563 10.1039/C3EE41655K 10.1039/C7TA01227F 10.1016/j.jpowsour.2016.03.093 10.1039/C6RA06047A 10.1021/am5083683 10.1021/acs.nanolett.5b04117 10.1002/adma.201807789 10.1002/aenm.201702374 10.1073/pnas.1719758115 10.1016/j.jpowsour.2017.10.059 10.1039/C8TA09069F 10.1039/C7EE00534B 10.1039/C7TA00196G 10.1021/acsenergylett.7b00792 10.1021/cm4016222 10.1016/j.nanoen.2016.11.045 10.1039/C8EE00907D 10.1021/acs.chemmater.7b00034 10.1016/j.jpowsour.2018.05.015 10.1038/nenergy.2016.30 10.1021/acsami.6b13902 10.1039/C6TA05800K 10.1007/s12540-017-6120-3 10.1149/2.0041514jes 10.1039/C5TA03471J 10.1149/2.0221714jes 10.1016/j.jpowsour.2012.01.086 10.1016/j.ssi.2013.08.014 10.1016/j.ssi.2016.06.005 10.1016/j.jpowsour.2018.07.007 10.1002/cssc.201500873 10.1016/j.ssi.2015.11.034 10.1002/adma.201606552 10.1149/2.0041801jes 10.1038/nenergy.2017.36 10.1021/acsnano.5b06672 10.1021/acsenergylett.7b00884 10.1016/j.pmatsci.2017.04.007 10.1016/j.elecom.2015.05.001 10.1039/C7TA04320A 10.1016/j.jpowsour.2015.09.111 10.1002/smll.201801798 10.1007/s10008-018-3891-5 10.1039/C6EE03499C 10.1021/acsami.7b03887 10.1016/j.jpowsour.2009.11.120 10.1016/j.memsci.2017.10.033 10.1021/acsami.7b16176 10.1016/j.jpowsour.2018.01.082 10.1016/j.jpowsour.2017.12.021 10.1002/admi.201700693 10.1021/jacs.6b06777 10.1149/2.0311602jes 10.1039/C3TA13835F 10.1016/j.jpowsour.2018.06.054 10.1002/anie.201511832 10.1002/polb.24235 10.1002/cssc.201700409 10.1016/j.progpolymsci.2017.12.004 10.1016/j.electacta.2017.08.162 10.1016/j.jallcom.2016.04.173 10.1149/2.0161514jes 10.1021/acs.chemrev.5b00563 10.1002/anie.201807304 10.1021/acsami.6b07054 10.1021/acsenergylett.7b00175 10.1149/1.2007207 10.1016/j.jpowsour.2018.06.038 10.1002/aenm.201702657 10.1021/jacs.7b10864 10.1016/j.chempr.2018.12.002 10.1039/C7EE03083E 10.1016/j.nanoen.2017.05.012 10.1038/ncomms2855 10.1039/C6CS00491A 10.1021/acsaem.8b00702 10.1021/acsami.7b19037 10.1039/C6TA05439K 10.1021/acs.chemmater.5b04940 10.1021/jacs.7b06364 10.1016/j.jpowsour.2017.10.083 10.1039/C6TA07590H 10.1016/j.nanoen.2017.01.028 10.1016/j.jpowsour.2012.12.109 10.1016/j.electacta.2015.03.228 10.1016/j.ssi.2015.02.013 10.1002/advs.201600089 10.1002/adma.201700378 10.1021/acs.chemrev.8b00642 10.1021/acsami.8b02240 10.1016/j.electacta.2015.11.088 10.1021/acs.chemmater.6b04797 10.1002/smll.201600540 10.1021/acs.jpclett.6b02933 10.1016/j.jpowsour.2018.02.062 10.1016/j.jpowsour.2018.11.036 10.1007/s10008-017-3529-z 10.1016/j.elecom.2015.01.020 10.1016/j.polymer.2015.02.052 10.1016/j.jpowsour.2018.04.099 10.1038/s41560-019-0349-7 10.1073/pnas.1708489114 10.1103/PhysRevB.87.134303 10.1002/adma.201602800 10.1021/acs.chemmater.6b00579 10.1021/acsenergylett.6b00401 10.1016/j.memsci.2018.07.078 10.1039/C6TA03027K 10.1039/c4cc01243g 10.1002/aenm.201601759 10.1021/acs.chemmater.7b03002 10.1016/j.electacta.2015.07.111 10.1021/acs.macromol.7b02509 10.1039/C7CP00129K 10.1021/acsami.7b08448 10.1039/C5EE02941D 10.1021/acs.inorgchem.5b01895 10.1002/adma.201503816 10.1007/s10008-017-3638-8 10.1002/cssc.201702270 10.1002/advs.201700996 10.1002/adma.201606042 10.1016/j.ssi.2016.12.001 10.1016/j.jpowsour.2017.04.018 10.1039/C7RA02174G 10.1016/j.jpowsour.2018.04.016 10.1149/2.0901810jes 10.1002/aenm.201600467 10.1039/C6RA07341G 10.1002/adma.201605561 10.1126/science.1223985 10.1021/acs.nanolett.5b00538 10.1063/1.4913320 10.1038/ncomms12032 10.1016/j.electacta.2017.10.163 10.1002/batt.201800120 10.1021/acs.chemmater.6b00610 10.1021/acs.jpclett.6b01986 10.1002/anie.201903459 10.1021/acs.inorgchem.7b00013 10.1021/acs.chemmater.8b02568 10.1021/acs.jpclett.6b00435 10.1016/j.electacta.2016.09.155 10.1016/j.jpowsour.2018.11.016 10.1021/acsami.7b00614 10.1002/aenm.201602417 10.1002/anie.201601546 10.1039/C6TA01628F 10.1016/j.ssi.2016.07.013 10.1016/j.jpowsour.2017.11.074 10.1002/aenm.201800035 10.1021/acs.jpcc.9b01816 10.1021/acsami.6b00833 10.1039/C3EE42351D 10.1039/C7CP02129A 10.1002/adma.201804815 10.1016/j.nanoen.2018.08.030 10.1021/acs.jpclett.7b01321 10.1021/jacs.6b05341 10.1073/pnas.1615912113 10.1016/j.polymer.2015.12.036 10.1016/j.mser.2018.07.001 10.1016/j.jpowsour.2007.06.108 10.1021/acs.chemmater.6b02059 10.1002/adfm.201900392 10.1002/batt.201800104 10.1021/acsami.6b11384 10.1021/acs.nanolett.6b01754 10.1016/j.electacta.2017.03.217 10.1016/j.jpowsour.2018.05.069 10.1002/ange.201509143 10.1016/j.jpowsour.2011.10.064 10.1002/advs.201600377 10.1016/j.ssi.2016.01.043 10.1021/acsenergylett.6b00216 10.1039/C6TA09809F 10.1016/j.jpowsour.2018.01.063 10.1039/C7TA02423A 10.1038/nmat4821 10.1007/s12274-018-2205-7 10.1002/cssc.201402567 10.1002/anie.201204983 10.1039/C4CC07315K 10.1039/C8TA12443D 10.1016/j.ensm.2016.07.003 10.1016/j.ssi.2017.08.007 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM |
DOI | 10.3390/ma12233892 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC6926585 oai_HAL_hal_02474699v1 31775348 10_3390_ma12233892 |
Genre | Journal Article Review |
GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC 2XV C1A IAO IPNFZ ITC RIG VOOES 5PM |
ID | FETCH-LOGICAL-c436t-cc3b1cc0adfd2f15e9df3583f70c4fa0f20ef6fd10942b3c4348f868239104d73 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:43:16 EDT 2025 Fri May 09 12:16:33 EDT 2025 Thu Jul 10 22:39:33 EDT 2025 Fri Jul 25 12:01:00 EDT 2025 Thu Apr 03 07:04:43 EDT 2025 Tue Jul 01 03:56:13 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | ceramics all-solid-state batteries Li-air batteries Li–S batteries polymers fast-ion conductors Li-ion batteries Na-ion batteries solid electrolytes Li-S batteries |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-cc3b1cc0adfd2f15e9df3583f70c4fa0f20ef6fd10942b3c4348f868239104d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4357-3186 0000-0001-7638-6710 0000-0002-1303-9233 0000-0002-4201-7746 |
OpenAccessLink | https://www.proquest.com/docview/2548642518?pq-origsite=%requestingapplication% |
PMID | 31775348 |
PQID | 2548642518 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6926585 hal_primary_oai_HAL_hal_02474699v1 proquest_miscellaneous_2319501055 proquest_journals_2548642518 pubmed_primary_31775348 crossref_citationtrail_10_3390_ma12233892 crossref_primary_10_3390_ma12233892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191125 |
PublicationDateYYYYMMDD | 2019-11-25 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191125 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Nair (ref_268) 2016; 306 Sun (ref_243) 2016; 18 Cao (ref_51) 2019; 14 Tao (ref_255) 2017; 257 Hartmann (ref_164) 2013; 117 Chen (ref_293) 2017; 9 Deng (ref_248) 2016; 8 Gao (ref_39) 2018; 30 Oh (ref_103) 2017; 5 Peng (ref_345) 2012; 337 Yang (ref_37) 2017; 29 Qi (ref_536) 2016; 3 Tang (ref_184) 2015; 8 Lanagan (ref_191) 2017; 38 Singh (ref_589) 2016; 6 Chu (ref_571) 2016; 6 Chen (ref_212) 2019; 12 Li (ref_434) 2019; 4 Mauger (ref_445) 2018; 134 Yoshida (ref_584) 2017; 110 Zhang (ref_395) 2014; 118 Zheng (ref_154) 2017; 5 Liang (ref_86) 2018; 30 Zhao (ref_340) 2016; 188 Tao (ref_75) 2016; 163 Guo (ref_227) 2018; 564 Langer (ref_290) 2017; 164 Zhang (ref_98) 2019; 410–411 Basile (ref_524) 2016; 71 Wu (ref_528) 2016; 203 Carstens (ref_527) 2016; 120 Boschin (ref_540) 2015; 175 Kunshina (ref_157) 2017; 8 Zhang (ref_171) 2018; 18 Wenzel (ref_76) 2016; 28 Zhou (ref_503) 2017; 39 Mindemark (ref_14) 2018; 81 Wenzel (ref_65) 2016; 286 Zheng (ref_281) 2016; 55 Ryu (ref_437) 2016; 7 Han (ref_465) 2016; 16 Allen (ref_390) 2012; 116 Das (ref_210) 2015; 5 Choi (ref_491) 2017; 723 Li (ref_149) 2017; 56 Zhang (ref_495) 2017; 305 Girard (ref_206) 2019; 2 Yi (ref_350) 2017; 10 Lago (ref_616) 2019; 582 Cheng (ref_35) 2017; 117 Imholt (ref_269) 2018; 7 Kim (ref_497) 2019; 10 Sakuda (ref_72) 2010; 22 Mindemark (ref_242) 2015; 63 Bai (ref_384) 2017; 7 Kireeva (ref_116) 2017; 19 Zhang (ref_150) 2016; 28 ref_155 Wang (ref_211) 2017; 121 Liu (ref_364) 2017; 13 Yue (ref_23) 2016; 5 Park (ref_69) 2016; 28 Asadi (ref_360) 2016; 10 Kim (ref_389) 2018; 563 Gong (ref_467) 2018; 2 Shi (ref_370) 2017; 164 Yang (ref_516) 2018; 10 Zhu (ref_408) 2015; 8 Han (ref_488) 2019; 7 Xu (ref_502) 2019; 9 Zhang (ref_573) 2018; 11 Wang (ref_122) 2017; 17 Liu (ref_220) 2018; 564 Wang (ref_511) 2018; 28 Ataollahi (ref_377) 2013; 8 Wang (ref_517) 2018; 30 Zhang (ref_512) 2019; 57 Colo (ref_541) 2017; 365 Mustapa (ref_252) 2016; 222 Cznotka (ref_264) 2015; 274 Singh (ref_588) 2018; 22 Chi (ref_600) 2017; 43 Lee (ref_439) 2017; 7 Xu (ref_440) 2017; 2 Judez (ref_477) 2017; 8 Wang (ref_480) 2016; 52 Tsai (ref_147) 2016; 8 Lu (ref_177) 2014; 50 Griebel (ref_471) 2016; 58 Chen (ref_323) 2019; 29 Hassoun (ref_424) 2012; 12 Li (ref_308) 2016; 307 Li (ref_3) 2017; 27 Zhang (ref_276) 2019; 409 Chen (ref_522) 2016; 332 Di (ref_55) 2016; 28 Gouverneur (ref_200) 2018; 20 Porcarelli (ref_258) 2016; 1 Wang (ref_551) 2016; 55 Hashmi (ref_590) 2016; 20 Liu (ref_53) 2017; 29 Sang (ref_89) 2017; 29 Wu (ref_526) 2016; 8 Liu (ref_382) 2016; 12 Ma (ref_592) 2017; 5 Jiao (ref_128) 2018; 3 Yang (ref_457) 2018; 1 Lobe (ref_335) 2016; 307 Guo (ref_428) 2017; 56 Chen (ref_92) 2018; 387 Monti (ref_525) 2016; 324 Wan (ref_556) 2018; 12 Guo (ref_420) 2018; 6 Wakayama (ref_271) 2019; 334 Wang (ref_617) 2018; 397 Rao (ref_558) 2017; 5 Nishimura (ref_555) 2017; 5 Zhao (ref_163) 2016; 680 Simonetti (ref_4) 2017; 164 Liu (ref_110) 2018; 389 Garcia (ref_472) 2018; 390 Tikekar (ref_576) 2016; 1 Wang (ref_205) 2017; 5 Forsyth (ref_257) 2019; 52 Hilder (ref_614) 2017; 349 Smetaczek (ref_115) 2019; 7 Wang (ref_279) 2018; 259 Zhang (ref_152) 2014; 133 Zhang (ref_383) 2015; 183 Zhai (ref_169) 2017; 17 Thotiyl (ref_344) 2013; 12 Gao (ref_478) 2018; 382 Pan (ref_484) 2017; 300 Lu (ref_356) 2016; 529 ref_470 Chen (ref_611) 2017; 19 Liu (ref_190) 2018; 393 Stolwijk (ref_225) 2013; 46 Chen (ref_223) 2017; 525 Bella (ref_538) 2015; 8 Wei (ref_566) 2017; 29 Leng (ref_378) 2015; 176 Fu (ref_123) 2017; 3 Bae (ref_282) 2018; 57 Yao (ref_513) 2016; 16 Zhang (ref_473) 2015; 3 Huo (ref_237) 2018; 383 Lin (ref_313) 2016; 16 Zhao (ref_189) 2012; 134 Li (ref_226) 2016; 6 Chamaani (ref_429) 2017; 235 Zhang (ref_563) 2016; 3 Zhang (ref_474) 2016; 8 Kim (ref_521) 2017; 1 Liu (ref_381) 2018; 318 Golodnitsky (ref_224) 2015; 162 Li (ref_295) 2018; 10 Goujon (ref_207) 2019; 2 Kim (ref_426) 2016; 26 Usui (ref_523) 2016; 329 Liu (ref_170) 2017; 2 Oh (ref_499) 2016; 28 Fang (ref_186) 2016; 4 Shi (ref_318) 2018; 547 Yoon (ref_587) 2015; 17 McOwen (ref_448) 2014; 7 Wu (ref_410) 2016; 3 Wagnemaker (ref_549) 2016; 28 Girard (ref_203) 2018; 10 Liang (ref_464) 2018; 6 ref_11 Yang (ref_121) 2018; 115 Judez (ref_476) 2017; 8 Tanibata (ref_550) 2014; 4 Bachman (ref_19) 2016; 116 Balaish (ref_374) 2018; 1 Yi (ref_192) 2016; 4 Sharafi (ref_119) 2017; 29 Tian (ref_580) 2019; 3 ref_15 Yu (ref_552) 2017; 29 Liu (ref_365) 2016; 33 Nolis (ref_542) 2017; 7 Wang (ref_463) 2016; 1 Niu (ref_315) 2018; 283 Xu (ref_66) 2016; 219 Girard (ref_202) 2017; 121 Hallopeau (ref_162) 2018; 378 Ito (ref_101) 2014; 248 Elia (ref_446) 2014; 1 Chen (ref_411) 2018; 47 Meng (ref_393) 2018; 10 Yu (ref_456) 2016; 6 Maier (ref_291) 1985; 90 Lin (ref_475) 2016; 18 Zhou (ref_567) 2017; 3 Wu (ref_579) 2018; 10 Miara (ref_136) 2016; 8 Zhang (ref_232) 2017; 5 Lee (ref_603) 2017; 23 Arya (ref_33) 2017; 23 Sadikin (ref_606) 2017; 56 Chi (ref_296) 2019; 17 Wu (ref_433) 2016; 4 Zhou (ref_270) 2019; 31 Fu (ref_466) 2017; 10 Yao (ref_188) 2016; 8 Guin (ref_530) 2016; 293 Zhang (ref_597) 2017; 13 He (ref_137) 2018; 762 Wenzel (ref_165) 2015; 278 Liu (ref_481) 2016; 22 Ma (ref_299) 2016; 317 Lin (ref_332) 2017; 41 Schmuch (ref_16) 2018; 3 Wong (ref_373) 2014; 4 Jin (ref_118) 2013; 239 Wan (ref_505) 2016; 4 Zhang (ref_214) 2019; 31 Liang (ref_339) 2019; 296 Mindemark (ref_230) 2017; 77 Wang (ref_254) 2010; 51 Ganapathy (ref_357) 2014; 136 Lozinskaya (ref_199) 2017; 237 Rolland (ref_261) 2015; 68 Elia (ref_391) 2014; 14 Zou (ref_427) 2018; 14 Cong (ref_277) 2018; 380 Lu (ref_265) 2015; 152 Takami (ref_303) 2017; 164 He (ref_267) 2013; 244 Nasybulin (ref_372) 2013; 243 McCloskey (ref_346) 2011; 2 Banerjee (ref_104) 2016; 55 Balaish (ref_368) 2015; 54 Jung (ref_320) 2015; 162 Zhang (ref_95) 2018; 747 Jung (ref_561) 2015; 55 Schnell (ref_21) 2018; 382 Zhou (ref_304) 2016; 138 Xu (ref_148) 2017; 354 Hilder (ref_204) 2016; 202 Lu (ref_341) 2013; 6 Zhang (ref_287) 2017; 139 Zhang (ref_43) 2017; 121 Ju (ref_87) 2018; 10 Petit (ref_431) 2019; 58 Cheng (ref_9) 2019; 5 Ito (ref_74) 2017; 5 Vinado (ref_311) 2018; 396 Liu (ref_40) 2018; 2 Nguyen (ref_208) 2018; 11 Hofstetter (ref_404) 2018; 390 Ogawa (ref_83) 2012; 205 Colo (ref_535) 2015; 174 Yu (ref_168) 2019; 7 Hilder (ref_615) 2018; 406 Liang (ref_130) 2018; 140 Sun (ref_501) 2016; 10 Wen (ref_54) 2016; 28 Eshetu (ref_453) 2017; 56 Yue (ref_28) 2018; 19 Ozcan (ref_394) 2016; 286 Yi (ref_444) 2016; 4 Bar (ref_251) 2017; 19 Zhou (ref_568) 2016; 6 Ma (ref_449) 2017; 8 Duchene (ref_605) 2017; 53 Zhang (ref_285) 2018; 45 Xu (ref_59) 2018; 24 Santhosha (ref_93) 2019; 123 Zhao (ref_310) 2016; 301 Rettenwander (ref_112) 2016; 28 Wu (ref_398) 2017; 7 Tan (ref_348) 2017; 204 Singh (ref_327) 2017; 21 Diederichsen (ref_45) 2017; 2 Keller (ref_138) 2017; 353 Kwak (ref_435) 2016; 9 Yu (ref_29) 2017; 50 Li (ref_500) 2019; 31 Wenzel (ref_572) 2016; 8 Liu (ref_366) 2015; 27 Kwabi (ref_343) 2016; 128 Sun (ref_399) 2017; 7 Kang (ref_358) 2013; 25 Uludag (ref_385) 2016; 22 Gao (ref_85) 2018; 57 Lu (ref_581) 2019; 10 ref_42 Braga (ref_176) 2014; 2 Chai (ref_246) 2017; 4 He (ref_156) 2018; 6 Kim (ref_336) 2013; 244 Schouwink (ref_185) 2014; 5 Liu (ref_604) 2016; 8 Sangeland (ref_544) 2019; 19 Dong (ref_129) 2018; 11 Han (ref_131) 2017; 16 Wang (ref_387) 2016; 4 Iriyama (ref_334) 2018; 385 Lee (ref_62) 2019; 31 Takada (ref_109) 2018; 394 Zhou (ref_48) 2017; 33 Zhang (ref_596) 2017; 372 Fu (ref_52) 2016; 1 Chamaani (ref_412) 2017; 9 Cheng (ref_300) 2017; 253 Yamada (ref_197) 2015; 162 Yi (ref_392) 2015; 7 Cho (ref_417) 2015; 162 Xu (ref_353) 2017; 29 Li (ref_217) 2018; 394 Kim (ref_73) 2016; 42 Huang (ref_215) 2019; 299 Fan (ref_325) 2017; 5 Asadi (ref_362) 2018; 555 Chai (ref_337) 2016; 4 Yi (ref_413) 2016; 9 Bhatt (ref_594) 2015; 5 Jung (ref_379) 2014; 50 Zhang (ref_13) 2017; 10 Zhao (ref_158) 2016; 295 Zhao (ref_599) 2018; 8 Hansen (ref_607) 2017; 29 Duan (ref_125) 2018; 140 Leriche (ref_559) 2014; 247 Kato (ref_64) 2016; 1 Wang (ref_90) 2016; 4 Zhang (ref_97) 2019; 412 Yu (ref_94) 2019; 7 Zhang (ref_221) 2017; 2 Zekoll (ref_161) 2018; 11 Sun (ref_10) 2017; 33 Sangeland (ref_545) 2019; 1 Chen (ref_294) 2018; 46 Zhao (ref_81) 2016; 6 Strauss (ref_46) 2017; 21 Peng (ref_57) 2017; 46 Haruyama (ref_91) 2017; 9 Zhang (ref_483) 2017; 3 Li (ref_485) 2018; 6 Zhang (ref_326) 2017; 27 Sahu (ref_105) 2014; 7 Wood (ref_492) 2018; 9 Li (ref_182) 2016; 55 Yao (ref_487) 2017; 7 Wang (ref_280) 2018; 395 Rettenwander (ref_139) 2015; 54 Duan (ref_333) 2019; 31 Le (ref_409) 2019; 7 Liu (ref_367) 2015; 6 Judez (ref_44) 2018; 165 Huo (ref_301) 2017; 372 Suzuki (ref_490) 2018; 1 Long (ref_506) 2016; 3 Salitra (ref_324) 2018; 10 Zhang (ref_41) 2017; 4 Liu (ref_369) 2016; 28 Bao (ref_236) 2018; 389 Ma (ref_546) 2016; 28 Stilp (ref_585) 2017; 10 Yan (ref_127) 2017; 121 Janek (ref_8) 2016; 1 Afyon (ref_135) 2016; 6 Fan (ref_60) 2018; 8 Zhu (ref_564) 2015; 27 Zhou (ref_330) 2015; 5 Abe (ref_49) 2004; 151 Li (ref_178) 2016; 284 He (ref_247) 2017; 225 Zhao (ref_32) 2018; 3 Yang (ref_305) 2017; 7 Yao (ref_317) 2018; 18 Croce (ref_400) 2001; 46 Moreno (ref_539) 2014; 248 Fang (ref_183) 2017; 5 Gao (ref_537) 2016; 6 Zhang (ref_443) 2016; 9 Zhang (ref_515) 2018; 11 Ren (ref_565) 2015; 57 Zhu (ref_273) 2016; 4 Sun (ref_361) 2019; 58 Zhang (ref_79) 2017; 5 Zhang (ref_415) 2013; 4 Zhang (ref_532) 2016; 4 Wan (ref_298) 2019; 29 Bo (ref_554) 2016; 4 Albertus (ref_619) 2018; 3 Wang (ref_312) 2018; 53 Chu (ref_67) 2016; 8 Keller (ref_107) 2018; 392 Seino (ref_63) 2014; 7 Huang (ref_117) 2016; 8 Zhang (ref_174) 2013; 87 Amanchukwu (ref_376) 2016; 7 Schwenke (ref_396) 2015; 162 Song (ref_352) 2017; 1 Liu (ref_349) 2018; 2 Miara (ref_143) 2015; 27 Meabe (ref_249) 2017; 237 Dirican (ref_24) 2019; 136 Zardalidis (ref_260) 2016; 49 Nair (ref_482) 2016; 3 Xu (ref_256) 2004; 104 Lee (ref_442) 2016; 28 Xu (ref_489) 2017; 5 Kim (ref_80) 2017; 17 Hu (ref_338) 2015; 7 Amici (ref_380) 2016; 46 Zeng (ref_216) 2016; 138 Liu (ref_250) 2017; 5 Liu (ref_403) 2018; 8 Fu (ref_195) 2016; 113 Cheng (ref_6) 2017; 8 Zhang (ref_263) 2019; 428 Howard (ref_179) 2016; 3 Chen (ref_132) 2018; 6 Zhu (ref_407) 2015; 8 Li (ref_213) 2019; 15 Tang (ref_583) 2016; 6 Wang (ref_198) 2016; 7 Hu (ref_419) 2017; 3 Forsyth (ref_586) 2016; 120 Park (ref_61) 2018; 8 Liu (ref_451) 2016; 26 Porcarelli (ref_153) 2016; 6 Harding (ref_375) 2015; 119 Mauger (ref_34) 2017; 353 Basappa (ref_146) 2017; 164 Rettenwander (ref_140) 2014; 26 Jeong (ref_47) 2019; 7 Aldalur (re |
References_xml | – volume: 110 start-page: 103901 year: 2017 ident: ref_584 article-title: Fast sodium ionic conduction in Na2B10H10 -Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery publication-title: Appl. Phys. Lett. doi: 10.1063/1.4977885 – volume: 9 start-page: 3808 year: 2017 ident: ref_144 article-title: Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13925 – volume: 183 start-page: 56 year: 2015 ident: ref_383 article-title: Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co -hexafluoropropylene) and tetraethylene glycol dimethyl ether publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.103 – volume: 29 start-page: 1603436 year: 2017 ident: ref_53 article-title: Flexible and stretchable energy storage: Recent advances and future perspectives publication-title: Adv. Mater. doi: 10.1002/adma.201603436 – volume: 258 start-page: 420 year: 2014 ident: ref_570 article-title: High sodium ion conductivity of glass-ceramic electrolytes with cubic Na3PS4 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.02.054 – volume: 29 start-page: 1901576 year: 2019 ident: ref_218 article-title: Molecularly coupled two-dimensional titanium oxide and carbide sheets for wearable and high-rate quasi-solid-state rechargeable batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901576 – volume: 8 start-page: 1905 year: 2015 ident: ref_447 article-title: Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01215E – volume: 43 start-page: 1278 year: 2017 ident: ref_600 article-title: Effect of Li addition on the formation of Na-β/βʹʹ-alumina film by laser chemical vapor deposition publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.10.077 – volume: 8 start-page: 238 year: 2017 ident: ref_157 article-title: Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity publication-title: Inorg. Mater. doi: 10.1134/S2075113317020137 – volume: 5 start-page: 1500353 year: 2015 ident: ref_330 article-title: In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500353 – volume: 324 start-page: 349 year: 2016 ident: ref_498 article-title: Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.111 – volume: 248 start-page: 695 year: 2014 ident: ref_539 article-title: Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.137 – volume: 10 start-page: 22237 year: 2018 ident: ref_393 article-title: Exploring PVFM-based Janus membrane-supporting gel polymer electrolyte for highly durable Li-O2 batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05393 – volume: 5 start-page: 13373 year: 2017 ident: ref_183 article-title: Superhalogen-based lithium superionic conductors publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01648D – volume: 164 start-page: A2298 year: 2017 ident: ref_290 article-title: Impedance spectroscopy analysis of the lithium ion transport through the Li7La3Zr2O12/P(EO)20Li interface publication-title: J. Electrochem. Soc. doi: 10.1149/2.0381712jes – volume: 318 start-page: 88 year: 2018 ident: ref_381 article-title: The PVDF-HFP gel polymer electrolyte for Li-O2 battery publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.08.001 – ident: ref_618 – volume: 8 start-page: 17836 year: 2016 ident: ref_188 article-title: Superhalogens as building blocks of two-dimensional organic–inorganic hybrid perovskites for optoelectronics applications publication-title: Nanoscale doi: 10.1039/C6NR05573G – volume: 1 start-page: 825 year: 2019 ident: ref_545 article-title: Stable cycling of sodium metal all-solid-state batteries with polycarbonate-based polymer electrolytes publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00068 – volume: 7 start-page: 6818 year: 2019 ident: ref_115 article-title: Local Li-ion conductivity changes within Al stabilized Li7La3Zr2O12 and their relationship to three-dimensional variations of the bulk composition publication-title: J. Mat. Chem. A doi: 10.1039/C9TA00356H – volume: 52 start-page: 686 year: 2019 ident: ref_257 article-title: Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00566 – volume: 31 start-page: 1805574 year: 2019 ident: ref_270 article-title: Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries publication-title: Adv. Mater. doi: 10.1002/adma.201805574 – volume: 3 start-page: 899 year: 2018 ident: ref_32 article-title: Molecular layer deposition for energy conversion and storage publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00145 – volume: 306 start-page: 258 year: 2016 ident: ref_268 article-title: Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.001 – volume: 3 start-page: 98 year: 2018 ident: ref_292 article-title: Positive and negative aspects of interfaces in solid-state batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01105 – volume: 54 start-page: 6550 year: 2015 ident: ref_359 article-title: The first introduction of graphene to rechargeable Li-CO2 batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201501214 – volume: 10 start-page: 15634 year: 2018 ident: ref_416 article-title: Quasi-solid-state rechargeable Li-O2 batteries with high safety and long cycle life at room temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00529 – volume: 3 start-page: 739 year: 2018 ident: ref_128 article-title: Stable cycling of high-voltage lithium metal batteries in ether electrolytes publication-title: Nat. Energy doi: 10.1038/s41560-018-0199-8 – volume: 317 start-page: 103 year: 2016 ident: ref_299 article-title: Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.097 – volume: 116 start-page: 20755 year: 2012 ident: ref_390 article-title: Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li-air batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp306718v – volume: 57 start-page: 771 year: 2019 ident: ref_512 article-title: Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.004 – volume: 120 start-page: 14736 year: 2016 ident: ref_527 article-title: [Py1,4]-FSI-NaFSI-based ionicliquid electrolyte for sodium batteries: Na+ solvation and interfacial nano-structure on Au (111) publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04729 – volume: 364 start-page: 191 year: 2017 ident: ref_262 article-title: Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.023 – volume: 349 start-page: 45 year: 2017 ident: ref_614 article-title: Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.013 – volume: 3 start-page: eaao0713 year: 2017 ident: ref_297 article-title: Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries publication-title: Sci. Adv. doi: 10.1126/sciadv.aao0713 – volume: 3 start-page: 16 year: 2018 ident: ref_619 article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries publication-title: Nat. Energy doi: 10.1038/s41560-017-0047-2 – volume: 26 start-page: 605 year: 2016 ident: ref_451 article-title: Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503697 – volume: 5 start-page: 5706 year: 2014 ident: ref_185 article-title: Structure and properties of complex hydride perovskite materials publication-title: Nat. Commun. doi: 10.1038/ncomms6706 – volume: 4 start-page: 12947 year: 2016 ident: ref_192 article-title: Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO) publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04492A – volume: 7 start-page: 3150 year: 2019 ident: ref_409 article-title: Highly efficient and stable solid-state Li-O2 batteries using a perovskite solid electrolyte publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10771H – volume: 423 start-page: 349 year: 2019 ident: ref_219 article-title: The synergistic effect of poly(ethylene glycol)-borate ester on the electrochemical performance of all solid state Si doped-poly(ethyleneglycol) hybrid polymer electrolyte for lithium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.03.081 – volume: 8 start-page: 7875 year: 2013 ident: ref_377 article-title: Ionic conduction of blend poly(vinylidene fluoride-hexafluoro propylene) and poly(methyl methacrylate)-grafted natural rubber based solid polymer electrolyte publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)12854-9 – volume: 22 start-page: 278 year: 2016 ident: ref_481 article-title: Novel gel polymer electrolyte for high-performance lithium-sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.008 – volume: 10 start-page: 4139 year: 2017 ident: ref_13 article-title: Recent advances in solid polymer electrolytes for lithium batteries publication-title: Nano Res. doi: 10.1007/s12274-017-1763-4 – volume: 305 start-page: 1 year: 2017 ident: ref_495 article-title: Synergistic effect of processing and composition x on conductivity of xLi2S-(100-x)P2S5 electrolytes publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.03.024 – volume: 6 start-page: 14330 year: 2018 ident: ref_485 article-title: Single ion conducting lithium sulfur polymer batteries with improved safety and stability publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04619K – volume: 13 start-page: 1602952 year: 2017 ident: ref_364 article-title: Ultrathin, lightweight, and wearable Li-O2 battery with high robustness and gravimetric/volumetric energy density publication-title: Small doi: 10.1002/smll.201602952 – volume: 50 start-page: 11520 year: 2014 ident: ref_177 article-title: Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity publication-title: Chem. Commun. doi: 10.1039/C4CC05372A – volume: 28 start-page: 1707570 year: 2018 ident: ref_30 article-title: Progress and perspective of solid-state lithium–sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707570 – volume: 25 start-page: 3328 year: 2013 ident: ref_358 article-title: A Facile mechanism for recharging Li2O2 in Li-O2 batteries publication-title: Chem. Mater. doi: 10.1021/cm401720n – volume: 3 start-page: 267 year: 2018 ident: ref_16 article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0107-2 – volume: 164 start-page: A1731 year: 2017 ident: ref_22 article-title: Review-practical challenges hindering the development of solid state Li ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.1571707jes – volume: 7 start-page: 12925 year: 2016 ident: ref_437 article-title: Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygenbatterie publication-title: Nat. Commun. doi: 10.1038/ncomms12925 – volume: 41 start-page: 646 year: 2017 ident: ref_332 article-title: Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.021 – volume: 7 start-page: 10412 year: 2019 ident: ref_94 article-title: Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02126D – volume: 284 start-page: 177 year: 2018 ident: ref_58 article-title: Interfacial challenges and progress for inorganic all-solid-state lithium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.07.191 – volume: 2 start-page: 833 year: 2018 ident: ref_40 article-title: Advancing lithium metal batteries publication-title: Joule doi: 10.1016/j.joule.2018.03.008 – volume: 2 start-page: 7904 year: 2017 ident: ref_221 article-title: Fluorene-containing cardo and fully aromatic single ion conducting polymer electrolyte for room temperature, high performance lithium ion batteries publication-title: ChemSelect – volume: 283 start-page: 279 year: 2015 ident: ref_229 article-title: Construction of a lithium ion transport network in cathode with lithiated bis(benzene sulfonyl)imide based single ion polymer ionomers publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.137 – volume: 152 start-page: 489 year: 2015 ident: ref_265 article-title: Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.11.176 – volume: 11 start-page: 12467 year: 2019 ident: ref_286 article-title: Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21770 – volume: 162 start-page: A2236 year: 2015 ident: ref_417 article-title: Pd3Co/MWCNTs composite electro-catalyst cathode material for use in lithium-oxygen batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0321512jes – volume: 394 start-page: 26 year: 2018 ident: ref_217 article-title: A hybridized solid-gel nonflammable Li-battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.05.048 – volume: 6 start-page: 7892 year: 2015 ident: ref_367 article-title: Flexible lithium–oxygen battery based on a recoverable cathode publication-title: Nat. Commun. doi: 10.1038/ncomms8892 – volume: 14 start-page: 6572 year: 2014 ident: ref_391 article-title: An advanced lithium-air battery exploiting an ionic liquid-based electrolyte publication-title: Nano Lett. doi: 10.1021/nl5031985 – volume: 7 start-page: 23685 year: 2015 ident: ref_82 article-title: Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first principles calculations publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07517 – volume: 28 start-page: 7167 year: 2016 ident: ref_355 article-title: One-electron mechanism in a gel–polymer electrolyte Li-O2 battery publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03718 – volume: 14 start-page: 200 year: 2019 ident: ref_51 article-title: Bridging the academic and industrial metrics for next-generation practical batteries publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0371-8 – volume: 6 start-page: 92579 year: 2016 ident: ref_81 article-title: Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA19415J – volume: 9 start-page: 1802927 year: 2019 ident: ref_100 article-title: Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids publication-title: Adv. Enery Mater. doi: 10.1002/aenm.201802927 – volume: 29 start-page: 1901047 year: 2019 ident: ref_323 article-title: Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901047 – volume: 26 start-page: 1747 year: 2016 ident: ref_426 article-title: A moisture- and oxygen-impermeable separator for aprotic Li-O2 batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504437 – volume: 162 start-page: A704 year: 2015 ident: ref_320 article-title: All solid-state lithium batteries assembled with hybrid solid electrolytes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0731504jes – volume: 1 start-page: 1700135 year: 2017 ident: ref_352 article-title: Advances in lithium-containing anodes of aprotic Li–O2 batteries: Challenges and strategies for improvements publication-title: Small Methods doi: 10.1002/smtd.201700135 – volume: 406 start-page: 70 year: 2018 ident: ref_615 article-title: Stable cycling of NaFePO4 cathodes in high salt concentration ionic liquid electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.09.102 – volume: 9 start-page: 17835 year: 2017 ident: ref_70 article-title: Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01137 – volume: 8 start-page: 3745 year: 2015 ident: ref_408 article-title: A high-rate and long cycle life solid-state lithium–air battery publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02867A – volume: 204 start-page: 780 year: 2017 ident: ref_348 article-title: Advances and challenges in lithium-air batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.07.054 – volume: 316 start-page: 47 year: 2018 ident: ref_612 article-title: Molecular dynamics study of ammonium based co-cation Plasticizer effect on lithium ion dynamics in ionomer electrolytes publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.12.022 – volume: 318 start-page: 102 year: 2018 ident: ref_96 article-title: Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.07.005 – volume: 49 start-page: 2679 year: 2016 ident: ref_260 article-title: Effect of polymer architecture on the ionic conductivity. Densely grafted poly(ethylene oxide) brushes doped with LiTf publication-title: Macromolecules doi: 10.1021/acs.macromol.6b00290 – volume: 9 start-page: 1024 year: 2016 ident: ref_443 article-title: A self-defense redox mediator for efficient lithium-O2 batteries publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02803E – volume: 11 start-page: 2828 year: 2018 ident: ref_504 article-title: High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01621F – volume: 5 start-page: 6310 year: 2017 ident: ref_489 article-title: All-solid-state lithium–sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01147D – volume: 138 start-page: 15825 year: 2016 ident: ref_216 article-title: Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10088 – volume: 428 start-page: 93 year: 2019 ident: ref_263 article-title: Synthesis and interface stability of polystyrene-poly(ethylene glycol)-polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.033 – volume: 6 start-page: 1502214 year: 2016 ident: ref_314 article-title: SiO2 Hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502214 – volume: 2 start-page: 1700231 year: 2018 ident: ref_349 article-title: Flexible metal–air batteries: Progress, challenges, and perspectives publication-title: Small Methods doi: 10.1002/smtd.201700231 – volume: 210 start-page: 821 year: 2016 ident: ref_388 article-title: Poly-vinylidene-fluoride/p-benzoquinone gel polymer electrolyte with good performance by redox mediator effect for Li-air battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.016 – volume: 8 start-page: 40498 year: 2018 ident: ref_167 article-title: Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries publication-title: RSC Adv. doi: 10.1039/C8RA08436J – volume: 3 start-page: 476 year: 2004 ident: ref_307 article-title: The plastic-crystalline phase of succinonitrile as a universal matrix for solid state ionic conductors publication-title: Nat. Mater. doi: 10.1038/nmat1158 – volume: 20 start-page: 7470 year: 2018 ident: ref_200 article-title: Negative effective Li transference numbers in Li salt/ionic liquid mixtures: Does Li drift in the “wrong” direction? publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP08580J – volume: 10 start-page: 85 year: 2018 ident: ref_274 article-title: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.017 – volume: 28 start-page: 1801806 year: 2018 ident: ref_511 article-title: Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801806 – volume: 10 start-page: 6719 year: 2018 ident: ref_203 article-title: Spectroscopic characterization of the SEI layer formed on lithium metal electrodes in phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18183 – volume: 12 start-page: 1050 year: 2013 ident: ref_344 article-title: A Stable cathode for the aprotic Li-O2 battery publication-title: Nat. Mater. doi: 10.1038/nmat3737 – volume: 4 start-page: 1700072 year: 2017 ident: ref_5 article-title: Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery publication-title: Adv. Sci. doi: 10.1002/advs.201700072 – volume: 243 start-page: 899 year: 2013 ident: ref_372 article-title: Stability of polymer binders in Li-O2 batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.097 – volume: 283 start-page: 349 year: 2018 ident: ref_315 article-title: An effectively inhibiting lithium dendrite growth in-situ-polymerized gel polymer electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.06.169 – volume: 29 start-page: 1701169 year: 2017 ident: ref_37 article-title: Protected lithium-metal anodes in batteries: From liquid to solid publication-title: Adv. Mater. doi: 10.1002/adma.201701169 – volume: 7 start-page: 30603 year: 2017 ident: ref_384 article-title: A novel ionic liquid polymer electrolyte for quasi solid state lithium air batteries publication-title: RSC Adv. doi: 10.1039/C7RA05035F – volume: 7 start-page: 41217 year: 2017 ident: ref_399 article-title: A rechargeable Li-air fuel cell battery based on garnet solid electrolytes publication-title: Sci. Rep. doi: 10.1038/srep41217 – volume: 6 start-page: 1501802 year: 2016 ident: ref_568 article-title: Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501802 – volume: 30 start-page: 1705702 year: 2018 ident: ref_39 article-title: Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries publication-title: Adv. Mater. doi: 10.1002/adma.201705702 – volume: 27 start-page: 8095 year: 2015 ident: ref_366 article-title: Flexible and foldable Li–O2 battery based on paper-ink cathode publication-title: Adv. Mater. doi: 10.1002/adma.201503025 – ident: ref_42 doi: 10.1007/978-3-319-19108-9 – volume: 6 start-page: 19892 year: 2016 ident: ref_153 article-title: Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries publication-title: Sci. Rep. doi: 10.1038/srep19892 – volume: 6 start-page: 840 year: 2018 ident: ref_562 article-title: Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09242C – volume: 302 start-page: 283 year: 2016 ident: ref_302 article-title: Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li4La3Zr2O12 for 12 V-class bipolar batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.10.031 – volume: 31 start-page: 1808100 year: 2019 ident: ref_500 article-title: High-performance Li-SeSx all-solid-state lithium batteries publication-title: Adv. Mater. doi: 10.1002/adma.201808100 – volume: 17 start-page: 4656 year: 2015 ident: ref_587 article-title: Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05333H – volume: 7 start-page: 881 year: 2018 ident: ref_269 article-title: Supramolecular self-assembly of methylated Rotaxanes for solid polymer electrolyte application publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00406 – volume: 55 start-page: 6482 year: 2016 ident: ref_418 article-title: Rechargeable room-temperature Na-CO2 batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602504 – volume: 5 start-page: 6424 year: 2017 ident: ref_591 article-title: A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA11165C – volume: 247 start-page: 975 year: 2014 ident: ref_559 article-title: An all-solid state NASICON sodium battery operating at 200 °C publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.051 – volume: 22 start-page: 953 year: 2016 ident: ref_385 article-title: Emitfsi–Litfsi nanocomposite electrolytes for lithium-air batteries publication-title: Microsyst. Technol. doi: 10.1007/s00542-015-2765-3 – volume: 582 start-page: 435 year: 2019 ident: ref_616 article-title: Poly(ionic liquid) ion gel membranes for all solid-state rechargeable sodium-ion battery publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.02.074 – volume: 257 start-page: 31 year: 2017 ident: ref_255 article-title: A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.037 – volume: 3 start-page: 16103 year: 2017 ident: ref_454 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 71 start-page: 48 year: 2016 ident: ref_524 article-title: Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquids publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2016.07.014 – volume: 66 start-page: 46 year: 2016 ident: ref_244 article-title: A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2016.02.022 – volume: 10 start-page: 19773 year: 2018 ident: ref_324 article-title: High-performance cells containing lithium metal anodes, LiNi0.6Co0.2Mn0.2O2 (NCM 622) cathodes, and fluoroethylene carbonate-based electrolyte solution with practical loading publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07004 – volume: 58 start-page: 6535 year: 2019 ident: ref_431 article-title: DABCOnium: An efficient and high-voltage stable singlet oxygen quencher for metal–O2 cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901869 – volume: 121 start-page: 2563 year: 2017 ident: ref_211 article-title: Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles publication-title: Phys. Chem. C doi: 10.1021/acs.jpcc.6b11136 – volume: 8 start-page: 32631 year: 2016 ident: ref_604 article-title: Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11773 – volume: 29 start-page: 1605531 year: 2016 ident: ref_283 article-title: An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes publication-title: Adv. Mater. doi: 10.1002/adma.201605531 – volume: 136 start-page: 27 year: 2019 ident: ref_24 article-title: Composite solid electrolytes for all-solid-state lithium batteries publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2018.10.004 – volume: 5 start-page: 418 year: 2015 ident: ref_594 article-title: Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6 publication-title: J. Sci. Eng. B – volume: 4 start-page: 10038 year: 2016 ident: ref_7 article-title: Polymer electrolytes for lithium polymer batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02621D – volume: 5 start-page: 7738 year: 2017 ident: ref_592 article-title: A new Na[(FSO2)(n-C4F9SO2)N-based polymer electrolyte for solid-state sodium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01820G – volume: 3 start-page: e1602396 year: 2017 ident: ref_419 article-title: Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes publication-title: Sci. Adv. doi: 10.1126/sciadv.1602396 – volume: 46 start-page: 617 year: 2016 ident: ref_380 article-title: Protective PVDF-HFP-based membranes for air de-hydration at the cathode of the rechargeable Li–air cell publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-016-0951-3 – volume: 286 start-page: 34 year: 2016 ident: ref_394 article-title: Free standing flexible graphene oxide plus α-MnO2 composite cathodes for Li-air batteries publication-title: Solid State Ion. doi: 10.1016/j.ssi.2015.12.016 – volume: 2 start-page: 17934 year: 2014 ident: ref_609 article-title: Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03998J – volume: 39 start-page: 554 year: 2017 ident: ref_503 article-title: A stable lithium–selenium interface via solid/liquid hybrid electrolytes: Blocking polyselenides and suppressing lithium dendrite publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.038 – volume: 389 start-page: 140 year: 2018 ident: ref_88 article-title: High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.021 – volume: 397 start-page: 343 year: 2018 ident: ref_329 article-title: A propylene carbonate based gel polymer electrolyte for extended cycle life and improved safety performance of lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.039 – volume: 8 start-page: 28216 year: 2016 ident: ref_572 article-title: Interfacial reactivity benchmarking of the Sodium Ion Conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10119 – volume: 55 start-page: 5993 year: 2016 ident: ref_608 article-title: Sodium ion transport mechanisms in antiperovskite electrolytes Na3OBr and Na4OI2: An In Situ neutron diffraction study publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00444 – volume: 43 start-page: 4854 year: 2019 ident: ref_193 article-title: High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery publication-title: Int. J. Energy Res. doi: 10.1002/er.4638 – volume: 12 start-page: 938 year: 2019 ident: ref_212 article-title: Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02617C – volume: 9 start-page: 9654 year: 2017 ident: ref_293 article-title: Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16304 – volume: 28 start-page: 447 year: 2016 ident: ref_150 article-title: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.002 – volume: 15 start-page: 47498 year: 2019 ident: ref_213 article-title: Preparation and performance of poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47498 – volume: 4 start-page: 10070 year: 2016 ident: ref_331 article-title: Progress in nitrile-based polymer electrolytes for high performance lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02907H – volume: 19 start-page: 31 year: 2019 ident: ref_544 article-title: Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.03.022 – volume: 202 start-page: 100 year: 2016 ident: ref_204 article-title: Physicochemical characterization of a new family of small alkyl phosphonium imide ionic liquids publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.130 – volume: 46 start-page: 8580 year: 2013 ident: ref_225 article-title: Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes publication-title: Macromolecules doi: 10.1021/ma401686r – ident: ref_470 – volume: 249 start-page: 397 year: 2014 ident: ref_253 article-title: Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.116 – volume: 5 start-page: 16231 year: 2017 ident: ref_438 article-title: Redox-active poly(ionic liquid)s as active materials for energy storage applications publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10056B – volume: 11 start-page: 185 year: 2018 ident: ref_161 article-title: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02723K – ident: ref_15 – volume: 28 start-page: 4306 year: 2016 ident: ref_54 article-title: Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices publication-title: Adv. Mater. doi: 10.1002/adma.201504225 – volume: 12 start-page: 6183 year: 2016 ident: ref_56 article-title: Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices publication-title: Small doi: 10.1002/smll.201602109 – volume: 136 start-page: 16335 year: 2014 ident: ref_357 article-title: Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508794r – volume: 8 start-page: 1956 year: 2017 ident: ref_476 article-title: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li–S cell publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00593 – volume: 162 start-page: A2538 year: 2015 ident: ref_520 article-title: Review-practical issues and future perspective for Na-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0151514jes – volume: 6 start-page: 12098 year: 2018 ident: ref_509 article-title: Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03449D – volume: 8 start-page: 10617 year: 2016 ident: ref_147 article-title: Li7La3Zr2O12 interface modification for Li dendrite prevention publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00831 – volume: 28 start-page: 8051 year: 2016 ident: ref_133 article-title: Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03870 – volume: 296 start-page: 1064 year: 2019 ident: ref_339 article-title: A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene)-poly(propylene carbonate) for solid-state lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.182 – volume: 6 start-page: 1502237 year: 2016 ident: ref_583 article-title: Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502237 – volume: 53 start-page: 6264 year: 2014 ident: ref_141 article-title: Synthesis and crystal chemical study of fast ion conductor Li7-3xGaxLa3Zr2O12 with x = 0.08 to 0.84 publication-title: Inorg. Chem. doi: 10.1021/ic500803h – volume: 27 start-page: 550 year: 2015 ident: ref_371 article-title: Understanding the chemical stability of polymers for lithium-air batteries publication-title: Chem. Mater. doi: 10.1021/cm5040003 – volume: 3 start-page: 1741 year: 2016 ident: ref_536 article-title: Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries publication-title: ChemElectroChem doi: 10.1002/celc.201600221 – volume: 54 start-page: 436 year: 2015 ident: ref_368 article-title: Liquid-free lithium–oxygen batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408008 – volume: 3 start-page: 1037 year: 2019 ident: ref_580 article-title: Reactivity-guided interface design in Na metal solid-state batteries publication-title: Joule doi: 10.1016/j.joule.2018.12.019 – volume: 383 start-page: 150 year: 2018 ident: ref_237 article-title: Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.02.026 – volume: 138 start-page: 1768 year: 2016 ident: ref_180 article-title: Li2OHCl crystalline electrolyte for stable metallic lithium anodes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11851 – volume: 5 start-page: 3483 year: 2017 ident: ref_325 article-title: Regulating Li deposition at artificial solid electrolyte interphases publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10204B – volume: 4 start-page: 17120 year: 2014 ident: ref_550 article-title: Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolyte publication-title: RSC Adv. doi: 10.1039/C4RA00996G – volume: 26 start-page: 2617 year: 2014 ident: ref_140 article-title: DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAlx3+La3Zr2O12 garnet publication-title: Chem. Mater. doi: 10.1021/cm5000999 – volume: 2 start-page: 1747 year: 2018 ident: ref_578 article-title: Electrolyte and interface engineering for solid-state sodium batteries publication-title: Joule doi: 10.1016/j.joule.2018.07.028 – volume: 762 start-page: 157 year: 2018 ident: ref_137 article-title: Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.255 – volume: 23 start-page: 497 year: 2017 ident: ref_33 article-title: Polymer electrolytes for lithium ion batteries: A critical study publication-title: Ionics doi: 10.1007/s11581-016-1908-6 – volume: 5 start-page: 23844 year: 2017 ident: ref_205 article-title: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08233A – volume: 77 start-page: 58 year: 2017 ident: ref_230 article-title: Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.02.013 – volume: 56 start-page: 7505 year: 2017 ident: ref_428 article-title: A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701290 – volume: 563 start-page: 835 year: 2018 ident: ref_389 article-title: Synthesis of a polyacrylonitrile/tetrachloro-1,4-benzoquinone gel polymer electrolyte for high-performance Li-air batteries publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.06.023 – volume: 90 start-page: 26 year: 1985 ident: ref_291 article-title: On the conductivity of polycrystalline materials publication-title: Ber. Bunsenges. Phys. Chem. doi: 10.1002/bbpc.19860900105 – volume: 27 start-page: 1604754 year: 2017 ident: ref_3 article-title: Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604754 – volume: 244 start-page: 170 year: 2013 ident: ref_267 article-title: Electrochemical properties of semi-interpenetrating polymer network solid polymer electrolytes based on multi-armed oligo(ethyleneoxy) phosphate publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.02.069 – volume: 10 start-page: 8289 year: 2016 ident: ref_501 article-title: Heteroatomic SenS8-n molecules confined in nitrogen-doped mesoporous carbons as reversible cathode materials for high-performance lithium batteries publication-title: ACS Nano doi: 10.1021/acsnano.6b02315 – volume: 19 start-page: 1707533 year: 2018 ident: ref_28 article-title: Progress of the interface design in all-solid-state Li-S batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707533 – volume: 365 start-page: 293 year: 2017 ident: ref_541 article-title: Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.079 – volume: 53 start-page: 958 year: 2018 ident: ref_68 article-title: Interface engineering of sulfide electrolytes for all-solid-state lithium batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.061 – volume: 7 start-page: 40036 year: 2017 ident: ref_542 article-title: Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts publication-title: Sci. Rep. doi: 10.1038/srep40036 – volume: 15 start-page: 37 year: 2018 ident: ref_486 article-title: Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.015 – volume: 12 start-page: 161 year: 2018 ident: ref_38 article-title: Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.12.002 – volume: 4 start-page: 1600445 year: 2017 ident: ref_41 article-title: Advanced micro/nanostructures for lithium metal anodes publication-title: Adv. Sci. doi: 10.1002/advs.201600445 – volume: 392 start-page: 232 year: 2018 ident: ref_239 article-title: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.05.006 – volume: 7 start-page: 3882 year: 2019 ident: ref_168 article-title: Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11259B – volume: 9 start-page: 13694 year: 2017 ident: ref_319 article-title: Suppression of lithium dendrite formation by using LAGP-PEO(LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00336 – volume: 7 start-page: 1601196 year: 2017 ident: ref_531 article-title: A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601196 – volume: 55 start-page: 472 year: 2015 ident: ref_561 article-title: Issues and challenges for bulk type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes publication-title: Isr. J. Chem. doi: 10.1002/ijch.201400112 – volume: 383 start-page: 144 year: 2018 ident: ref_275 article-title: Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.066 – volume: 43 start-page: 7810 year: 2017 ident: ref_547 article-title: Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.095 – volume: 24 start-page: 6007 year: 2018 ident: ref_59 article-title: Recent developments of all-solid-state lithium secondary batteries with sulfide inorganic electrolytes publication-title: Chem. Eur. J. doi: 10.1002/chem.201704568 – volume: 5 start-page: 489 year: 2013 ident: ref_347 article-title: Charging a Li–O2 battery using a redox mediator publication-title: Nat. Chem. doi: 10.1038/nchem.1646 – volume: 118 start-page: 5144 year: 2014 ident: ref_395 article-title: Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties publication-title: J. Phys. Chem. B doi: 10.1021/jp501319e – volume: 8 start-page: 7756 year: 2016 ident: ref_441 article-title: How to improve capacity and cycling stability for next generation Li–O2 batteries: Approach with a solid electrolyte and elevated redox mediator concentrations publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10979 – volume: 3 start-page: 764 year: 2016 ident: ref_506 article-title: NiS nanorods as cathode materials for all-solid-state lithium batteries with excellent rate capability and cycling stability publication-title: ChemElectroChem doi: 10.1002/celc.201500570 – volume: 210 start-page: 71 year: 2016 ident: ref_479 article-title: High capacity and cycle stability rechargeable lithium-sulfur batteries by sandwiched gel polymer electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.087 – volume: 307 start-page: 678 year: 2016 ident: ref_308 article-title: Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.032 – volume: 3 start-page: 52 year: 2017 ident: ref_567 article-title: Rechargeable sodium all-solid-state battery publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00321 – volume: 6 start-page: 6022 year: 2018 ident: ref_420 article-title: A flexible polymer-based Li–air battery using a reduced graphene oxide/Li composite anode publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01117F – volume: 19 start-page: 5880 year: 2017 ident: ref_173 article-title: Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67-xTiO3 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP07757A – volume: 2 start-page: 364 year: 2017 ident: ref_508 article-title: Na storage capability Investigation of a carbon nanotube-encapsulated Fe1-xS composite publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00660 – volume: 6 start-page: 2302 year: 2013 ident: ref_397 article-title: The pursuit of rechargeable solid-state Li-air batteries publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40702k – volume: 42 start-page: 2140 year: 2016 ident: ref_73 article-title: Enhanced electrochemical performance of surface modified LiCoO2 for all-solid-state lithium batteries publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.09.126 – ident: ref_11 – volume: 158 start-page: A302 year: 2011 ident: ref_342 article-title: Rechargeable lithium/TEGDME-LiPF6/O2 battery publication-title: J. Electrochem. Soc. doi: 10.1149/1.3531981 – volume: 6 start-page: 11463 year: 2018 ident: ref_156 article-title: Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02276C – volume: 55 start-page: 9634 year: 2016 ident: ref_104 article-title: Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604158 – volume: 17 start-page: 3013 year: 2017 ident: ref_80 article-title: Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00330 – volume: 11 start-page: 1197 year: 2018 ident: ref_129 article-title: A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03365F – volume: 10 start-page: 4113 year: 2018 ident: ref_289 article-title: New insights into the compositional dependence of Li-Ion transport in polymer–ceramic composite electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17301 – volume: 203 start-page: 109 year: 2016 ident: ref_528 article-title: Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.124 – volume: 331 start-page: 132 year: 2016 ident: ref_455 article-title: A review on separators for lithium sulfur battery: Progress and prospects publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2016.09.044 – volume: 120 start-page: 4276 year: 2016 ident: ref_586 article-title: Novel Na+ ion diffusion mechanism in mixed organic–inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11746 – volume: 20 start-page: 2817 year: 2016 ident: ref_590 article-title: Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: Effect of active and passive fillers publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-016-3284-6 – volume: 1 start-page: 47 year: 2014 ident: ref_446 article-title: Role of the lithium salt in the performance of lithium-oxygen batteries: A comparative study publication-title: ChemElectrochem doi: 10.1002/celc.201300160 – volume: 220 start-page: 609 year: 2016 ident: ref_196 article-title: Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storage publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.134 – volume: 7 start-page: 1701437 year: 2017 ident: ref_305 article-title: Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–electrolyte interface for solid state lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701437 – volume: 27 start-page: 1605989 year: 2017 ident: ref_326 article-title: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605989 – volume: 4 start-page: 3 year: 2019 ident: ref_434 article-title: Hybrid polymer electrolyte for Li-O2 batteries publication-title: Green Energy Environ. doi: 10.1016/j.gee.2018.08.002 – volume: 237 start-page: 237 year: 2017 ident: ref_199 article-title: Influence of anion structure on ion dynamics in polymer gel electrolytes composed of poly(ionic liquid), ionic liquid and Li salt publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.219 – volume: 162 start-page: A344 year: 2015 ident: ref_71 article-title: Utilization of Al2O3 atomic layer deposition for Li ion pathways in solid state Li batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0441503jes – volume: 10 start-page: 34077 year: 2018 ident: ref_354 article-title: Three-dimensional interconnected network architecture with homogeneously dispersed carbon nanotubes and layered MoS2 as a highly efficient cathode catalyst for lithium-oxygen battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06912 – volume: 3 start-page: 189 year: 2019 ident: ref_560 article-title: Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0078-2 – volume: 397 start-page: 157 year: 2018 ident: ref_617 article-title: The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.008 – volume: 17 start-page: 3182 year: 2017 ident: ref_169 article-title: A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00715 – volume: 235 start-page: 56 year: 2017 ident: ref_429 article-title: One-dimensional glass micro-fillers in gel polymer electrolytes for Li-O2 battery applications publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.064 – volume: 28 start-page: 10529 year: 2016 ident: ref_55 article-title: Carbon-nanotube Fibers for wearable devices and smart textiles publication-title: Adv. Mater. doi: 10.1002/adma.201601186 – volume: 1 start-page: 16141 year: 2016 ident: ref_8 article-title: A solid future for battery development publication-title: Nat. Energy doi: 10.1038/nenergy.2016.141 – volume: 723 start-page: 787 year: 2017 ident: ref_491 article-title: Performance improvement of all-solid-state Li-S batteries with optimizing morphology and structure of sulfur composite electrode publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.06.135 – volume: 134 start-page: 15042 year: 2012 ident: ref_189 article-title: Superionic conductivity in lithium-rich anti-perovskites publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305709z – volume: 27 start-page: 8318 year: 2015 ident: ref_564 article-title: Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03656 – volume: 148 start-page: 193813 year: 2018 ident: ref_201 article-title: Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt publication-title: J. Chem. Phys. doi: 10.1063/1.5016460 – volume: 31 start-page: 1900376 year: 2019 ident: ref_62 article-title: Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201900376 – volume: 409 start-page: 31 year: 2019 ident: ref_276 article-title: Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.088 – volume: 5 start-page: 20771 year: 2017 ident: ref_103 article-title: Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06873E – volume: 248 start-page: 943 year: 2014 ident: ref_101 article-title: A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.005 – volume: 174 start-page: 185 year: 2015 ident: ref_535 article-title: Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.178 – volume: 9 start-page: 286 year: 2017 ident: ref_91 article-title: Cation mixing properties toward codiffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08435 – volume: 218 start-page: 271 year: 2016 ident: ref_306 article-title: Organic-inorganic hybrid solid electrolytes for solid-state lithium cells operating at room temperature publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.09.141 – volume: 397 start-page: 95 year: 2018 ident: ref_159 article-title: Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.05.050 – volume: 13 start-page: 1601530 year: 2017 ident: ref_597 article-title: In situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries publication-title: Small doi: 10.1002/smll.201601530 – volume: 353 start-page: 287 year: 2017 ident: ref_138 article-title: Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.014 – volume: 8 start-page: 20710 year: 2016 ident: ref_316 article-title: Composite gel polymer electrolyte based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05301 – volume: 10 start-page: 4306 year: 2019 ident: ref_581 article-title: A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na-CO2 batteries publication-title: Chem. Sci. doi: 10.1039/C8SC05178J – volume: 8 start-page: 2782 year: 2015 ident: ref_407 article-title: A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01604E – volume: 121 start-page: 182 year: 2017 ident: ref_450 article-title: Effects of high and low salt concentration in electrolytes at lithium–metal anode surfaces publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10774 – volume: 673 start-page: 295 year: 2016 ident: ref_601 article-title: Microstructure control and properties of β″-Al2O3 solid electrolyte publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.03.009 – volume: 28 start-page: 857 year: 2016 ident: ref_442 article-title: Sustainable redox mediation for lithium–oxygen batteries by a composite protective layer on the lithium-metal anode publication-title: Adv. Mater. doi: 10.1002/adma.201503169 – volume: 56 start-page: 15368 year: 2017 ident: ref_453 article-title: Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709305 – volume: 10 start-page: 1081 year: 2019 ident: ref_497 article-title: A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries publication-title: Nat. Commun. doi: 10.1038/s41467-019-09061-9 – volume: 12 start-page: 194 year: 2017 ident: ref_36 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 7 start-page: 23798 year: 2015 ident: ref_392 article-title: Novel stable gel polymer electrolyte: Toward a high safety and long life Li–air battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08462 – volume: 125 start-page: 1027 year: 2012 ident: ref_266 article-title: Gel polymer electrolyte with semi-IPN fabric for polymer lithium-ion battery publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.33963 – volume: 2 start-page: 1378 year: 2017 ident: ref_401 article-title: Boosting the cycle life of Li-O2 batteries at elevated temperature by employing a hybrid polymer-ceramic solid electrolyte publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00292 – volume: 19 start-page: 20904 year: 2017 ident: ref_116 article-title: Materials space of solid-state electrolytes: Unraveling chemical composition–structure–ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00518K – volume: 151 start-page: A1120 year: 2004 ident: ref_49 article-title: Solvated Li-ion transfer at interface between graphite and electrolyte publication-title: J. Electrochem. Soc. doi: 10.1149/1.1763141 – volume: 52 start-page: 6091 year: 2016 ident: ref_574 article-title: A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure publication-title: Chem. Commun. doi: 10.1039/C6CC02131J – volume: 7 start-page: 188 year: 2019 ident: ref_328 article-title: Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-typepolymer electrolytes for lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08391F – volume: 56 start-page: 753 year: 2017 ident: ref_149 article-title: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608924 – volume: 4 start-page: 8091 year: 2016 ident: ref_90 article-title: Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02294D – volume: 117 start-page: 21064 year: 2013 ident: ref_164 article-title: Degradation of NASICON-type materials in contact with lithium metal. Formation of mixed conducting interphases (MCI) on solid electrolytes publication-title: J. Phys. Chem. C doi: 10.1021/jp4051275 – volume: 5 start-page: 23919 year: 2017 ident: ref_79 article-title: Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07972A – volume: 117 start-page: 10403 year: 2017 ident: ref_35 article-title: Toward safe lithium metal anode in rechargeable batteries: A review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 6 start-page: 1601392 year: 2016 ident: ref_456 article-title: Polysulfide-shuttle Control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601392 – volume: 10 start-page: 1568 year: 2017 ident: ref_466 article-title: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01004D – volume: 18 start-page: 9504 year: 2016 ident: ref_243 article-title: Ion transport in polycarbonate based solid polymer electrolytes: Experimental and computational investigations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00757K – volume: 564 start-page: 62 year: 2018 ident: ref_220 article-title: A novel non-woven fabric supported gel polymer electrolyte based on poly(methylmethacrylate-polyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.07.014 – volume: 122 start-page: 9852 year: 2018 ident: ref_166 article-title: A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b02556 – volume: 5 start-page: 1402235 year: 2015 ident: ref_534 article-title: A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402235 – volume: 5 start-page: 1501082 year: 2015 ident: ref_234 article-title: Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501082 – volume: 16 start-page: 7030 year: 2016 ident: ref_120 article-title: Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03223 – volume: 4 start-page: 7127 year: 2014 ident: ref_373 article-title: A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li–O2 batteries publication-title: Sci. Rep. doi: 10.1038/srep07127 – volume: 8 start-page: 26842 year: 2016 ident: ref_136 article-title: About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09059 – volume: 146 start-page: 395 year: 2014 ident: ref_77 article-title: Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.08.139 – volume: 17 start-page: 309 year: 2019 ident: ref_296 article-title: Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.07.004 – volume: 52 start-page: 1637 year: 2016 ident: ref_480 article-title: A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries publication-title: Chem. Commun. doi: 10.1039/C5CC08279J – volume: 5 start-page: 25025 year: 2017 ident: ref_555 article-title: The crystal structure and sodium disorder of high-temperature polymorph β-Na3PS4 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08391B – volume: 3 start-page: 1500359 year: 2016 ident: ref_179 article-title: Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201500359 – volume: 47 start-page: 35 year: 2018 ident: ref_411 article-title: “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.036 – volume: 28 start-page: 180015 year: 2018 ident: ref_494 article-title: Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives publication-title: Adv. Funct. Mater. – volume: 284 start-page: 14 year: 2016 ident: ref_178 article-title: Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X = Cl, Br) publication-title: Solid State Ion. doi: 10.1016/j.ssi.2015.11.027 – volume: 11 start-page: 3298 year: 2018 ident: ref_208 article-title: Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02093K – volume: 58 start-page: 2169 year: 2019 ident: ref_361 article-title: O2 adsorption associated with sulfur vacancies on MoS2 microspheres publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b03300 – volume: 6 start-page: 33733 year: 2016 ident: ref_571 article-title: Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor publication-title: Sci. Rep. doi: 10.1038/srep33733 – volume: 46 start-page: 487 year: 2016 ident: ref_529 article-title: Performance validation of sodium-ion batteries using an ionic liquid electrolyte publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-016-0940-6 – volume: 50 start-page: 2653 year: 2017 ident: ref_29 article-title: Electrode–electrolyte interfaces in lithium–sulfur batteries with liquid or inorganic solid electrolytes publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00460 – volume: 4 start-page: 5191 year: 2016 ident: ref_337 article-title: A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00828C – volume: 2 start-page: 2734 year: 2017 ident: ref_25 article-title: Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00849 – volume: 334 start-page: 43 year: 2019 ident: ref_271 article-title: LiCoO2/Li7La3Zr2O12 nanocomposite cathodes synthesized via self-assembled block copolymer templates and used in all-solid-state lithium batteries publication-title: Solid State Ion. doi: 10.1016/j.ssi.2019.01.034 – volume: 343 start-page: 1210 year: 2014 ident: ref_1 article-title: Where do batteries end and supercapcitors begin? publication-title: Science doi: 10.1126/science.1249625 – volume: 318 start-page: 45 year: 2018 ident: ref_111 article-title: Stability of garnet-type Li ion conductors: An overview publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.09.018 – volume: 133 start-page: 529 year: 2014 ident: ref_152 article-title: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.099 – volume: 3 start-page: 10760 year: 2015 ident: ref_473 article-title: Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01037C – volume: 2 start-page: 1161 year: 2011 ident: ref_346 article-title: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200352v – volume: 239 start-page: 326 year: 2013 ident: ref_118 article-title: Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.155 – volume: 4 start-page: 3253 year: 2016 ident: ref_273 article-title: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08574H – volume: 19 start-page: 3079 year: 2015 ident: ref_452 article-title: Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-015-2910-z – volume: 46 start-page: 2457 year: 2001 ident: ref_400 article-title: Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(01)00458-3 – volume: 12 start-page: 452 year: 2013 ident: ref_259 article-title: Single-ion BAB triblock copolymers as highly efficient electrolytes for Lithium-metal electrolytes publication-title: Nat. Mater. doi: 10.1038/nmat3602 – volume: 5 start-page: 150129 year: 2015 ident: ref_553 article-title: Na3PS4: A novel chalcogenide solid electrolyte with high ionic conductivity publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501294 – volume: 27 start-page: 4040 year: 2015 ident: ref_143 article-title: First-principles studies on cation dopants and electrolyte/cathode interphases for lithium garnets publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01023 – volume: 18 start-page: 3796 year: 2016 ident: ref_475 article-title: Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery publication-title: Green Chem. doi: 10.1039/C6GC00444J – volume: 1 start-page: 1700017 year: 2017 ident: ref_493 article-title: Li2S-based solid solutions as positive electrodes with full utilization and superlong cycle life in all-solid-state Li/S batteries publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201700017 – volume: 336 start-page: 75 year: 2016 ident: ref_228 article-title: A dense transparent polymeric single ion conductor for lithium ion batteries with remarkable long-term stability publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.033 – volume: 385 start-page: 55 year: 2018 ident: ref_334 article-title: 5 V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.017 – volume: 2 start-page: 5470 year: 2014 ident: ref_176 article-title: Novel Li3ClO based glasses with superionic properties for lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C3TA15087A – volume: 113 start-page: 7094 year: 2016 ident: ref_195 article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1600422113 – volume: 4 start-page: 4728 year: 2016 ident: ref_186 article-title: Super-ion inspired colorful hybrid perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09646D – volume: 10 start-page: 14727 year: 2018 ident: ref_516 article-title: High-crystallinity urchin-like VS4 anode for high-performance lithium-ion storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01876 – volume: 5 start-page: 4940 year: 2017 ident: ref_232 article-title: High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25 O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10066J – volume: 164 start-page: A2031 year: 2017 ident: ref_370 article-title: A lithiated perfluorinated sulfonic acid polymer electrolyte for lithium-oxygen batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.1281709jes – volume: 16 start-page: 7148 year: 2016 ident: ref_513 article-title: High-energy all-solid-state lithium batteries with ultralong cycle life publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03448 – volume: 33 start-page: 500 year: 2016 ident: ref_365 article-title: Growth of Ru-modified Co3O4 nanosheets on carbon textiles toward flexible and efficient cathodes for flexible Li–O2 batteries publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201500193 – volume: 525 start-page: 349 year: 2017 ident: ref_223 article-title: Superior polymer backbone with poly(arylene ether) over polyamide for single ion conducting polymer electrolytes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.12.011 – volume: 278 start-page: 375 year: 2015 ident: ref_533 article-title: Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.047 – volume: 2 start-page: 17035 year: 2017 ident: ref_170 article-title: Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires publication-title: Nat. Energy doi: 10.1038/nenergy.2017.35 – volume: 9 start-page: 1802235 year: 2019 ident: ref_502 article-title: Solid-state lithium/selenium–sulfur chemistry enabled via a robust solid-electrolyte interphase publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802235 – volume: 28 start-page: 1874 year: 2016 ident: ref_69 article-title: Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201505008 – volume: 9 start-page: 2490 year: 2018 ident: ref_492 article-title: Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes publication-title: Nat. Commun. doi: 10.1038/s41467-018-04762-z – ident: ref_155 – volume: 1 start-page: 2373 year: 2018 ident: ref_490 article-title: High cycle capability of all-solid-state lithium–sulfur batteries using composite electrodes by liquid-phase and mechanical mixing publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00227 – volume: 324 start-page: 712 year: 2016 ident: ref_525 article-title: Towards safer sodium-ionbatteries via organic solvent/ionic liquid based hybrid electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.003 – volume: 149 start-page: A1267 year: 2002 ident: ref_2 article-title: Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1502684 – volume: 12 start-page: 2496 year: 2019 ident: ref_461 article-title: Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00578A – volume: 31 start-page: 1806082 year: 2019 ident: ref_214 article-title: Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes publication-title: Adv. Mater. doi: 10.1002/adma.201806082 – volume: 22 start-page: 949 year: 2010 ident: ref_72 article-title: Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy publication-title: Chem. Mater. doi: 10.1021/cm901819c – volume: 7 start-page: 1053 year: 2014 ident: ref_105 article-title: Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43357A – volume: 6 start-page: 11631 year: 2018 ident: ref_132 article-title: Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03358G – volume: 68 start-page: 344 year: 2015 ident: ref_261 article-title: Single-ion diblock copolymers for solid-state polymer electrolytes publication-title: Polymer doi: 10.1016/j.polymer.2015.04.056 – volume: 18 start-page: 6113 year: 2018 ident: ref_317 article-title: PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01421 – volume: 129 start-page: 13929 year: 2017 ident: ref_421 article-title: An ultraflexible silicon–oxygen battery fiber with high energy density publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201707840 – volume: 7 start-page: 1601272 year: 2017 ident: ref_598 article-title: Mixed phase solid-state plastic crystal electrolytes based on a phosphonium cation for sodium devices publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601272 – volume: 7 start-page: 1602923 year: 2017 ident: ref_487 article-title: High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602923 – volume: 1 start-page: 1700219 year: 2017 ident: ref_521 article-title: Progress in the development of sodium-ion solid electrolytes publication-title: Small Methods doi: 10.1002/smtd.201700219 – volume: 17 start-page: 2967 year: 2017 ident: ref_459 article-title: Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00221 – volume: 3 start-page: 69 year: 2016 ident: ref_482 article-title: Nano cellulose-laden composite polymer electrolytes for high performing lithium sulphur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.01.008 – volume: 387 start-page: 72 year: 2018 ident: ref_92 article-title: In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.016 – volume: 555 start-page: 502 year: 2018 ident: ref_362 article-title: A lithium–oxygen battery with a long cycle life in an air-like atmosphere publication-title: Nature doi: 10.1038/nature25984 – volume: 164 start-page: A6213 year: 2017 ident: ref_4 article-title: Highly conductive, ionic liquid-based polymer electrolytes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0331701jes – volume: 3 start-page: e1601659 year: 2017 ident: ref_123 article-title: Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface publication-title: Sci. Adv. doi: 10.1126/sciadv.1601659 – volume: 9 start-page: 21773 year: 2017 ident: ref_284 article-title: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03806 – volume: 164 start-page: A666 year: 2017 ident: ref_146 article-title: Contact between garnet-type solid electrolyte and lithium metal anode: Influence on charge transfer resistance and short circuit prevention publication-title: J. Electrochem. Soc. doi: 10.1149/2.0841704jes – volume: 4 start-page: 15189 year: 2016 ident: ref_433 article-title: A polymer lithium–oxygen battery based on semi-polymeric conducting ionomers as the polymer electrolyte publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06082J – volume: 9 start-page: 2334 year: 2016 ident: ref_435 article-title: Li–O2 cells with LiBr as an electrolyte and a redox mediator publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00700G – volume: 3 start-page: 1500306 year: 2016 ident: ref_410 article-title: Self-regulative nanogelator solid electrolyte: A new option to improve the safety of lithium battery publication-title: Adv. Sci. doi: 10.1002/advs.201500306 – volume: 169 start-page: 757 year: 2016 ident: ref_238 article-title: Life Cycle Assessment and resource analysis of all-solid-state batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.064 – volume: 394 start-page: 74 year: 2018 ident: ref_109 article-title: Progress in solid electrolytes toward realizing solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.05.003 – volume: 222 start-page: 293 year: 2016 ident: ref_252 article-title: Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.173 – volume: 1 start-page: 16114 year: 2016 ident: ref_576 article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2016.114 – volume: 5 start-page: 18457 year: 2017 ident: ref_154 article-title: Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12 -polyethylene oxide-tetraethyleneglycol dimethyl ether publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05832B – volume: 53 start-page: 4195 year: 2017 ident: ref_605 article-title: A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture publication-title: Chem. Commun. doi: 10.1039/C7CC00794A – volume: 1 start-page: 239 year: 2018 ident: ref_457 article-title: Structural design of lithium-sulfur batteries: From fundamental research to practical application publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0010-3 – volume: 51 start-page: 2864 year: 2010 ident: ref_254 article-title: The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes publication-title: Polymer doi: 10.1016/j.polymer.2010.04.022 – volume: 9 start-page: 41837 year: 2017 ident: ref_406 article-title: New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12092 – volume: 389 start-page: 198 year: 2018 ident: ref_18 article-title: Review on solid electrolytes for all-solid-state lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.022 – volume: 7 start-page: 11009 year: 2016 ident: ref_569 article-title: Design and synthesis of the superionic conductor Na10SnP2S12 publication-title: Nat. Commun. doi: 10.1038/ncomms11009 – volume: 5 start-page: 1500865 year: 2015 ident: ref_99 article-title: Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500865 – volume: 12 start-page: 2809 year: 2018 ident: ref_556 article-title: Core–Shell Fe1-xS@Na2.9PS3.95Se0.05 Nanorods for room temperature all-solid-state sodium batteries with high energy density publication-title: ACS Nano doi: 10.1021/acsnano.8b00073 – volume: 391 start-page: 10 year: 2018 ident: ref_31 article-title: Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.054 – volume: 416 start-page: 21 year: 2019 ident: ref_548 article-title: Stabilizing Na-metal batteries with a manganese oxide cathode using a solid-state composite electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.01.082 – volume: 140 start-page: 6767 year: 2018 ident: ref_130 article-title: Mitigating interfacial potential drop of cathode–solid electrolyte via ionic conductor Layer to enhance interface dynamics for solid batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03319 – volume: 46 start-page: 5237 year: 2017 ident: ref_57 article-title: A Review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00139H – volume: 58 start-page: 90 year: 2016 ident: ref_471 article-title: Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.04.003 – volume: 29 start-page: 1605512 year: 2017 ident: ref_566 article-title: Highly stable sodium batteries enabled by functional ionic polymer membranes publication-title: Adv. Mater. doi: 10.1002/adma.201605512 – volume: 8 start-page: 14552 year: 2016 ident: ref_117 article-title: Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03070 – volume: 307 start-page: 684 year: 2016 ident: ref_335 article-title: Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.054 – volume: 28 start-page: 3122 year: 2016 ident: ref_549 article-title: Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00698 – volume: 2 start-page: 497 year: 2018 ident: ref_134 article-title: Interphase engineering enabled all-ceramic lithium battery publication-title: Joule doi: 10.1016/j.joule.2018.02.007 – volume: 299 start-page: 820 year: 2019 ident: ref_215 article-title: An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.01.039 – volume: 354 start-page: 68 year: 2017 ident: ref_148 article-title: Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.026 – volume: 298 start-page: 166 year: 2015 ident: ref_235 article-title: High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.08.035 – volume: 10 start-page: 2609 year: 2017 ident: ref_585 article-title: A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02420G – volume: 29 start-page: 1805301 year: 2019 ident: ref_298 article-title: Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805301 – volume: 164 start-page: A2474 year: 2017 ident: ref_27 article-title: All-solid-state battery electrode sheets prepared by a slurry coating process publication-title: J. Electrochem. Soc. doi: 10.1149/2.0951712jes – volume: 4 start-page: 59 year: 2016 ident: ref_505 article-title: Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries Using lithium metal anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.02.004 – volume: 389 start-page: 84 year: 2018 ident: ref_236 article-title: Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.020 – volume: 15 start-page: 2740 year: 2015 ident: ref_194 article-title: Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00600 – volume: 329 start-page: 428 year: 2016 ident: ref_523 article-title: Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.049 – volume: 11 start-page: 735 year: 2018 ident: ref_514 article-title: VS4 nanoparticles anchored on graphene sheets as a high-rate and stable electrode material for sodium-ion batteries publication-title: ChemSusChem doi: 10.1002/cssc.201702031 – volume: 45 start-page: 413 year: 2018 ident: ref_285 article-title: A durable and safe solid-state lithium battery with a hybrid electrolyte membrane publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.028 – volume: 9 start-page: 2391 year: 2016 ident: ref_413 article-title: A Unique hybrid quasi-solid-state electrolyte for Li–O2 batteries with improved cycle life and safety publication-title: ChemSusChem doi: 10.1002/cssc.201600536 – volume: 390 start-page: 148 year: 2018 ident: ref_472 article-title: S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.052 – volume: 529 start-page: 377 year: 2016 ident: ref_356 article-title: A lithium–oxygen battery based on lithium superoxide publication-title: Nature doi: 10.1038/nature16484 – volume: 38 start-page: 1018 year: 2017 ident: ref_191 article-title: Contrasting energy efficiency in various ceramic sintering processes publication-title: J. Eur. Ceram. Soc. – volume: 12 start-page: 5775 year: 2012 ident: ref_424 article-title: A metal-free, lithium-ion oxygen battery: A step forward to safety in lithium-air batteries publication-title: Nano Lett. doi: 10.1021/nl303087j – volume: 30 start-page: 1804684 year: 2018 ident: ref_86 article-title: In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes publication-title: Adv. Mater. doi: 10.1002/adma.201804684 – volume: 164 start-page: A6254 year: 2017 ident: ref_303 article-title: 12 V-class bipolar lithium-ion batteries using Li4Ti5O12 anode for low-voltage system applications publication-title: J. Electrochem. Soc. doi: 10.1149/2.0421701jes – volume: 162 start-page: A573 year: 2015 ident: ref_396 article-title: The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0201504jes – volume: 278 start-page: 98 year: 2015 ident: ref_165 article-title: Interphase formation on lithium solid electrolytes -an in situ approach to study interfacial reactions by photoelectron spectroscopy publication-title: Solid State Ion. doi: 10.1016/j.ssi.2015.06.001 – volume: 8 start-page: 1703012 year: 2018 ident: ref_599 article-title: Solid-state sodium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703012 – volume: 225 start-page: 151 year: 2017 ident: ref_247 article-title: Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.113 – volume: 389 start-page: 120 year: 2018 ident: ref_110 article-title: Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.019 – volume: 6 start-page: 750 year: 2013 ident: ref_341 article-title: Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance publication-title: Energy Environ. Sci. doi: 10.1039/c3ee23966g – volume: 2 start-page: 17119 year: 2017 ident: ref_577 article-title: A facile surface chemistry route to a stabilized lithium metal anode publication-title: Nat. Energy doi: 10.1038/nenergy.2017.119 – volume: 7 start-page: 1917 year: 2019 ident: ref_47 article-title: Revisiting polymeric single lithium-ion conductorsas an organic route for all-solid-state lithium ion and metal batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09056D – volume: 747 start-page: 227 year: 2018 ident: ref_95 article-title: Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.027 – ident: ref_519 – volume: 17 start-page: 565 year: 2017 ident: ref_122 article-title: Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04695 – volume: 50 start-page: 4448 year: 2014 ident: ref_245 article-title: Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles publication-title: Chem. Commun. doi: 10.1039/C3CC49588D – volume: 4 start-page: 2403 year: 2016 ident: ref_444 article-title: Interfacial construction of Li2O2 for a performance-improved polymer Li-O2 battery publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10436J – volume: 121 start-page: 1431 year: 2017 ident: ref_127 article-title: Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10268 – volume: 15 start-page: 1498 year: 2015 ident: ref_50 article-title: Negligible negative space-charge layer effects at oxide-electrolyte/electrode interfaces of thin-film batteries publication-title: Nano Lett. doi: 10.1021/nl5035896 – volume: 18 start-page: 230 year: 2017 ident: ref_613 article-title: Molecular dynamics study of a dual-cation ionomer electrolyte publication-title: ChemPhysChem doi: 10.1002/cphc.201600821 – volume: 1 start-page: 1080 year: 2016 ident: ref_463 article-title: Durability of the Li1+xTi2-xAlx(PO4)3 solid electrolyte in lithium-sulfur batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00481 – volume: 55 start-page: 9965 year: 2016 ident: ref_182 article-title: Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604554 – volume: 332 start-page: 51 year: 2016 ident: ref_522 article-title: Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.099 – volume: 46 start-page: 176 year: 2018 ident: ref_294 article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.037 – volume: 8 start-page: 34309 year: 2016 ident: ref_474 article-title: A safe high-performance all-solid-state lithium-vanadium battery with a freestanding V2O5 nanowire composite paper cathode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10358 – volume: 10 start-page: 10053 year: 2018 ident: ref_510 article-title: Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18798 – volume: 121 start-page: 1 year: 2017 ident: ref_43 article-title: Advances in lithium-sulfur batteries publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2017.09.001 – volume: 6 start-page: 1600736 year: 2016 ident: ref_135 article-title: Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600736 – volume: 18 start-page: 3829 year: 2018 ident: ref_171 article-title: Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01111 – volume: 119 start-page: 6947 year: 2015 ident: ref_375 article-title: Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp511794g – volume: 33 start-page: 45 year: 2017 ident: ref_48 article-title: In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.027 – volume: 104 start-page: 4303 year: 2004 ident: ref_256 article-title: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries publication-title: Chem. Rev. doi: 10.1021/cr030203g – volume: 2 start-page: 594 year: 2018 ident: ref_467 article-title: Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.001 – volume: 15 start-page: 1804701 year: 2019 ident: ref_425 article-title: Component-interaction reinforced quasi-solid electrolyte with multifunctionality for flexible Li-O2 battery with superior safety under extreme conditions publication-title: Small doi: 10.1002/smll.201804701 – volume: 23 start-page: 2603 year: 2016 ident: ref_151 article-title: Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells publication-title: Ionics doi: 10.1007/s11581-016-1905-9 – volume: 121 start-page: 21087 year: 2017 ident: ref_202 article-title: Role of Li concentration and the SEI Layer in enabling high performance Li metal electrodes using a phosphonium bis-(fluorosulfonyl)imide ionic liquid publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b01929 – volume: 55 start-page: 12538 year: 2016 ident: ref_281 article-title: Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607539 – volume: 10 start-page: 7069 year: 2018 ident: ref_295 article-title: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18123 – volume: 8 start-page: 1702184 year: 2017 ident: ref_6 article-title: Gel polymer electrolytes for electrochemical energy storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702184 – volume: 57 start-page: 2096 year: 2018 ident: ref_282 article-title: A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710841 – volume: 30 start-page: e1802563 year: 2018 ident: ref_517 article-title: A highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries publication-title: Adv. Mater. doi: 10.1002/adma.201802563 – volume: 7 start-page: 627 year: 2014 ident: ref_63 article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries publication-title: Energy Environ. Sci. doi: 10.1039/C3EE41655K – volume: 5 start-page: 10658 year: 2017 ident: ref_74 article-title: Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01227F – volume: 319 start-page: 247 year: 2016 ident: ref_460 article-title: In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sufur cells using azll solid-state polymer electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.093 – volume: 6 start-page: 40199 year: 2016 ident: ref_589 article-title: Development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA06047A – volume: 7 start-page: 4720 year: 2015 ident: ref_338 article-title: Rigid–flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5083683 – volume: 16 start-page: 459 year: 2016 ident: ref_313 article-title: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide) publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04117 – volume: 31 start-page: 1807789 year: 2019 ident: ref_333 article-title: Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries publication-title: Adv. Mater. doi: 10.1002/adma.201807789 – volume: 8 start-page: 1702374 year: 2018 ident: ref_403 article-title: Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702374 – volume: 115 start-page: 3770 year: 2018 ident: ref_121 article-title: Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1719758115 – volume: 372 start-page: 1 year: 2017 ident: ref_301 article-title: Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.10.059 – volume: 6 start-page: 23712 year: 2018 ident: ref_464 article-title: Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09069F – volume: 10 start-page: 1150 year: 2017 ident: ref_575 article-title: Compatibility issues between electrodes and electrolytes in solid-state batteries publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00534B – volume: 5 start-page: 6257 year: 2017 ident: ref_172 article-title: Enhanced Li+ conduction in perovskite Li3xLa(2/3)-x□(1/3)-2xTiO3 solid-electrolytes via microstructural engineering publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00196G – volume: 2 start-page: 2563 year: 2017 ident: ref_45 article-title: Promising routes to a high Li+ transference number electrolyte for lithium ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00792 – volume: 25 start-page: 4663 year: 2013 ident: ref_175 article-title: Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors publication-title: Chem. Mater. doi: 10.1021/cm4016222 – volume: 31 start-page: 478 year: 2017 ident: ref_468 article-title: Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.045 – volume: 11 start-page: 2142 year: 2018 ident: ref_12 article-title: Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00907D – volume: 29 start-page: 3029 year: 2017 ident: ref_89 article-title: Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00034 – volume: 393 start-page: 193 year: 2018 ident: ref_190 article-title: Development of the cold sintering process and its application in solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.05.015 – volume: 1 start-page: 16030 year: 2016 ident: ref_64 article-title: High-power all-solid-state batteries using sulfide superionic conductors publication-title: Nat. Energy doi: 10.1038/nenergy.2016.30 – volume: 9 start-page: 1542 year: 2017 ident: ref_113 article-title: Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13902 – volume: 4 start-page: 13419 year: 2016 ident: ref_387 article-title: Stretchable lithium-air batteries for wearable electronics publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05800K – volume: 23 start-page: 246 year: 2017 ident: ref_603 article-title: Influence of Fe and Ti addition on properties of Na+-β/β″-alumina solid electrolytes publication-title: Met. Mater. Int. doi: 10.1007/s12540-017-6120-3 – volume: 162 start-page: A2406 year: 2015 ident: ref_197 article-title: Review: Super-concentrated electrolytes for lithium batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0041514jes – volume: 3 start-page: 19218 year: 2015 ident: ref_209 article-title: Poly(ethylene oxide)-based electrolytes for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03471J – volume: 164 start-page: A3454 year: 2017 ident: ref_272 article-title: A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0221714jes – volume: 205 start-page: 487 year: 2012 ident: ref_83 article-title: High-capacity thin film lithium batteries with sulfide solid electrolytes publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2012.01.086 – volume: 262 start-page: 738 year: 2014 ident: ref_241 article-title: Polycarbonate-based solid polymer electrolytes for Li-ion batteries publication-title: Solid State Ion. doi: 10.1016/j.ssi.2013.08.014 – volume: 293 start-page: 18 year: 2016 ident: ref_530 article-title: New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3-xO12 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.06.005 – volume: 397 start-page: 79 year: 2018 ident: ref_222 article-title: Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.007 – volume: 8 start-page: 3668 year: 2015 ident: ref_538 article-title: Photopolymer electrolytes for sustainable, upscalable, safe, and ambient-temperature sodium-ion secondary batteries publication-title: ChemSusChem doi: 10.1002/cssc.201500873 – volume: 286 start-page: 24 year: 2016 ident: ref_65 article-title: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte publication-title: Solid State Ion. doi: 10.1016/j.ssi.2015.11.034 – volume: 29 start-page: 1606552 year: 2017 ident: ref_353 article-title: In Situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium–oxygen batteries publication-title: Adv. Mater. doi: 10.1002/adma.201606552 – volume: 165 start-page: A6008 year: 2018 ident: ref_44 article-title: Review-solid electrolytes for safe and high energy density lithium-sulfur batteries: Promises and challenges publication-title: J. Electrochem. Soc. doi: 10.1149/2.0041801jes – volume: 2 start-page: 17036 year: 2017 ident: ref_351 article-title: Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2017.36 – volume: 10 start-page: 2167 year: 2016 ident: ref_360 article-title: Cathode based on molybdenum disulfide nanoflakes for lithium–oxygen batteries publication-title: ACS Nano doi: 10.1021/acsnano.5b06672 – volume: 2 start-page: 2659 year: 2017 ident: ref_440 article-title: Bifunctional redox mediator supported by an anionic surfactant for long-cycle Li–O2 batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00884 – ident: ref_518 – volume: 88 start-page: 325 year: 2017 ident: ref_108 article-title: Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.04.007 – volume: 57 start-page: 27 year: 2015 ident: ref_565 article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.05.001 – volume: 5 start-page: 16984 year: 2017 ident: ref_160 article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04320A – volume: 301 start-page: 47 year: 2016 ident: ref_310 article-title: A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.111 – volume: 14 start-page: 1801798 year: 2018 ident: ref_427 article-title: Flexible, flame-resistant, and dendrite-impermeable gel-polymer for Li-O2/air batteries workable under hurdle conditions publication-title: Small doi: 10.1002/smll.201801798 – volume: 22 start-page: 1909 year: 2018 ident: ref_588 article-title: Electrochemical investigations of Na0.7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-018-3891-5 – volume: 10 start-page: 860 year: 2017 ident: ref_350 article-title: Status and prospects of polymer electrolytes for solid state Li–O2 (air) batteries publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03499C – volume: 9 start-page: 18809 year: 2017 ident: ref_288 article-title: Garnet solid electrolyte protected Li-metal batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03887 – volume: 195 start-page: 2431 year: 2010 ident: ref_602 article-title: Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.11.120 – volume: 547 start-page: 1 year: 2018 ident: ref_318 article-title: Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.10.033 – volume: 10 start-page: 2556 year: 2018 ident: ref_84 article-title: Re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16176 – volume: 380 start-page: 115 year: 2018 ident: ref_277 article-title: Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.01.082 – volume: 378 start-page: 48 year: 2018 ident: ref_162 article-title: Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.021 – volume: 4 start-page: 1700693 year: 2017 ident: ref_432 article-title: A rational design of high-performance sandwich-structured quasi solid state Li-O2 battery with redox mediator publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201700693 – volume: 138 start-page: 12258 year: 2016 ident: ref_145 article-title: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06777 – volume: 163 start-page: A96 year: 2016 ident: ref_75 article-title: Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0311602jes – volume: 2 start-page: 365 year: 2014 ident: ref_610 article-title: Ion conduction and phase morphology in sulfonate copolymer ionomers based on ionic liquid–sodium cation mixtures publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13835F – volume: 396 start-page: 574 year: 2018 ident: ref_582 article-title: Na3NH2B12H12 as high performance solid electrolyte for all-solid-state Na ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.054 – volume: 55 start-page: 4487 year: 2016 ident: ref_386 article-title: High-Performance Lithium–Air Battery with a Coaxial-Fiber Architecture publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511832 – volume: 54 start-page: 2442 year: 2016 ident: ref_233 article-title: Highly concentrated polycarbonate-based solid polymer electrolytes having extraordinary electrochemical stability publication-title: J. Polym. Sci. B doi: 10.1002/polb.24235 – volume: 10 start-page: 2605 year: 2017 ident: ref_106 article-title: Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries publication-title: ChemSusChem doi: 10.1002/cssc.201700409 – volume: 81 start-page: 114 year: 2018 ident: ref_14 article-title: Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2017.12.004 – volume: 253 start-page: 430 year: 2017 ident: ref_300 article-title: Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.162 – volume: 680 start-page: 646 year: 2016 ident: ref_163 article-title: Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: The effect of dispersant publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.04.173 – volume: 162 start-page: A2551 year: 2015 ident: ref_224 article-title: Review–On order and disorder in polymer electrolytes batteries and energy storage publication-title: J. Electrochem. Soc. doi: 10.1149/2.0161514jes – volume: 116 start-page: 140 year: 2016 ident: ref_19 article-title: Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00563 – volume: 57 start-page: 13608 year: 2018 ident: ref_85 article-title: Salt-based organic–inorganic nanocomposites: Towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807304 – volume: 8 start-page: 21381 year: 2016 ident: ref_526 article-title: Highly safe ionic liquid electrolytes for sodium-ion battery: Wide electrochemical window and good thermal stability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07054 – volume: 2 start-page: 1385 year: 2017 ident: ref_20 article-title: Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00175 – volume: 152 start-page: A1985 year: 2005 ident: ref_405 article-title: High-performance genuine lithium polymer battery obtained by dine-ceramic-electrolyte coating of LiCoO2 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2007207 – volume: 396 start-page: 824 year: 2018 ident: ref_311 article-title: Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.038 – volume: 8 start-page: 1702657 year: 2018 ident: ref_60 article-title: Recent progress of the solid-state electrolytes for high-energy metal-based batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702657 – volume: 140 start-page: 82 year: 2018 ident: ref_125 article-title: Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10864 – volume: 5 start-page: 74 year: 2019 ident: ref_9 article-title: Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes publication-title: Chem. doi: 10.1016/j.chempr.2018.12.002 – volume: 11 start-page: 87 year: 2018 ident: ref_573 article-title: Na11Sn2PS12: A new solid state sodium superionic conductor publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03083E – volume: 37 start-page: 81 year: 2017 ident: ref_507 article-title: Large-scale synthesis of highly uniform Fe1-xS nanostructures as a high-rate anode for sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.012 – volume: 4 start-page: 1817 year: 2013 ident: ref_415 article-title: A reversible long-life lithium–air battery in ambient air publication-title: Nat. Commun. doi: 10.1038/ncomms2855 – volume: 3 start-page: 797 year: 2017 ident: ref_483 article-title: Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00491A – volume: 1 start-page: 3048 year: 2018 ident: ref_374 article-title: Investigation of rechargeable poly(ethylene oxide)-based solid lithium-oxygen batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00702 – volume: 10 start-page: 10076 year: 2018 ident: ref_579 article-title: New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: A joint experimental and computational study publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19037 – volume: 4 start-page: 15266 year: 2016 ident: ref_26 article-title: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems publication-title: J. Mater. Chem. doi: 10.1039/C6TA05439K – volume: 28 start-page: 2634 year: 2016 ident: ref_499 article-title: Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04940 – volume: 139 start-page: 13779 year: 2017 ident: ref_287 article-title: Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high Ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06364 – volume: 372 start-page: 270 year: 2017 ident: ref_596 article-title: Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.10.083 – volume: 4 start-page: 15823 year: 2016 ident: ref_532 article-title: A ceramic/polymer composite solid electrolyte for sodium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07590H – volume: 33 start-page: 363 year: 2017 ident: ref_10 article-title: Recent advances in all-solid-state rechargeable lithium batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.028 – volume: 244 start-page: 641 year: 2013 ident: ref_336 article-title: Characteristics of lithium phosphorous oxynitride thin films deposited by metal-organic chemical vapor deposition technique publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.109 – volume: 175 start-page: 124 year: 2015 ident: ref_540 article-title: Characterization of NaX (X: TFSI, FSI) - PEO based solid polymer electrolytes for sodium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.228 – volume: 274 start-page: 55 year: 2015 ident: ref_264 article-title: Semi-interpenetrating polymer network of poly(methyl methacrylate) and ether-modified polysiloxane publication-title: Solid State Ion. doi: 10.1016/j.ssi.2015.02.013 – volume: 3 start-page: 1600089 year: 2016 ident: ref_563 article-title: Vacancy-contained tetragonal Na3SbS4 superionic conductor publication-title: Adv. Sci. doi: 10.1002/advs.201600089 – volume: 29 start-page: 1700378 year: 2017 ident: ref_363 article-title: High-performance integrated self-package flexible Li-O2 battery based on stable composite anode and flexible gas diffusion layer publication-title: Adv. Mater. doi: 10.1002/adma.201700378 – volume: 119 start-page: 5416 year: 2019 ident: ref_557 article-title: Sodium metal anodes: Emerging solutions to dendrite growth publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00642 – volume: 10 start-page: 13588 year: 2018 ident: ref_87 article-title: Integrated interface strategy toward room temperature solid-state lithium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02240 – volume: 188 start-page: 23 year: 2016 ident: ref_340 article-title: A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.11.088 – volume: 29 start-page: 3423 year: 2017 ident: ref_607 article-title: Halogenated sodium-closo-dodecaboranes as solid-state ion conductors publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04797 – volume: 12 start-page: 3101 year: 2016 ident: ref_382 article-title: Cable-type water-survivable flexible Li-O2 battery publication-title: Small doi: 10.1002/smll.201600540 – volume: 8 start-page: 1072 year: 2017 ident: ref_449 article-title: Revisiting the corrosion of the aluminum current collector in lithium-ion batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02933 – volume: 382 start-page: 160 year: 2018 ident: ref_21 article-title: All-solid-state lithium-ion and lithium metal batteries-paving the way to large-scale production publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.062 – volume: 412 start-page: 78 year: 2019 ident: ref_97 article-title: Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.036 – volume: 21 start-page: 1713 year: 2017 ident: ref_327 article-title: Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-017-3529-z – volume: 52 start-page: 71 year: 2015 ident: ref_240 article-title: Realization of high performance polycarbonate-based Li polymer batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.01.020 – volume: 63 start-page: 91 year: 2015 ident: ref_242 article-title: Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries publication-title: Polymer doi: 10.1016/j.polymer.2015.02.052 – volume: 392 start-page: 206 year: 2018 ident: ref_107 article-title: Hybrid electrolytes for lithium metal batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.099 – volume: 4 start-page: 365 year: 2019 ident: ref_17 article-title: Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries publication-title: Nat. Energy doi: 10.1038/s41560-019-0349-7 – volume: 114 start-page: 11069 year: 2017 ident: ref_322 article-title: An anion-immobilized composite electrolyte fordendrite-free lithium metal anodes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1708489114 – volume: 87 start-page: 134303 year: 2013 ident: ref_174 article-title: Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.134303 – volume: 28 start-page: 8413 year: 2016 ident: ref_369 article-title: A flexible and wearable lithium-oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips publication-title: Adv. Mater. doi: 10.1002/adma.201602800 – volume: 28 start-page: 2384 year: 2016 ident: ref_112 article-title: Structural and electrochemical consequences of Al and Ga co-substitution in Li7La3Zr2O12 solid electrolytes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00579 – volume: 1 start-page: 1065 year: 2016 ident: ref_52 article-title: Flexible batteries: From mechanics to devices publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00401 – volume: 564 start-page: 663 year: 2018 ident: ref_227 article-title: Porous polymer electrolyte based on poly(vinylidene fluoride)/comb-liked polystyrene via ionic band functionalization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.07.078 – volume: 4 start-page: 9044 year: 2016 ident: ref_554 article-title: Structural and Na-ion conduction characteristics of Na3PSxSe4-x publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03027K – volume: 50 start-page: 5458 year: 2014 ident: ref_379 article-title: A quasi-solid-state rechargeable lithium–oxygen battery based on a gel polymer electrolyte with an ionic liquid publication-title: Chem. Commun. doi: 10.1039/c4cc01243g – volume: 7 start-page: 1601759 year: 2017 ident: ref_398 article-title: A super-hydrophobic quasi-solid electrolyte for Li-O2 battery with improved safety and cycle life in humid atmosphere publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601759 – volume: 29 start-page: 7961 year: 2017 ident: ref_119 article-title: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03002 – volume: 176 start-page: 1108 year: 2015 ident: ref_378 article-title: A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.07.111 – volume: 51 start-page: 2757 year: 2018 ident: ref_543 article-title: Linear viscoelasticity and cation conduction in polyurethane Sulfonate ionomers with ions in the segment-single phase systems publication-title: Macromolecules doi: 10.1021/acs.macromol.7b02509 – volume: 19 start-page: 14615 year: 2017 ident: ref_251 article-title: Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00129K – volume: 9 start-page: 33819 year: 2017 ident: ref_412 article-title: Composite gel polymer electrolyte for improved cyclability in lithium-oxygen batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08448 – volume: 8 start-page: 3637 year: 2015 ident: ref_184 article-title: Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02941D – volume: 54 start-page: 10440 year: 2015 ident: ref_139 article-title: Synthesis, crystal chemistry, and electrochemical properties of Li7-2xLa3Zr2-xMoxO12 (x = 0.1–0.4): Stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+ publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01895 – volume: 27 start-page: 7861 year: 2015 ident: ref_595 article-title: Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life publication-title: Adv. Mater. doi: 10.1002/adma.201503816 – volume: 21 start-page: 1879 year: 2017 ident: ref_46 article-title: On the way to high-conductivity single lithium-ion conductors publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-017-3638-8 – volume: 11 start-page: 709 year: 2018 ident: ref_515 article-title: Flower-like vanadium sulfide/reduced graphene oxide composite: An energy storage material for aluminum-ion batteries publication-title: ChemSusChem doi: 10.1002/cssc.201702270 – volume: 5 start-page: 1700996 year: 2018 ident: ref_593 article-title: High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers publication-title: Adv. Sci. doi: 10.1002/advs.201700996 – volume: 29 start-page: 1606042 year: 2017 ident: ref_126 article-title: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer publication-title: Adv. Mater. doi: 10.1002/adma.201606042 – volume: 300 start-page: 60 year: 2017 ident: ref_484 article-title: Single ion conducting sodium ion, batteries enabled by a sodium ion exchanged poly(bis(4-carbonyl benzene sulfonyl)imide-co-2,5-diamino benzene sulfonic acid) polymer electrolyte publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.12.001 – volume: 353 start-page: 333 year: 2017 ident: ref_34 article-title: Challenges and issues facing lithium metal for solid-state rechargeable batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.018 – volume: 7 start-page: 19231 year: 2017 ident: ref_496 article-title: Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium–sulfur batteries publication-title: RSC Adv. doi: 10.1039/C7RA02174G – volume: 390 start-page: 297 year: 2018 ident: ref_404 article-title: Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.016 – volume: 165 start-page: A2274 year: 2018 ident: ref_436 article-title: A comparative evaluation of redox mediators for Li-O2 batteries: A critical review publication-title: J. Electrochem. Soc. doi: 10.1149/2.0901810jes – volume: 6 start-page: 1600467 year: 2016 ident: ref_537 article-title: A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600467 – volume: 6 start-page: 47833 year: 2016 ident: ref_226 article-title: A capsule-type gelled polymer electrolyte for rechargeable lithium batteries publication-title: RSC Adv. doi: 10.1039/C6RA07341G – volume: 29 start-page: 1605561 year: 2017 ident: ref_552 article-title: Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201605561 – volume: 337 start-page: 563 year: 2012 ident: ref_345 article-title: A reversible and higher-rate Li-O2 battery publication-title: Science doi: 10.1126/science.1223985 – volume: 15 start-page: 3317 year: 2015 ident: ref_102 article-title: Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00538 – volume: 5 start-page: 027125 year: 2015 ident: ref_210 article-title: Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate publication-title: AIP Adv. doi: 10.1063/1.4913320 – volume: 7 start-page: 12032 year: 2016 ident: ref_198 article-title: Superconcentrated electrolytes for a high-voltage lithium-ion battery publication-title: Nat. Commun. doi: 10.1038/ncomms12032 – volume: 259 start-page: 213 year: 2018 ident: ref_279 article-title: Ordered mesogenic units-containing hyperbranched star liquid crystal all-solid-state polymer electrolyte for high-safety lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.163 – volume: 2 start-page: 229 year: 2019 ident: ref_206 article-title: Sustainable, dendrite free lithium-metal electrode cycling achieved with polymer composite electrolytes based on a poly(ionic liquid) host publication-title: Batter. Supercaps doi: 10.1002/batt.201800120 – volume: 28 start-page: 2400 year: 2016 ident: ref_76 article-title: Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00610 – volume: 7 start-page: 3770 year: 2016 ident: ref_376 article-title: Evaluation and stability of PEDOT polymer electrodes for Li-O2 batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01986 – ident: ref_430 doi: 10.1002/anie.201903459 – volume: 56 start-page: 5006 year: 2017 ident: ref_606 article-title: Modified anion packing of Na2B12H12 in close to room temperature superionic conductors publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00013 – volume: 30 start-page: 8134 year: 2018 ident: ref_181 article-title: Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02568 – volume: 7 start-page: 1596 year: 2016 ident: ref_187 article-title: Molecular origin of properties of organic–inorganic hybrid perovskites: The big picture from small clusters publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00435 – volume: 219 start-page: 235 year: 2016 ident: ref_66 article-title: Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.09.155 – volume: 410–411 start-page: 162 year: 2019 ident: ref_98 article-title: All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.016 – volume: 9 start-page: 12461 year: 2017 ident: ref_114 article-title: Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00614 – volume: 7 start-page: 1602417 year: 2017 ident: ref_439 article-title: An advanced separator for Li-O2 batteries: Maximizing the effect of redox mediators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602417 – volume: 55 start-page: 8551 year: 2016 ident: ref_551 article-title: An air-stable Na3PS4 superionic conductor prepared by a rapid and economic synthetic procedure publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601546 – volume: 4 start-page: 10329 year: 2016 ident: ref_78 article-title: All-solid-state lithium-ion batteries with TiS2 nanosheets and sulphide solid electrolytes publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01628F – volume: 295 start-page: 65 year: 2016 ident: ref_158 article-title: A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.07.013 – volume: 382 start-page: 190 year: 2018 ident: ref_462 article-title: A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.074 – volume: 8 start-page: 1800035 year: 2018 ident: ref_61 article-title: Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800035 – volume: 123 start-page: 12126 year: 2019 ident: ref_93 article-title: Exfoliated MoS2 as electrode for all solid state rechargeable lithium-ion batteries publication-title: ACS J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01816 – volume: 8 start-page: 7843 year: 2016 ident: ref_67 article-title: Insights into the performance limits of the Li7P3S11 superionic conductor: A combined first-principles and experimental study publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00833 – volume: 7 start-page: 416 year: 2014 ident: ref_448 article-title: Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42351D – volume: 19 start-page: 16426 year: 2017 ident: ref_611 article-title: Molecular dynamics study of the effect of tetraglyme plasticizer on dual-cation monomer electrolytes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP02129A – volume: 31 start-page: 1804815 year: 2019 ident: ref_124 article-title: An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries publication-title: Adv. Mater. doi: 10.1002/adma.201804815 – volume: 53 start-page: 168 year: 2018 ident: ref_312 article-title: Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.030 – volume: 8 start-page: 3473 year: 2017 ident: ref_477 article-title: Polymer-rich composite electrolytes for all solid-state Li–S cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01321 – volume: 138 start-page: 9385 year: 2016 ident: ref_304 article-title: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05341 – volume: 113 start-page: 13313 year: 2016 ident: ref_458 article-title: Mastering the interface for advanced all-solid-state lithium rechargeable batteries publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1615912113 – volume: 84 start-page: 21 year: 2016 ident: ref_231 article-title: Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes publication-title: Polymer doi: 10.1016/j.polymer.2015.12.036 – volume: 134 start-page: 1 year: 2018 ident: ref_445 article-title: A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2018.07.001 – volume: 2 start-page: 745 year: 2007 ident: ref_469 article-title: Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.06.108 – volume: 28 start-page: 4821 year: 2016 ident: ref_546 article-title: Scandium-substituted Na3Zr2(SiO4)2(PO4) Prepared by a solution-assisted solid-state reaction method as sodium-ion conductors publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02059 – ident: ref_309 doi: 10.1002/adfm.201900392 – volume: 2 start-page: 132 year: 2019 ident: ref_207 article-title: Enabling high lithium conductivity in polymerized ionic liquid block copolymer electrolytes publication-title: Batter. Supercaps doi: 10.1002/batt.201800104 – volume: 8 start-page: 33642 year: 2016 ident: ref_248 article-title: A novel single-ion-conducting polymer electrolyte derived from CO2-based multifunctional polycarbonate publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11384 – volume: 16 start-page: 4521 year: 2016 ident: ref_465 article-title: High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01754 – volume: 237 start-page: 259 year: 2017 ident: ref_249 article-title: Polycondensation as a versatile synthetic route to aliphatic polycarbonates for solid polymer electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.217 – volume: 395 start-page: 137 year: 2018 ident: ref_280 article-title: Six-arm star polymer based on discotic liquid crystal as high performance all-solid-state polymer electrolyte for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.05.069 – volume: 128 start-page: 3181 year: 2016 ident: ref_343 article-title: Experimental and computational analysis of the solvent-dependent O2/Li+-O2− redox couple: Standard potentials, coupling strength, and implications for lithium-oxygen batteries publication-title: Angew. Chem. doi: 10.1002/ange.201509143 – volume: 202 start-page: 332 year: 2012 ident: ref_142 article-title: Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.10.064 – volume: 4 start-page: 1600377 year: 2017 ident: ref_246 article-title: In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries publication-title: Adv. Sci. doi: 10.1002/advs.201600377 – volume: 287 start-page: 22 year: 2016 ident: ref_423 article-title: A gel polymer membrane for lithium-ion oxygen battery publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.01.043 – volume: 1 start-page: 678 year: 2016 ident: ref_258 article-title: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00216 – volume: 5 start-page: 3377 year: 2017 ident: ref_558 article-title: Na3+xMxP1-xS4 (M=Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09809F – volume: 382 start-page: 179 year: 2018 ident: ref_478 article-title: Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.01.063 – volume: 5 start-page: 11124 year: 2017 ident: ref_250 article-title: An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02423A – volume: 16 start-page: 572 year: 2017 ident: ref_131 article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries publication-title: Nat. Mater. doi: 10.1038/nmat4821 – volume: 12 start-page: 217 year: 2019 ident: ref_321 article-title: Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes publication-title: Nano Res. doi: 10.1007/s12274-018-2205-7 – volume: 7 start-page: 2845 year: 2014 ident: ref_402 article-title: Gel-derived cation–π stacking films of carbon nanotube–graphene complexes as oxygen cathodes publication-title: ChemSusChem doi: 10.1002/cssc.201402567 – volume: 51 start-page: 11062 year: 2012 ident: ref_414 article-title: From Li-O2 to Li-air batteries: Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204983 – volume: 51 start-page: 676 year: 2015 ident: ref_422 article-title: A lithium air battery with a lithiated Al–carbon anode publication-title: Chem. Commun. doi: 10.1039/C4CC07315K – volume: 7 start-page: 3895 year: 2019 ident: ref_488 article-title: Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core–shell S/BP2000 nanocomposite publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12443D – volume: 5 start-page: 139 year: 2016 ident: ref_23 article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.07.003 – volume: 310 start-page: 71 year: 2017 ident: ref_278 article-title: Crosslinked perfluoropolyether solid electrolytes for lithium ion transport publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.08.007 |
SSID | ssj0000331829 |
Score | 2.6110659 |
SecondaryResourceType | review_article |
Snippet | Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3892 |
SubjectTerms | Batteries Chemical Sciences Commercialization Conductivity Electric power Electric vehicles Electrodes Electrolytes Energy Engineering Sciences Fire hazards Hazard mitigation Ion currents Ions Laboratories Lithium Lithium batteries Market penetration Material chemistry Mechanical properties Molten salt electrolytes Other Plasma sintering Polymers R&D Rechargeable batteries Research & development Review Solid electrolytes Solid state |
Title | Building Better Batteries in the Solid State: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31775348 https://www.proquest.com/docview/2548642518 https://www.proquest.com/docview/2319501055 https://hal.sorbonne-universite.fr/hal-02474699 https://pubmed.ncbi.nlm.nih.gov/PMC6926585 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED7R8jIepgEbZANktr3sISK248TmBbWIUqEJoW1IfYscxxaVIGWj8Ps5J26gA_GY-KxEd7bv--zzHcB3WQpDtaIxcgERo8e3saoMixOnpChpkhjTRFucZ-PL9GwiJmHD7S6EVS7WxGahrmbG75EfIJGRiJUFlUe3f2NfNcqfroYSGj1YxSVYyj6sDk_OL351uywJxzHLVJuXlCO_P7jRFD0iumm25Il6Vz4O8iXI_D9W8pnzGX2A9wE1kkFr5nVYsfUGrD3LJbgJ2TAUuCbD5oYOaTNnIhEm05ogzCO_Z9fTijTo8pAMSHsq8BEuRyd_jsdxKIoQm5Rn89gYXlJUoK5cxRwVVlWOC8ldnpjU6cSxxLrMVRR5Gys5dkqlk5lkHIFBWuX8E_TrWW23gbgkUxrdvRaZSh3ipJwiGlS51c5SnasIfiwUVJiQMdwXrrgukDl4ZRZPyozgWyd72-bJeFXqK-q5E_CprceDn4V_h1ghR6quHmgEOwszFGFC3RVP5o9gv2vGqeDPN3RtZ_cow31NW1_xM4Kt1mrdpxAmITFLsXe-ZM-lf1luqadXTbrtTDGEaeLz27_1Bd4hllL-miITO9Cf_7u3u4hX5uUe9OTodC8MTXw6ndBHKyzq3Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcEG8CBczrwCGq34mRENoCy5YuvdBKvaWOY6srlWyhWxB_it_IOK92AXHrNR4n1jwy39ieGYDneakcs4alGAuoFD2-T03leEqDyVXJKHWuuW2xoyd78uO-2l-BX30uTLxW2f8Tmx91NXdxj3wDA5kcsbJi-Zvjr2nsGhVPV_sWGq1abPufPzBkO3m99Q7l-4Lz8fvdt5O06yqQOin0InVOlAxXYKtQ8cCUN1UQKhcho04GSwOnPuhQMQx8eClwksxDrnMu0LPKKhP43lW4JAV68piZPv4w7OlQgRbCTVsFFcfpxhfL0P8iKOBLfm_1MN66_BvS_nkz85yrG1-Hax1GJaNWqW7Aiq9vwtVzlQtvgd7s2mmTzSYfiLR1OjHsJrOaIKgkn-dHs4o0WPYVGZH2DOI27F0Is-7AWj2v_T0ggWpjEVxYpY0MiMoyhtjTZN4Gz2xmEnjZM6hwXX3y2CbjqMA4JTKzOGNmAs8G2uO2Ksc_qZ4inweCWEh7MpoW8Rkik0xqY76zBNZ7MRSd-Z4UZ8qWwJNhGA0vnqbY2s9PkUbEDrqxv2gCd1upDZ9CUIZhoMTZ2ZI8l9ayPFLPDpvi3tpwBIXq_v-X9RguT3Y_TYvp1s72A7iCKM7EBEmu1mFt8e3UP0SktCgfNepJ4OCi7eE3_QElDQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WwnBAfEmUMC8Dhyi9SN2YiSEdmlXW1qtKqBSb8FxbHWlki10C-Kv8esY59UuIG69xuPEmkfmG3s8A_AiK6RlRrMYYwEZo8d3sS4tj6nXmSwYpdbW2RYzNT1I3h_KwzX41d2FCWmV3T-x_lGXCxv2yIcYyGSIlSXLhr5Ni9jfmrw9-RqHDlLhpLVrp9GoyK77-QPDt9M3O1so65ecT7Y_vZvGbYeB2CZCLWNrRcFwNab0JfdMOl16ITPhU2oTb6jn1HnlS4ZBEC8ETkoyn6mMC_SySZkKfO86bKQhKhrAxnh7tv-h3-GhAu2F66YmqhCaDr8Yht4YIQJf8YLrRyEH82-A-2ee5gXHN7kB11vESkaNit2ENVfdgmsX6hjeBjVum2uTcX07iDRVOzEIJ_OKIMQkHxfH85LUyPY1GZHmROIOHFwKu-7CoFpU7j4QT5U2CDWMVDrxiNFShkhUp854x0yqI3jVMSi3bbXy0DTjOMeoJTAzP2dmBM972pOmRsc_qZ4hn3uCUFZ7OtrLwzPEKWmitP7OItjsxJC3xnyan6teBE_7YTTDcLZiKrc4QxoR-umGbqMR3Guk1n8KIRoGhQnOTlfkubKW1ZFqflSX-laaI0SUD_6_rCdwBW0h39uZ7T6EqwjpdLgtyeUmDJbfztwjhE3L4nGrnwQ-X7ZJ_AZ0Oyqf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Better+Batteries+in+the+Solid+State%3A+A+Review&rft.jtitle=Materials&rft.au=Mauger%2C+Alain&rft.au=Julien%2C+Christian+M&rft.au=Paolella%2C+Andrea&rft.au=Michel%2C+Armand&rft.date=2019-11-25&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=12&rft.issue=23&rft.spage=3892&rft_id=info:doi/10.3390%2Fma12233892&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |