Building Better Batteries in the Solid State: A Review

Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 12; no. 23; p. 3892
Main Authors Mauger, Alain, Julien, Christian M., Paolella, Andrea, Armand, Michel, Zaghib, Karim
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.11.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O2, and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
AbstractList Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O 2 , and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu , there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O 2 , and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O2, and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O2, and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O2, and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes , there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O , and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
Author Mauger, Alain
Zaghib, Karim
Julien, Christian M.
Armand, Michel
Paolella, Andrea
AuthorAffiliation 3 CIC Energigune, Parque Tecnol Alava, 01510 Minano, Spain; michel.armand@gmail.com
2 Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada; paolella.andrea2@ireq.ca
1 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France; alain.mauger@upmc.fr
AuthorAffiliation_xml – name: 1 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France; alain.mauger@upmc.fr
– name: 2 Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada; paolella.andrea2@ireq.ca
– name: 3 CIC Energigune, Parque Tecnol Alava, 01510 Minano, Spain; michel.armand@gmail.com
Author_xml – sequence: 1
  givenname: Alain
  surname: Mauger
  fullname: Mauger, Alain
– sequence: 2
  givenname: Christian M.
  orcidid: 0000-0003-4357-3186
  surname: Julien
  fullname: Julien, Christian M.
– sequence: 3
  givenname: Andrea
  surname: Paolella
  fullname: Paolella, Andrea
– sequence: 4
  givenname: Michel
  surname: Armand
  fullname: Armand, Michel
– sequence: 5
  givenname: Karim
  surname: Zaghib
  fullname: Zaghib, Karim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31775348$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-02474699$$DView record in HAL
BookMark eNptkV1LHDEUhoMoftUbf4AM9EaFbfM9SS8Ku2K1sFDottchmzlxI7MTncys-O_NsFrXpbk5IXne9yTvOUK7TWwAoVOCvzCm8delJZQypjTdQYdEazkimvPdjf0BOknpHufFGFFU76MDRspSMK4OkZz0oa5Cc1dMoOugLSZ2KAFSEZqiW0Axi3WoillnO_hWjIvfsArw9AnteVsnOHmtx-jvj-s_V7ej6a-bn1fj6chxJruRc2xOnMO28hX1RICuPBOK-RI77i32FIOXviJYczpnWcSVV1JRpgnmVcmO0fe170M_X0LloOlaW5uHNixt-2yiDebjTRMW5i6ujNRUCiWywcXaYLElux1PzXCGKS-51HpFMnv-2qyNjz2kzixDclDXtoHYJ0MZ0QITLAbbz1vofezbJkdhqOBKciqIytTZ5uv_9X-LPwN4Dbg2ptSCNy7koEMcPhNqQ7AZhmzeh5wll1uSN9f_wC9gjaPf
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179387
crossref_primary_10_1063_1_5132841
crossref_primary_10_1149_1945_7111_ad63cd
crossref_primary_10_1016_j_cej_2020_124847
crossref_primary_10_3390_ma14195729
crossref_primary_10_1016_j_mtcomm_2023_105621
crossref_primary_10_1002_inf2_12216
crossref_primary_10_1007_s11581_022_04767_1
crossref_primary_10_1039_D2EE00842D
crossref_primary_10_3390_batteries10040125
crossref_primary_10_1039_D3QM00604B
crossref_primary_10_1016_j_eurpolymj_2023_112450
crossref_primary_10_1002_smll_202204487
crossref_primary_10_3390_nano11030614
crossref_primary_10_3390_nano10112267
crossref_primary_10_3390_membranes13020201
crossref_primary_10_1002_batt_202100131
crossref_primary_10_3390_batteries10010029
crossref_primary_10_1002_cssc_202200294
crossref_primary_10_1016_j_jpowsour_2021_229919
crossref_primary_10_3390_en13092138
crossref_primary_10_1021_acsami_3c03839
crossref_primary_10_1021_acsenergylett_3c01579
crossref_primary_10_1016_j_est_2023_107703
crossref_primary_10_1021_acsami_1c13913
crossref_primary_10_1038_s41578_021_00320_0
crossref_primary_10_1016_j_nxener_2024_100195
crossref_primary_10_3390_polym14224804
crossref_primary_10_3390_membranes12111111
crossref_primary_10_1016_j_est_2024_114199
crossref_primary_10_1088_1742_6596_1879_3_032066
crossref_primary_10_1021_acs_inorgchem_4c05245
crossref_primary_10_1016_j_jpowsour_2024_234873
crossref_primary_10_1002_adfm_202101380
crossref_primary_10_1039_D4CC06419D
crossref_primary_10_1002_adfm_202113118
crossref_primary_10_1002_smsc_202300235
crossref_primary_10_3390_batteries10070255
crossref_primary_10_3390_ma13163453
crossref_primary_10_1021_acsami_2c16174
crossref_primary_10_1002_ente_202000665
crossref_primary_10_1002_smll_202406357
crossref_primary_10_1002_chem_202102920
crossref_primary_10_1016_j_ensm_2022_06_025
crossref_primary_10_1021_acs_jpcc_4c03774
crossref_primary_10_1149_2_0072007JES
crossref_primary_10_1016_j_cej_2020_124089
crossref_primary_10_1016_j_matdes_2020_108760
crossref_primary_10_1039_D0EE02797A
crossref_primary_10_1134_S1023193524601359
crossref_primary_10_1016_j_joule_2022_02_007
crossref_primary_10_1007_s11367_023_02134_4
crossref_primary_10_3389_fchem_2021_810781
crossref_primary_10_1039_D0CP01334J
crossref_primary_10_1039_D4YA00441H
crossref_primary_10_1007_s40242_020_9110_9
crossref_primary_10_3390_batteries9080402
crossref_primary_10_3390_polym12020331
crossref_primary_10_1016_j_rser_2023_114136
crossref_primary_10_3390_batteries9040194
crossref_primary_10_1002_adfm_202301670
crossref_primary_10_1021_acsami_4c07428
crossref_primary_10_3390_batteries9080407
crossref_primary_10_3390_nano11010061
crossref_primary_10_3390_inorganics10010005
crossref_primary_10_3390_en13071722
crossref_primary_10_3390_molecules29245832
crossref_primary_10_1007_s11581_022_04659_4
crossref_primary_10_1016_j_jallcom_2021_160420
crossref_primary_10_1016_j_ensm_2021_03_015
crossref_primary_10_1021_acsaem_4c02519
crossref_primary_10_1002_asia_202400062
crossref_primary_10_1016_j_ensm_2021_08_041
crossref_primary_10_3390_batteries10030073
crossref_primary_10_1002_smtd_202200345
crossref_primary_10_1017_S0885715624000290
crossref_primary_10_1002_aenm_202000093
crossref_primary_10_1016_j_device_2024_100370
crossref_primary_10_1007_s12274_022_5345_8
crossref_primary_10_1149_2162_8777_ad0656
crossref_primary_10_1039_D1TA01551F
crossref_primary_10_1039_D4CP00105B
crossref_primary_10_1016_j_jechem_2021_02_023
crossref_primary_10_1016_j_cej_2023_146409
crossref_primary_10_1021_acsnano_0c03325
crossref_primary_10_1002_celc_202400550
crossref_primary_10_3390_polym13234127
crossref_primary_10_1039_D3TA02781C
crossref_primary_10_1016_j_nanoen_2022_107679
crossref_primary_10_1016_j_cej_2024_153588
crossref_primary_10_1039_D3SE00417A
crossref_primary_10_1007_s41918_023_00179_5
crossref_primary_10_1016_j_jpowsour_2021_230127
crossref_primary_10_1021_acsami_0c00944
crossref_primary_10_1070_RCR4956
crossref_primary_10_1016_j_ccr_2024_215909
crossref_primary_10_1016_j_jpowsour_2022_231517
crossref_primary_10_1149_1945_7111_ad89ab
crossref_primary_10_1016_j_gce_2021_03_001
crossref_primary_10_3390_en17236086
crossref_primary_10_1039_D4TC05159A
crossref_primary_10_1039_D1TA10816F
crossref_primary_10_3390_polym12112531
crossref_primary_10_1088_1361_6528_ac2e21
crossref_primary_10_1039_D1TA03720J
crossref_primary_10_1016_j_jeurceramsoc_2023_12_071
crossref_primary_10_1016_j_nxener_2024_100202
crossref_primary_10_1016_j_ceramint_2022_01_056
crossref_primary_10_1016_j_ensm_2020_07_005
crossref_primary_10_1021_acs_jpcc_0c00387
crossref_primary_10_1002_advs_202101182
crossref_primary_10_1016_j_ensm_2022_11_004
crossref_primary_10_1016_j_jallcom_2023_168870
crossref_primary_10_1016_j_est_2024_114588
crossref_primary_10_1016_j_electacta_2021_139367
crossref_primary_10_1021_acsaem_1c02942
crossref_primary_10_1002_aenm_202002360
crossref_primary_10_1021_acs_energyfuels_3c02373
crossref_primary_10_1134_S0020168522040124
crossref_primary_10_1021_acs_chemmater_1c04396
crossref_primary_10_1007_s10008_024_05900_y
crossref_primary_10_1021_acs_chemrev_2c00196
crossref_primary_10_1016_j_mseb_2022_116198
crossref_primary_10_1016_j_jechem_2020_04_025
crossref_primary_10_1039_D0MA01019G
crossref_primary_10_3390_molecules25040924
crossref_primary_10_1149_1945_7111_ac22ca
crossref_primary_10_1016_j_jpowsour_2022_232412
crossref_primary_10_1016_j_ceramint_2024_01_154
crossref_primary_10_1002_inf2_12197
crossref_primary_10_1039_D2SE01497A
crossref_primary_10_1002_adfm_202203551
crossref_primary_10_1016_j_jallcom_2020_156285
crossref_primary_10_1002_idm2_12201
crossref_primary_10_1016_j_cej_2021_130632
crossref_primary_10_1039_C9CS00636B
crossref_primary_10_1111_jace_19327
crossref_primary_10_1021_acsaem_0c02255
crossref_primary_10_1016_j_apmate_2024_100181
crossref_primary_10_1002_aenm_202403255
crossref_primary_10_1007_s12613_020_2137_6
crossref_primary_10_3390_nano11040946
crossref_primary_10_3390_batteries7040075
crossref_primary_10_1007_s41918_023_00196_4
crossref_primary_10_1021_acsmacrolett_2c00292
crossref_primary_10_1016_j_nxener_2023_100015
crossref_primary_10_1039_D4TA01341G
crossref_primary_10_3390_ma13194222
crossref_primary_10_1021_acs_jpcc_1c07359
crossref_primary_10_1021_acs_macromol_4c02139
crossref_primary_10_1038_s41467_022_30788_5
crossref_primary_10_3390_batteries10120454
crossref_primary_10_1021_acsapm_4c03256
crossref_primary_10_3390_polym12122812
crossref_primary_10_1016_j_etran_2023_100264
crossref_primary_10_3389_fenrg_2021_726738
crossref_primary_10_1002_adma_202002550
crossref_primary_10_1002_aesr_202000061
crossref_primary_10_1039_D2CC00408A
crossref_primary_10_2139_ssrn_4061571
crossref_primary_10_1002_cssc_202300303
crossref_primary_10_1007_s11581_021_04149_z
crossref_primary_10_1016_j_apsusc_2020_148048
crossref_primary_10_3390_batteries9050269
crossref_primary_10_1021_acsapm_9b01068
crossref_primary_10_1016_j_nanoen_2020_105196
crossref_primary_10_2139_ssrn_4120260
crossref_primary_10_1007_s11581_023_05017_8
crossref_primary_10_1039_D1TA04532F
crossref_primary_10_1016_j_mtla_2022_101603
crossref_primary_10_3390_nano10081606
crossref_primary_10_1021_acs_iecr_0c05075
crossref_primary_10_1002_adma_202206402
crossref_primary_10_1088_1361_6528_ad27ad
crossref_primary_10_1021_acsami_2c16402
crossref_primary_10_1016_j_enss_2022_07_002
crossref_primary_10_1016_j_jelechem_2025_119035
crossref_primary_10_1021_acsami_2c10666
crossref_primary_10_3390_ma16020729
crossref_primary_10_1016_j_cej_2020_127771
crossref_primary_10_1021_acsami_3c19249
crossref_primary_10_3389_fmats_2022_810575
crossref_primary_10_1007_s11708_022_0833_9
crossref_primary_10_1149_1945_7111_ab8878
crossref_primary_10_15541_jim20220761
crossref_primary_10_3390_nano11102476
crossref_primary_10_1002_smtd_202100891
crossref_primary_10_3390_en16124549
crossref_primary_10_1021_acsapm_4c01877
crossref_primary_10_1016_j_jpowsour_2020_228949
crossref_primary_10_1021_acsami_4c10534
crossref_primary_10_3390_inorganics10060081
crossref_primary_10_3390_polym14040673
crossref_primary_10_1039_D4LF00099D
crossref_primary_10_1002_smll_202005762
Cites_doi 10.1063/1.4977885
10.1021/acsami.6b13925
10.1016/j.electacta.2015.03.103
10.1002/adma.201603436
10.1016/j.jpowsour.2014.02.054
10.1002/adfm.201901576
10.1039/C5EE01215E
10.1016/j.ceramint.2016.10.077
10.1134/S2075113317020137
10.1002/aenm.201500353
10.1016/j.jpowsour.2016.05.111
10.1016/j.jpowsour.2013.09.137
10.1021/acsami.8b05393
10.1039/C7TA01648D
10.1149/2.0381712jes
10.1016/j.ssi.2017.08.001
10.1039/C6NR05573G
10.1021/acsapm.9b00068
10.1039/C9TA00356H
10.1021/acs.accounts.8b00566
10.1002/adma.201805574
10.1021/acsenergylett.8b00145
10.1016/j.jpowsour.2015.12.001
10.1021/acsenergylett.7b01105
10.1002/anie.201501214
10.1021/acsami.8b00529
10.1038/s41560-018-0199-8
10.1016/j.jpowsour.2016.03.097
10.1021/jp306718v
10.1016/j.nanoen.2019.01.004
10.1021/acs.jpcc.6b04729
10.1016/j.jpowsour.2017.08.023
10.1016/j.jpowsour.2017.03.013
10.1126/sciadv.aao0713
10.1038/s41560-017-0047-2
10.1002/adfm.201503697
10.1038/ncomms6706
10.1039/C6TA04492A
10.1039/C8TA10771H
10.1016/j.jpowsour.2019.03.081
10.1016/S1452-3981(23)12854-9
10.1016/j.nanoen.2016.02.008
10.1007/s12274-017-1763-4
10.1016/j.ssi.2017.03.024
10.1039/C8TA04619K
10.1002/smll.201602952
10.1039/C4CC05372A
10.1002/adfm.201707570
10.1021/cm401720n
10.1038/s41560-018-0107-2
10.1149/2.1571707jes
10.1038/ncomms12925
10.1016/j.nanoen.2017.10.021
10.1039/C9TA02126D
10.1016/j.electacta.2018.07.191
10.1016/j.joule.2018.03.008
10.1016/j.jpowsour.2015.02.137
10.1016/j.electacta.2014.11.176
10.1021/acsami.8b21770
10.1149/2.0321512jes
10.1016/j.jpowsour.2018.05.048
10.1038/ncomms8892
10.1021/nl5031985
10.1021/acsami.5b07517
10.1021/acs.chemmater.6b03718
10.1038/s41565-019-0371-8
10.1039/C6RA19415J
10.1002/aenm.201802927
10.1002/adfm.201901047
10.1002/adfm.201504437
10.1149/2.0731504jes
10.1002/smtd.201700135
10.1016/j.jpowsour.2018.09.102
10.1021/acsami.7b01137
10.1039/C5EE02867A
10.1016/j.apenergy.2017.07.054
10.1016/j.ssi.2017.12.022
10.1016/j.ssi.2017.07.005
10.1021/acs.macromol.6b00290
10.1039/C5EE02803E
10.1039/C8EE01621F
10.1039/C7TA01147D
10.1021/jacs.6b10088
10.1016/j.jpowsour.2019.04.033
10.1002/aenm.201502214
10.1002/smtd.201700231
10.1016/j.electacta.2016.06.016
10.1039/C8RA08436J
10.1038/nmat1158
10.1039/C7CP08580J
10.1016/j.ensm.2017.06.017
10.1002/adfm.201801806
10.1021/acsami.7b18183
10.1038/nmat3737
10.1002/advs.201700072
10.1016/j.jpowsour.2013.06.097
10.1016/j.electacta.2018.06.169
10.1002/adma.201701169
10.1039/C7RA05035F
10.1038/srep41217
10.1002/aenm.201501802
10.1002/adma.201705702
10.1002/adma.201503025
10.1007/978-3-319-19108-9
10.1038/srep19892
10.1039/C7TA09242C
10.1016/j.jpowsour.2015.10.031
10.1002/adma.201808100
10.1039/C4CP05333H
10.1021/acsmacrolett.8b00406
10.1002/anie.201602504
10.1039/C6TA11165C
10.1016/j.jpowsour.2013.09.051
10.1007/s00542-015-2765-3
10.1016/j.memsci.2019.02.074
10.1016/j.electacta.2017.10.037
10.1038/natrevmats.2016.103
10.1016/j.elecom.2016.07.014
10.1016/j.elecom.2016.02.022
10.1021/acsami.8b07004
10.1002/anie.201901869
10.1021/acs.jpcc.6b11136
10.1021/acsami.6b11773
10.1002/adma.201605531
10.1016/j.mser.2018.10.004
10.1039/C6TA02621D
10.1039/C7TA01820G
10.1126/sciadv.1602396
10.1007/s10800-016-0951-3
10.1016/j.ssi.2015.12.016
10.1039/C4TA03998J
10.1016/j.nanoen.2017.07.038
10.1016/j.jpowsour.2018.04.021
10.1016/j.jpowsour.2018.07.039
10.1021/acsami.6b10119
10.1021/acs.inorgchem.6b00444
10.1002/er.4638
10.1039/C8EE02617C
10.1021/acsami.6b16304
10.1016/j.nanoen.2016.09.002
10.1002/app.47498
10.1039/C6TA02907H
10.1016/j.ensm.2019.03.022
10.1016/j.electacta.2016.03.130
10.1021/ma401686r
10.1016/j.jpowsour.2013.10.116
10.1039/C6TA10056B
10.1039/C7EE02723K
10.1002/adma.201504225
10.1002/smll.201602109
10.1021/ja508794r
10.1021/acs.jpclett.7b00593
10.1149/2.0151514jes
10.1039/C8TA03449D
10.1021/acsami.6b00831
10.1021/acs.chemmater.6b03870
10.1016/j.electacta.2018.11.182
10.1002/aenm.201502237
10.1021/ic500803h
10.1021/cm5040003
10.1002/celc.201600221
10.1002/anie.201408008
10.1016/j.joule.2018.12.019
10.1016/j.jpowsour.2018.02.026
10.1021/jacs.5b11851
10.1039/C6TA10204B
10.1039/C4RA00996G
10.1021/cm5000999
10.1016/j.joule.2018.07.028
10.1016/j.jallcom.2018.05.255
10.1007/s11581-016-1908-6
10.1039/C7TA08233A
10.1016/j.elecom.2017.02.013
10.1002/anie.201701290
10.1016/j.memsci.2018.06.023
10.1002/bbpc.19860900105
10.1002/adfm.201604754
10.1016/j.jpowsour.2013.02.069
10.1021/acsnano.6b02315
10.1002/adfm.201707533
10.1016/j.jpowsour.2017.08.079
10.1016/j.nanoen.2018.09.061
10.1038/srep40036
10.1016/j.ensm.2018.03.015
10.1016/j.ensm.2017.12.002
10.1002/advs.201600445
10.1016/j.jpowsour.2018.05.006
10.1039/C8TA11259B
10.1021/acsami.7b00336
10.1002/aenm.201601196
10.1002/ijch.201400112
10.1016/j.jpowsour.2018.02.066
10.1016/j.ceramint.2017.03.095
10.1002/chem.201704568
10.1038/nchem.1646
10.1021/jp501319e
10.1021/acsami.5b10979
10.1002/celc.201500570
10.1016/j.electacta.2016.05.087
10.1016/j.jpowsour.2016.01.032
10.1021/acscentsci.6b00321
10.1039/C8TA01117F
10.1039/C6CP07757A
10.1021/acsenergylett.6b00660
10.1039/c3ee40702k
10.1016/j.ceramint.2015.09.126
10.1149/1.3531981
10.1039/C8TA02276C
10.1002/anie.201604158
10.1021/acs.nanolett.7b00330
10.1039/C7EE03365F
10.1021/acsami.7b17301
10.1016/j.electacta.2016.03.124
10.1016/j.jpowsour.2016.09.044
10.1021/acs.jpcc.5b11746
10.1007/s10008-016-3284-6
10.1002/celc.201300160
10.1016/j.electacta.2016.10.134
10.1002/aenm.201701437
10.1002/adfm.201605989
10.1016/j.gee.2018.08.002
10.1016/j.electacta.2017.03.219
10.1149/2.0441503jes
10.1021/acsami.8b06912
10.1038/s41570-019-0078-2
10.1016/j.jpowsour.2018.07.008
10.1021/acs.nanolett.7b00715
10.1016/j.electacta.2017.03.064
10.1002/adma.201601186
10.1038/nenergy.2016.141
10.1016/j.jallcom.2017.06.135
10.1021/ja305709z
10.1021/acs.chemmater.5b03656
10.1063/1.5016460
10.1002/adma.201900376
10.1016/j.jpowsour.2018.10.088
10.1039/C7TA06873E
10.1016/j.jpowsour.2013.10.005
10.1016/j.electacta.2015.05.178
10.1021/acsami.6b08435
10.1016/j.electacta.2016.09.141
10.1016/j.jpowsour.2018.05.050
10.1002/smll.201601530
10.1016/j.jpowsour.2017.04.014
10.1021/acsami.6b05301
10.1039/C8SC05178J
10.1039/C5EE01604E
10.1021/acs.jpcc.6b10774
10.1016/j.jallcom.2016.03.009
10.1002/adma.201503169
10.1002/anie.201709305
10.1038/s41467-019-09061-9
10.1038/nnano.2017.16
10.1021/acsami.5b08462
10.1002/app.33963
10.1021/acsenergylett.7b00292
10.1039/C7CP00518K
10.1149/1.1763141
10.1039/C6CC02131J
10.1039/C8TA08391F
10.1002/anie.201608924
10.1039/C6TA02294D
10.1021/jp4051275
10.1039/C7TA07972A
10.1021/acs.chemrev.7b00115
10.1002/aenm.201601392
10.1039/C7EE01004D
10.1039/C6CP00757K
10.1016/j.memsci.2018.07.014
10.1021/acs.jpcc.8b02556
10.1002/aenm.201402235
10.1002/aenm.201501082
10.1021/acs.nanolett.6b03223
10.1038/srep07127
10.1021/acsami.6b09059
10.1016/j.electacta.2014.08.139
10.1016/j.ensm.2018.07.004
10.1039/C5CC08279J
10.1039/C7TA08391B
10.1002/advs.201500359
10.1016/j.nanoen.2018.02.036
10.1016/j.ssi.2015.11.027
10.1039/C8EE02093K
10.1021/acs.inorgchem.8b03300
10.1038/srep33733
10.1007/s10800-016-0940-6
10.1021/acs.accounts.7b00460
10.1039/C6TA00828C
10.1021/acsenergylett.7b00849
10.1016/j.ssi.2019.01.034
10.1126/science.1249625
10.1016/j.ssi.2017.09.018
10.1016/j.electacta.2014.04.099
10.1039/C5TA01037C
10.1021/jz200352v
10.1016/j.jpowsour.2013.03.155
10.1039/C5TA08574H
10.1007/s10008-015-2910-z
10.1016/S0013-4686(01)00458-3
10.1038/nmat3602
10.1002/aenm.201501294
10.1021/acs.chemmater.5b01023
10.1039/C6GC00444J
10.1002/adsu.201700017
10.1016/j.jpowsour.2016.10.033
10.1016/j.jpowsour.2018.03.017
10.1039/C3TA15087A
10.1073/pnas.1600422113
10.1039/C5TA09646D
10.1021/acsami.8b01876
10.1039/C6TA10066J
10.1149/2.1281709jes
10.1021/acs.nanolett.6b03448
10.1002/ppsc.201500193
10.1016/j.memsci.2016.12.011
10.1016/j.jpowsour.2014.11.047
10.1038/nenergy.2017.35
10.1002/aenm.201802235
10.1002/adma.201505008
10.1038/s41467-018-04762-z
10.1021/acsaem.8b00227
10.1016/j.jpowsour.2016.06.003
10.1149/1.1502684
10.1039/C9EE00578A
10.1002/adma.201806082
10.1021/cm901819c
10.1039/C3EE43357A
10.1039/C8TA03358G
10.1016/j.polymer.2015.04.056
10.1021/acs.nanolett.8b01421
10.1002/ange.201707840
10.1002/aenm.201601272
10.1002/aenm.201602923
10.1002/smtd.201700219
10.1021/acs.nanolett.7b00221
10.1016/j.ensm.2016.01.008
10.1016/j.jpowsour.2018.03.016
10.1038/nature25984
10.1149/2.0331701jes
10.1126/sciadv.1601659
10.1021/acsami.7b03806
10.1149/2.0841704jes
10.1039/C6TA06082J
10.1039/C6EE00700G
10.1002/advs.201500306
10.1016/j.apenergy.2016.02.064
10.1016/j.jpowsour.2018.05.003
10.1016/j.electacta.2016.10.173
10.1038/nenergy.2016.114
10.1039/C7TA05832B
10.1039/C7CC00794A
10.1007/s41918-018-0010-3
10.1016/j.polymer.2010.04.022
10.1021/acsami.7b12092
10.1016/j.jpowsour.2018.04.022
10.1038/ncomms11009
10.1002/aenm.201500865
10.1021/acsnano.8b00073
10.1016/j.jpowsour.2018.04.054
10.1016/j.jpowsour.2019.01.082
10.1021/jacs.8b03319
10.1039/C7CS00139H
10.1016/j.progpolymsci.2016.04.003
10.1002/adma.201605512
10.1021/acsami.6b03070
10.1016/j.jpowsour.2015.12.054
10.1021/acs.chemmater.6b00698
10.1016/j.joule.2018.02.007
10.1016/j.electacta.2019.01.039
10.1016/j.jpowsour.2017.04.026
10.1016/j.jpowsour.2015.08.035
10.1039/C7EE02420G
10.1002/adfm.201805301
10.1149/2.0951712jes
10.1016/j.ensm.2016.02.004
10.1016/j.jpowsour.2018.04.020
10.1021/acs.nanolett.5b00600
10.1016/j.jpowsour.2016.08.049
10.1002/cssc.201702031
10.1016/j.nanoen.2018.01.028
10.1002/cssc.201600536
10.1016/j.jpowsour.2018.04.052
10.1038/nature16484
10.1021/nl303087j
10.1002/adma.201804684
10.1149/2.0421701jes
10.1149/2.0201504jes
10.1016/j.ssi.2015.06.001
10.1002/aenm.201703012
10.1016/j.electacta.2016.12.113
10.1016/j.jpowsour.2018.04.019
10.1039/c3ee23966g
10.1038/nenergy.2017.119
10.1039/C8TA09056D
10.1016/j.jallcom.2018.03.027
10.1021/acs.nanolett.6b04695
10.1039/C3CC49588D
10.1039/C5TA10436J
10.1021/acs.jpcc.6b10268
10.1021/nl5035896
10.1002/cphc.201600821
10.1021/acsenergylett.6b00481
10.1002/anie.201604554
10.1016/j.jpowsour.2016.09.099
10.1016/j.nanoen.2017.12.037
10.1021/acsami.6b10358
10.1021/acsami.7b18798
10.1016/j.mser.2017.09.001
10.1002/aenm.201600736
10.1021/acs.nanolett.8b01111
10.1021/jp511794g
10.1016/j.nanoen.2017.01.027
10.1021/cr030203g
10.1016/j.mattod.2018.01.001
10.1002/smll.201804701
10.1007/s11581-016-1905-9
10.1021/acs.jpcc.7b01929
10.1002/anie.201607539
10.1021/acsami.7b18123
10.1002/aenm.201702184
10.1002/anie.201710841
10.1002/adma.201802563
10.1039/C3EE41655K
10.1039/C7TA01227F
10.1016/j.jpowsour.2016.03.093
10.1039/C6RA06047A
10.1021/am5083683
10.1021/acs.nanolett.5b04117
10.1002/adma.201807789
10.1002/aenm.201702374
10.1073/pnas.1719758115
10.1016/j.jpowsour.2017.10.059
10.1039/C8TA09069F
10.1039/C7EE00534B
10.1039/C7TA00196G
10.1021/acsenergylett.7b00792
10.1021/cm4016222
10.1016/j.nanoen.2016.11.045
10.1039/C8EE00907D
10.1021/acs.chemmater.7b00034
10.1016/j.jpowsour.2018.05.015
10.1038/nenergy.2016.30
10.1021/acsami.6b13902
10.1039/C6TA05800K
10.1007/s12540-017-6120-3
10.1149/2.0041514jes
10.1039/C5TA03471J
10.1149/2.0221714jes
10.1016/j.jpowsour.2012.01.086
10.1016/j.ssi.2013.08.014
10.1016/j.ssi.2016.06.005
10.1016/j.jpowsour.2018.07.007
10.1002/cssc.201500873
10.1016/j.ssi.2015.11.034
10.1002/adma.201606552
10.1149/2.0041801jes
10.1038/nenergy.2017.36
10.1021/acsnano.5b06672
10.1021/acsenergylett.7b00884
10.1016/j.pmatsci.2017.04.007
10.1016/j.elecom.2015.05.001
10.1039/C7TA04320A
10.1016/j.jpowsour.2015.09.111
10.1002/smll.201801798
10.1007/s10008-018-3891-5
10.1039/C6EE03499C
10.1021/acsami.7b03887
10.1016/j.jpowsour.2009.11.120
10.1016/j.memsci.2017.10.033
10.1021/acsami.7b16176
10.1016/j.jpowsour.2018.01.082
10.1016/j.jpowsour.2017.12.021
10.1002/admi.201700693
10.1021/jacs.6b06777
10.1149/2.0311602jes
10.1039/C3TA13835F
10.1016/j.jpowsour.2018.06.054
10.1002/anie.201511832
10.1002/polb.24235
10.1002/cssc.201700409
10.1016/j.progpolymsci.2017.12.004
10.1016/j.electacta.2017.08.162
10.1016/j.jallcom.2016.04.173
10.1149/2.0161514jes
10.1021/acs.chemrev.5b00563
10.1002/anie.201807304
10.1021/acsami.6b07054
10.1021/acsenergylett.7b00175
10.1149/1.2007207
10.1016/j.jpowsour.2018.06.038
10.1002/aenm.201702657
10.1021/jacs.7b10864
10.1016/j.chempr.2018.12.002
10.1039/C7EE03083E
10.1016/j.nanoen.2017.05.012
10.1038/ncomms2855
10.1039/C6CS00491A
10.1021/acsaem.8b00702
10.1021/acsami.7b19037
10.1039/C6TA05439K
10.1021/acs.chemmater.5b04940
10.1021/jacs.7b06364
10.1016/j.jpowsour.2017.10.083
10.1039/C6TA07590H
10.1016/j.nanoen.2017.01.028
10.1016/j.jpowsour.2012.12.109
10.1016/j.electacta.2015.03.228
10.1016/j.ssi.2015.02.013
10.1002/advs.201600089
10.1002/adma.201700378
10.1021/acs.chemrev.8b00642
10.1021/acsami.8b02240
10.1016/j.electacta.2015.11.088
10.1021/acs.chemmater.6b04797
10.1002/smll.201600540
10.1021/acs.jpclett.6b02933
10.1016/j.jpowsour.2018.02.062
10.1016/j.jpowsour.2018.11.036
10.1007/s10008-017-3529-z
10.1016/j.elecom.2015.01.020
10.1016/j.polymer.2015.02.052
10.1016/j.jpowsour.2018.04.099
10.1038/s41560-019-0349-7
10.1073/pnas.1708489114
10.1103/PhysRevB.87.134303
10.1002/adma.201602800
10.1021/acs.chemmater.6b00579
10.1021/acsenergylett.6b00401
10.1016/j.memsci.2018.07.078
10.1039/C6TA03027K
10.1039/c4cc01243g
10.1002/aenm.201601759
10.1021/acs.chemmater.7b03002
10.1016/j.electacta.2015.07.111
10.1021/acs.macromol.7b02509
10.1039/C7CP00129K
10.1021/acsami.7b08448
10.1039/C5EE02941D
10.1021/acs.inorgchem.5b01895
10.1002/adma.201503816
10.1007/s10008-017-3638-8
10.1002/cssc.201702270
10.1002/advs.201700996
10.1002/adma.201606042
10.1016/j.ssi.2016.12.001
10.1016/j.jpowsour.2017.04.018
10.1039/C7RA02174G
10.1016/j.jpowsour.2018.04.016
10.1149/2.0901810jes
10.1002/aenm.201600467
10.1039/C6RA07341G
10.1002/adma.201605561
10.1126/science.1223985
10.1021/acs.nanolett.5b00538
10.1063/1.4913320
10.1038/ncomms12032
10.1016/j.electacta.2017.10.163
10.1002/batt.201800120
10.1021/acs.chemmater.6b00610
10.1021/acs.jpclett.6b01986
10.1002/anie.201903459
10.1021/acs.inorgchem.7b00013
10.1021/acs.chemmater.8b02568
10.1021/acs.jpclett.6b00435
10.1016/j.electacta.2016.09.155
10.1016/j.jpowsour.2018.11.016
10.1021/acsami.7b00614
10.1002/aenm.201602417
10.1002/anie.201601546
10.1039/C6TA01628F
10.1016/j.ssi.2016.07.013
10.1016/j.jpowsour.2017.11.074
10.1002/aenm.201800035
10.1021/acs.jpcc.9b01816
10.1021/acsami.6b00833
10.1039/C3EE42351D
10.1039/C7CP02129A
10.1002/adma.201804815
10.1016/j.nanoen.2018.08.030
10.1021/acs.jpclett.7b01321
10.1021/jacs.6b05341
10.1073/pnas.1615912113
10.1016/j.polymer.2015.12.036
10.1016/j.mser.2018.07.001
10.1016/j.jpowsour.2007.06.108
10.1021/acs.chemmater.6b02059
10.1002/adfm.201900392
10.1002/batt.201800104
10.1021/acsami.6b11384
10.1021/acs.nanolett.6b01754
10.1016/j.electacta.2017.03.217
10.1016/j.jpowsour.2018.05.069
10.1002/ange.201509143
10.1016/j.jpowsour.2011.10.064
10.1002/advs.201600377
10.1016/j.ssi.2016.01.043
10.1021/acsenergylett.6b00216
10.1039/C6TA09809F
10.1016/j.jpowsour.2018.01.063
10.1039/C7TA02423A
10.1038/nmat4821
10.1007/s12274-018-2205-7
10.1002/cssc.201402567
10.1002/anie.201204983
10.1039/C4CC07315K
10.1039/C8TA12443D
10.1016/j.ensm.2016.07.003
10.1016/j.ssi.2017.08.007
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
DOI 10.3390/ma12233892
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC6926585
oai_HAL_hal_02474699v1
31775348
10_3390_ma12233892
Genre Journal Article
Review
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
2XV
C1A
IAO
IPNFZ
ITC
RIG
VOOES
5PM
ID FETCH-LOGICAL-c436t-cc3b1cc0adfd2f15e9df3583f70c4fa0f20ef6fd10942b3c4348f868239104d73
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:43:16 EDT 2025
Fri May 09 12:16:33 EDT 2025
Thu Jul 10 22:39:33 EDT 2025
Fri Jul 25 12:01:00 EDT 2025
Thu Apr 03 07:04:43 EDT 2025
Tue Jul 01 03:56:13 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords ceramics
all-solid-state batteries
Li-air batteries
Li–S batteries
polymers
fast-ion conductors
Li-ion batteries
Na-ion batteries
solid electrolytes
Li-S batteries
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-cc3b1cc0adfd2f15e9df3583f70c4fa0f20ef6fd10942b3c4348f868239104d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4357-3186
0000-0001-7638-6710
0000-0002-1303-9233
0000-0002-4201-7746
OpenAccessLink https://www.proquest.com/docview/2548642518?pq-origsite=%requestingapplication%
PMID 31775348
PQID 2548642518
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6926585
hal_primary_oai_HAL_hal_02474699v1
proquest_miscellaneous_2319501055
proquest_journals_2548642518
pubmed_primary_31775348
crossref_citationtrail_10_3390_ma12233892
crossref_primary_10_3390_ma12233892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191125
PublicationDateYYYYMMDD 2019-11-25
PublicationDate_xml – month: 11
  year: 2019
  text: 20191125
  day: 25
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Nair (ref_268) 2016; 306
Sun (ref_243) 2016; 18
Cao (ref_51) 2019; 14
Tao (ref_255) 2017; 257
Hartmann (ref_164) 2013; 117
Chen (ref_293) 2017; 9
Deng (ref_248) 2016; 8
Gao (ref_39) 2018; 30
Oh (ref_103) 2017; 5
Peng (ref_345) 2012; 337
Yang (ref_37) 2017; 29
Qi (ref_536) 2016; 3
Tang (ref_184) 2015; 8
Lanagan (ref_191) 2017; 38
Singh (ref_589) 2016; 6
Chu (ref_571) 2016; 6
Chen (ref_212) 2019; 12
Li (ref_434) 2019; 4
Mauger (ref_445) 2018; 134
Yoshida (ref_584) 2017; 110
Zhang (ref_395) 2014; 118
Zheng (ref_154) 2017; 5
Liang (ref_86) 2018; 30
Zhao (ref_340) 2016; 188
Tao (ref_75) 2016; 163
Guo (ref_227) 2018; 564
Langer (ref_290) 2017; 164
Zhang (ref_98) 2019; 410–411
Basile (ref_524) 2016; 71
Wu (ref_528) 2016; 203
Carstens (ref_527) 2016; 120
Boschin (ref_540) 2015; 175
Kunshina (ref_157) 2017; 8
Zhang (ref_171) 2018; 18
Wenzel (ref_76) 2016; 28
Zhou (ref_503) 2017; 39
Mindemark (ref_14) 2018; 81
Wenzel (ref_65) 2016; 286
Zheng (ref_281) 2016; 55
Ryu (ref_437) 2016; 7
Han (ref_465) 2016; 16
Allen (ref_390) 2012; 116
Das (ref_210) 2015; 5
Choi (ref_491) 2017; 723
Li (ref_149) 2017; 56
Zhang (ref_495) 2017; 305
Girard (ref_206) 2019; 2
Yi (ref_350) 2017; 10
Lago (ref_616) 2019; 582
Cheng (ref_35) 2017; 117
Imholt (ref_269) 2018; 7
Kim (ref_497) 2019; 10
Sakuda (ref_72) 2010; 22
Mindemark (ref_242) 2015; 63
Bai (ref_384) 2017; 7
Kireeva (ref_116) 2017; 19
Zhang (ref_150) 2016; 28
ref_155
Wang (ref_211) 2017; 121
Liu (ref_364) 2017; 13
Yue (ref_23) 2016; 5
Park (ref_69) 2016; 28
Asadi (ref_360) 2016; 10
Kim (ref_389) 2018; 563
Gong (ref_467) 2018; 2
Shi (ref_370) 2017; 164
Yang (ref_516) 2018; 10
Zhu (ref_408) 2015; 8
Han (ref_488) 2019; 7
Xu (ref_502) 2019; 9
Zhang (ref_573) 2018; 11
Wang (ref_122) 2017; 17
Liu (ref_220) 2018; 564
Wang (ref_511) 2018; 28
Ataollahi (ref_377) 2013; 8
Wang (ref_517) 2018; 30
Zhang (ref_512) 2019; 57
Colo (ref_541) 2017; 365
Mustapa (ref_252) 2016; 222
Cznotka (ref_264) 2015; 274
Singh (ref_588) 2018; 22
Chi (ref_600) 2017; 43
Lee (ref_439) 2017; 7
Xu (ref_440) 2017; 2
Judez (ref_477) 2017; 8
Wang (ref_480) 2016; 52
Tsai (ref_147) 2016; 8
Lu (ref_177) 2014; 50
Griebel (ref_471) 2016; 58
Chen (ref_323) 2019; 29
Hassoun (ref_424) 2012; 12
Li (ref_308) 2016; 307
Li (ref_3) 2017; 27
Zhang (ref_276) 2019; 409
Chen (ref_522) 2016; 332
Di (ref_55) 2016; 28
Gouverneur (ref_200) 2018; 20
Porcarelli (ref_258) 2016; 1
Wang (ref_551) 2016; 55
Hashmi (ref_590) 2016; 20
Liu (ref_53) 2017; 29
Sang (ref_89) 2017; 29
Wu (ref_526) 2016; 8
Liu (ref_382) 2016; 12
Ma (ref_592) 2017; 5
Jiao (ref_128) 2018; 3
Yang (ref_457) 2018; 1
Lobe (ref_335) 2016; 307
Guo (ref_428) 2017; 56
Chen (ref_92) 2018; 387
Monti (ref_525) 2016; 324
Wan (ref_556) 2018; 12
Guo (ref_420) 2018; 6
Wakayama (ref_271) 2019; 334
Wang (ref_617) 2018; 397
Rao (ref_558) 2017; 5
Nishimura (ref_555) 2017; 5
Zhao (ref_163) 2016; 680
Simonetti (ref_4) 2017; 164
Liu (ref_110) 2018; 389
Garcia (ref_472) 2018; 390
Tikekar (ref_576) 2016; 1
Wang (ref_205) 2017; 5
Forsyth (ref_257) 2019; 52
Hilder (ref_614) 2017; 349
Smetaczek (ref_115) 2019; 7
Wang (ref_279) 2018; 259
Zhang (ref_152) 2014; 133
Zhang (ref_383) 2015; 183
Zhai (ref_169) 2017; 17
Thotiyl (ref_344) 2013; 12
Gao (ref_478) 2018; 382
Pan (ref_484) 2017; 300
Lu (ref_356) 2016; 529
ref_470
Chen (ref_611) 2017; 19
Liu (ref_190) 2018; 393
Stolwijk (ref_225) 2013; 46
Chen (ref_223) 2017; 525
Bella (ref_538) 2015; 8
Wei (ref_566) 2017; 29
Leng (ref_378) 2015; 176
Fu (ref_123) 2017; 3
Bae (ref_282) 2018; 57
Yao (ref_513) 2016; 16
Zhang (ref_473) 2015; 3
Huo (ref_237) 2018; 383
Lin (ref_313) 2016; 16
Zhao (ref_189) 2012; 134
Li (ref_226) 2016; 6
Chamaani (ref_429) 2017; 235
Zhang (ref_563) 2016; 3
Zhang (ref_474) 2016; 8
Kim (ref_521) 2017; 1
Liu (ref_381) 2018; 318
Golodnitsky (ref_224) 2015; 162
Li (ref_295) 2018; 10
Goujon (ref_207) 2019; 2
Kim (ref_426) 2016; 26
Usui (ref_523) 2016; 329
Liu (ref_170) 2017; 2
Oh (ref_499) 2016; 28
Fang (ref_186) 2016; 4
Shi (ref_318) 2018; 547
Yoon (ref_587) 2015; 17
McOwen (ref_448) 2014; 7
Wu (ref_410) 2016; 3
Wagnemaker (ref_549) 2016; 28
Girard (ref_203) 2018; 10
Liang (ref_464) 2018; 6
ref_11
Yang (ref_121) 2018; 115
Judez (ref_476) 2017; 8
Tanibata (ref_550) 2014; 4
Bachman (ref_19) 2016; 116
Balaish (ref_374) 2018; 1
Yi (ref_192) 2016; 4
Sharafi (ref_119) 2017; 29
Tian (ref_580) 2019; 3
ref_15
Yu (ref_552) 2017; 29
Liu (ref_365) 2016; 33
Nolis (ref_542) 2017; 7
Wang (ref_463) 2016; 1
Niu (ref_315) 2018; 283
Xu (ref_66) 2016; 219
Girard (ref_202) 2017; 121
Hallopeau (ref_162) 2018; 378
Ito (ref_101) 2014; 248
Elia (ref_446) 2014; 1
Chen (ref_411) 2018; 47
Meng (ref_393) 2018; 10
Yu (ref_456) 2016; 6
Maier (ref_291) 1985; 90
Lin (ref_475) 2016; 18
Zhou (ref_567) 2017; 3
Wu (ref_579) 2018; 10
Miara (ref_136) 2016; 8
Zhang (ref_232) 2017; 5
Lee (ref_603) 2017; 23
Arya (ref_33) 2017; 23
Sadikin (ref_606) 2017; 56
Chi (ref_296) 2019; 17
Wu (ref_433) 2016; 4
Zhou (ref_270) 2019; 31
Fu (ref_466) 2017; 10
Yao (ref_188) 2016; 8
Guin (ref_530) 2016; 293
Zhang (ref_597) 2017; 13
He (ref_137) 2018; 762
Wenzel (ref_165) 2015; 278
Liu (ref_481) 2016; 22
Ma (ref_299) 2016; 317
Lin (ref_332) 2017; 41
Schmuch (ref_16) 2018; 3
Wong (ref_373) 2014; 4
Jin (ref_118) 2013; 239
Wan (ref_505) 2016; 4
Zhang (ref_214) 2019; 31
Liang (ref_339) 2019; 296
Mindemark (ref_230) 2017; 77
Wang (ref_254) 2010; 51
Ganapathy (ref_357) 2014; 136
Lozinskaya (ref_199) 2017; 237
Rolland (ref_261) 2015; 68
Elia (ref_391) 2014; 14
Zou (ref_427) 2018; 14
Cong (ref_277) 2018; 380
Lu (ref_265) 2015; 152
Takami (ref_303) 2017; 164
He (ref_267) 2013; 244
Nasybulin (ref_372) 2013; 243
McCloskey (ref_346) 2011; 2
Banerjee (ref_104) 2016; 55
Balaish (ref_368) 2015; 54
Jung (ref_320) 2015; 162
Zhang (ref_95) 2018; 747
Jung (ref_561) 2015; 55
Schnell (ref_21) 2018; 382
Zhou (ref_304) 2016; 138
Xu (ref_148) 2017; 354
Hilder (ref_204) 2016; 202
Lu (ref_341) 2013; 6
Zhang (ref_287) 2017; 139
Zhang (ref_43) 2017; 121
Ju (ref_87) 2018; 10
Petit (ref_431) 2019; 58
Cheng (ref_9) 2019; 5
Ito (ref_74) 2017; 5
Vinado (ref_311) 2018; 396
Liu (ref_40) 2018; 2
Nguyen (ref_208) 2018; 11
Hofstetter (ref_404) 2018; 390
Ogawa (ref_83) 2012; 205
Colo (ref_535) 2015; 174
Yu (ref_168) 2019; 7
Hilder (ref_615) 2018; 406
Liang (ref_130) 2018; 140
Sun (ref_501) 2016; 10
Wen (ref_54) 2016; 28
Eshetu (ref_453) 2017; 56
Yue (ref_28) 2018; 19
Ozcan (ref_394) 2016; 286
Yi (ref_444) 2016; 4
Bar (ref_251) 2017; 19
Zhou (ref_568) 2016; 6
Ma (ref_449) 2017; 8
Duchene (ref_605) 2017; 53
Zhang (ref_285) 2018; 45
Xu (ref_59) 2018; 24
Santhosha (ref_93) 2019; 123
Zhao (ref_310) 2016; 301
Rettenwander (ref_112) 2016; 28
Wu (ref_398) 2017; 7
Tan (ref_348) 2017; 204
Singh (ref_327) 2017; 21
Diederichsen (ref_45) 2017; 2
Keller (ref_138) 2017; 353
Kwak (ref_435) 2016; 9
Yu (ref_29) 2017; 50
Li (ref_500) 2019; 31
Wenzel (ref_572) 2016; 8
Liu (ref_366) 2015; 27
Kwabi (ref_343) 2016; 128
Sun (ref_399) 2017; 7
Kang (ref_358) 2013; 25
Uludag (ref_385) 2016; 22
Gao (ref_85) 2018; 57
Lu (ref_581) 2019; 10
ref_42
Braga (ref_176) 2014; 2
Chai (ref_246) 2017; 4
He (ref_156) 2018; 6
Kim (ref_336) 2013; 244
Schouwink (ref_185) 2014; 5
Liu (ref_604) 2016; 8
Sangeland (ref_544) 2019; 19
Dong (ref_129) 2018; 11
Han (ref_131) 2017; 16
Wang (ref_387) 2016; 4
Iriyama (ref_334) 2018; 385
Lee (ref_62) 2019; 31
Takada (ref_109) 2018; 394
Zhou (ref_48) 2017; 33
Zhang (ref_596) 2017; 372
Fu (ref_52) 2016; 1
Chamaani (ref_412) 2017; 9
Cheng (ref_300) 2017; 253
Yamada (ref_197) 2015; 162
Yi (ref_392) 2015; 7
Cho (ref_417) 2015; 162
Xu (ref_353) 2017; 29
Li (ref_217) 2018; 394
Kim (ref_73) 2016; 42
Huang (ref_215) 2019; 299
Fan (ref_325) 2017; 5
Asadi (ref_362) 2018; 555
Chai (ref_337) 2016; 4
Yi (ref_413) 2016; 9
Bhatt (ref_594) 2015; 5
Jung (ref_379) 2014; 50
Zhang (ref_13) 2017; 10
Zhao (ref_158) 2016; 295
Zhao (ref_599) 2018; 8
Hansen (ref_607) 2017; 29
Duan (ref_125) 2018; 140
Leriche (ref_559) 2014; 247
Kato (ref_64) 2016; 1
Wang (ref_90) 2016; 4
Zhang (ref_97) 2019; 412
Yu (ref_94) 2019; 7
Zhang (ref_221) 2017; 2
Zekoll (ref_161) 2018; 11
Sun (ref_10) 2017; 33
Sangeland (ref_545) 2019; 1
Chen (ref_294) 2018; 46
Zhao (ref_81) 2016; 6
Strauss (ref_46) 2017; 21
Peng (ref_57) 2017; 46
Haruyama (ref_91) 2017; 9
Zhang (ref_483) 2017; 3
Li (ref_485) 2018; 6
Zhang (ref_326) 2017; 27
Sahu (ref_105) 2014; 7
Wood (ref_492) 2018; 9
Li (ref_182) 2016; 55
Yao (ref_487) 2017; 7
Wang (ref_280) 2018; 395
Rettenwander (ref_139) 2015; 54
Duan (ref_333) 2019; 31
Le (ref_409) 2019; 7
Liu (ref_367) 2015; 6
Judez (ref_44) 2018; 165
Huo (ref_301) 2017; 372
Suzuki (ref_490) 2018; 1
Long (ref_506) 2016; 3
Salitra (ref_324) 2018; 10
Zhang (ref_41) 2017; 4
Liu (ref_369) 2016; 28
Bao (ref_236) 2018; 389
Ma (ref_546) 2016; 28
Stilp (ref_585) 2017; 10
Yan (ref_127) 2017; 121
Janek (ref_8) 2016; 1
Afyon (ref_135) 2016; 6
Fan (ref_60) 2018; 8
Zhu (ref_564) 2015; 27
Zhou (ref_330) 2015; 5
Abe (ref_49) 2004; 151
Li (ref_178) 2016; 284
He (ref_247) 2017; 225
Zhao (ref_32) 2018; 3
Yang (ref_305) 2017; 7
Yao (ref_317) 2018; 18
Croce (ref_400) 2001; 46
Moreno (ref_539) 2014; 248
Fang (ref_183) 2017; 5
Gao (ref_537) 2016; 6
Zhang (ref_443) 2016; 9
Zhang (ref_515) 2018; 11
Ren (ref_565) 2015; 57
Zhu (ref_273) 2016; 4
Sun (ref_361) 2019; 58
Zhang (ref_79) 2017; 5
Zhang (ref_415) 2013; 4
Zhang (ref_532) 2016; 4
Wan (ref_298) 2019; 29
Bo (ref_554) 2016; 4
Albertus (ref_619) 2018; 3
Wang (ref_312) 2018; 53
Chu (ref_67) 2016; 8
Keller (ref_107) 2018; 392
Seino (ref_63) 2014; 7
Huang (ref_117) 2016; 8
Zhang (ref_174) 2013; 87
Amanchukwu (ref_376) 2016; 7
Schwenke (ref_396) 2015; 162
Song (ref_352) 2017; 1
Liu (ref_349) 2018; 2
Miara (ref_143) 2015; 27
Meabe (ref_249) 2017; 237
Dirican (ref_24) 2019; 136
Zardalidis (ref_260) 2016; 49
Nair (ref_482) 2016; 3
Xu (ref_256) 2004; 104
Lee (ref_442) 2016; 28
Xu (ref_489) 2017; 5
Kim (ref_80) 2017; 17
Hu (ref_338) 2015; 7
Amici (ref_380) 2016; 46
Zeng (ref_216) 2016; 138
Liu (ref_250) 2017; 5
Liu (ref_403) 2018; 8
Fu (ref_195) 2016; 113
Cheng (ref_6) 2017; 8
Zhang (ref_263) 2019; 428
Howard (ref_179) 2016; 3
Chen (ref_132) 2018; 6
Zhu (ref_407) 2015; 8
Li (ref_213) 2019; 15
Tang (ref_583) 2016; 6
Wang (ref_198) 2016; 7
Hu (ref_419) 2017; 3
Forsyth (ref_586) 2016; 120
Park (ref_61) 2018; 8
Liu (ref_451) 2016; 26
Porcarelli (ref_153) 2016; 6
Harding (ref_375) 2015; 119
Mauger (ref_34) 2017; 353
Basappa (ref_146) 2017; 164
Rettenwander (ref_140) 2014; 26
Jeong (ref_47) 2019; 7
Aldalur (re
References_xml – volume: 110
  start-page: 103901
  year: 2017
  ident: ref_584
  article-title: Fast sodium ionic conduction in Na2B10H10 -Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4977885
– volume: 9
  start-page: 3808
  year: 2017
  ident: ref_144
  article-title: Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13925
– volume: 183
  start-page: 56
  year: 2015
  ident: ref_383
  article-title: Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co -hexafluoropropylene) and tetraethylene glycol dimethyl ether
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.03.103
– volume: 29
  start-page: 1603436
  year: 2017
  ident: ref_53
  article-title: Flexible and stretchable energy storage: Recent advances and future perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603436
– volume: 258
  start-page: 420
  year: 2014
  ident: ref_570
  article-title: High sodium ion conductivity of glass-ceramic electrolytes with cubic Na3PS4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.054
– volume: 29
  start-page: 1901576
  year: 2019
  ident: ref_218
  article-title: Molecularly coupled two-dimensional titanium oxide and carbide sheets for wearable and high-rate quasi-solid-state rechargeable batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901576
– volume: 8
  start-page: 1905
  year: 2015
  ident: ref_447
  article-title: Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01215E
– volume: 43
  start-page: 1278
  year: 2017
  ident: ref_600
  article-title: Effect of Li addition on the formation of Na-β/βʹʹ-alumina film by laser chemical vapor deposition
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.10.077
– volume: 8
  start-page: 238
  year: 2017
  ident: ref_157
  article-title: Preparation of the Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with high ionic conductivity
  publication-title: Inorg. Mater.
  doi: 10.1134/S2075113317020137
– volume: 5
  start-page: 1500353
  year: 2015
  ident: ref_330
  article-title: In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500353
– volume: 324
  start-page: 349
  year: 2016
  ident: ref_498
  article-title: Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.111
– volume: 248
  start-page: 695
  year: 2014
  ident: ref_539
  article-title: Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.137
– volume: 10
  start-page: 22237
  year: 2018
  ident: ref_393
  article-title: Exploring PVFM-based Janus membrane-supporting gel polymer electrolyte for highly durable Li-O2 batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05393
– volume: 5
  start-page: 13373
  year: 2017
  ident: ref_183
  article-title: Superhalogen-based lithium superionic conductors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01648D
– volume: 164
  start-page: A2298
  year: 2017
  ident: ref_290
  article-title: Impedance spectroscopy analysis of the lithium ion transport through the Li7La3Zr2O12/P(EO)20Li interface
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0381712jes
– volume: 318
  start-page: 88
  year: 2018
  ident: ref_381
  article-title: The PVDF-HFP gel polymer electrolyte for Li-O2 battery
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.08.001
– ident: ref_618
– volume: 8
  start-page: 17836
  year: 2016
  ident: ref_188
  article-title: Superhalogens as building blocks of two-dimensional organic–inorganic hybrid perovskites for optoelectronics applications
  publication-title: Nanoscale
  doi: 10.1039/C6NR05573G
– volume: 1
  start-page: 825
  year: 2019
  ident: ref_545
  article-title: Stable cycling of sodium metal all-solid-state batteries with polycarbonate-based polymer electrolytes
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00068
– volume: 7
  start-page: 6818
  year: 2019
  ident: ref_115
  article-title: Local Li-ion conductivity changes within Al stabilized Li7La3Zr2O12 and their relationship to three-dimensional variations of the bulk composition
  publication-title: J. Mat. Chem. A
  doi: 10.1039/C9TA00356H
– volume: 52
  start-page: 686
  year: 2019
  ident: ref_257
  article-title: Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00566
– volume: 31
  start-page: 1805574
  year: 2019
  ident: ref_270
  article-title: Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805574
– volume: 3
  start-page: 899
  year: 2018
  ident: ref_32
  article-title: Molecular layer deposition for energy conversion and storage
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00145
– volume: 306
  start-page: 258
  year: 2016
  ident: ref_268
  article-title: Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.001
– volume: 3
  start-page: 98
  year: 2018
  ident: ref_292
  article-title: Positive and negative aspects of interfaces in solid-state batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01105
– volume: 54
  start-page: 6550
  year: 2015
  ident: ref_359
  article-title: The first introduction of graphene to rechargeable Li-CO2 batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201501214
– volume: 10
  start-page: 15634
  year: 2018
  ident: ref_416
  article-title: Quasi-solid-state rechargeable Li-O2 batteries with high safety and long cycle life at room temperature
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00529
– volume: 3
  start-page: 739
  year: 2018
  ident: ref_128
  article-title: Stable cycling of high-voltage lithium metal batteries in ether electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0199-8
– volume: 317
  start-page: 103
  year: 2016
  ident: ref_299
  article-title: Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.097
– volume: 116
  start-page: 20755
  year: 2012
  ident: ref_390
  article-title: Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li-air batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp306718v
– volume: 57
  start-page: 771
  year: 2019
  ident: ref_512
  article-title: Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.004
– volume: 120
  start-page: 14736
  year: 2016
  ident: ref_527
  article-title: [Py1,4]-FSI-NaFSI-based ionicliquid electrolyte for sodium batteries: Na+ solvation and interfacial nano-structure on Au (111)
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b04729
– volume: 364
  start-page: 191
  year: 2017
  ident: ref_262
  article-title: Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.023
– volume: 349
  start-page: 45
  year: 2017
  ident: ref_614
  article-title: Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.013
– volume: 3
  start-page: eaao0713
  year: 2017
  ident: ref_297
  article-title: Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao0713
– volume: 3
  start-page: 16
  year: 2018
  ident: ref_619
  article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0047-2
– volume: 26
  start-page: 605
  year: 2016
  ident: ref_451
  article-title: Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503697
– volume: 5
  start-page: 5706
  year: 2014
  ident: ref_185
  article-title: Structure and properties of complex hydride perovskite materials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6706
– volume: 4
  start-page: 12947
  year: 2016
  ident: ref_192
  article-title: Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO)
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04492A
– volume: 7
  start-page: 3150
  year: 2019
  ident: ref_409
  article-title: Highly efficient and stable solid-state Li-O2 batteries using a perovskite solid electrolyte
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10771H
– volume: 423
  start-page: 349
  year: 2019
  ident: ref_219
  article-title: The synergistic effect of poly(ethylene glycol)-borate ester on the electrochemical performance of all solid state Si doped-poly(ethyleneglycol) hybrid polymer electrolyte for lithium ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.03.081
– volume: 8
  start-page: 7875
  year: 2013
  ident: ref_377
  article-title: Ionic conduction of blend poly(vinylidene fluoride-hexafluoro propylene) and poly(methyl methacrylate)-grafted natural rubber based solid polymer electrolyte
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)12854-9
– volume: 22
  start-page: 278
  year: 2016
  ident: ref_481
  article-title: Novel gel polymer electrolyte for high-performance lithium-sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.008
– volume: 10
  start-page: 4139
  year: 2017
  ident: ref_13
  article-title: Recent advances in solid polymer electrolytes for lithium batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1763-4
– volume: 305
  start-page: 1
  year: 2017
  ident: ref_495
  article-title: Synergistic effect of processing and composition x on conductivity of xLi2S-(100-x)P2S5 electrolytes
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.03.024
– volume: 6
  start-page: 14330
  year: 2018
  ident: ref_485
  article-title: Single ion conducting lithium sulfur polymer batteries with improved safety and stability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04619K
– volume: 13
  start-page: 1602952
  year: 2017
  ident: ref_364
  article-title: Ultrathin, lightweight, and wearable Li-O2 battery with high robustness and gravimetric/volumetric energy density
  publication-title: Small
  doi: 10.1002/smll.201602952
– volume: 50
  start-page: 11520
  year: 2014
  ident: ref_177
  article-title: Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05372A
– volume: 28
  start-page: 1707570
  year: 2018
  ident: ref_30
  article-title: Progress and perspective of solid-state lithium–sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707570
– volume: 25
  start-page: 3328
  year: 2013
  ident: ref_358
  article-title: A Facile mechanism for recharging Li2O2 in Li-O2 batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm401720n
– volume: 3
  start-page: 267
  year: 2018
  ident: ref_16
  article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 164
  start-page: A1731
  year: 2017
  ident: ref_22
  article-title: Review-practical challenges hindering the development of solid state Li ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1571707jes
– volume: 7
  start-page: 12925
  year: 2016
  ident: ref_437
  article-title: Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygenbatterie
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12925
– volume: 41
  start-page: 646
  year: 2017
  ident: ref_332
  article-title: Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.021
– volume: 7
  start-page: 10412
  year: 2019
  ident: ref_94
  article-title: Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02126D
– volume: 284
  start-page: 177
  year: 2018
  ident: ref_58
  article-title: Interfacial challenges and progress for inorganic all-solid-state lithium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.07.191
– volume: 2
  start-page: 833
  year: 2018
  ident: ref_40
  article-title: Advancing lithium metal batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.03.008
– volume: 2
  start-page: 7904
  year: 2017
  ident: ref_221
  article-title: Fluorene-containing cardo and fully aromatic single ion conducting polymer electrolyte for room temperature, high performance lithium ion batteries
  publication-title: ChemSelect
– volume: 283
  start-page: 279
  year: 2015
  ident: ref_229
  article-title: Construction of a lithium ion transport network in cathode with lithiated bis(benzene sulfonyl)imide based single ion polymer ionomers
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.137
– volume: 152
  start-page: 489
  year: 2015
  ident: ref_265
  article-title: Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.176
– volume: 11
  start-page: 12467
  year: 2019
  ident: ref_286
  article-title: Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b21770
– volume: 162
  start-page: A2236
  year: 2015
  ident: ref_417
  article-title: Pd3Co/MWCNTs composite electro-catalyst cathode material for use in lithium-oxygen batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0321512jes
– volume: 394
  start-page: 26
  year: 2018
  ident: ref_217
  article-title: A hybridized solid-gel nonflammable Li-battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.048
– volume: 6
  start-page: 7892
  year: 2015
  ident: ref_367
  article-title: Flexible lithium–oxygen battery based on a recoverable cathode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8892
– volume: 14
  start-page: 6572
  year: 2014
  ident: ref_391
  article-title: An advanced lithium-air battery exploiting an ionic liquid-based electrolyte
  publication-title: Nano Lett.
  doi: 10.1021/nl5031985
– volume: 7
  start-page: 23685
  year: 2015
  ident: ref_82
  article-title: Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first principles calculations
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07517
– volume: 28
  start-page: 7167
  year: 2016
  ident: ref_355
  article-title: One-electron mechanism in a gel–polymer electrolyte Li-O2 battery
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03718
– volume: 14
  start-page: 200
  year: 2019
  ident: ref_51
  article-title: Bridging the academic and industrial metrics for next-generation practical batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0371-8
– volume: 6
  start-page: 92579
  year: 2016
  ident: ref_81
  article-title: Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19415J
– volume: 9
  start-page: 1802927
  year: 2019
  ident: ref_100
  article-title: Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids
  publication-title: Adv. Enery Mater.
  doi: 10.1002/aenm.201802927
– volume: 29
  start-page: 1901047
  year: 2019
  ident: ref_323
  article-title: Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901047
– volume: 26
  start-page: 1747
  year: 2016
  ident: ref_426
  article-title: A moisture- and oxygen-impermeable separator for aprotic Li-O2 batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504437
– volume: 162
  start-page: A704
  year: 2015
  ident: ref_320
  article-title: All solid-state lithium batteries assembled with hybrid solid electrolytes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0731504jes
– volume: 1
  start-page: 1700135
  year: 2017
  ident: ref_352
  article-title: Advances in lithium-containing anodes of aprotic Li–O2 batteries: Challenges and strategies for improvements
  publication-title: Small Methods
  doi: 10.1002/smtd.201700135
– volume: 406
  start-page: 70
  year: 2018
  ident: ref_615
  article-title: Stable cycling of NaFePO4 cathodes in high salt concentration ionic liquid electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.09.102
– volume: 9
  start-page: 17835
  year: 2017
  ident: ref_70
  article-title: Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01137
– volume: 8
  start-page: 3745
  year: 2015
  ident: ref_408
  article-title: A high-rate and long cycle life solid-state lithium–air battery
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02867A
– volume: 204
  start-page: 780
  year: 2017
  ident: ref_348
  article-title: Advances and challenges in lithium-air batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.07.054
– volume: 316
  start-page: 47
  year: 2018
  ident: ref_612
  article-title: Molecular dynamics study of ammonium based co-cation Plasticizer effect on lithium ion dynamics in ionomer electrolytes
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.12.022
– volume: 318
  start-page: 102
  year: 2018
  ident: ref_96
  article-title: Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.07.005
– volume: 49
  start-page: 2679
  year: 2016
  ident: ref_260
  article-title: Effect of polymer architecture on the ionic conductivity. Densely grafted poly(ethylene oxide) brushes doped with LiTf
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00290
– volume: 9
  start-page: 1024
  year: 2016
  ident: ref_443
  article-title: A self-defense redox mediator for efficient lithium-O2 batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02803E
– volume: 11
  start-page: 2828
  year: 2018
  ident: ref_504
  article-title: High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01621F
– volume: 5
  start-page: 6310
  year: 2017
  ident: ref_489
  article-title: All-solid-state lithium–sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01147D
– volume: 138
  start-page: 15825
  year: 2016
  ident: ref_216
  article-title: Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10088
– volume: 428
  start-page: 93
  year: 2019
  ident: ref_263
  article-title: Synthesis and interface stability of polystyrene-poly(ethylene glycol)-polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.033
– volume: 6
  start-page: 1502214
  year: 2016
  ident: ref_314
  article-title: SiO2 Hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502214
– volume: 2
  start-page: 1700231
  year: 2018
  ident: ref_349
  article-title: Flexible metal–air batteries: Progress, challenges, and perspectives
  publication-title: Small Methods
  doi: 10.1002/smtd.201700231
– volume: 210
  start-page: 821
  year: 2016
  ident: ref_388
  article-title: Poly-vinylidene-fluoride/p-benzoquinone gel polymer electrolyte with good performance by redox mediator effect for Li-air battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.016
– volume: 8
  start-page: 40498
  year: 2018
  ident: ref_167
  article-title: Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08436J
– volume: 3
  start-page: 476
  year: 2004
  ident: ref_307
  article-title: The plastic-crystalline phase of succinonitrile as a universal matrix for solid state ionic conductors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1158
– volume: 20
  start-page: 7470
  year: 2018
  ident: ref_200
  article-title: Negative effective Li transference numbers in Li salt/ionic liquid mixtures: Does Li drift in the “wrong” direction?
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP08580J
– volume: 10
  start-page: 85
  year: 2018
  ident: ref_274
  article-title: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.017
– volume: 28
  start-page: 1801806
  year: 2018
  ident: ref_511
  article-title: Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801806
– volume: 10
  start-page: 6719
  year: 2018
  ident: ref_203
  article-title: Spectroscopic characterization of the SEI layer formed on lithium metal electrodes in phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18183
– volume: 12
  start-page: 1050
  year: 2013
  ident: ref_344
  article-title: A Stable cathode for the aprotic Li-O2 battery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3737
– volume: 4
  start-page: 1700072
  year: 2017
  ident: ref_5
  article-title: Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700072
– volume: 243
  start-page: 899
  year: 2013
  ident: ref_372
  article-title: Stability of polymer binders in Li-O2 batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.097
– volume: 283
  start-page: 349
  year: 2018
  ident: ref_315
  article-title: An effectively inhibiting lithium dendrite growth in-situ-polymerized gel polymer electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.06.169
– volume: 29
  start-page: 1701169
  year: 2017
  ident: ref_37
  article-title: Protected lithium-metal anodes in batteries: From liquid to solid
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701169
– volume: 7
  start-page: 30603
  year: 2017
  ident: ref_384
  article-title: A novel ionic liquid polymer electrolyte for quasi solid state lithium air batteries
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05035F
– volume: 7
  start-page: 41217
  year: 2017
  ident: ref_399
  article-title: A rechargeable Li-air fuel cell battery based on garnet solid electrolytes
  publication-title: Sci. Rep.
  doi: 10.1038/srep41217
– volume: 6
  start-page: 1501802
  year: 2016
  ident: ref_568
  article-title: Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501802
– volume: 30
  start-page: 1705702
  year: 2018
  ident: ref_39
  article-title: Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705702
– volume: 27
  start-page: 8095
  year: 2015
  ident: ref_366
  article-title: Flexible and foldable Li–O2 battery based on paper-ink cathode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503025
– ident: ref_42
  doi: 10.1007/978-3-319-19108-9
– volume: 6
  start-page: 19892
  year: 2016
  ident: ref_153
  article-title: Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep19892
– volume: 6
  start-page: 840
  year: 2018
  ident: ref_562
  article-title: Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09242C
– volume: 302
  start-page: 283
  year: 2016
  ident: ref_302
  article-title: Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li4La3Zr2O12 for 12 V-class bipolar batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.10.031
– volume: 31
  start-page: 1808100
  year: 2019
  ident: ref_500
  article-title: High-performance Li-SeSx all-solid-state lithium batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808100
– volume: 17
  start-page: 4656
  year: 2015
  ident: ref_587
  article-title: Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05333H
– volume: 7
  start-page: 881
  year: 2018
  ident: ref_269
  article-title: Supramolecular self-assembly of methylated Rotaxanes for solid polymer electrolyte application
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.8b00406
– volume: 55
  start-page: 6482
  year: 2016
  ident: ref_418
  article-title: Rechargeable room-temperature Na-CO2 batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602504
– volume: 5
  start-page: 6424
  year: 2017
  ident: ref_591
  article-title: A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA11165C
– volume: 247
  start-page: 975
  year: 2014
  ident: ref_559
  article-title: An all-solid state NASICON sodium battery operating at 200 °C
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.051
– volume: 22
  start-page: 953
  year: 2016
  ident: ref_385
  article-title: Emitfsi–Litfsi nanocomposite electrolytes for lithium-air batteries
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-015-2765-3
– volume: 582
  start-page: 435
  year: 2019
  ident: ref_616
  article-title: Poly(ionic liquid) ion gel membranes for all solid-state rechargeable sodium-ion battery
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.02.074
– volume: 257
  start-page: 31
  year: 2017
  ident: ref_255
  article-title: A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.037
– volume: 3
  start-page: 16103
  year: 2017
  ident: ref_454
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 71
  start-page: 48
  year: 2016
  ident: ref_524
  article-title: Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquids
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.07.014
– volume: 66
  start-page: 46
  year: 2016
  ident: ref_244
  article-title: A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.02.022
– volume: 10
  start-page: 19773
  year: 2018
  ident: ref_324
  article-title: High-performance cells containing lithium metal anodes, LiNi0.6Co0.2Mn0.2O2 (NCM 622) cathodes, and fluoroethylene carbonate-based electrolyte solution with practical loading
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07004
– volume: 58
  start-page: 6535
  year: 2019
  ident: ref_431
  article-title: DABCOnium: An efficient and high-voltage stable singlet oxygen quencher for metal–O2 cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901869
– volume: 121
  start-page: 2563
  year: 2017
  ident: ref_211
  article-title: Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles
  publication-title: Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11136
– volume: 8
  start-page: 32631
  year: 2016
  ident: ref_604
  article-title: Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11773
– volume: 29
  start-page: 1605531
  year: 2016
  ident: ref_283
  article-title: An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605531
– volume: 136
  start-page: 27
  year: 2019
  ident: ref_24
  article-title: Composite solid electrolytes for all-solid-state lithium batteries
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2018.10.004
– volume: 5
  start-page: 418
  year: 2015
  ident: ref_594
  article-title: Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6
  publication-title: J. Sci. Eng. B
– volume: 4
  start-page: 10038
  year: 2016
  ident: ref_7
  article-title: Polymer electrolytes for lithium polymer batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02621D
– volume: 5
  start-page: 7738
  year: 2017
  ident: ref_592
  article-title: A new Na[(FSO2)(n-C4F9SO2)N-based polymer electrolyte for solid-state sodium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01820G
– volume: 3
  start-page: e1602396
  year: 2017
  ident: ref_419
  article-title: Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602396
– volume: 46
  start-page: 617
  year: 2016
  ident: ref_380
  article-title: Protective PVDF-HFP-based membranes for air de-hydration at the cathode of the rechargeable Li–air cell
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-016-0951-3
– volume: 286
  start-page: 34
  year: 2016
  ident: ref_394
  article-title: Free standing flexible graphene oxide plus α-MnO2 composite cathodes for Li-air batteries
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2015.12.016
– volume: 2
  start-page: 17934
  year: 2014
  ident: ref_609
  article-title: Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03998J
– volume: 39
  start-page: 554
  year: 2017
  ident: ref_503
  article-title: A stable lithium–selenium interface via solid/liquid hybrid electrolytes: Blocking polyselenides and suppressing lithium dendrite
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.038
– volume: 389
  start-page: 140
  year: 2018
  ident: ref_88
  article-title: High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.021
– volume: 397
  start-page: 343
  year: 2018
  ident: ref_329
  article-title: A propylene carbonate based gel polymer electrolyte for extended cycle life and improved safety performance of lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.039
– volume: 8
  start-page: 28216
  year: 2016
  ident: ref_572
  article-title: Interfacial reactivity benchmarking of the Sodium Ion Conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10119
– volume: 55
  start-page: 5993
  year: 2016
  ident: ref_608
  article-title: Sodium ion transport mechanisms in antiperovskite electrolytes Na3OBr and Na4OI2: An In Situ neutron diffraction study
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00444
– volume: 43
  start-page: 4854
  year: 2019
  ident: ref_193
  article-title: High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4638
– volume: 12
  start-page: 938
  year: 2019
  ident: ref_212
  article-title: Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02617C
– volume: 9
  start-page: 9654
  year: 2017
  ident: ref_293
  article-title: Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16304
– volume: 28
  start-page: 447
  year: 2016
  ident: ref_150
  article-title: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.002
– volume: 15
  start-page: 47498
  year: 2019
  ident: ref_213
  article-title: Preparation and performance of poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47498
– volume: 4
  start-page: 10070
  year: 2016
  ident: ref_331
  article-title: Progress in nitrile-based polymer electrolytes for high performance lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02907H
– volume: 19
  start-page: 31
  year: 2019
  ident: ref_544
  article-title: Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.03.022
– volume: 202
  start-page: 100
  year: 2016
  ident: ref_204
  article-title: Physicochemical characterization of a new family of small alkyl phosphonium imide ionic liquids
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.130
– volume: 46
  start-page: 8580
  year: 2013
  ident: ref_225
  article-title: Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes
  publication-title: Macromolecules
  doi: 10.1021/ma401686r
– ident: ref_470
– volume: 249
  start-page: 397
  year: 2014
  ident: ref_253
  article-title: Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.116
– volume: 5
  start-page: 16231
  year: 2017
  ident: ref_438
  article-title: Redox-active poly(ionic liquid)s as active materials for energy storage applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10056B
– volume: 11
  start-page: 185
  year: 2018
  ident: ref_161
  article-title: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02723K
– ident: ref_15
– volume: 28
  start-page: 4306
  year: 2016
  ident: ref_54
  article-title: Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504225
– volume: 12
  start-page: 6183
  year: 2016
  ident: ref_56
  article-title: Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices
  publication-title: Small
  doi: 10.1002/smll.201602109
– volume: 136
  start-page: 16335
  year: 2014
  ident: ref_357
  article-title: Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508794r
– volume: 8
  start-page: 1956
  year: 2017
  ident: ref_476
  article-title: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li–S cell
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00593
– volume: 162
  start-page: A2538
  year: 2015
  ident: ref_520
  article-title: Review-practical issues and future perspective for Na-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0151514jes
– volume: 6
  start-page: 12098
  year: 2018
  ident: ref_509
  article-title: Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03449D
– volume: 8
  start-page: 10617
  year: 2016
  ident: ref_147
  article-title: Li7La3Zr2O12 interface modification for Li dendrite prevention
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00831
– volume: 28
  start-page: 8051
  year: 2016
  ident: ref_133
  article-title: Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03870
– volume: 296
  start-page: 1064
  year: 2019
  ident: ref_339
  article-title: A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene)-poly(propylene carbonate) for solid-state lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.182
– volume: 6
  start-page: 1502237
  year: 2016
  ident: ref_583
  article-title: Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502237
– volume: 53
  start-page: 6264
  year: 2014
  ident: ref_141
  article-title: Synthesis and crystal chemical study of fast ion conductor Li7-3xGaxLa3Zr2O12 with x = 0.08 to 0.84
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500803h
– volume: 27
  start-page: 550
  year: 2015
  ident: ref_371
  article-title: Understanding the chemical stability of polymers for lithium-air batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm5040003
– volume: 3
  start-page: 1741
  year: 2016
  ident: ref_536
  article-title: Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600221
– volume: 54
  start-page: 436
  year: 2015
  ident: ref_368
  article-title: Liquid-free lithium–oxygen batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408008
– volume: 3
  start-page: 1037
  year: 2019
  ident: ref_580
  article-title: Reactivity-guided interface design in Na metal solid-state batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.019
– volume: 383
  start-page: 150
  year: 2018
  ident: ref_237
  article-title: Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.02.026
– volume: 138
  start-page: 1768
  year: 2016
  ident: ref_180
  article-title: Li2OHCl crystalline electrolyte for stable metallic lithium anodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11851
– volume: 5
  start-page: 3483
  year: 2017
  ident: ref_325
  article-title: Regulating Li deposition at artificial solid electrolyte interphases
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10204B
– volume: 4
  start-page: 17120
  year: 2014
  ident: ref_550
  article-title: Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolyte
  publication-title: RSC Adv.
  doi: 10.1039/C4RA00996G
– volume: 26
  start-page: 2617
  year: 2014
  ident: ref_140
  article-title: DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAlx3+La3Zr2O12 garnet
  publication-title: Chem. Mater.
  doi: 10.1021/cm5000999
– volume: 2
  start-page: 1747
  year: 2018
  ident: ref_578
  article-title: Electrolyte and interface engineering for solid-state sodium batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.028
– volume: 762
  start-page: 157
  year: 2018
  ident: ref_137
  article-title: Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.05.255
– volume: 23
  start-page: 497
  year: 2017
  ident: ref_33
  article-title: Polymer electrolytes for lithium ion batteries: A critical study
  publication-title: Ionics
  doi: 10.1007/s11581-016-1908-6
– volume: 5
  start-page: 23844
  year: 2017
  ident: ref_205
  article-title: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08233A
– volume: 77
  start-page: 58
  year: 2017
  ident: ref_230
  article-title: Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.02.013
– volume: 56
  start-page: 7505
  year: 2017
  ident: ref_428
  article-title: A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701290
– volume: 563
  start-page: 835
  year: 2018
  ident: ref_389
  article-title: Synthesis of a polyacrylonitrile/tetrachloro-1,4-benzoquinone gel polymer electrolyte for high-performance Li-air batteries
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.06.023
– volume: 90
  start-page: 26
  year: 1985
  ident: ref_291
  article-title: On the conductivity of polycrystalline materials
  publication-title: Ber. Bunsenges. Phys. Chem.
  doi: 10.1002/bbpc.19860900105
– volume: 27
  start-page: 1604754
  year: 2017
  ident: ref_3
  article-title: Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604754
– volume: 244
  start-page: 170
  year: 2013
  ident: ref_267
  article-title: Electrochemical properties of semi-interpenetrating polymer network solid polymer electrolytes based on multi-armed oligo(ethyleneoxy) phosphate
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.02.069
– volume: 10
  start-page: 8289
  year: 2016
  ident: ref_501
  article-title: Heteroatomic SenS8-n molecules confined in nitrogen-doped mesoporous carbons as reversible cathode materials for high-performance lithium batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02315
– volume: 19
  start-page: 1707533
  year: 2018
  ident: ref_28
  article-title: Progress of the interface design in all-solid-state Li-S batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707533
– volume: 365
  start-page: 293
  year: 2017
  ident: ref_541
  article-title: Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.079
– volume: 53
  start-page: 958
  year: 2018
  ident: ref_68
  article-title: Interface engineering of sulfide electrolytes for all-solid-state lithium batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.061
– volume: 7
  start-page: 40036
  year: 2017
  ident: ref_542
  article-title: Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts
  publication-title: Sci. Rep.
  doi: 10.1038/srep40036
– volume: 15
  start-page: 37
  year: 2018
  ident: ref_486
  article-title: Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.03.015
– volume: 12
  start-page: 161
  year: 2018
  ident: ref_38
  article-title: Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.12.002
– volume: 4
  start-page: 1600445
  year: 2017
  ident: ref_41
  article-title: Advanced micro/nanostructures for lithium metal anodes
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600445
– volume: 392
  start-page: 232
  year: 2018
  ident: ref_239
  article-title: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.006
– volume: 7
  start-page: 3882
  year: 2019
  ident: ref_168
  article-title: Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11259B
– volume: 9
  start-page: 13694
  year: 2017
  ident: ref_319
  article-title: Suppression of lithium dendrite formation by using LAGP-PEO(LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00336
– volume: 7
  start-page: 1601196
  year: 2017
  ident: ref_531
  article-title: A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601196
– volume: 55
  start-page: 472
  year: 2015
  ident: ref_561
  article-title: Issues and challenges for bulk type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201400112
– volume: 383
  start-page: 144
  year: 2018
  ident: ref_275
  article-title: Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.066
– volume: 43
  start-page: 7810
  year: 2017
  ident: ref_547
  article-title: Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.03.095
– volume: 24
  start-page: 6007
  year: 2018
  ident: ref_59
  article-title: Recent developments of all-solid-state lithium secondary batteries with sulfide inorganic electrolytes
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201704568
– volume: 5
  start-page: 489
  year: 2013
  ident: ref_347
  article-title: Charging a Li–O2 battery using a redox mediator
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1646
– volume: 118
  start-page: 5144
  year: 2014
  ident: ref_395
  article-title: Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp501319e
– volume: 8
  start-page: 7756
  year: 2016
  ident: ref_441
  article-title: How to improve capacity and cycling stability for next generation Li–O2 batteries: Approach with a solid electrolyte and elevated redox mediator concentrations
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10979
– volume: 3
  start-page: 764
  year: 2016
  ident: ref_506
  article-title: NiS nanorods as cathode materials for all-solid-state lithium batteries with excellent rate capability and cycling stability
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500570
– volume: 210
  start-page: 71
  year: 2016
  ident: ref_479
  article-title: High capacity and cycle stability rechargeable lithium-sulfur batteries by sandwiched gel polymer electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.087
– volume: 307
  start-page: 678
  year: 2016
  ident: ref_308
  article-title: Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.01.032
– volume: 3
  start-page: 52
  year: 2017
  ident: ref_567
  article-title: Rechargeable sodium all-solid-state battery
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00321
– volume: 6
  start-page: 6022
  year: 2018
  ident: ref_420
  article-title: A flexible polymer-based Li–air battery using a reduced graphene oxide/Li composite anode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01117F
– volume: 19
  start-page: 5880
  year: 2017
  ident: ref_173
  article-title: Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67-xTiO3
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP07757A
– volume: 2
  start-page: 364
  year: 2017
  ident: ref_508
  article-title: Na storage capability Investigation of a carbon nanotube-encapsulated Fe1-xS composite
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00660
– volume: 6
  start-page: 2302
  year: 2013
  ident: ref_397
  article-title: The pursuit of rechargeable solid-state Li-air batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40702k
– volume: 42
  start-page: 2140
  year: 2016
  ident: ref_73
  article-title: Enhanced electrochemical performance of surface modified LiCoO2 for all-solid-state lithium batteries
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.09.126
– ident: ref_11
– volume: 158
  start-page: A302
  year: 2011
  ident: ref_342
  article-title: Rechargeable lithium/TEGDME-LiPF6/O2 battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3531981
– volume: 6
  start-page: 11463
  year: 2018
  ident: ref_156
  article-title: Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02276C
– volume: 55
  start-page: 9634
  year: 2016
  ident: ref_104
  article-title: Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604158
– volume: 17
  start-page: 3013
  year: 2017
  ident: ref_80
  article-title: Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00330
– volume: 11
  start-page: 1197
  year: 2018
  ident: ref_129
  article-title: A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03365F
– volume: 10
  start-page: 4113
  year: 2018
  ident: ref_289
  article-title: New insights into the compositional dependence of Li-Ion transport in polymer–ceramic composite electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17301
– volume: 203
  start-page: 109
  year: 2016
  ident: ref_528
  article-title: Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.124
– volume: 331
  start-page: 132
  year: 2016
  ident: ref_455
  article-title: A review on separators for lithium sulfur battery: Progress and prospects
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2016.09.044
– volume: 120
  start-page: 4276
  year: 2016
  ident: ref_586
  article-title: Novel Na+ ion diffusion mechanism in mixed organic–inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11746
– volume: 20
  start-page: 2817
  year: 2016
  ident: ref_590
  article-title: Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: Effect of active and passive fillers
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-016-3284-6
– volume: 1
  start-page: 47
  year: 2014
  ident: ref_446
  article-title: Role of the lithium salt in the performance of lithium-oxygen batteries: A comparative study
  publication-title: ChemElectrochem
  doi: 10.1002/celc.201300160
– volume: 220
  start-page: 609
  year: 2016
  ident: ref_196
  article-title: Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storage
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.134
– volume: 7
  start-page: 1701437
  year: 2017
  ident: ref_305
  article-title: Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–electrolyte interface for solid state lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701437
– volume: 27
  start-page: 1605989
  year: 2017
  ident: ref_326
  article-title: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605989
– volume: 4
  start-page: 3
  year: 2019
  ident: ref_434
  article-title: Hybrid polymer electrolyte for Li-O2 batteries
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2018.08.002
– volume: 237
  start-page: 237
  year: 2017
  ident: ref_199
  article-title: Influence of anion structure on ion dynamics in polymer gel electrolytes composed of poly(ionic liquid), ionic liquid and Li salt
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.219
– volume: 162
  start-page: A344
  year: 2015
  ident: ref_71
  article-title: Utilization of Al2O3 atomic layer deposition for Li ion pathways in solid state Li batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0441503jes
– volume: 10
  start-page: 34077
  year: 2018
  ident: ref_354
  article-title: Three-dimensional interconnected network architecture with homogeneously dispersed carbon nanotubes and layered MoS2 as a highly efficient cathode catalyst for lithium-oxygen battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06912
– volume: 3
  start-page: 189
  year: 2019
  ident: ref_560
  article-title: Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0078-2
– volume: 397
  start-page: 157
  year: 2018
  ident: ref_617
  article-title: The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.008
– volume: 17
  start-page: 3182
  year: 2017
  ident: ref_169
  article-title: A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00715
– volume: 235
  start-page: 56
  year: 2017
  ident: ref_429
  article-title: One-dimensional glass micro-fillers in gel polymer electrolytes for Li-O2 battery applications
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.064
– volume: 28
  start-page: 10529
  year: 2016
  ident: ref_55
  article-title: Carbon-nanotube Fibers for wearable devices and smart textiles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601186
– volume: 1
  start-page: 16141
  year: 2016
  ident: ref_8
  article-title: A solid future for battery development
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.141
– volume: 723
  start-page: 787
  year: 2017
  ident: ref_491
  article-title: Performance improvement of all-solid-state Li-S batteries with optimizing morphology and structure of sulfur composite electrode
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.06.135
– volume: 134
  start-page: 15042
  year: 2012
  ident: ref_189
  article-title: Superionic conductivity in lithium-rich anti-perovskites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305709z
– volume: 27
  start-page: 8318
  year: 2015
  ident: ref_564
  article-title: Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03656
– volume: 148
  start-page: 193813
  year: 2018
  ident: ref_201
  article-title: Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5016460
– volume: 31
  start-page: 1900376
  year: 2019
  ident: ref_62
  article-title: Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900376
– volume: 409
  start-page: 31
  year: 2019
  ident: ref_276
  article-title: Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.088
– volume: 5
  start-page: 20771
  year: 2017
  ident: ref_103
  article-title: Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06873E
– volume: 248
  start-page: 943
  year: 2014
  ident: ref_101
  article-title: A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.005
– volume: 174
  start-page: 185
  year: 2015
  ident: ref_535
  article-title: Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.178
– volume: 9
  start-page: 286
  year: 2017
  ident: ref_91
  article-title: Cation mixing properties toward codiffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08435
– volume: 218
  start-page: 271
  year: 2016
  ident: ref_306
  article-title: Organic-inorganic hybrid solid electrolytes for solid-state lithium cells operating at room temperature
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.09.141
– volume: 397
  start-page: 95
  year: 2018
  ident: ref_159
  article-title: Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.050
– volume: 13
  start-page: 1601530
  year: 2017
  ident: ref_597
  article-title: In situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries
  publication-title: Small
  doi: 10.1002/smll.201601530
– volume: 353
  start-page: 287
  year: 2017
  ident: ref_138
  article-title: Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.014
– volume: 8
  start-page: 20710
  year: 2016
  ident: ref_316
  article-title: Composite gel polymer electrolyte based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05301
– volume: 10
  start-page: 4306
  year: 2019
  ident: ref_581
  article-title: A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na-CO2 batteries
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05178J
– volume: 8
  start-page: 2782
  year: 2015
  ident: ref_407
  article-title: A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01604E
– volume: 121
  start-page: 182
  year: 2017
  ident: ref_450
  article-title: Effects of high and low salt concentration in electrolytes at lithium–metal anode surfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10774
– volume: 673
  start-page: 295
  year: 2016
  ident: ref_601
  article-title: Microstructure control and properties of β″-Al2O3 solid electrolyte
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.03.009
– volume: 28
  start-page: 857
  year: 2016
  ident: ref_442
  article-title: Sustainable redox mediation for lithium–oxygen batteries by a composite protective layer on the lithium-metal anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503169
– volume: 56
  start-page: 15368
  year: 2017
  ident: ref_453
  article-title: Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709305
– volume: 10
  start-page: 1081
  year: 2019
  ident: ref_497
  article-title: A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09061-9
– volume: 12
  start-page: 194
  year: 2017
  ident: ref_36
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 7
  start-page: 23798
  year: 2015
  ident: ref_392
  article-title: Novel stable gel polymer electrolyte: Toward a high safety and long life Li–air battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08462
– volume: 125
  start-page: 1027
  year: 2012
  ident: ref_266
  article-title: Gel polymer electrolyte with semi-IPN fabric for polymer lithium-ion battery
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.33963
– volume: 2
  start-page: 1378
  year: 2017
  ident: ref_401
  article-title: Boosting the cycle life of Li-O2 batteries at elevated temperature by employing a hybrid polymer-ceramic solid electrolyte
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00292
– volume: 19
  start-page: 20904
  year: 2017
  ident: ref_116
  article-title: Materials space of solid-state electrolytes: Unraveling chemical composition–structure–ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00518K
– volume: 151
  start-page: A1120
  year: 2004
  ident: ref_49
  article-title: Solvated Li-ion transfer at interface between graphite and electrolyte
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1763141
– volume: 52
  start-page: 6091
  year: 2016
  ident: ref_574
  article-title: A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02131J
– volume: 7
  start-page: 188
  year: 2019
  ident: ref_328
  article-title: Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-typepolymer electrolytes for lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08391F
– volume: 56
  start-page: 753
  year: 2017
  ident: ref_149
  article-title: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608924
– volume: 4
  start-page: 8091
  year: 2016
  ident: ref_90
  article-title: Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02294D
– volume: 117
  start-page: 21064
  year: 2013
  ident: ref_164
  article-title: Degradation of NASICON-type materials in contact with lithium metal. Formation of mixed conducting interphases (MCI) on solid electrolytes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4051275
– volume: 5
  start-page: 23919
  year: 2017
  ident: ref_79
  article-title: Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07972A
– volume: 117
  start-page: 10403
  year: 2017
  ident: ref_35
  article-title: Toward safe lithium metal anode in rechargeable batteries: A review
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 6
  start-page: 1601392
  year: 2016
  ident: ref_456
  article-title: Polysulfide-shuttle Control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601392
– volume: 10
  start-page: 1568
  year: 2017
  ident: ref_466
  article-title: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01004D
– volume: 18
  start-page: 9504
  year: 2016
  ident: ref_243
  article-title: Ion transport in polycarbonate based solid polymer electrolytes: Experimental and computational investigations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00757K
– volume: 564
  start-page: 62
  year: 2018
  ident: ref_220
  article-title: A novel non-woven fabric supported gel polymer electrolyte based on poly(methylmethacrylate-polyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.07.014
– volume: 122
  start-page: 9852
  year: 2018
  ident: ref_166
  article-title: A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b02556
– volume: 5
  start-page: 1402235
  year: 2015
  ident: ref_534
  article-title: A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402235
– volume: 5
  start-page: 1501082
  year: 2015
  ident: ref_234
  article-title: Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501082
– volume: 16
  start-page: 7030
  year: 2016
  ident: ref_120
  article-title: Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03223
– volume: 4
  start-page: 7127
  year: 2014
  ident: ref_373
  article-title: A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li–O2 batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep07127
– volume: 8
  start-page: 26842
  year: 2016
  ident: ref_136
  article-title: About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09059
– volume: 146
  start-page: 395
  year: 2014
  ident: ref_77
  article-title: Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.08.139
– volume: 17
  start-page: 309
  year: 2019
  ident: ref_296
  article-title: Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.07.004
– volume: 52
  start-page: 1637
  year: 2016
  ident: ref_480
  article-title: A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08279J
– volume: 5
  start-page: 25025
  year: 2017
  ident: ref_555
  article-title: The crystal structure and sodium disorder of high-temperature polymorph β-Na3PS4
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08391B
– volume: 3
  start-page: 1500359
  year: 2016
  ident: ref_179
  article-title: Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500359
– volume: 47
  start-page: 35
  year: 2018
  ident: ref_411
  article-title: “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.036
– volume: 28
  start-page: 180015
  year: 2018
  ident: ref_494
  article-title: Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives
  publication-title: Adv. Funct. Mater.
– volume: 284
  start-page: 14
  year: 2016
  ident: ref_178
  article-title: Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X = Cl, Br)
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2015.11.027
– volume: 11
  start-page: 3298
  year: 2018
  ident: ref_208
  article-title: Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02093K
– volume: 58
  start-page: 2169
  year: 2019
  ident: ref_361
  article-title: O2 adsorption associated with sulfur vacancies on MoS2 microspheres
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b03300
– volume: 6
  start-page: 33733
  year: 2016
  ident: ref_571
  article-title: Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor
  publication-title: Sci. Rep.
  doi: 10.1038/srep33733
– volume: 46
  start-page: 487
  year: 2016
  ident: ref_529
  article-title: Performance validation of sodium-ion batteries using an ionic liquid electrolyte
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-016-0940-6
– volume: 50
  start-page: 2653
  year: 2017
  ident: ref_29
  article-title: Electrode–electrolyte interfaces in lithium–sulfur batteries with liquid or inorganic solid electrolytes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00460
– volume: 4
  start-page: 5191
  year: 2016
  ident: ref_337
  article-title: A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00828C
– volume: 2
  start-page: 2734
  year: 2017
  ident: ref_25
  article-title: Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00849
– volume: 334
  start-page: 43
  year: 2019
  ident: ref_271
  article-title: LiCoO2/Li7La3Zr2O12 nanocomposite cathodes synthesized via self-assembled block copolymer templates and used in all-solid-state lithium batteries
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2019.01.034
– volume: 343
  start-page: 1210
  year: 2014
  ident: ref_1
  article-title: Where do batteries end and supercapcitors begin?
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 318
  start-page: 45
  year: 2018
  ident: ref_111
  article-title: Stability of garnet-type Li ion conductors: An overview
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.09.018
– volume: 133
  start-page: 529
  year: 2014
  ident: ref_152
  article-title: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.04.099
– volume: 3
  start-page: 10760
  year: 2015
  ident: ref_473
  article-title: Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01037C
– volume: 2
  start-page: 1161
  year: 2011
  ident: ref_346
  article-title: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200352v
– volume: 239
  start-page: 326
  year: 2013
  ident: ref_118
  article-title: Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.155
– volume: 4
  start-page: 3253
  year: 2016
  ident: ref_273
  article-title: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08574H
– volume: 19
  start-page: 3079
  year: 2015
  ident: ref_452
  article-title: Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-015-2910-z
– volume: 46
  start-page: 2457
  year: 2001
  ident: ref_400
  article-title: Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(01)00458-3
– volume: 12
  start-page: 452
  year: 2013
  ident: ref_259
  article-title: Single-ion BAB triblock copolymers as highly efficient electrolytes for Lithium-metal electrolytes
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3602
– volume: 5
  start-page: 150129
  year: 2015
  ident: ref_553
  article-title: Na3PS4: A novel chalcogenide solid electrolyte with high ionic conductivity
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501294
– volume: 27
  start-page: 4040
  year: 2015
  ident: ref_143
  article-title: First-principles studies on cation dopants and electrolyte/cathode interphases for lithium garnets
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01023
– volume: 18
  start-page: 3796
  year: 2016
  ident: ref_475
  article-title: Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery
  publication-title: Green Chem.
  doi: 10.1039/C6GC00444J
– volume: 1
  start-page: 1700017
  year: 2017
  ident: ref_493
  article-title: Li2S-based solid solutions as positive electrodes with full utilization and superlong cycle life in all-solid-state Li/S batteries
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201700017
– volume: 336
  start-page: 75
  year: 2016
  ident: ref_228
  article-title: A dense transparent polymeric single ion conductor for lithium ion batteries with remarkable long-term stability
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.033
– volume: 385
  start-page: 55
  year: 2018
  ident: ref_334
  article-title: 5 V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.017
– volume: 2
  start-page: 5470
  year: 2014
  ident: ref_176
  article-title: Novel Li3ClO based glasses with superionic properties for lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA15087A
– volume: 113
  start-page: 7094
  year: 2016
  ident: ref_195
  article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1600422113
– volume: 4
  start-page: 4728
  year: 2016
  ident: ref_186
  article-title: Super-ion inspired colorful hybrid perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09646D
– volume: 10
  start-page: 14727
  year: 2018
  ident: ref_516
  article-title: High-crystallinity urchin-like VS4 anode for high-performance lithium-ion storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01876
– volume: 5
  start-page: 4940
  year: 2017
  ident: ref_232
  article-title: High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25 O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10066J
– volume: 164
  start-page: A2031
  year: 2017
  ident: ref_370
  article-title: A lithiated perfluorinated sulfonic acid polymer electrolyte for lithium-oxygen batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1281709jes
– volume: 16
  start-page: 7148
  year: 2016
  ident: ref_513
  article-title: High-energy all-solid-state lithium batteries with ultralong cycle life
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03448
– volume: 33
  start-page: 500
  year: 2016
  ident: ref_365
  article-title: Growth of Ru-modified Co3O4 nanosheets on carbon textiles toward flexible and efficient cathodes for flexible Li–O2 batteries
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201500193
– volume: 525
  start-page: 349
  year: 2017
  ident: ref_223
  article-title: Superior polymer backbone with poly(arylene ether) over polyamide for single ion conducting polymer electrolytes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.12.011
– volume: 278
  start-page: 375
  year: 2015
  ident: ref_533
  article-title: Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.047
– volume: 2
  start-page: 17035
  year: 2017
  ident: ref_170
  article-title: Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.35
– volume: 9
  start-page: 1802235
  year: 2019
  ident: ref_502
  article-title: Solid-state lithium/selenium–sulfur chemistry enabled via a robust solid-electrolyte interphase
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802235
– volume: 28
  start-page: 1874
  year: 2016
  ident: ref_69
  article-title: Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505008
– volume: 9
  start-page: 2490
  year: 2018
  ident: ref_492
  article-title: Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04762-z
– ident: ref_155
– volume: 1
  start-page: 2373
  year: 2018
  ident: ref_490
  article-title: High cycle capability of all-solid-state lithium–sulfur batteries using composite electrodes by liquid-phase and mechanical mixing
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00227
– volume: 324
  start-page: 712
  year: 2016
  ident: ref_525
  article-title: Towards safer sodium-ionbatteries via organic solvent/ionic liquid based hybrid electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.003
– volume: 149
  start-page: A1267
  year: 2002
  ident: ref_2
  article-title: Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1502684
– volume: 12
  start-page: 2496
  year: 2019
  ident: ref_461
  article-title: Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00578A
– volume: 31
  start-page: 1806082
  year: 2019
  ident: ref_214
  article-title: Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806082
– volume: 22
  start-page: 949
  year: 2010
  ident: ref_72
  article-title: Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy
  publication-title: Chem. Mater.
  doi: 10.1021/cm901819c
– volume: 7
  start-page: 1053
  year: 2014
  ident: ref_105
  article-title: Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43357A
– volume: 6
  start-page: 11631
  year: 2018
  ident: ref_132
  article-title: Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03358G
– volume: 68
  start-page: 344
  year: 2015
  ident: ref_261
  article-title: Single-ion diblock copolymers for solid-state polymer electrolytes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.04.056
– volume: 18
  start-page: 6113
  year: 2018
  ident: ref_317
  article-title: PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01421
– volume: 129
  start-page: 13929
  year: 2017
  ident: ref_421
  article-title: An ultraflexible silicon–oxygen battery fiber with high energy density
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201707840
– volume: 7
  start-page: 1601272
  year: 2017
  ident: ref_598
  article-title: Mixed phase solid-state plastic crystal electrolytes based on a phosphonium cation for sodium devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601272
– volume: 7
  start-page: 1602923
  year: 2017
  ident: ref_487
  article-title: High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602923
– volume: 1
  start-page: 1700219
  year: 2017
  ident: ref_521
  article-title: Progress in the development of sodium-ion solid electrolytes
  publication-title: Small Methods
  doi: 10.1002/smtd.201700219
– volume: 17
  start-page: 2967
  year: 2017
  ident: ref_459
  article-title: Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00221
– volume: 3
  start-page: 69
  year: 2016
  ident: ref_482
  article-title: Nano cellulose-laden composite polymer electrolytes for high performing lithium sulphur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.01.008
– volume: 387
  start-page: 72
  year: 2018
  ident: ref_92
  article-title: In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.016
– volume: 555
  start-page: 502
  year: 2018
  ident: ref_362
  article-title: A lithium–oxygen battery with a long cycle life in an air-like atmosphere
  publication-title: Nature
  doi: 10.1038/nature25984
– volume: 164
  start-page: A6213
  year: 2017
  ident: ref_4
  article-title: Highly conductive, ionic liquid-based polymer electrolytes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0331701jes
– volume: 3
  start-page: e1601659
  year: 2017
  ident: ref_123
  article-title: Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601659
– volume: 9
  start-page: 21773
  year: 2017
  ident: ref_284
  article-title: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03806
– volume: 164
  start-page: A666
  year: 2017
  ident: ref_146
  article-title: Contact between garnet-type solid electrolyte and lithium metal anode: Influence on charge transfer resistance and short circuit prevention
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0841704jes
– volume: 4
  start-page: 15189
  year: 2016
  ident: ref_433
  article-title: A polymer lithium–oxygen battery based on semi-polymeric conducting ionomers as the polymer electrolyte
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06082J
– volume: 9
  start-page: 2334
  year: 2016
  ident: ref_435
  article-title: Li–O2 cells with LiBr as an electrolyte and a redox mediator
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00700G
– volume: 3
  start-page: 1500306
  year: 2016
  ident: ref_410
  article-title: Self-regulative nanogelator solid electrolyte: A new option to improve the safety of lithium battery
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500306
– volume: 169
  start-page: 757
  year: 2016
  ident: ref_238
  article-title: Life Cycle Assessment and resource analysis of all-solid-state batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.064
– volume: 394
  start-page: 74
  year: 2018
  ident: ref_109
  article-title: Progress in solid electrolytes toward realizing solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.003
– volume: 222
  start-page: 293
  year: 2016
  ident: ref_252
  article-title: Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.173
– volume: 1
  start-page: 16114
  year: 2016
  ident: ref_576
  article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.114
– volume: 5
  start-page: 18457
  year: 2017
  ident: ref_154
  article-title: Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12 -polyethylene oxide-tetraethyleneglycol dimethyl ether
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05832B
– volume: 53
  start-page: 4195
  year: 2017
  ident: ref_605
  article-title: A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC00794A
– volume: 1
  start-page: 239
  year: 2018
  ident: ref_457
  article-title: Structural design of lithium-sulfur batteries: From fundamental research to practical application
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0010-3
– volume: 51
  start-page: 2864
  year: 2010
  ident: ref_254
  article-title: The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.04.022
– volume: 9
  start-page: 41837
  year: 2017
  ident: ref_406
  article-title: New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12092
– volume: 389
  start-page: 198
  year: 2018
  ident: ref_18
  article-title: Review on solid electrolytes for all-solid-state lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.022
– volume: 7
  start-page: 11009
  year: 2016
  ident: ref_569
  article-title: Design and synthesis of the superionic conductor Na10SnP2S12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11009
– volume: 5
  start-page: 1500865
  year: 2015
  ident: ref_99
  article-title: Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500865
– volume: 12
  start-page: 2809
  year: 2018
  ident: ref_556
  article-title: Core–Shell Fe1-xS@Na2.9PS3.95Se0.05 Nanorods for room temperature all-solid-state sodium batteries with high energy density
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00073
– volume: 391
  start-page: 10
  year: 2018
  ident: ref_31
  article-title: Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.054
– volume: 416
  start-page: 21
  year: 2019
  ident: ref_548
  article-title: Stabilizing Na-metal batteries with a manganese oxide cathode using a solid-state composite electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.01.082
– volume: 140
  start-page: 6767
  year: 2018
  ident: ref_130
  article-title: Mitigating interfacial potential drop of cathode–solid electrolyte via ionic conductor Layer to enhance interface dynamics for solid batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03319
– volume: 46
  start-page: 5237
  year: 2017
  ident: ref_57
  article-title: A Review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00139H
– volume: 58
  start-page: 90
  year: 2016
  ident: ref_471
  article-title: Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.04.003
– volume: 29
  start-page: 1605512
  year: 2017
  ident: ref_566
  article-title: Highly stable sodium batteries enabled by functional ionic polymer membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605512
– volume: 8
  start-page: 14552
  year: 2016
  ident: ref_117
  article-title: Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03070
– volume: 307
  start-page: 684
  year: 2016
  ident: ref_335
  article-title: Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.054
– volume: 28
  start-page: 3122
  year: 2016
  ident: ref_549
  article-title: Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00698
– volume: 2
  start-page: 497
  year: 2018
  ident: ref_134
  article-title: Interphase engineering enabled all-ceramic lithium battery
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.007
– volume: 299
  start-page: 820
  year: 2019
  ident: ref_215
  article-title: An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.01.039
– volume: 354
  start-page: 68
  year: 2017
  ident: ref_148
  article-title: Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.026
– volume: 298
  start-page: 166
  year: 2015
  ident: ref_235
  article-title: High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.08.035
– volume: 10
  start-page: 2609
  year: 2017
  ident: ref_585
  article-title: A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02420G
– volume: 29
  start-page: 1805301
  year: 2019
  ident: ref_298
  article-title: Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805301
– volume: 164
  start-page: A2474
  year: 2017
  ident: ref_27
  article-title: All-solid-state battery electrode sheets prepared by a slurry coating process
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0951712jes
– volume: 4
  start-page: 59
  year: 2016
  ident: ref_505
  article-title: Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries Using lithium metal anode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.02.004
– volume: 389
  start-page: 84
  year: 2018
  ident: ref_236
  article-title: Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.020
– volume: 15
  start-page: 2740
  year: 2015
  ident: ref_194
  article-title: Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00600
– volume: 329
  start-page: 428
  year: 2016
  ident: ref_523
  article-title: Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.049
– volume: 11
  start-page: 735
  year: 2018
  ident: ref_514
  article-title: VS4 nanoparticles anchored on graphene sheets as a high-rate and stable electrode material for sodium-ion batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702031
– volume: 45
  start-page: 413
  year: 2018
  ident: ref_285
  article-title: A durable and safe solid-state lithium battery with a hybrid electrolyte membrane
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.028
– volume: 9
  start-page: 2391
  year: 2016
  ident: ref_413
  article-title: A Unique hybrid quasi-solid-state electrolyte for Li–O2 batteries with improved cycle life and safety
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600536
– volume: 390
  start-page: 148
  year: 2018
  ident: ref_472
  article-title: S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.052
– volume: 529
  start-page: 377
  year: 2016
  ident: ref_356
  article-title: A lithium–oxygen battery based on lithium superoxide
  publication-title: Nature
  doi: 10.1038/nature16484
– volume: 38
  start-page: 1018
  year: 2017
  ident: ref_191
  article-title: Contrasting energy efficiency in various ceramic sintering processes
  publication-title: J. Eur. Ceram. Soc.
– volume: 12
  start-page: 5775
  year: 2012
  ident: ref_424
  article-title: A metal-free, lithium-ion oxygen battery: A step forward to safety in lithium-air batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl303087j
– volume: 30
  start-page: 1804684
  year: 2018
  ident: ref_86
  article-title: In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804684
– volume: 164
  start-page: A6254
  year: 2017
  ident: ref_303
  article-title: 12 V-class bipolar lithium-ion batteries using Li4Ti5O12 anode for low-voltage system applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0421701jes
– volume: 162
  start-page: A573
  year: 2015
  ident: ref_396
  article-title: The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0201504jes
– volume: 278
  start-page: 98
  year: 2015
  ident: ref_165
  article-title: Interphase formation on lithium solid electrolytes -an in situ approach to study interfacial reactions by photoelectron spectroscopy
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2015.06.001
– volume: 8
  start-page: 1703012
  year: 2018
  ident: ref_599
  article-title: Solid-state sodium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703012
– volume: 225
  start-page: 151
  year: 2017
  ident: ref_247
  article-title: Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.113
– volume: 389
  start-page: 120
  year: 2018
  ident: ref_110
  article-title: Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.019
– volume: 6
  start-page: 750
  year: 2013
  ident: ref_341
  article-title: Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee23966g
– volume: 2
  start-page: 17119
  year: 2017
  ident: ref_577
  article-title: A facile surface chemistry route to a stabilized lithium metal anode
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.119
– volume: 7
  start-page: 1917
  year: 2019
  ident: ref_47
  article-title: Revisiting polymeric single lithium-ion conductorsas an organic route for all-solid-state lithium ion and metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09056D
– volume: 747
  start-page: 227
  year: 2018
  ident: ref_95
  article-title: Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.03.027
– ident: ref_519
– volume: 17
  start-page: 565
  year: 2017
  ident: ref_122
  article-title: Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04695
– volume: 50
  start-page: 4448
  year: 2014
  ident: ref_245
  article-title: Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49588D
– volume: 4
  start-page: 2403
  year: 2016
  ident: ref_444
  article-title: Interfacial construction of Li2O2 for a performance-improved polymer Li-O2 battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10436J
– volume: 121
  start-page: 1431
  year: 2017
  ident: ref_127
  article-title: Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10268
– volume: 15
  start-page: 1498
  year: 2015
  ident: ref_50
  article-title: Negligible negative space-charge layer effects at oxide-electrolyte/electrode interfaces of thin-film batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl5035896
– volume: 18
  start-page: 230
  year: 2017
  ident: ref_613
  article-title: Molecular dynamics study of a dual-cation ionomer electrolyte
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201600821
– volume: 1
  start-page: 1080
  year: 2016
  ident: ref_463
  article-title: Durability of the Li1+xTi2-xAlx(PO4)3 solid electrolyte in lithium-sulfur batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00481
– volume: 55
  start-page: 9965
  year: 2016
  ident: ref_182
  article-title: Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604554
– volume: 332
  start-page: 51
  year: 2016
  ident: ref_522
  article-title: Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.099
– volume: 46
  start-page: 176
  year: 2018
  ident: ref_294
  article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.037
– volume: 8
  start-page: 34309
  year: 2016
  ident: ref_474
  article-title: A safe high-performance all-solid-state lithium-vanadium battery with a freestanding V2O5 nanowire composite paper cathode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10358
– volume: 10
  start-page: 10053
  year: 2018
  ident: ref_510
  article-title: Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18798
– volume: 121
  start-page: 1
  year: 2017
  ident: ref_43
  article-title: Advances in lithium-sulfur batteries
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2017.09.001
– volume: 6
  start-page: 1600736
  year: 2016
  ident: ref_135
  article-title: Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600736
– volume: 18
  start-page: 3829
  year: 2018
  ident: ref_171
  article-title: Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01111
– volume: 119
  start-page: 6947
  year: 2015
  ident: ref_375
  article-title: Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp511794g
– volume: 33
  start-page: 45
  year: 2017
  ident: ref_48
  article-title: In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.027
– volume: 104
  start-page: 4303
  year: 2004
  ident: ref_256
  article-title: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr030203g
– volume: 2
  start-page: 594
  year: 2018
  ident: ref_467
  article-title: Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.001
– volume: 15
  start-page: 1804701
  year: 2019
  ident: ref_425
  article-title: Component-interaction reinforced quasi-solid electrolyte with multifunctionality for flexible Li-O2 battery with superior safety under extreme conditions
  publication-title: Small
  doi: 10.1002/smll.201804701
– volume: 23
  start-page: 2603
  year: 2016
  ident: ref_151
  article-title: Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells
  publication-title: Ionics
  doi: 10.1007/s11581-016-1905-9
– volume: 121
  start-page: 21087
  year: 2017
  ident: ref_202
  article-title: Role of Li concentration and the SEI Layer in enabling high performance Li metal electrodes using a phosphonium bis-(fluorosulfonyl)imide ionic liquid
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b01929
– volume: 55
  start-page: 12538
  year: 2016
  ident: ref_281
  article-title: Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201607539
– volume: 10
  start-page: 7069
  year: 2018
  ident: ref_295
  article-title: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18123
– volume: 8
  start-page: 1702184
  year: 2017
  ident: ref_6
  article-title: Gel polymer electrolytes for electrochemical energy storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702184
– volume: 57
  start-page: 2096
  year: 2018
  ident: ref_282
  article-title: A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710841
– volume: 30
  start-page: e1802563
  year: 2018
  ident: ref_517
  article-title: A highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802563
– volume: 7
  start-page: 627
  year: 2014
  ident: ref_63
  article-title: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE41655K
– volume: 5
  start-page: 10658
  year: 2017
  ident: ref_74
  article-title: Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01227F
– volume: 319
  start-page: 247
  year: 2016
  ident: ref_460
  article-title: In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sufur cells using azll solid-state polymer electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.093
– volume: 6
  start-page: 40199
  year: 2016
  ident: ref_589
  article-title: Development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA06047A
– volume: 7
  start-page: 4720
  year: 2015
  ident: ref_338
  article-title: Rigid–flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5083683
– volume: 16
  start-page: 459
  year: 2016
  ident: ref_313
  article-title: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04117
– volume: 31
  start-page: 1807789
  year: 2019
  ident: ref_333
  article-title: Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807789
– volume: 8
  start-page: 1702374
  year: 2018
  ident: ref_403
  article-title: Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702374
– volume: 115
  start-page: 3770
  year: 2018
  ident: ref_121
  article-title: Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1719758115
– volume: 372
  start-page: 1
  year: 2017
  ident: ref_301
  article-title: Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.10.059
– volume: 6
  start-page: 23712
  year: 2018
  ident: ref_464
  article-title: Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09069F
– volume: 10
  start-page: 1150
  year: 2017
  ident: ref_575
  article-title: Compatibility issues between electrodes and electrolytes in solid-state batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00534B
– volume: 5
  start-page: 6257
  year: 2017
  ident: ref_172
  article-title: Enhanced Li+ conduction in perovskite Li3xLa(2/3)-x□(1/3)-2xTiO3 solid-electrolytes via microstructural engineering
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00196G
– volume: 2
  start-page: 2563
  year: 2017
  ident: ref_45
  article-title: Promising routes to a high Li+ transference number electrolyte for lithium ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00792
– volume: 25
  start-page: 4663
  year: 2013
  ident: ref_175
  article-title: Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors
  publication-title: Chem. Mater.
  doi: 10.1021/cm4016222
– volume: 31
  start-page: 478
  year: 2017
  ident: ref_468
  article-title: Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.045
– volume: 11
  start-page: 2142
  year: 2018
  ident: ref_12
  article-title: Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00907D
– volume: 29
  start-page: 3029
  year: 2017
  ident: ref_89
  article-title: Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00034
– volume: 393
  start-page: 193
  year: 2018
  ident: ref_190
  article-title: Development of the cold sintering process and its application in solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.015
– volume: 1
  start-page: 16030
  year: 2016
  ident: ref_64
  article-title: High-power all-solid-state batteries using sulfide superionic conductors
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.30
– volume: 9
  start-page: 1542
  year: 2017
  ident: ref_113
  article-title: Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13902
– volume: 4
  start-page: 13419
  year: 2016
  ident: ref_387
  article-title: Stretchable lithium-air batteries for wearable electronics
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05800K
– volume: 23
  start-page: 246
  year: 2017
  ident: ref_603
  article-title: Influence of Fe and Ti addition on properties of Na+-β/β″-alumina solid electrolytes
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-017-6120-3
– volume: 162
  start-page: A2406
  year: 2015
  ident: ref_197
  article-title: Review: Super-concentrated electrolytes for lithium batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0041514jes
– volume: 3
  start-page: 19218
  year: 2015
  ident: ref_209
  article-title: Poly(ethylene oxide)-based electrolytes for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03471J
– volume: 164
  start-page: A3454
  year: 2017
  ident: ref_272
  article-title: A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0221714jes
– volume: 205
  start-page: 487
  year: 2012
  ident: ref_83
  article-title: High-capacity thin film lithium batteries with sulfide solid electrolytes
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2012.01.086
– volume: 262
  start-page: 738
  year: 2014
  ident: ref_241
  article-title: Polycarbonate-based solid polymer electrolytes for Li-ion batteries
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2013.08.014
– volume: 293
  start-page: 18
  year: 2016
  ident: ref_530
  article-title: New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3-xO12
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2016.06.005
– volume: 397
  start-page: 79
  year: 2018
  ident: ref_222
  article-title: Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.007
– volume: 8
  start-page: 3668
  year: 2015
  ident: ref_538
  article-title: Photopolymer electrolytes for sustainable, upscalable, safe, and ambient-temperature sodium-ion secondary batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500873
– volume: 286
  start-page: 24
  year: 2016
  ident: ref_65
  article-title: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2015.11.034
– volume: 29
  start-page: 1606552
  year: 2017
  ident: ref_353
  article-title: In Situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium–oxygen batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606552
– volume: 165
  start-page: A6008
  year: 2018
  ident: ref_44
  article-title: Review-solid electrolytes for safe and high energy density lithium-sulfur batteries: Promises and challenges
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0041801jes
– volume: 2
  start-page: 17036
  year: 2017
  ident: ref_351
  article-title: Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.36
– volume: 10
  start-page: 2167
  year: 2016
  ident: ref_360
  article-title: Cathode based on molybdenum disulfide nanoflakes for lithium–oxygen batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06672
– volume: 2
  start-page: 2659
  year: 2017
  ident: ref_440
  article-title: Bifunctional redox mediator supported by an anionic surfactant for long-cycle Li–O2 batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00884
– ident: ref_518
– volume: 88
  start-page: 325
  year: 2017
  ident: ref_108
  article-title: Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.04.007
– volume: 57
  start-page: 27
  year: 2015
  ident: ref_565
  article-title: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.05.001
– volume: 5
  start-page: 16984
  year: 2017
  ident: ref_160
  article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04320A
– volume: 301
  start-page: 47
  year: 2016
  ident: ref_310
  article-title: A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.111
– volume: 14
  start-page: 1801798
  year: 2018
  ident: ref_427
  article-title: Flexible, flame-resistant, and dendrite-impermeable gel-polymer for Li-O2/air batteries workable under hurdle conditions
  publication-title: Small
  doi: 10.1002/smll.201801798
– volume: 22
  start-page: 1909
  year: 2018
  ident: ref_588
  article-title: Electrochemical investigations of Na0.7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-018-3891-5
– volume: 10
  start-page: 860
  year: 2017
  ident: ref_350
  article-title: Status and prospects of polymer electrolytes for solid state Li–O2 (air) batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03499C
– volume: 9
  start-page: 18809
  year: 2017
  ident: ref_288
  article-title: Garnet solid electrolyte protected Li-metal batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03887
– volume: 195
  start-page: 2431
  year: 2010
  ident: ref_602
  article-title: Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.11.120
– volume: 547
  start-page: 1
  year: 2018
  ident: ref_318
  article-title: Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.10.033
– volume: 10
  start-page: 2556
  year: 2018
  ident: ref_84
  article-title: Re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16176
– volume: 380
  start-page: 115
  year: 2018
  ident: ref_277
  article-title: Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.082
– volume: 378
  start-page: 48
  year: 2018
  ident: ref_162
  article-title: Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.021
– volume: 4
  start-page: 1700693
  year: 2017
  ident: ref_432
  article-title: A rational design of high-performance sandwich-structured quasi solid state Li-O2 battery with redox mediator
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201700693
– volume: 138
  start-page: 12258
  year: 2016
  ident: ref_145
  article-title: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06777
– volume: 163
  start-page: A96
  year: 2016
  ident: ref_75
  article-title: Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0311602jes
– volume: 2
  start-page: 365
  year: 2014
  ident: ref_610
  article-title: Ion conduction and phase morphology in sulfonate copolymer ionomers based on ionic liquid–sodium cation mixtures
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13835F
– volume: 396
  start-page: 574
  year: 2018
  ident: ref_582
  article-title: Na3NH2B12H12 as high performance solid electrolyte for all-solid-state Na ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.054
– volume: 55
  start-page: 4487
  year: 2016
  ident: ref_386
  article-title: High-Performance Lithium–Air Battery with a Coaxial-Fiber Architecture
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511832
– volume: 54
  start-page: 2442
  year: 2016
  ident: ref_233
  article-title: Highly concentrated polycarbonate-based solid polymer electrolytes having extraordinary electrochemical stability
  publication-title: J. Polym. Sci. B
  doi: 10.1002/polb.24235
– volume: 10
  start-page: 2605
  year: 2017
  ident: ref_106
  article-title: Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201700409
– volume: 81
  start-page: 114
  year: 2018
  ident: ref_14
  article-title: Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2017.12.004
– volume: 253
  start-page: 430
  year: 2017
  ident: ref_300
  article-title: Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.08.162
– volume: 680
  start-page: 646
  year: 2016
  ident: ref_163
  article-title: Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: The effect of dispersant
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.04.173
– volume: 162
  start-page: A2551
  year: 2015
  ident: ref_224
  article-title: Review–On order and disorder in polymer electrolytes batteries and energy storage
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0161514jes
– volume: 116
  start-page: 140
  year: 2016
  ident: ref_19
  article-title: Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00563
– volume: 57
  start-page: 13608
  year: 2018
  ident: ref_85
  article-title: Salt-based organic–inorganic nanocomposites: Towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807304
– volume: 8
  start-page: 21381
  year: 2016
  ident: ref_526
  article-title: Highly safe ionic liquid electrolytes for sodium-ion battery: Wide electrochemical window and good thermal stability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07054
– volume: 2
  start-page: 1385
  year: 2017
  ident: ref_20
  article-title: Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00175
– volume: 152
  start-page: A1985
  year: 2005
  ident: ref_405
  article-title: High-performance genuine lithium polymer battery obtained by dine-ceramic-electrolyte coating of LiCoO2
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2007207
– volume: 396
  start-page: 824
  year: 2018
  ident: ref_311
  article-title: Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.038
– volume: 8
  start-page: 1702657
  year: 2018
  ident: ref_60
  article-title: Recent progress of the solid-state electrolytes for high-energy metal-based batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702657
– volume: 140
  start-page: 82
  year: 2018
  ident: ref_125
  article-title: Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10864
– volume: 5
  start-page: 74
  year: 2019
  ident: ref_9
  article-title: Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes
  publication-title: Chem.
  doi: 10.1016/j.chempr.2018.12.002
– volume: 11
  start-page: 87
  year: 2018
  ident: ref_573
  article-title: Na11Sn2PS12: A new solid state sodium superionic conductor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03083E
– volume: 37
  start-page: 81
  year: 2017
  ident: ref_507
  article-title: Large-scale synthesis of highly uniform Fe1-xS nanostructures as a high-rate anode for sodium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.012
– volume: 4
  start-page: 1817
  year: 2013
  ident: ref_415
  article-title: A reversible long-life lithium–air battery in ambient air
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2855
– volume: 3
  start-page: 797
  year: 2017
  ident: ref_483
  article-title: Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00491A
– volume: 1
  start-page: 3048
  year: 2018
  ident: ref_374
  article-title: Investigation of rechargeable poly(ethylene oxide)-based solid lithium-oxygen batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00702
– volume: 10
  start-page: 10076
  year: 2018
  ident: ref_579
  article-title: New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: A joint experimental and computational study
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19037
– volume: 4
  start-page: 15266
  year: 2016
  ident: ref_26
  article-title: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA05439K
– volume: 28
  start-page: 2634
  year: 2016
  ident: ref_499
  article-title: Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04940
– volume: 139
  start-page: 13779
  year: 2017
  ident: ref_287
  article-title: Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high Ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06364
– volume: 372
  start-page: 270
  year: 2017
  ident: ref_596
  article-title: Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.10.083
– volume: 4
  start-page: 15823
  year: 2016
  ident: ref_532
  article-title: A ceramic/polymer composite solid electrolyte for sodium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07590H
– volume: 33
  start-page: 363
  year: 2017
  ident: ref_10
  article-title: Recent advances in all-solid-state rechargeable lithium batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.028
– volume: 244
  start-page: 641
  year: 2013
  ident: ref_336
  article-title: Characteristics of lithium phosphorous oxynitride thin films deposited by metal-organic chemical vapor deposition technique
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.109
– volume: 175
  start-page: 124
  year: 2015
  ident: ref_540
  article-title: Characterization of NaX (X: TFSI, FSI) - PEO based solid polymer electrolytes for sodium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.03.228
– volume: 274
  start-page: 55
  year: 2015
  ident: ref_264
  article-title: Semi-interpenetrating polymer network of poly(methyl methacrylate) and ether-modified polysiloxane
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2015.02.013
– volume: 3
  start-page: 1600089
  year: 2016
  ident: ref_563
  article-title: Vacancy-contained tetragonal Na3SbS4 superionic conductor
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600089
– volume: 29
  start-page: 1700378
  year: 2017
  ident: ref_363
  article-title: High-performance integrated self-package flexible Li-O2 battery based on stable composite anode and flexible gas diffusion layer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700378
– volume: 119
  start-page: 5416
  year: 2019
  ident: ref_557
  article-title: Sodium metal anodes: Emerging solutions to dendrite growth
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00642
– volume: 10
  start-page: 13588
  year: 2018
  ident: ref_87
  article-title: Integrated interface strategy toward room temperature solid-state lithium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02240
– volume: 188
  start-page: 23
  year: 2016
  ident: ref_340
  article-title: A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.11.088
– volume: 29
  start-page: 3423
  year: 2017
  ident: ref_607
  article-title: Halogenated sodium-closo-dodecaboranes as solid-state ion conductors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04797
– volume: 12
  start-page: 3101
  year: 2016
  ident: ref_382
  article-title: Cable-type water-survivable flexible Li-O2 battery
  publication-title: Small
  doi: 10.1002/smll.201600540
– volume: 8
  start-page: 1072
  year: 2017
  ident: ref_449
  article-title: Revisiting the corrosion of the aluminum current collector in lithium-ion batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02933
– volume: 382
  start-page: 160
  year: 2018
  ident: ref_21
  article-title: All-solid-state lithium-ion and lithium metal batteries-paving the way to large-scale production
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.062
– volume: 412
  start-page: 78
  year: 2019
  ident: ref_97
  article-title: Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.036
– volume: 21
  start-page: 1713
  year: 2017
  ident: ref_327
  article-title: Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-017-3529-z
– volume: 52
  start-page: 71
  year: 2015
  ident: ref_240
  article-title: Realization of high performance polycarbonate-based Li polymer batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.01.020
– volume: 63
  start-page: 91
  year: 2015
  ident: ref_242
  article-title: Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.02.052
– volume: 392
  start-page: 206
  year: 2018
  ident: ref_107
  article-title: Hybrid electrolytes for lithium metal batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.099
– volume: 4
  start-page: 365
  year: 2019
  ident: ref_17
  article-title: Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0349-7
– volume: 114
  start-page: 11069
  year: 2017
  ident: ref_322
  article-title: An anion-immobilized composite electrolyte fordendrite-free lithium metal anodes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1708489114
– volume: 87
  start-page: 134303
  year: 2013
  ident: ref_174
  article-title: Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.134303
– volume: 28
  start-page: 8413
  year: 2016
  ident: ref_369
  article-title: A flexible and wearable lithium-oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602800
– volume: 28
  start-page: 2384
  year: 2016
  ident: ref_112
  article-title: Structural and electrochemical consequences of Al and Ga co-substitution in Li7La3Zr2O12 solid electrolytes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00579
– volume: 1
  start-page: 1065
  year: 2016
  ident: ref_52
  article-title: Flexible batteries: From mechanics to devices
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00401
– volume: 564
  start-page: 663
  year: 2018
  ident: ref_227
  article-title: Porous polymer electrolyte based on poly(vinylidene fluoride)/comb-liked polystyrene via ionic band functionalization
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.07.078
– volume: 4
  start-page: 9044
  year: 2016
  ident: ref_554
  article-title: Structural and Na-ion conduction characteristics of Na3PSxSe4-x
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03027K
– volume: 50
  start-page: 5458
  year: 2014
  ident: ref_379
  article-title: A quasi-solid-state rechargeable lithium–oxygen battery based on a gel polymer electrolyte with an ionic liquid
  publication-title: Chem. Commun.
  doi: 10.1039/c4cc01243g
– volume: 7
  start-page: 1601759
  year: 2017
  ident: ref_398
  article-title: A super-hydrophobic quasi-solid electrolyte for Li-O2 battery with improved safety and cycle life in humid atmosphere
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601759
– volume: 29
  start-page: 7961
  year: 2017
  ident: ref_119
  article-title: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03002
– volume: 176
  start-page: 1108
  year: 2015
  ident: ref_378
  article-title: A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.07.111
– volume: 51
  start-page: 2757
  year: 2018
  ident: ref_543
  article-title: Linear viscoelasticity and cation conduction in polyurethane Sulfonate ionomers with ions in the segment-single phase systems
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b02509
– volume: 19
  start-page: 14615
  year: 2017
  ident: ref_251
  article-title: Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00129K
– volume: 9
  start-page: 33819
  year: 2017
  ident: ref_412
  article-title: Composite gel polymer electrolyte for improved cyclability in lithium-oxygen batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08448
– volume: 8
  start-page: 3637
  year: 2015
  ident: ref_184
  article-title: Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02941D
– volume: 54
  start-page: 10440
  year: 2015
  ident: ref_139
  article-title: Synthesis, crystal chemistry, and electrochemical properties of Li7-2xLa3Zr2-xMoxO12 (x = 0.1–0.4): Stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b01895
– volume: 27
  start-page: 7861
  year: 2015
  ident: ref_595
  article-title: Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503816
– volume: 21
  start-page: 1879
  year: 2017
  ident: ref_46
  article-title: On the way to high-conductivity single lithium-ion conductors
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-017-3638-8
– volume: 11
  start-page: 709
  year: 2018
  ident: ref_515
  article-title: Flower-like vanadium sulfide/reduced graphene oxide composite: An energy storage material for aluminum-ion batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702270
– volume: 5
  start-page: 1700996
  year: 2018
  ident: ref_593
  article-title: High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700996
– volume: 29
  start-page: 1606042
  year: 2017
  ident: ref_126
  article-title: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606042
– volume: 300
  start-page: 60
  year: 2017
  ident: ref_484
  article-title: Single ion conducting sodium ion, batteries enabled by a sodium ion exchanged poly(bis(4-carbonyl benzene sulfonyl)imide-co-2,5-diamino benzene sulfonic acid) polymer electrolyte
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2016.12.001
– volume: 353
  start-page: 333
  year: 2017
  ident: ref_34
  article-title: Challenges and issues facing lithium metal for solid-state rechargeable batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.018
– volume: 7
  start-page: 19231
  year: 2017
  ident: ref_496
  article-title: Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium–sulfur batteries
  publication-title: RSC Adv.
  doi: 10.1039/C7RA02174G
– volume: 390
  start-page: 297
  year: 2018
  ident: ref_404
  article-title: Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.016
– volume: 165
  start-page: A2274
  year: 2018
  ident: ref_436
  article-title: A comparative evaluation of redox mediators for Li-O2 batteries: A critical review
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0901810jes
– volume: 6
  start-page: 1600467
  year: 2016
  ident: ref_537
  article-title: A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600467
– volume: 6
  start-page: 47833
  year: 2016
  ident: ref_226
  article-title: A capsule-type gelled polymer electrolyte for rechargeable lithium batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA07341G
– volume: 29
  start-page: 1605561
  year: 2017
  ident: ref_552
  article-title: Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605561
– volume: 337
  start-page: 563
  year: 2012
  ident: ref_345
  article-title: A reversible and higher-rate Li-O2 battery
  publication-title: Science
  doi: 10.1126/science.1223985
– volume: 15
  start-page: 3317
  year: 2015
  ident: ref_102
  article-title: Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00538
– volume: 5
  start-page: 027125
  year: 2015
  ident: ref_210
  article-title: Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate
  publication-title: AIP Adv.
  doi: 10.1063/1.4913320
– volume: 7
  start-page: 12032
  year: 2016
  ident: ref_198
  article-title: Superconcentrated electrolytes for a high-voltage lithium-ion battery
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12032
– volume: 259
  start-page: 213
  year: 2018
  ident: ref_279
  article-title: Ordered mesogenic units-containing hyperbranched star liquid crystal all-solid-state polymer electrolyte for high-safety lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.163
– volume: 2
  start-page: 229
  year: 2019
  ident: ref_206
  article-title: Sustainable, dendrite free lithium-metal electrode cycling achieved with polymer composite electrolytes based on a poly(ionic liquid) host
  publication-title: Batter. Supercaps
  doi: 10.1002/batt.201800120
– volume: 28
  start-page: 2400
  year: 2016
  ident: ref_76
  article-title: Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00610
– volume: 7
  start-page: 3770
  year: 2016
  ident: ref_376
  article-title: Evaluation and stability of PEDOT polymer electrodes for Li-O2 batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01986
– ident: ref_430
  doi: 10.1002/anie.201903459
– volume: 56
  start-page: 5006
  year: 2017
  ident: ref_606
  article-title: Modified anion packing of Na2B12H12 in close to room temperature superionic conductors
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00013
– volume: 30
  start-page: 8134
  year: 2018
  ident: ref_181
  article-title: Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02568
– volume: 7
  start-page: 1596
  year: 2016
  ident: ref_187
  article-title: Molecular origin of properties of organic–inorganic hybrid perovskites: The big picture from small clusters
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00435
– volume: 219
  start-page: 235
  year: 2016
  ident: ref_66
  article-title: Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.09.155
– volume: 410–411
  start-page: 162
  year: 2019
  ident: ref_98
  article-title: All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.016
– volume: 9
  start-page: 12461
  year: 2017
  ident: ref_114
  article-title: Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00614
– volume: 7
  start-page: 1602417
  year: 2017
  ident: ref_439
  article-title: An advanced separator for Li-O2 batteries: Maximizing the effect of redox mediators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602417
– volume: 55
  start-page: 8551
  year: 2016
  ident: ref_551
  article-title: An air-stable Na3PS4 superionic conductor prepared by a rapid and economic synthetic procedure
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601546
– volume: 4
  start-page: 10329
  year: 2016
  ident: ref_78
  article-title: All-solid-state lithium-ion batteries with TiS2 nanosheets and sulphide solid electrolytes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01628F
– volume: 295
  start-page: 65
  year: 2016
  ident: ref_158
  article-title: A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2016.07.013
– volume: 382
  start-page: 190
  year: 2018
  ident: ref_462
  article-title: A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.074
– volume: 8
  start-page: 1800035
  year: 2018
  ident: ref_61
  article-title: Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800035
– volume: 123
  start-page: 12126
  year: 2019
  ident: ref_93
  article-title: Exfoliated MoS2 as electrode for all solid state rechargeable lithium-ion batteries
  publication-title: ACS J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01816
– volume: 8
  start-page: 7843
  year: 2016
  ident: ref_67
  article-title: Insights into the performance limits of the Li7P3S11 superionic conductor: A combined first-principles and experimental study
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00833
– volume: 7
  start-page: 416
  year: 2014
  ident: ref_448
  article-title: Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42351D
– volume: 19
  start-page: 16426
  year: 2017
  ident: ref_611
  article-title: Molecular dynamics study of the effect of tetraglyme plasticizer on dual-cation monomer electrolytes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP02129A
– volume: 31
  start-page: 1804815
  year: 2019
  ident: ref_124
  article-title: An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804815
– volume: 53
  start-page: 168
  year: 2018
  ident: ref_312
  article-title: Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.030
– volume: 8
  start-page: 3473
  year: 2017
  ident: ref_477
  article-title: Polymer-rich composite electrolytes for all solid-state Li–S cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01321
– volume: 138
  start-page: 9385
  year: 2016
  ident: ref_304
  article-title: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05341
– volume: 113
  start-page: 13313
  year: 2016
  ident: ref_458
  article-title: Mastering the interface for advanced all-solid-state lithium rechargeable batteries
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1615912113
– volume: 84
  start-page: 21
  year: 2016
  ident: ref_231
  article-title: Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.12.036
– volume: 134
  start-page: 1
  year: 2018
  ident: ref_445
  article-title: A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2018.07.001
– volume: 2
  start-page: 745
  year: 2007
  ident: ref_469
  article-title: Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.06.108
– volume: 28
  start-page: 4821
  year: 2016
  ident: ref_546
  article-title: Scandium-substituted Na3Zr2(SiO4)2(PO4) Prepared by a solution-assisted solid-state reaction method as sodium-ion conductors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02059
– ident: ref_309
  doi: 10.1002/adfm.201900392
– volume: 2
  start-page: 132
  year: 2019
  ident: ref_207
  article-title: Enabling high lithium conductivity in polymerized ionic liquid block copolymer electrolytes
  publication-title: Batter. Supercaps
  doi: 10.1002/batt.201800104
– volume: 8
  start-page: 33642
  year: 2016
  ident: ref_248
  article-title: A novel single-ion-conducting polymer electrolyte derived from CO2-based multifunctional polycarbonate
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11384
– volume: 16
  start-page: 4521
  year: 2016
  ident: ref_465
  article-title: High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01754
– volume: 237
  start-page: 259
  year: 2017
  ident: ref_249
  article-title: Polycondensation as a versatile synthetic route to aliphatic polycarbonates for solid polymer electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.217
– volume: 395
  start-page: 137
  year: 2018
  ident: ref_280
  article-title: Six-arm star polymer based on discotic liquid crystal as high performance all-solid-state polymer electrolyte for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.069
– volume: 128
  start-page: 3181
  year: 2016
  ident: ref_343
  article-title: Experimental and computational analysis of the solvent-dependent O2/Li+-O2− redox couple: Standard potentials, coupling strength, and implications for lithium-oxygen batteries
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201509143
– volume: 202
  start-page: 332
  year: 2012
  ident: ref_142
  article-title: Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.10.064
– volume: 4
  start-page: 1600377
  year: 2017
  ident: ref_246
  article-title: In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600377
– volume: 287
  start-page: 22
  year: 2016
  ident: ref_423
  article-title: A gel polymer membrane for lithium-ion oxygen battery
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2016.01.043
– volume: 1
  start-page: 678
  year: 2016
  ident: ref_258
  article-title: Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00216
– volume: 5
  start-page: 3377
  year: 2017
  ident: ref_558
  article-title: Na3+xMxP1-xS4 (M=Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09809F
– volume: 382
  start-page: 179
  year: 2018
  ident: ref_478
  article-title: Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.063
– volume: 5
  start-page: 11124
  year: 2017
  ident: ref_250
  article-title: An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02423A
– volume: 16
  start-page: 572
  year: 2017
  ident: ref_131
  article-title: Negating interfacial impedance in garnet-based solid-state Li metal batteries
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4821
– volume: 12
  start-page: 217
  year: 2019
  ident: ref_321
  article-title: Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2205-7
– volume: 7
  start-page: 2845
  year: 2014
  ident: ref_402
  article-title: Gel-derived cation–π stacking films of carbon nanotube–graphene complexes as oxygen cathodes
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402567
– volume: 51
  start-page: 11062
  year: 2012
  ident: ref_414
  article-title: From Li-O2 to Li-air batteries: Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204983
– volume: 51
  start-page: 676
  year: 2015
  ident: ref_422
  article-title: A lithium air battery with a lithiated Al–carbon anode
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07315K
– volume: 7
  start-page: 3895
  year: 2019
  ident: ref_488
  article-title: Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core–shell S/BP2000 nanocomposite
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12443D
– volume: 5
  start-page: 139
  year: 2016
  ident: ref_23
  article-title: All solid-state polymer electrolytes for high-performance lithium ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.07.003
– volume: 310
  start-page: 71
  year: 2017
  ident: ref_278
  article-title: Crosslinked perfluoropolyether solid electrolytes for lithium ion transport
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2017.08.007
SSID ssj0000331829
Score 2.6110659
SecondaryResourceType review_article
Snippet Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3892
SubjectTerms Batteries
Chemical Sciences
Commercialization
Conductivity
Electric power
Electric vehicles
Electrodes
Electrolytes
Energy
Engineering Sciences
Fire hazards
Hazard mitigation
Ion currents
Ions
Laboratories
Lithium
Lithium batteries
Market penetration
Material chemistry
Mechanical properties
Molten salt electrolytes
Other
Plasma sintering
Polymers
R&D
Rechargeable batteries
Research & development
Review
Solid electrolytes
Solid state
Title Building Better Batteries in the Solid State: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/31775348
https://www.proquest.com/docview/2548642518
https://www.proquest.com/docview/2319501055
https://hal.sorbonne-universite.fr/hal-02474699
https://pubmed.ncbi.nlm.nih.gov/PMC6926585
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED7R8jIepgEbZANktr3sISK248TmBbWIUqEJoW1IfYscxxaVIGWj8Ps5J26gA_GY-KxEd7bv--zzHcB3WQpDtaIxcgERo8e3saoMixOnpChpkhjTRFucZ-PL9GwiJmHD7S6EVS7WxGahrmbG75EfIJGRiJUFlUe3f2NfNcqfroYSGj1YxSVYyj6sDk_OL351uywJxzHLVJuXlCO_P7jRFD0iumm25Il6Vz4O8iXI_D9W8pnzGX2A9wE1kkFr5nVYsfUGrD3LJbgJ2TAUuCbD5oYOaTNnIhEm05ogzCO_Z9fTijTo8pAMSHsq8BEuRyd_jsdxKIoQm5Rn89gYXlJUoK5cxRwVVlWOC8ldnpjU6cSxxLrMVRR5Gys5dkqlk5lkHIFBWuX8E_TrWW23gbgkUxrdvRaZSh3ipJwiGlS51c5SnasIfiwUVJiQMdwXrrgukDl4ZRZPyozgWyd72-bJeFXqK-q5E_CprceDn4V_h1ghR6quHmgEOwszFGFC3RVP5o9gv2vGqeDPN3RtZ_cow31NW1_xM4Kt1mrdpxAmITFLsXe-ZM-lf1luqadXTbrtTDGEaeLz27_1Bd4hllL-miITO9Cf_7u3u4hX5uUe9OTodC8MTXw6ndBHKyzq3Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcEG8CBczrwCGq34mRENoCy5YuvdBKvaWOY6srlWyhWxB_it_IOK92AXHrNR4n1jwy39ieGYDneakcs4alGAuoFD2-T03leEqDyVXJKHWuuW2xoyd78uO-2l-BX30uTLxW2f8Tmx91NXdxj3wDA5kcsbJi-Zvjr2nsGhVPV_sWGq1abPufPzBkO3m99Q7l-4Lz8fvdt5O06yqQOin0InVOlAxXYKtQ8cCUN1UQKhcho04GSwOnPuhQMQx8eClwksxDrnMu0LPKKhP43lW4JAV68piZPv4w7OlQgRbCTVsFFcfpxhfL0P8iKOBLfm_1MN66_BvS_nkz85yrG1-Hax1GJaNWqW7Aiq9vwtVzlQtvgd7s2mmTzSYfiLR1OjHsJrOaIKgkn-dHs4o0WPYVGZH2DOI27F0Is-7AWj2v_T0ggWpjEVxYpY0MiMoyhtjTZN4Gz2xmEnjZM6hwXX3y2CbjqMA4JTKzOGNmAs8G2uO2Ksc_qZ4inweCWEh7MpoW8Rkik0xqY76zBNZ7MRSd-Z4UZ8qWwJNhGA0vnqbY2s9PkUbEDrqxv2gCd1upDZ9CUIZhoMTZ2ZI8l9ayPFLPDpvi3tpwBIXq_v-X9RguT3Y_TYvp1s72A7iCKM7EBEmu1mFt8e3UP0SktCgfNepJ4OCi7eE3_QElDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WwnBAfEmUMC8Dhyi9SN2YiSEdmlXW1qtKqBSb8FxbHWlki10C-Kv8esY59UuIG69xuPEmkfmG3s8A_AiK6RlRrMYYwEZo8d3sS4tj6nXmSwYpdbW2RYzNT1I3h_KwzX41d2FCWmV3T-x_lGXCxv2yIcYyGSIlSXLhr5Ni9jfmrw9-RqHDlLhpLVrp9GoyK77-QPDt9M3O1so65ecT7Y_vZvGbYeB2CZCLWNrRcFwNab0JfdMOl16ITPhU2oTb6jn1HnlS4ZBEC8ETkoyn6mMC_SySZkKfO86bKQhKhrAxnh7tv-h3-GhAu2F66YmqhCaDr8Yht4YIQJf8YLrRyEH82-A-2ee5gXHN7kB11vESkaNit2ENVfdgmsX6hjeBjVum2uTcX07iDRVOzEIJ_OKIMQkHxfH85LUyPY1GZHmROIOHFwKu-7CoFpU7j4QT5U2CDWMVDrxiNFShkhUp854x0yqI3jVMSi3bbXy0DTjOMeoJTAzP2dmBM972pOmRsc_qZ4hn3uCUFZ7OtrLwzPEKWmitP7OItjsxJC3xnyan6teBE_7YTTDcLZiKrc4QxoR-umGbqMR3Guk1n8KIRoGhQnOTlfkubKW1ZFqflSX-laaI0SUD_6_rCdwBW0h39uZ7T6EqwjpdLgtyeUmDJbfztwjhE3L4nGrnwQ-X7ZJ_AZ0Oyqf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Better+Batteries+in+the+Solid+State%3A+A+Review&rft.jtitle=Materials&rft.au=Mauger%2C+Alain&rft.au=Julien%2C+Christian+M&rft.au=Paolella%2C+Andrea&rft.au=Michel%2C+Armand&rft.date=2019-11-25&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=12&rft.issue=23&rft.spage=3892&rft_id=info:doi/10.3390%2Fma12233892&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon