Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency

Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as w...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 51; no. 6; pp. 2313 - 2382
Main Authors Coppola, Guglielmo A, Pillitteri, Serena, Van der Eycken, Erik V, You, Shu-Li, Sharma, Upendra K
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent. This review offers an overview of recent synthetic strategies employing photoredox catalysis and electrochemistry in the framework of multicomponent reactions.
AbstractList Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent. This review offers an overview of recent synthetic strategies employing photoredox catalysis and electrochemistry in the framework of multicomponent reactions.
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
Author You, Shu-Li
Coppola, Guglielmo A
Sharma, Upendra K
Pillitteri, Serena
Van der Eycken, Erik V
AuthorAffiliation State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
Peoples' Friendship University of Russia (RUDN University)
Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven)
AuthorAffiliation_xml – name: Peoples' Friendship University of Russia (RUDN University)
– name: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
– name: Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven)
Author_xml – sequence: 1
  givenname: Guglielmo A
  surname: Coppola
  fullname: Coppola, Guglielmo A
– sequence: 2
  givenname: Serena
  surname: Pillitteri
  fullname: Pillitteri, Serena
– sequence: 3
  givenname: Erik V
  surname: Van der Eycken
  fullname: Van der Eycken, Erik V
– sequence: 4
  givenname: Shu-Li
  surname: You
  fullname: You, Shu-Li
– sequence: 5
  givenname: Upendra K
  surname: Sharma
  fullname: Sharma, Upendra K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35244107$$D View this record in MEDLINE/PubMed
BookMark eNqN0k1v1DAQBmALFdFt4cIdZIlLhRQ6jr2O0xtayodUxAE4R97xhGaV2IvtHPLv8bKlSBUHTvbhmdcej8_YiQ-eGHsu4I0A2V46gQlgLQAfsZVQGirVKHXCViBBVwCiPmVnKe3KTjS6fsJO5bpWSkCzYvR5HvOAYdqXTJ95JIt5CD5x6x3f34YcLmkkzDHgLU1DynHhuzB43oeIlK64zWHihMGHaeETUU6cPMUfC6e-H3Agj8tT9ri3Y6Jnd-s5-_7--tvmY3Xz5cOnzdubCpXUuUIDprRRbo29chpNI9Fqu1bCWdeTbHppmhZca23ryBjbNtutQyuFJWxNLc_ZxTF3H8PPmVLuyo2RxtF6CnPqaq2MaUytxX9QqYUCDbLQVw_oLszRl0YOgVAOLraol3dq3k7kun0cJhuX7s9bF_D6CDCGlCL190RAdxhk905svv4e5KZgeIBxyPYwmRztMP675MWxJCa8j_77N-QvdwSp_w
CitedBy_id crossref_primary_10_1002_aoc_6949
crossref_primary_10_1002_ejoc_202201288
crossref_primary_10_1016_j_matchemphys_2023_128126
crossref_primary_10_3390_molecules28031145
crossref_primary_10_1016_j_cep_2025_110205
crossref_primary_10_1039_D2GC04906F
crossref_primary_10_1002_ijch_202300067
crossref_primary_10_1039_D2CC03799H
crossref_primary_10_1002_ajoc_202200232
crossref_primary_10_1021_acs_accounts_4c00638
crossref_primary_10_1002_ajoc_202200356
crossref_primary_10_1039_D4CC01969E
crossref_primary_10_1039_D4GC03768E
crossref_primary_10_1039_D4AN00355A
crossref_primary_10_1039_D4NJ05074F
crossref_primary_10_1016_j_checat_2023_100567
crossref_primary_10_1002_adsc_202300822
crossref_primary_10_1002_chem_202402995
crossref_primary_10_1039_D4EY00259H
crossref_primary_10_1002_ajoc_202200629
crossref_primary_10_1002_jhet_4868
crossref_primary_10_1039_D3GC02831C
crossref_primary_10_1039_D2GC03829C
crossref_primary_10_1021_acs_joc_3c01091
crossref_primary_10_1039_D2NJ03933H
crossref_primary_10_1007_s11426_022_1438_0
crossref_primary_10_1039_D2CC02823A
crossref_primary_10_1002_anie_202314208
crossref_primary_10_1021_acs_orglett_3c01946
crossref_primary_10_1002_slct_202401102
crossref_primary_10_1039_D4NJ02051K
crossref_primary_10_1002_adsc_202300272
crossref_primary_10_1021_acs_joc_4c00892
crossref_primary_10_1021_acs_orglett_4c04767
crossref_primary_10_1021_acs_orglett_4c01258
crossref_primary_10_1039_D3RA00049D
crossref_primary_10_1021_acs_joc_4c01229
crossref_primary_10_1016_j_cclet_2023_108902
crossref_primary_10_1021_acs_orglett_3c01020
crossref_primary_10_1021_acs_orglett_3c04099
crossref_primary_10_1016_j_jcat_2024_115746
crossref_primary_10_1016_j_jphotochem_2022_114120
crossref_primary_10_1021_acs_joc_3c01483
crossref_primary_10_1002_cssc_202401840
crossref_primary_10_1002_ajoc_202300181
crossref_primary_10_1002_anie_202500942
crossref_primary_10_1021_acs_jchemed_2c01088
crossref_primary_10_1039_D2NA00233G
crossref_primary_10_1002_slct_202204294
crossref_primary_10_1039_D2QO01387H
crossref_primary_10_1002_cctc_202401524
crossref_primary_10_1021_acs_joc_4c02567
crossref_primary_10_1039_D2OB01833K
crossref_primary_10_1016_j_checat_2024_101110
crossref_primary_10_1371_journal_pone_0314421
crossref_primary_10_1016_j_tchem_2024_100070
crossref_primary_10_1016_j_molliq_2024_124592
crossref_primary_10_1002_anse_202300031
crossref_primary_10_6023_cjoc202400007
crossref_primary_10_1021_acs_orglett_3c01379
crossref_primary_10_1002_tcr_202500002
crossref_primary_10_1021_acs_orglett_3c02744
crossref_primary_10_1016_j_jorganchem_2024_123384
crossref_primary_10_1039_D2NJ06257G
crossref_primary_10_1016_j_mcat_2024_114685
crossref_primary_10_1002_chem_202302142
crossref_primary_10_1002_ajoc_202400715
crossref_primary_10_1002_ange_202500942
crossref_primary_10_1002_aoc_7789
crossref_primary_10_1039_D3SC05530B
crossref_primary_10_1002_adsc_202401401
crossref_primary_10_2478_amns_2024_0032
crossref_primary_10_1039_D2RA01752K
crossref_primary_10_1021_acs_orglett_3c02734
crossref_primary_10_1021_acs_orglett_4c03252
crossref_primary_10_1016_j_mcat_2023_113582
crossref_primary_10_3390_molecules30030607
crossref_primary_10_1002_cjoc_202400207
crossref_primary_10_1021_acs_orglett_3c03786
crossref_primary_10_1039_D4QO00797B
crossref_primary_10_1039_D3GC02575F
crossref_primary_10_1002_slct_202303943
crossref_primary_10_1007_s11172_024_4303_x
crossref_primary_10_1002_adsc_202300462
crossref_primary_10_1002_adsc_202401276
crossref_primary_10_1039_D4OB00055B
crossref_primary_10_1021_acs_orglett_4c03741
crossref_primary_10_2174_1568026623666230403102437
crossref_primary_10_3390_molecules29153620
crossref_primary_10_1021_acs_orglett_3c01877
crossref_primary_10_1021_acs_accounts_2c00540
crossref_primary_10_1021_acscatal_3c05988
crossref_primary_10_1016_j_mencom_2024_02_001
crossref_primary_10_1002_ejoc_202200569
crossref_primary_10_1021_acs_orglett_2c03697
crossref_primary_10_1055_a_2179_6570
crossref_primary_10_1039_D5QO00352K
crossref_primary_10_1021_acs_orglett_4c03754
crossref_primary_10_1039_D3OB00313B
crossref_primary_10_1021_acs_orglett_4c04209
crossref_primary_10_1039_D2OB00795A
crossref_primary_10_1038_s41570_024_00612_3
crossref_primary_10_1038_s41929_024_01211_7
crossref_primary_10_1002_cjoc_202400149
crossref_primary_10_1039_D2GC00855F
crossref_primary_10_3390_ijms24076581
crossref_primary_10_1007_s11164_023_05104_5
crossref_primary_10_1002_ange_202314208
crossref_primary_10_1021_acs_jmedchem_3c02109
crossref_primary_10_1039_D4GC04495A
crossref_primary_10_3390_molecules28186488
crossref_primary_10_1021_acs_orglett_2c03985
crossref_primary_10_1360_TB_2023_0205
crossref_primary_10_1002_tcr_202300275
crossref_primary_10_1021_acs_jchemed_4c01069
crossref_primary_10_6023_cjoc202308008
crossref_primary_10_1007_s12633_022_02275_5
crossref_primary_10_1002_ajoc_202300303
crossref_primary_10_1002_ejoc_202401473
crossref_primary_10_1002_open_202300128
crossref_primary_10_59761_RCR5104
crossref_primary_10_1039_D3RA02746E
crossref_primary_10_1021_acs_joc_3c02946
crossref_primary_10_1021_jacs_3c10460
crossref_primary_10_3390_molecules28176356
crossref_primary_10_1016_j_biortech_2023_129509
crossref_primary_10_1002_adsc_202300400
crossref_primary_10_6023_cjoc202212017
crossref_primary_10_1002_adsc_202300645
crossref_primary_10_1016_j_tetlet_2022_154055
crossref_primary_10_1007_s11426_023_1622_1
crossref_primary_10_1002_anie_202300166
crossref_primary_10_1002_chem_202303553
crossref_primary_10_1039_D2OB01612E
crossref_primary_10_1002_ejoc_202201038
crossref_primary_10_1021_acs_joc_4c02374
crossref_primary_10_1021_acscatal_3c02332
crossref_primary_10_1038_s41598_023_36059_7
crossref_primary_10_1039_D4OB01822B
crossref_primary_10_1021_acs_inorgchem_4c01383
crossref_primary_10_1021_acscatal_5c00755
crossref_primary_10_1055_a_2019_0399
crossref_primary_10_1016_j_inoche_2024_112280
crossref_primary_10_3390_molecules29112559
crossref_primary_10_1002_cssc_202300523
crossref_primary_10_1039_D3CC02337K
crossref_primary_10_1039_D3QO00662J
crossref_primary_10_1021_acs_orglett_4c01831
crossref_primary_10_1016_j_molstruc_2024_138104
crossref_primary_10_1016_j_cej_2024_149775
crossref_primary_10_1016_j_tet_2023_133691
crossref_primary_10_1039_D4QO00846D
crossref_primary_10_1002_ange_202300166
crossref_primary_10_1038_s41598_023_47794_2
crossref_primary_10_1039_D3QO00387F
crossref_primary_10_1039_D4QO02304H
Cites_doi 10.1021/ja9053338
10.1039/C8CC01124A
10.1021/acs.orglett.0c00602
10.1002/adsc.202001105
10.1002/tcr.201600044
10.1038/s41467-021-22690-3
10.1021/jacs.0c08532
10.1021/acs.orglett.1c01412
10.1039/C6GC00924G
10.1002/chem.201803409
10.1016/j.cclet.2021.05.007
10.1039/D0CC03235B
10.1039/C8CC06567E
10.1039/C4CS00253A
10.1038/s41586-020-2213-0
10.1039/D1CC01560E
10.1002/ejoc.202100505
10.1021/acs.orglett.7b01145
10.1039/D0CC01775B
10.1021/acs.joc.6b00234
10.1002/anie.201908987
10.1002/anie.201504559
10.1021/acs.orglett.9b01677
10.1021/acs.orglett.1c01494
10.1002/chem.201605336
10.1002/ajoc.201900172
10.1016/j.tet.2016.11.009
10.1021/acs.orglett.9b00620
10.1038/s41467-019-08669-1
10.1007/s11164-013-1387-6
10.1002/ejoc.201601485
10.1021/acs.orglett.8b01385
10.1039/D0SC02178D
10.1021/acscatal.9b02830
10.1002/cctc.202001589
10.1038/s41929-019-0311-x
10.1038/s41467-018-06904-9
10.1149/2.009307jes
10.1039/D1OB00142F
10.1039/C9RA10555G
10.1021/acs.orglett.8b03274
10.1021/acs.joc.9b01077
10.1016/j.mencom.2011.04.002
10.1021/jacs.0c00629
10.1016/j.jorganchem.2021.121712
10.1002/anie.201408837
10.1002/anie.201006515
10.1039/b512308a
10.1002/chem.201804708
10.1021/jacs.0c03144
10.1002/chem.201504838
10.1039/c1cs15071e
10.1039/C9GC03608C
10.1021/acscatal.7b02892
10.1021/cr800296p
10.1016/j.tetlet.2015.02.098
10.1021/acs.orglett.8b02923
10.1021/acs.joc.9b01569
10.1002/adsc.202100136
10.1016/j.tetlet.2017.01.049
10.1039/C9CC06037E
10.1039/C9CC03004B
10.1002/anie.201809820
10.1039/C9CC06746A
10.1002/chem.202001180
10.1039/C8CC10246E
10.1002/anie.202005745
10.1021/acs.orglett.0c01182
10.1002/anie.201408516
10.1039/B610213C
10.1039/C5GC00644A
10.1039/C9QO01058K
10.1039/D0SC05551D
10.1021/jacs.0c12162
10.1039/D0QO00893A
10.1039/C8OB02812E
10.1021/acs.orglett.8b01760
10.1039/C8GC01337C
10.1021/acscatal.0c05690
10.1021/cr050992x
10.1016/j.tet.2020.131059
10.1039/D0SC04853D
10.1002/chem.202101056
10.1039/C6CC09172E
10.1021/ar010065m
10.1002/ejoc.201700678
10.1002/adsc.201800734
10.3390/molecules26010105
10.1039/C9OB00717B
10.1039/C7QO00939A
10.1002/adsc.202000314
10.1021/acs.orglett.9b00867
10.1002/adsc.201800532
10.1039/C8QO00528A
10.1021/acs.orglett.9b03594
10.1002/anie.202016620
10.1002/chem.201704619
10.1039/C8SC03447H
10.1021/acs.joc.1c01831
10.1002/anie.201707862
10.1039/C9OB01040H
10.1038/s41467-019-11528-8
10.1039/D1CC03018C
10.1002/ajoc.202000403
10.1039/D0QO01307B
10.1039/C7CC01903C
10.1021/acs.orglett.8b01268
10.1039/D1GC00993A
10.1002/anie.202014632
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
10.1002/anie.202110084
10.1021/cr0680843
10.1002/cssc.201803058
10.1021/acs.joc.0c01985
10.1021/acs.orglett.8b00963
10.1021/acs.joc.8b01808
10.1039/C4GC00013G
10.1038/s41586-020-2060-z
10.1021/acs.joc.6b02377
10.1002/anie.201806522
10.1002/chem.201501590
10.1016/j.cclet.2015.04.016
10.1002/adsc.201900585
10.1021/acs.joc.8b02193
10.1016/S1872-2067(19)63278-X
10.1039/C9CC10057A
10.1002/ajoc.201900020
10.1002/anie.202005652
10.1021/ar500035q
10.1002/anie.201307051
10.1039/D0GC00375A
10.1002/anie.201403590
10.1021/acs.orglett.9b01169
10.1016/j.bmcl.2011.10.091
10.1039/c2cs15356d
10.1021/acscatal.8b03209
10.1039/D0CC07927H
10.1021/acs.orglett.9b02700
10.1021/acs.orglett.9b00771
10.1039/C7NJ01211J
10.1002/ardp.19122500151
10.1002/anie.201605288
10.2174/1568026615666150915111741
10.1039/D0CS00128G
10.1021/acs.orglett.8b03081
10.1002/chem.201701589
10.3390/molecules26071986
10.1021/acs.orglett.9b04454
10.1002/anie.201913332
10.1002/cjoc.201800320
10.1039/C9OB00278B
10.1021/acs.orglett.0c04148
10.1039/c2md20089a
10.1002/chem.201802167
10.1039/c3cs60464k
10.1002/anie.201704690
10.1021/acs.joc.1c01350
10.1039/D1QO00957E
10.1016/j.cclet.2015.10.012
10.1002/adsc.201801492
10.1021/acs.orglett.9b01747
10.1002/anie.201700290
10.1039/C7SC01703K
10.1021/jacs.1c06036
10.1002/adsc.201900521
10.1039/C9GC03173A
10.1021/jacs.8b00391
10.1039/C8OB02239A
10.1039/C8CC03105C
10.1002/adsc.202000999
10.1002/chem.201804225
10.1039/D0QO00460J
10.1002/anie.202000140
10.1021/acscatal.8b04284
10.1021/acs.orglett.0c01163
10.1021/acs.orglett.8b01971
10.1002/anie.201813315
10.1016/j.cclet.2020.04.023
10.1016/j.jfluchem.2014.05.013
10.1002/ejoc.201801128
10.1039/D0QO01161D
10.1039/D0QO00100G
10.1021/jacs.7b13387
10.1016/j.tetlet.2008.10.006
10.1039/C8CC04618B
10.1039/C8CC07434H
10.1002/anie.201903726
10.1016/j.crci.2013.09.017
10.1021/acs.orglett.8b02670
10.1021/jacs.8b08592
10.1021/acs.orglett.0c01470
10.1021/jm901241e
10.1039/C9SC00833K
10.1021/ol401940c
10.1038/s41586-018-0537-9
10.1002/adsc.201701187
10.1021/acs.orglett.1c02661
10.1039/C7QO01073G
10.1039/C4CC07066F
10.1039/C9CC01801H
10.1021/acs.joc.5b02373
10.1021/acs.orglett.9b01529
10.1002/chem.201901175
10.1016/j.tetlet.2006.10.075
10.1007/s41061-017-0169-9
10.1021/acs.orglett.0c00287
10.1021/acs.orglett.9b02317
10.1016/j.tetlet.2013.07.060
10.1039/C8CC01096J
10.1039/D1CS00311A
10.1021/acs.orglett.0c02582
10.1021/acs.orglett.0c00584
10.1002/jhet.3562
10.1021/acs.orglett.8b00272
10.1021/acs.chemrev.7b00397
10.1021/jacs.6b13113
10.1002/anie.201813689
10.1021/acs.orglett.6b01257
10.1002/anie.201607292
10.1021/acs.orglett.0c03338
10.1039/C6CC03335K
10.1021/ol5021477
10.1038/nature10647
10.1039/D1CC03288G
10.1021/cr100233r
10.1002/anie.202016156
10.1126/science.aba5901
10.1021/acscatal.1c03545
10.1021/acs.orglett.9b02152
10.1039/C7QO00987A
10.1016/S0160-9327(05)80086-9
10.1021/jm401788m
10.1002/anie.201502980
10.1021/ja01192a022
10.1038/ncomms6933
10.1016/j.mcat.2021.111841
10.1002/ejoc.201900396
10.1021/acs.orglett.9b01323
10.1021/jacs.6b13229
10.1002/anie.201706799
10.1039/C7CS00619E
10.1039/C9CC08333B
10.2298/JSC150210048K
10.1002/anie.201911109
10.1002/anie.201205071
10.1039/C6CC10035J
10.1039/C6CC05506K
10.1002/adsc.202000637
10.1039/D0CC03591B
10.1021/acscatal.0c02660
10.1002/anie.201916279
10.1002/adsc.202001434
10.1002/chem.201801628
10.1002/anie.201210276
10.1039/D1QO00112D
10.1039/D1QO00816A
10.1039/C4GC01623H
10.1021/acscatal.9b01580
10.1002/jlac.18500750103
10.1002/anie.202016164
10.1039/D1GC00027F
10.1021/acscatal.0c03422
10.1016/j.tet.2016.05.045
10.1021/ol4006272
10.1039/D1SC02503A
10.1016/j.isci.2021.103134
10.1039/D1SC01389K
10.1002/ejoc.202001219
10.1021/ol500374e
10.1021/acscatal.1c02823
10.1039/C9CC05949K
10.1021/acs.orglett.8b00410
10.1021/acscatal.8b00683
10.1002/anie.201811858
10.1021/acs.orglett.7b03551
10.1039/C7QO00634A
10.1002/anie.201607813
10.1002/anie.202014111
10.1039/C8QO00965A
10.1021/acs.orglett.1c00664
10.1021/ol400317v
10.1021/acscatal.8b01863
10.1021/acs.joc.8b03155
10.1002/chem.201601694
10.1039/D1QO00732G
10.1039/C9CC00347A
10.1021/acs.chemrev.6b00057
10.1002/ange.201914061
10.1002/anie.201706263
10.1002/adsc.201601341
10.1039/D1GC00949D
10.1002/cmdc.201402502
10.1021/acs.joc.9b02310
10.1021/ie200997b
10.1016/j.ddtec.2012.10.012
10.1002/tcr.201500201
10.1039/D1QO00313E
10.1021/acs.orglett.1c02686
10.1039/D1QO01183A
10.1016/j.tetlet.2015.04.091
10.1039/D1QO00344E
10.3390/molecules24112122
10.1039/C6QO00393A
10.1002/chem.201103062
10.1021/jacs.5b07678
10.1016/j.tetlet.2017.09.003
10.1021/acs.joc.9b02709
10.1002/anie.201811266
10.1016/j.tet.2021.132111
10.1039/C9CC00727J
10.1039/D0GC00332H
10.1002/chem.201702040
10.1016/j.chempr.2018.11.006
10.1021/jacs.0c08823
10.1039/D0GC00771D
10.1021/acs.orglett.0c00614
10.1021/acs.accounts.9b00529
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d1cs00510c
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

Materials Research Database
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 2382
ExternalDocumentID 35244107
10_1039_D1CS00510C
d1cs00510c
Genre Journal Article
Review
GroupedDBID -
0-7
02
0R
29B
4.4
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
XOL
---
-DZ
-~X
0R~
2WC
53G
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
-JG
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c436t-c808510306cf4d6c873ca6a541dadfe37f38790d9aa9de88a97bbdca31aec9823
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 10:09:25 EDT 2025
Thu Jul 10 19:02:22 EDT 2025
Mon Jun 30 12:39:25 EDT 2025
Wed Feb 19 02:26:27 EST 2025
Thu Apr 24 22:51:50 EDT 2025
Tue Jul 01 04:18:47 EDT 2025
Tue Mar 22 05:00:39 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-c808510306cf4d6c873ca6a541dadfe37f38790d9aa9de88a97bbdca31aec9823
Notes Serena Pillitteri received her Master's degree with summa cum laude in Pharmaceutical Chemistry and Technology at the University of Turin (Italy) in 2019. Her undergraduate thesis focused on novel approaches for the generation of C-based radicals from boronic acid derivatives under photocatalyzed conditions and was conducted under the guidance of Prof. Erik Van der Eycken and Dr Upendra K. Sharma at KU Leuven (Belgium). After her master thesis, she started her PhD in the same group as an FWO researcher. Her research interests focus on the application of visible-light photoredox catalysis in continuous flow and on the development of novel synthetic methodologies for the generation of C-based radicals.
Shu-Li You received his BSc in Chemistry from Nankai University (1996). He then obtained his PhD from the Shanghai Institute of Organic Chemistry (SIOC) in 2001 under the supervision of Prof. Lixin Dai before doing postdoctoral studies with Prof. Jeffery Kelly at The Scripps Research Institute. From 2004, he worked at the Genomics Institute of the Novartis Research Foundation as a PI before returning to SIOC as a Professor in 2006. His research interests mainly focus on asymmetric C-H functionalization and catalytic asymmetric dearomatization (CADA) reactions. He has published over 300 research papers in international peer-reviewed journals and edited two books.
Upendra K. Sharma received his PhD (2011) from CSIR-Institute of Himalayan Bioresource Technology, Palampur, India. Thereafter, he worked as an assistant professor for a short period at the National Institute of Technology, Jalandhar, India. In 2013, he joined the research group of Prof. Erik Van der Eycken at the University of Leuven, Belgium, followed by postdoctoral stints with Prof. Steven Ley (University of Cambridge), Prof. Timothy Noël (University of Eindhoven), and Prof. Shu-Li You (SIOC, China). In 2020, he joined KU Leuven as a senior research-expert. His research interests include new reaction methodologies, photoredox catalysis, C-H functionalizations, and flow chemistry.
Guglielmo A. Coppola received his Master's degree in Pharmaceutical Chemistry and Technology (2017) from Sapienza University of Rome. Later in the same year, he joined LOMAC through an Erasmus+ scholarship working on metal-free spirocyclizations. He is currently working as a PhD student under the supervision of Prof. Erik Van der Eycken and Prof. Hans Steenackers at KU Leuven. His research focuses on the synthesis of bioactive heterocycles.
Erik V. Van der Eycken is Full Prof. of Organic Chemistry and Head of the Division of Molecular Design & Synthesis at KU Leuven, Belgium. He received his PhD degree (1987) in organic chemistry from the University of Ghent, Belgium. He spent time as a visiting scientist at the University of Graz (2002) with Prof. C. O. Kappe, at The Scripps Research Institute (La Jolla, USA) (2003) in the group of K. B. Sharpless, and at Uppsala University (2004) with Prof. M. Larhed and Prof. A. Hallberg. The main focus of his research is on the development of new synthetic methodologies in combination with enabling techniques.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4586-8359
0000-0001-7489-2337
0000-0001-7478-5742
0000-0001-5172-7208
0000-0001-9744-3665
PMID 35244107
PQID 2640982636
PQPubID 2047503
PageCount 7
ParticipantIDs proquest_miscellaneous_2636140603
proquest_journals_2640982636
crossref_primary_10_1039_D1CS00510C
rsc_primary_d1cs00510c
crossref_citationtrail_10_1039_D1CS00510C
pubmed_primary_35244107
proquest_miscellaneous_2648878261
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-21
PublicationDateYYYYMMDD 2022-03-21
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chinchilla (D1CS00510C/cit157/1) 2011; 40
Purser (D1CS00510C/cit34/1) 2008; 37
Tomita (D1CS00510C/cit42/1) 2014; 53
Xu (D1CS00510C/cit150/1) 2021; 60
Ni (D1CS00510C/cit278/1) 2020; 22
Guo (D1CS00510C/cit145/1) 2020; 142
Lux (D1CS00510C/cit78/1) 2020; 22
Wang (D1CS00510C/cit139/1) 2020; 22
Luo (D1CS00510C/cit96/1) 2019; 361
Li (D1CS00510C/cit147/1) 2020; 22
Kumar (D1CS00510C/cit222/1) 2020; 581
Liu (D1CS00510C/cit297/1) 2018
Chu (D1CS00510C/cit52/1) 2018; 20
Woo (D1CS00510C/cit259/1) 2014; 57
Capaldo (D1CS00510C/cit20/1) 2017
Ouyang (D1CS00510C/cit76/1) 2018; 20
Peng (D1CS00510C/cit238/1) 2019; 5
Louvel (D1CS00510C/cit284/1) 2021; 27
Gu (D1CS00510C/cit243/1) 2015; 17
Yasu (D1CS00510C/cit37/1) 2012; 51
Chen (D1CS00510C/cit107/1) 2019; 21
Makarem (D1CS00510C/cit198/1) 2008; 49
Sagadevan (D1CS00510C/cit217/1) 2019; 58
Prasad Hari (D1CS00510C/cit73/1) 2014; 53
Ruijter (D1CS00510C/cit5/1) 2011; 50
Wu (D1CS00510C/cit257/1) 2021; 143
Guo (D1CS00510C/cit178/1) 2018; 9
Liu (D1CS00510C/cit294/1) 2017; 359
Zarganes-Tzitzikas (D1CS00510C/cit12/1) 2015; 15
Ren (D1CS00510C/cit160/1) 2019; 40
Mykhailiuk (D1CS00510C/cit314/1) 2019; 17
Liu (D1CS00510C/cit63/1) 2015; 6
Dubey (D1CS00510C/cit204/1) 2017; 41
Lee (D1CS00510C/cit174/1) 2020; 7
Kammer (D1CS00510C/cit234/1) 2020; 22
Chen (D1CS00510C/cit302/1) 2021; 19
Kim (D1CS00510C/cit319/1) 2020; 59
Ragupathi (D1CS00510C/cit165/1) 2016; 52
Bao (D1CS00510C/cit301/1) 2021; 8
Jin (D1CS00510C/cit135/1) 2018; 54
Zeng (D1CS00510C/cit210/1) 2020; 22
Sagadevan (D1CS00510C/cit166/1) 2017; 139
Oliva (D1CS00510C/cit221/1) 2021; 24
Wang (D1CS00510C/cit91/1) 2018; 20
Rueping (D1CS00510C/cit215/1) 2013; 15
Feng (D1CS00510C/cit258/1) 2016; 16
Fang (D1CS00510C/cit133/1) 2017; 53
Ma (D1CS00510C/cit136/1) 2018; 24
Qi (D1CS00510C/cit231/1) 2016; 55
Carboni (D1CS00510C/cit66/1) 2014; 50
Li (D1CS00510C/cit236/1) 2018; 5
Huang (D1CS00510C/cit151/1) 2020; 59
Yatham (D1CS00510C/cit100/1) 2017; 56
Tian (D1CS00510C/cit121/1) 2019; 55
Yuan (D1CS00510C/cit90/1) 2018; 4
Fu (D1CS00510C/cit102/1) 2019; 10
Dai (D1CS00510C/cit115/1) 2021; 86
Ye (D1CS00510C/cit116/1) 2017; 56
Gong (D1CS00510C/cit281/1) 2018; 54
Chilamari (D1CS00510C/cit219/1) 2020; 10
Ye (D1CS00510C/cit267/1) 2020; 56
Majek (D1CS00510C/cit241/1) 2015; 54
Pramanik (D1CS00510C/cit94/1) 2020; 22
Bell (D1CS00510C/cit18/1) 2021; 50
Sayyar (D1CS00510C/cit205/1) 2019; 56
Qin (D1CS00510C/cit88/1) 2017; 19
Sultan (D1CS00510C/cit168/1) 2018; 24
Elinson (D1CS00510C/cit194/1) 2013; 160
Elinson (D1CS00510C/cit193/1) 2011; 21
Zong (D1CS00510C/cit274/1) 2019; 21
Daniel (D1CS00510C/cit51/1) 2017; 56
Xia (D1CS00510C/cit75/1) 2018; 20
Pampana (D1CS00510C/cit172/1) 2020; 22
Pelliccia (D1CS00510C/cit177/1) 2020; 85
Yadav (D1CS00510C/cit92/1) 2016; 18
Guo (D1CS00510C/cit140/1) 2021; 363
Wang (D1CS00510C/cit309/1) 2019; 55
Xiong (D1CS00510C/cit123/1) 2019; 8
Noto (D1CS00510C/cit58/1) 2017; 8
Fuentes de Arriba (D1CS00510C/cit230/1) 2016; 52
Xia (D1CS00510C/cit44/1) 2019; 84
Gong (D1CS00510C/cit292/1) 2020; 22
Blackwell (D1CS00510C/cit223/1) 2021; 143
Blum (D1CS00510C/cit311/1) 2021; 60
Romero (D1CS00510C/cit17/1) 2016; 116
Yue (D1CS00510C/cit180/1) 2020; 132
Zhong (D1CS00510C/cit308/1) 2021; 12
Duan (D1CS00510C/cit67/1) 2016; 3
Zhao (D1CS00510C/cit209/1) 2021; 87
Gosset (D1CS00510C/cit245/1) 2018; 360
Du (D1CS00510C/cit185/1) 2021; 23
Verschueren (D1CS00510C/cit26/1) 2019; 24
Pettersson (D1CS00510C/cit130/1) 2017; 23
Ugi (D1CS00510C/cit16/1) 1994; 18
Wang (D1CS00510C/cit226/1) 2021; 57
Wang (D1CS00510C/cit291/1) 2019; 55
Liu (D1CS00510C/cit269/1) 2018; 360
Zhang (D1CS00510C/cit184/1) 2021
Breton-Patient (D1CS00510C/cit296/1) 2020
Leifert (D1CS00510C/cit19/1) 2020; 59
Yin (D1CS00510C/cit62/1) 2018; 20
Cao (D1CS00510C/cit304/1) 2021; 12
Yang (D1CS00510C/cit60/1) 2018; 24
Sun (D1CS00510C/cit54/1) 2019; 21
Sun (D1CS00510C/cit98/1) 2019; 21
Zhou (D1CS00510C/cit246/1) 2015; 54
Katta (D1CS00510C/cit169/1) 2020; 10
Roy Chowdhury (D1CS00510C/cit114/1) 2020; 85
He (D1CS00510C/cit318/1) 2020; 31
Xiang (D1CS00510C/cit175/1) 2017; 23
Nawrat (D1CS00510C/cit179/1) 2015; 137
Arai (D1CS00510C/cit47/1) 2016; 22
Ye (D1CS00510C/cit287/1) 2019; 8
Cao (D1CS00510C/cit33/1) 2015; 56
Jud (D1CS00510C/cit40/1) 2018; 24
Zhang (D1CS00510C/cit213/1) 2013; 54
Sim (D1CS00510C/cit138/1) 2019; 9
Wang (D1CS00510C/cit188/1) 2021; 363
Chu (D1CS00510C/cit53/1) 2019; 361
Chinchilla (D1CS00510C/cit156/1) 2007; 107
Courant (D1CS00510C/cit129/1) 2012; 18
Jiang (D1CS00510C/cit248/1) 2019; 58
Zhou (D1CS00510C/cit186/1) 2021; 23
Ranjan (D1CS00510C/cit220/1) 2021; 11
Strecker (D1CS00510C/cit212/1) 1850; 75
Touré (D1CS00510C/cit9/1) 2009; 109
Hou (D1CS00510C/cit103/1) 2018; 57
Elinson (D1CS00510C/cit196/1) 2016; 16
Yu (D1CS00510C/cit132/1) 2016; 52
Qiu (D1CS00510C/cit264/1) 2018; 54
Upadhyay (D1CS00510C/cit201/1) 2017; 58
Yang (D1CS00510C/cit112/1) 2020; 56
Xiong (D1CS00510C/cit122/1) 2018; 140
Ritter (D1CS00510C/cit57/1) 1948; 70
Wang (D1CS00510C/cit203/1) 2015; 41
Qian (D1CS00510C/cit79/1) 2021; 23
Sha (D1CS00510C/cit109/1) 2018; 8
Makarem (D1CS00510C/cit199/1) 2012; 51
Elinson (D1CS00510C/cit192/1) 2006; 47
Chow (D1CS00510C/cit251/1) 2016; 22
Zeng (D1CS00510C/cit256/1) 2018; 8
Wang (D1CS00510C/cit164/1) 2020; 22
Zhang (D1CS00510C/cit244/1) 2016; 27
Anastas (D1CS00510C/cit2/1) 1998
Chalotra (D1CS00510C/cit170/1) 2018; 83
Qin (D1CS00510C/cit101/1) 2017; 53
Zheng (D1CS00510C/cit146/1) 2019; 58
Shen (D1CS00510C/cit143/1) 2020; 10
Veatch (D1CS00510C/cit252/1) 2020; 11
Dömling (D1CS00510C/cit10/1) 2012; 112
Veisi (D1CS00510C/cit206/1) 2015; 56
Kolb (D1CS00510C/cit158/1) 2001; 40
Zhu (D1CS00510C/cit181/1) 2019; 2
Pillitteri (D1CS00510C/cit228/1) 2021; 514
Makarov (D1CS00510C/cit316/1) 2017; 56
Yoshida (D1CS00510C/cit25/1) 2008; 108
Xiong (D1CS00510C/cit126/1) 2021; 23
Chen (D1CS00510C/cit207/1) 2020; 76
Francke (D1CS00510C/cit21/1) 2014; 43
Chalotra (D1CS00510C/cit171/1) 2019; 21
Singh (D1CS00510C/cit200/1) 2017; 58
Joseph (D1CS00510C/cit265/1) 2021; 11
Kefayati (D1CS00510C/cit197/1) 2014; 17
Shen (D1CS00510C/cit149/1) 2021; 23
Mohjer (D1CS00510C/cit161/1) 2021; 936
Lu (D1CS00510C/cit254/1) 2019; 9
Sharma (D1CS00510C/cit13/1) 2020; 49
Liu (D1CS00510C/cit286/1) 2018; 5
Zhou (D1CS00510C/cit303/1) 2021; 8
Sahoo (D1CS00510C/cit182/1) 2021; 86
Zhang (D1CS00510C/cit124/1) 2020; 22
Jia (D1CS00510C/cit262/1) 2021; 60
Kärkäs (D1CS00510C/cit27/1) 2018; 47
Liu (D1CS00510C/cit300/1) 2020; 56
Vafajoo (D1CS00510C/cit202/1) 2015; 26
Sumino (D1CS00510C/cit239/1) 2014; 47
Li (D1CS00510C/cit247/1) 2016; 72
Locke (D1CS00510C/cit312/1) 2019; 25
Anastas (D1CS00510C/cit1/1) 2002; 35
Zhou (D1CS00510C/cit69/1) 2019; 55
Wang (D1CS00510C/cit104/1) 2020; 142
Gong (D1CS00510C/cit295/1) 2017; 4
Slobbe (D1CS00510C/cit8/1) 2012; 3
Ke (D1CS00510C/cit155/1) 2021; 60
Ye (D1CS00510C/cit189/1) 2018; 24
Nair (D1CS00510C/cit282/1) 2019; 17
Nagib (D1CS00510C/cit36/1) 2011; 480
Ye (D1CS00510C/cit298/1) 2019; 55
Choi (D1CS00510C/cit141/1) 2018; 360
Pramanik (D1CS00510C/cit317/1) 2020; 7
Claraz (D1CS00510C/cit65/1) 2021; 8
Qian (D1CS00510C/cit229/1) 2019; 21
Luo (D1CS00510C/cit46/1) 2019; 55
Xiong (D1CS00510C/cit49/1) 2018; 140
Yi (D1CS00510C/cit225/1) 2019; 21
D1CS00510C/cit3/1
Ran (D1CS00510C/cit48/1) 2016; 81
Barthelemy (D1CS00510C/cit97/1) 2018; 57
Zhang (D1CS00510C/cit235/1) 2019; 21
Miyazawa (D1CS00510C/cit85/1) 2016; 72
Das (D1CS00510C/cit163/1) 2018; 9
Qi (D1CS00510C/cit227/1) 2021; 23
Zhang (D1CS00510C/cit191/1) 2020; 22
Guo (D1CS00510C/cit240/1) 2015; 54
Lu (D1CS00510C/cit105/1) 2021; 23
Qiu (D1CS00510C/cit263/1) 2018; 5
Cong (D1CS00510C/cit82/1) 2018; 54
He (D1CS00510C/cit275/1) 2020; 56
Lahm (D1CS00510C/cit214/1) 2015; 80
Micic (D1CS00510C/cit242/1) 2018; 20
Gong (D1CS00510C/cit288/1) 2020; 7
Lan (D1CS00510C/cit32/1) 2017
Zhang (D1CS00510C/cit128/1) 2020; 59
Zhang (D1CS00510C/cit270/1) 2018; 5
Liu (D1CS00510C/cit280/1) 2019; 55
Zhang (D1CS00510C/cit320/1) 2020; 580
Huang (D1CS00510C/cit159/1) 2018; 54
Kolahdouzan (D1CS00510C/cit224/1) 2020; 11
Carboni (D1CS00510C/cit131/1) 2014; 16
Kong (D1CS00510C/cit183/1) 2020; 9
Nguyen (D1CS00510C/cit305/1) 2021; 12
Govaerts (D1CS00510C/cit89/1) 2020; 59
Pan (D1CS00510C/cit216/1) 2019; 21
Rossolini (D1CS00510C/cit232/1) 2018; 20
Yang (D1CS00510C/cit187/1) 2020; 7
Bellotti (D1CS00510C/cit152/1) 2021; 12
Sun (D1CS00510C/cit99/1) 2021; 23
Cartier (D1CS00510C/cit250/1) 2020; 362
Lv (D1CS00510C/cit283/1) 2021; 8
He (D1CS00510C/cit272/1) 2018; 5
Ruijter (D1CS00510C/cit7/1) 2013; 10
Liu (D1CS00510C/cit285/1) 2018; 20
Sperry (D1CS00510C/cit24/1) 2006; 35
Wu (D1CS00510C/cit113/1) 2019; 17
Buquoi (D1CS00510C/cit148/1) 2019; 9
Blum (D1CS00510C/cit266/1) 2021; 57
Trowbridge (D1CS00510C/cit233/1) 2018; 561
Dagousset (D1CS00510C/cit59/1) 2014; 16
Wan (D1CS00510C/cit125/1) 2019; 21
Cioc (D1CS00510C/cit4/1) 2014; 16
Lovering (D1CS00510C/cit30/1) 2009; 52
Jarrige (D1CS00510C/cit61/1) 2016; 18
Cuadros (D1CS00510C/cit134/1) 2019; 10
Qi (D1CS00510C/cit255/1) 2021; 23
Malpani (D1CS00510C/cit173/1) 2018; 20
Cartier (D1CS00510C/cit249/1) 2019; 58
Wang (D1CS00510C/cit154/1) 2021; 60
Yang (D1CS00510C/cit110/1) 2017; 7
Wang (D1CS00510C/cit293/1) 2021; 8
Nagib (D1CS00510C/cit35/1) 2009; 131
Ye (D1CS00510C/cit95/1) 2021; 57
Chen (D1CS00510C/cit307/1) 2021; 8
Fumagalli (D1CS00510C/cit81/1) 2015; 54
Yang (D1CS00510C/cit208/1) 2018; 83
Wang (D1CS00510C/cit290/1) 2019; 55
Fang (D1CS00510C/cit77/1) 2019; 84
Fu (D1CS00510C/cit120/1) 2019; 9
Flores-Reyes (D1CS00510C/cit11/1) 2021; 8
Xu (D1CS00510C/cit50/1) 2019; 12
Li (D1CS00510C/cit137/1) 2019; 21
Blum (D1CS00510C/cit310/1) 2020; 26
Garbarino (D1CS00510C/cit29/1) 2016; 55
Fumagalli (D1CS00510C/cit70/1) 2013; 15
Zhang (D1CS00510C/cit83/1) 2020; 362
Yu (D1CS00510C/cit106/1) 2018; 57
Lopchuk (D1CS00510C/cit313/1) 2017; 139
Forster (D1CS00510C/cit153/1) 2021; 11
Yi (D1CS00510C/cit218/1) 2019; 21
Shin (D1CS00510C/cit321/1) 2021; 60
Ma (D1CS00510C/cit14/1) 2021; 26
Gijsen (D1CS00510C/cit261/1) 2012; 22
Zhang (D1CS00510C/cit299/1) 2019; 21
Huang (D1CS00510C/cit41/1) 2019; 17
Babu (D1CS00510C/cit71/1) 2021; 363
Mao (D1CS00510C/cit306/1) 2017; 23
Siu (D1CS00510C/cit22/1) 2020; 53
Kazemi-Rad (D1CS00510C/cit195/1) 2016; 81
Ye (D1CS00510C/cit268/1) 2020
Yang (D1CS00510C/cit111/1) 2018; 36
Levitre (D1CS00510C/cit38/1) 2019; 21
Zhu (D1CS00510C/cit118/1) 2019; 10
Devendar (D1CS00510C/ci
References_xml – issn: 1998
  publication-title: Green chemistry: Theory and practice
  doi: Anastas Warner
– volume: 131
  start-page: 10875
  year: 2009
  ident: D1CS00510C/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9053338
– volume: 54
  start-page: 3891
  year: 2018
  ident: D1CS00510C/cit271/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01124A
– volume: 22
  start-page: 2639
  year: 2020
  ident: D1CS00510C/cit94/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c00602
– volume: 363
  start-page: 1022
  year: 2021
  ident: D1CS00510C/cit188/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202001105
– volume: 16
  start-page: 1950
  year: 2016
  ident: D1CS00510C/cit196/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201600044
– volume: 12
  start-page: 2377
  year: 2021
  ident: D1CS00510C/cit304/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22690-3
– volume: 142
  start-page: 20661
  year: 2020
  ident: D1CS00510C/cit80/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08532
– volume: 23
  start-page: 4473
  year: 2021
  ident: D1CS00510C/cit227/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c01412
– volume: 18
  start-page: 4240
  year: 2016
  ident: D1CS00510C/cit92/1
  publication-title: Green Chem.
  doi: 10.1039/C6GC00924G
– volume: 24
  start-page: 14363
  year: 2018
  ident: D1CS00510C/cit60/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201803409
– volume: 32
  start-page: 3535
  year: 2021
  ident: D1CS00510C/cit289/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.05.007
– volume: 56
  start-page: 9549
  year: 2020
  ident: D1CS00510C/cit112/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03235B
– volume: 54
  start-page: 11172
  year: 2018
  ident: D1CS00510C/cit281/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06567E
– volume: 44
  start-page: 1836
  year: 2015
  ident: D1CS00510C/cit6/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00253A
– volume: 581
  start-page: 415
  year: 2020
  ident: D1CS00510C/cit222/1
  publication-title: Nature
  doi: 10.1038/s41586-020-2213-0
– volume: 57
  start-page: 5028
  year: 2021
  ident: D1CS00510C/cit226/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC01560E
– start-page: 4284
  year: 2021
  ident: D1CS00510C/cit184/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202100505
– volume: 19
  start-page: 2909
  year: 2017
  ident: D1CS00510C/cit88/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01145
– volume: 56
  start-page: 4145
  year: 2020
  ident: D1CS00510C/cit267/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01775B
– volume: 81
  start-page: 7001
  year: 2016
  ident: D1CS00510C/cit48/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b00234
– volume: 58
  start-page: 15803
  year: 2019
  ident: D1CS00510C/cit146/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908987
– volume: 54
  start-page: 11196
  year: 2015
  ident: D1CS00510C/cit246/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504559
– volume: 21
  start-page: 4793
  year: 2019
  ident: D1CS00510C/cit171/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01677
– volume: 23
  start-page: 4769
  year: 2021
  ident: D1CS00510C/cit255/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c01494
– volume: 23
  start-page: 1032
  year: 2017
  ident: D1CS00510C/cit175/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201605336
– volume: 8
  start-page: 893
  year: 2019
  ident: D1CS00510C/cit287/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201900172
– volume: 72
  start-page: 8442
  year: 2016
  ident: D1CS00510C/cit247/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2016.11.009
– volume: 21
  start-page: 1935
  year: 2019
  ident: D1CS00510C/cit274/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b00620
– volume: 10
  start-page: 749
  year: 2019
  ident: D1CS00510C/cit118/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08669-1
– volume: 41
  start-page: 2775
  year: 2015
  ident: D1CS00510C/cit203/1
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-013-1387-6
– start-page: 2056
  year: 2017
  ident: D1CS00510C/cit20/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201601485
– volume: 20
  start-page: 3605
  year: 2018
  ident: D1CS00510C/cit285/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b01385
– volume: 11
  start-page: 7210
  year: 2020
  ident: D1CS00510C/cit252/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02178D
– volume: 9
  start-page: 8159
  year: 2019
  ident: D1CS00510C/cit254/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02830
– volume: 13
  start-page: 543
  year: 2021
  ident: D1CS00510C/cit127/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202001589
– volume: 2
  start-page: 678
  year: 2019
  ident: D1CS00510C/cit181/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0311-x
– volume: 9
  start-page: 4543
  year: 2018
  ident: D1CS00510C/cit178/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06904-9
– volume: 160
  start-page: G3053
  year: 2013
  ident: D1CS00510C/cit194/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.009307jes
– volume: 19
  start-page: 3181
  year: 2021
  ident: D1CS00510C/cit302/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D1OB00142F
– volume: 10
  start-page: 12599
  year: 2020
  ident: D1CS00510C/cit169/1
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10555G
– volume: 21
  start-page: 1297
  year: 2019
  ident: D1CS00510C/cit98/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b03274
– volume: 84
  start-page: 7388
  year: 2019
  ident: D1CS00510C/cit44/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b01077
– volume: 21
  start-page: 122
  year: 2011
  ident: D1CS00510C/cit193/1
  publication-title: Mendeleev Commun.
  doi: 10.1016/j.mencom.2011.04.002
– volume: 142
  start-page: 7524
  year: 2020
  ident: D1CS00510C/cit237/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00629
– volume: 936
  start-page: 121712
  year: 2021
  ident: D1CS00510C/cit161/1
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2021.121712
– volume: 54
  start-page: 2265
  year: 2015
  ident: D1CS00510C/cit240/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408837
– volume: 50
  start-page: 6234
  year: 2011
  ident: D1CS00510C/cit5/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201006515
– volume: 35
  start-page: 605
  year: 2006
  ident: D1CS00510C/cit24/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b512308a
– volume: 24
  start-page: 17234
  year: 2018
  ident: D1CS00510C/cit40/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201804708
– volume: 142
  start-page: 8122
  year: 2020
  ident: D1CS00510C/cit104/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03144
– volume: 22
  start-page: 1262
  year: 2016
  ident: D1CS00510C/cit47/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201504838
– volume: 40
  start-page: 5084
  year: 2011
  ident: D1CS00510C/cit157/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15071e
– volume: 22
  start-page: 1164
  year: 2020
  ident: D1CS00510C/cit172/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC03608C
– volume: 7
  start-page: 8362
  year: 2017
  ident: D1CS00510C/cit110/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02892
– volume: 109
  start-page: 4439
  year: 2009
  ident: D1CS00510C/cit9/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr800296p
– volume: 56
  start-page: 1882
  year: 2015
  ident: D1CS00510C/cit206/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.02.098
– volume: 20
  start-page: 6794
  year: 2018
  ident: D1CS00510C/cit232/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b02923
– volume: 84
  start-page: 10978
  year: 2019
  ident: D1CS00510C/cit108/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b01569
– volume: 363
  start-page: 1782
  year: 2021
  ident: D1CS00510C/cit71/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202100136
– volume: 58
  start-page: 1245
  year: 2017
  ident: D1CS00510C/cit201/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2017.01.049
– volume: 55
  start-page: 10980
  year: 2019
  ident: D1CS00510C/cit46/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06037E
– volume: 55
  start-page: 6010
  year: 2019
  ident: D1CS00510C/cit291/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03004B
– volume: 57
  start-page: 15505
  year: 2018
  ident: D1CS00510C/cit106/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201809820
– volume: 55
  start-page: 12104
  year: 2019
  ident: D1CS00510C/cit121/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06746A
– volume: 26
  start-page: 8358
  year: 2020
  ident: D1CS00510C/cit310/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202001180
– volume: 55
  start-page: 2062
  year: 2019
  ident: D1CS00510C/cit290/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC10246E
– volume: 59
  start-page: 18866
  year: 2020
  ident: D1CS00510C/cit28/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005745
– volume: 22
  start-page: 3697
  year: 2020
  ident: D1CS00510C/cit78/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c01182
– volume: 54
  start-page: 2270
  year: 2015
  ident: D1CS00510C/cit241/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408516
– volume: 37
  start-page: 320
  year: 2008
  ident: D1CS00510C/cit34/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B610213C
– volume: 17
  start-page: 3733
  year: 2015
  ident: D1CS00510C/cit243/1
  publication-title: Green Chem.
  doi: 10.1039/C5GC00644A
– volume: 6
  start-page: 3944
  year: 2019
  ident: D1CS00510C/cit93/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C9QO01058K
– volume: 12
  start-page: 1810
  year: 2021
  ident: D1CS00510C/cit152/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC05551D
– volume: 143
  start-page: 1598
  year: 2021
  ident: D1CS00510C/cit223/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12162
– volume: 7
  start-page: 3209
  year: 2020
  ident: D1CS00510C/cit174/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO00893A
– volume: 17
  start-page: 2839
  year: 2019
  ident: D1CS00510C/cit314/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB02812E
– volume: 20
  start-page: 4471
  year: 2018
  ident: D1CS00510C/cit87/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b01760
– volume: 20
  start-page: 3444
  year: 2018
  ident: D1CS00510C/cit91/1
  publication-title: Green Chem.
  doi: 10.1039/C8GC01337C
– volume: 11
  start-page: 4169
  year: 2021
  ident: D1CS00510C/cit265/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05690
– volume: 107
  start-page: 874
  year: 2007
  ident: D1CS00510C/cit156/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr050992x
– volume: 76
  start-page: 131059
  year: 2020
  ident: D1CS00510C/cit207/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2020.131059
– volume: 11
  start-page: 12089
  year: 2020
  ident: D1CS00510C/cit224/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC04853D
– volume: 27
  start-page: 8704
  year: 2021
  ident: D1CS00510C/cit284/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202101056
– volume: 52
  start-page: 14434
  year: 2016
  ident: D1CS00510C/cit230/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09172E
– volume: 35
  start-page: 686
  year: 2002
  ident: D1CS00510C/cit1/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010065m
– start-page: 5821
  year: 2017
  ident: D1CS00510C/cit32/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201700678
– volume: 360
  start-page: 3553
  year: 2018
  ident: D1CS00510C/cit141/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201800734
– volume: 26
  start-page: 105
  year: 2020
  ident: D1CS00510C/cit31/1
  publication-title: Molecules
  doi: 10.3390/molecules26010105
– volume: 17
  start-page: 5014
  year: 2019
  ident: D1CS00510C/cit41/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB00717B
– volume: 5
  start-page: 1003
  year: 2018
  ident: D1CS00510C/cit236/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C7QO00939A
– volume: 362
  start-page: 2254
  year: 2020
  ident: D1CS00510C/cit250/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202000314
– volume: 21
  start-page: 3167
  year: 2019
  ident: D1CS00510C/cit54/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b00867
– volume: 360
  start-page: 3401
  year: 2018
  ident: D1CS00510C/cit245/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201800532
– volume: 5
  start-page: 2437
  year: 2018
  ident: D1CS00510C/cit272/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C8QO00528A
– volume: 21
  start-page: 9228
  year: 2019
  ident: D1CS00510C/cit137/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b03594
– volume: 60
  start-page: 8744
  year: 2021
  ident: D1CS00510C/cit155/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016620
– volume: 24
  start-page: 259
  year: 2018
  ident: D1CS00510C/cit136/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201704619
– volume: 9
  start-page: 7318
  year: 2018
  ident: D1CS00510C/cit163/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03447H
– volume: 86
  start-page: 13711
  year: 2021
  ident: D1CS00510C/cit115/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.1c01831
– volume: 56
  start-page: 15416
  year: 2017
  ident: D1CS00510C/cit116/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201707862
– volume: 17
  start-page: 5897
  year: 2019
  ident: D1CS00510C/cit282/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB01040H
– volume: 10
  start-page: 3592
  year: 2019
  ident: D1CS00510C/cit102/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11528-8
– volume: 57
  start-page: 8236
  year: 2021
  ident: D1CS00510C/cit266/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC03018C
– volume: 9
  start-page: 1760
  year: 2020
  ident: D1CS00510C/cit183/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202000403
– volume: 8
  start-page: 288
  year: 2021
  ident: D1CS00510C/cit65/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO01307B
– volume: 53
  start-page: 7638
  year: 2017
  ident: D1CS00510C/cit133/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01903C
– volume: 20
  start-page: 3496
  year: 2018
  ident: D1CS00510C/cit75/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b01268
– volume: 23
  start-page: 5379
  year: 2021
  ident: D1CS00510C/cit105/1
  publication-title: Green Chem.
  doi: 10.1039/D1GC00993A
– volume: 60
  start-page: 7405
  year: 2021
  ident: D1CS00510C/cit150/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202014632
– volume: 40
  start-page: 2004
  year: 2001
  ident: D1CS00510C/cit158/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
– volume: 60
  start-page: 22956
  year: 2021
  ident: D1CS00510C/cit154/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202110084
– volume: 108
  start-page: 2265
  year: 2008
  ident: D1CS00510C/cit25/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0680843
– volume: 12
  start-page: 3060
  year: 2019
  ident: D1CS00510C/cit50/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201803058
– volume: 85
  start-page: 13939
  year: 2020
  ident: D1CS00510C/cit114/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c01985
– volume: 20
  start-page: 2749
  year: 2018
  ident: D1CS00510C/cit52/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00963
– volume: 83
  start-page: 11963
  year: 2018
  ident: D1CS00510C/cit208/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b01808
– volume: 16
  start-page: 2958
  year: 2014
  ident: D1CS00510C/cit4/1
  publication-title: Green Chem.
  doi: 10.1039/C4GC00013G
– volume: 580
  start-page: 220
  year: 2020
  ident: D1CS00510C/cit320/1
  publication-title: Nature
  doi: 10.1038/s41586-020-2060-z
– volume: 82
  start-page: 243
  year: 2017
  ident: D1CS00510C/cit86/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b02377
– volume: 57
  start-page: 13790
  year: 2018
  ident: D1CS00510C/cit97/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806522
– volume: 21
  start-page: 11677
  year: 2015
  ident: D1CS00510C/cit84/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201501590
– volume: 26
  start-page: 973
  year: 2015
  ident: D1CS00510C/cit202/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2015.04.016
– volume: 361
  start-page: 4082
  year: 2019
  ident: D1CS00510C/cit53/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900585
– volume: 83
  start-page: 14443
  year: 2018
  ident: D1CS00510C/cit170/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b02193
– volume: 40
  start-page: 1003
  year: 2019
  ident: D1CS00510C/cit160/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63278-X
– volume: 56
  start-page: 3011
  year: 2020
  ident: D1CS00510C/cit300/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC10057A
– volume: 8
  start-page: 658
  year: 2019
  ident: D1CS00510C/cit123/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201900020
– volume: 59
  start-page: 15021
  year: 2020
  ident: D1CS00510C/cit89/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005652
– volume: 47
  start-page: 1563
  year: 2014
  ident: D1CS00510C/cit239/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500035q
– volume: 53
  start-page: 725
  year: 2014
  ident: D1CS00510C/cit73/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201307051
– volume: 22
  start-page: 3416
  year: 2020
  ident: D1CS00510C/cit210/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC00375A
– volume: 53
  start-page: 7144
  year: 2014
  ident: D1CS00510C/cit42/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201403590
– volume: 21
  start-page: 3711
  year: 2019
  ident: D1CS00510C/cit235/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01169
– volume: 22
  start-page: 547
  year: 2012
  ident: D1CS00510C/cit261/1
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2011.10.091
– volume: 41
  start-page: 3790
  year: 2012
  ident: D1CS00510C/cit15/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15356d
– volume: 9
  start-page: 746
  year: 2019
  ident: D1CS00510C/cit120/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03209
– volume: 57
  start-page: 2883
  year: 2021
  ident: D1CS00510C/cit277/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC07927H
– volume: 21
  start-page: 6579
  year: 2019
  ident: D1CS00510C/cit64/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b02700
– volume: 21
  start-page: 2800
  year: 2019
  ident: D1CS00510C/cit125/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b00771
– volume: 41
  start-page: 7836
  year: 2017
  ident: D1CS00510C/cit204/1
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ01211J
– volume: 250
  start-page: 647
  year: 1912
  ident: D1CS00510C/cit211/1
  publication-title: Arch. Pharm.
  doi: 10.1002/ardp.19122500151
– volume: 55
  start-page: 15476
  year: 2016
  ident: D1CS00510C/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201605288
– volume: 16
  start-page: 1200
  year: 2016
  ident: D1CS00510C/cit258/1
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026615666150915111741
– volume: 49
  start-page: 8721
  year: 2020
  ident: D1CS00510C/cit13/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00128G
– volume: 20
  start-page: 7396
  year: 2018
  ident: D1CS00510C/cit39/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b03081
– volume: 23
  start-page: 7444
  year: 2017
  ident: D1CS00510C/cit130/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201701589
– volume: 26
  start-page: 1986
  year: 2021
  ident: D1CS00510C/cit14/1
  publication-title: Molecules
  doi: 10.3390/molecules26071986
– volume: 22
  start-page: 670
  year: 2020
  ident: D1CS00510C/cit278/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b04454
– volume: 59
  start-page: 3465
  year: 2020
  ident: D1CS00510C/cit128/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913332
– volume: 36
  start-page: 1017
  year: 2018
  ident: D1CS00510C/cit111/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201800320
– volume: 17
  start-page: 3507
  year: 2019
  ident: D1CS00510C/cit113/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB00278B
– volume: 23
  start-page: 1204
  year: 2021
  ident: D1CS00510C/cit149/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c04148
– volume: 3
  start-page: 1189
  year: 2012
  ident: D1CS00510C/cit8/1
  publication-title: MedChemComm
  doi: 10.1039/c2md20089a
– volume: 24
  start-page: 12274
  year: 2018
  ident: D1CS00510C/cit189/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201802167
– volume: 43
  start-page: 2492
  year: 2014
  ident: D1CS00510C/cit21/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60464k
– volume: 56
  start-page: 9527
  year: 2017
  ident: D1CS00510C/cit68/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201704690
– volume: 86
  start-page: 11968
  year: 2021
  ident: D1CS00510C/cit182/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.1c01350
– volume: 8
  start-page: 5316
  year: 2021
  ident: D1CS00510C/cit307/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00957E
– volume: 27
  start-page: 256
  year: 2016
  ident: D1CS00510C/cit244/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2015.10.012
– volume: 361
  start-page: 1538
  year: 2019
  ident: D1CS00510C/cit96/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201801492
– volume: 21
  start-page: 4853
  year: 2019
  ident: D1CS00510C/cit218/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01747
– volume: 56
  start-page: 3997
  year: 2017
  ident: D1CS00510C/cit51/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201700290
– volume: 8
  start-page: 6375
  year: 2017
  ident: D1CS00510C/cit58/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01703K
– volume: 143
  start-page: 12460
  year: 2021
  ident: D1CS00510C/cit257/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c06036
– volume: 361
  start-page: 3723
  year: 2019
  ident: D1CS00510C/cit45/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900521
– volume: 21
  start-page: 6194
  year: 2019
  ident: D1CS00510C/cit216/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC03173A
– volume: 140
  start-page: 2460
  year: 2018
  ident: D1CS00510C/cit49/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00391
– volume: 17
  start-page: 24
  year: 2019
  ident: D1CS00510C/cit55/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB02239A
– volume: 54
  start-page: 7924
  year: 2018
  ident: D1CS00510C/cit135/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03105C
– volume: 362
  start-page: 5391
  year: 2020
  ident: D1CS00510C/cit276/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202000999
– volume: 25
  start-page: 4590
  year: 2019
  ident: D1CS00510C/cit312/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201804225
– volume: 7
  start-page: 2531
  year: 2020
  ident: D1CS00510C/cit317/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO00460J
– volume: 59
  start-page: 8225
  year: 2020
  ident: D1CS00510C/cit319/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000140
– volume: 9
  start-page: 1558
  year: 2019
  ident: D1CS00510C/cit138/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04284
– volume: 22
  start-page: 3667
  year: 2020
  ident: D1CS00510C/cit176/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c01163
– volume: 20
  start-page: 4663
  year: 2018
  ident: D1CS00510C/cit242/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b01971
– volume: 58
  start-page: 3838
  year: 2019
  ident: D1CS00510C/cit217/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813315
– volume: 31
  start-page: 3065
  year: 2020
  ident: D1CS00510C/cit318/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.04.023
– volume: 167
  start-page: 79
  year: 2014
  ident: D1CS00510C/cit43/1
  publication-title: J. Fluorine Chem.
  doi: 10.1016/j.jfluchem.2014.05.013
– start-page: 5725
  year: 2018
  ident: D1CS00510C/cit297/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201801128
– volume: 7
  start-page: 4064
  year: 2020
  ident: D1CS00510C/cit187/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO01161D
– volume: 7
  start-page: 938
  year: 2020
  ident: D1CS00510C/cit288/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO00100G
– volume: 140
  start-page: 2438
  year: 2018
  ident: D1CS00510C/cit119/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13387
– volume: 49
  start-page: 7194
  year: 2008
  ident: D1CS00510C/cit198/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2008.10.006
– volume: 54
  start-page: 10791
  year: 2018
  ident: D1CS00510C/cit159/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC04618B
– volume: 54
  start-page: 12561
  year: 2018
  ident: D1CS00510C/cit264/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07434H
– volume: 59
  start-page: 74
  year: 2020
  ident: D1CS00510C/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201903726
– volume: 17
  start-page: 894
  year: 2014
  ident: D1CS00510C/cit197/1
  publication-title: C. R. Chim.
  doi: 10.1016/j.crci.2013.09.017
– volume: 20
  start-page: 6659
  year: 2018
  ident: D1CS00510C/cit76/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b02670
– volume: 140
  start-page: 16387
  year: 2018
  ident: D1CS00510C/cit122/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08592
– volume: 22
  start-page: 4471
  year: 2020
  ident: D1CS00510C/cit190/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c01470
– volume: 52
  start-page: 6752
  year: 2009
  ident: D1CS00510C/cit30/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901241e
– volume: 10
  start-page: 5484
  year: 2019
  ident: D1CS00510C/cit134/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC00833K
– volume: 15
  start-page: 4398
  year: 2013
  ident: D1CS00510C/cit70/1
  publication-title: Org. Lett.
  doi: 10.1021/ol401940c
– volume: 561
  start-page: 522
  year: 2018
  ident: D1CS00510C/cit233/1
  publication-title: Nature
  doi: 10.1038/s41586-018-0537-9
– volume: 360
  start-page: 865
  year: 2018
  ident: D1CS00510C/cit269/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201701187
– volume: 23
  start-page: 7724
  year: 2021
  ident: D1CS00510C/cit99/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c02661
– volume: 5
  start-page: 691
  year: 2018
  ident: D1CS00510C/cit263/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C7QO01073G
– volume: 50
  start-page: 14197
  year: 2014
  ident: D1CS00510C/cit66/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07066F
– volume: 55
  start-page: 5151
  year: 2019
  ident: D1CS00510C/cit167/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01801H
– volume: 80
  start-page: 12711
  year: 2015
  ident: D1CS00510C/cit214/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b02373
– volume: 21
  start-page: 4359
  year: 2019
  ident: D1CS00510C/cit107/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01529
– volume: 25
  start-page: 8965
  year: 2019
  ident: D1CS00510C/cit117/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201901175
– volume: 47
  start-page: 9129
  year: 2006
  ident: D1CS00510C/cit192/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2006.10.075
– volume: 375
  start-page: 82
  year: 2017
  ident: D1CS00510C/cit260/1
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-017-0169-9
– volume: 22
  start-page: 1924
  year: 2020
  ident: D1CS00510C/cit139/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c00287
– volume: 21
  start-page: 6403
  year: 2019
  ident: D1CS00510C/cit229/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b02317
– volume: 54
  start-page: 5217
  year: 2013
  ident: D1CS00510C/cit213/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2013.07.060
– volume: 54
  start-page: 4473
  year: 2018
  ident: D1CS00510C/cit82/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01096J
– volume: 50
  start-page: 9540
  year: 2021
  ident: D1CS00510C/cit18/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00311A
– volume: 22
  start-page: 7250
  year: 2020
  ident: D1CS00510C/cit124/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02582
– volume: 22
  start-page: 2386
  year: 2020
  ident: D1CS00510C/cit147/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c00584
– volume: 56
  start-page: 1839
  year: 2019
  ident: D1CS00510C/cit205/1
  publication-title: J. Heterocycl. Chem.
  doi: 10.1002/jhet.3562
– volume: 20
  start-page: 1546
  year: 2018
  ident: D1CS00510C/cit74/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00272
– volume: 117
  start-page: 13230
  year: 2017
  ident: D1CS00510C/cit23/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00397
– volume: 139
  start-page: 2896
  year: 2017
  ident: D1CS00510C/cit166/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13113
– volume: 58
  start-page: 2402
  year: 2019
  ident: D1CS00510C/cit248/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813689
– ident: D1CS00510C/cit3/1
– volume: 18
  start-page: 2906
  year: 2016
  ident: D1CS00510C/cit61/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b01257
– volume: 55
  start-page: 11925
  year: 2016
  ident: D1CS00510C/cit273/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607292
– volume: 22
  start-page: 8937
  year: 2020
  ident: D1CS00510C/cit164/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c03338
– volume: 52
  start-page: 8275
  year: 2016
  ident: D1CS00510C/cit132/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC03335K
– volume: 16
  start-page: 4340
  year: 2014
  ident: D1CS00510C/cit59/1
  publication-title: Org. Lett.
  doi: 10.1021/ol5021477
– volume: 480
  start-page: 224
  year: 2011
  ident: D1CS00510C/cit36/1
  publication-title: Nature
  doi: 10.1038/nature10647
– volume: 57
  start-page: 8969
  year: 2021
  ident: D1CS00510C/cit95/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC03288G
– volume: 112
  start-page: 3083
  year: 2012
  ident: D1CS00510C/cit10/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100233r
– volume: 60
  start-page: 7873
  year: 2021
  ident: D1CS00510C/cit321/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016156
– volume: 368
  start-page: 318
  year: 2020
  ident: D1CS00510C/cit253/1
  publication-title: Science
  doi: 10.1126/science.aba5901
– volume-title: Green chemistry: Theory and practice
  year: 1998
  ident: D1CS00510C/cit2/1
– volume: 11
  start-page: 10871
  year: 2021
  ident: D1CS00510C/cit153/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03545
– volume: 21
  start-page: 6005
  year: 2019
  ident: D1CS00510C/cit38/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b02152
– volume: 5
  start-page: 813
  year: 2018
  ident: D1CS00510C/cit270/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C7QO00987A
– volume: 18
  start-page: 115
  year: 1994
  ident: D1CS00510C/cit16/1
  publication-title: Endeavour
  doi: 10.1016/S0160-9327(05)80086-9
– volume: 57
  start-page: 1473
  year: 2014
  ident: D1CS00510C/cit259/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm401788m
– volume: 54
  start-page: 11481
  year: 2015
  ident: D1CS00510C/cit81/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502980
– volume: 70
  start-page: 4045
  year: 1948
  ident: D1CS00510C/cit57/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01192a022
– volume: 6
  start-page: 5933
  year: 2015
  ident: D1CS00510C/cit63/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6933
– volume: 514
  start-page: 111841
  year: 2021
  ident: D1CS00510C/cit228/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2021.111841
– start-page: 1274
  year: 2020
  ident: D1CS00510C/cit268/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201900396
– volume: 21
  start-page: 4950
  year: 2019
  ident: D1CS00510C/cit299/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01323
– volume: 139
  start-page: 3209
  year: 2017
  ident: D1CS00510C/cit313/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13229
– volume: 56
  start-page: 12774
  year: 2017
  ident: D1CS00510C/cit316/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706799
– volume: 47
  start-page: 5786
  year: 2018
  ident: D1CS00510C/cit27/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00619E
– volume: 55
  start-page: 14962
  year: 2019
  ident: D1CS00510C/cit309/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08333B
– volume: 81
  start-page: 29
  year: 2016
  ident: D1CS00510C/cit195/1
  publication-title: J. Serbian Chem. Soc.
  doi: 10.2298/JSC150210048K
– volume: 59
  start-page: 457
  year: 2020
  ident: D1CS00510C/cit151/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911109
– volume: 51
  start-page: 9567
  year: 2012
  ident: D1CS00510C/cit37/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205071
– volume: 53
  start-page: 1696
  year: 2017
  ident: D1CS00510C/cit101/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC10035J
– volume: 52
  start-page: 11756
  year: 2016
  ident: D1CS00510C/cit165/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05506K
– volume: 362
  start-page: 3131
  year: 2020
  ident: D1CS00510C/cit83/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202000637
– volume: 56
  start-page: 9469
  year: 2020
  ident: D1CS00510C/cit275/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03591B
– volume: 10
  start-page: 8247
  year: 2020
  ident: D1CS00510C/cit143/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02660
– volume: 59
  start-page: 4370
  year: 2020
  ident: D1CS00510C/cit144/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916279
– volume: 363
  start-page: 1651
  year: 2021
  ident: D1CS00510C/cit140/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202001434
– volume: 24
  start-page: 10617
  year: 2018
  ident: D1CS00510C/cit168/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201801628
– volume: 21
  start-page: 4853
  year: 2019
  ident: D1CS00510C/cit225/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01747
– volume: 52
  start-page: 4734
  year: 2013
  ident: D1CS00510C/cit72/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201210276
– volume: 8
  start-page: 2461
  year: 2021
  ident: D1CS00510C/cit283/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00112D
– volume: 8
  start-page: 5403
  year: 2021
  ident: D1CS00510C/cit279/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00816A
– volume: 17
  start-page: 1113
  year: 2015
  ident: D1CS00510C/cit162/1
  publication-title: Green Chem.
  doi: 10.1039/C4GC01623H
– volume: 9
  start-page: 5330
  year: 2019
  ident: D1CS00510C/cit148/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01580
– volume: 75
  start-page: 27
  year: 1850
  ident: D1CS00510C/cit212/1
  publication-title: Ann. Chem. Pharm.
  doi: 10.1002/jlac.18500750103
– volume: 60
  start-page: 5056
  year: 2021
  ident: D1CS00510C/cit311/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016164
– volume: 23
  start-page: 2420
  year: 2021
  ident: D1CS00510C/cit185/1
  publication-title: Green Chem.
  doi: 10.1039/D1GC00027F
– volume: 10
  start-page: 12727
  year: 2020
  ident: D1CS00510C/cit219/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03422
– volume: 72
  start-page: 7813
  year: 2016
  ident: D1CS00510C/cit85/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2016.05.045
– volume: 15
  start-page: 2136
  year: 2013
  ident: D1CS00510C/cit56/1
  publication-title: Org. Lett.
  doi: 10.1021/ol4006272
– volume: 12
  start-page: 9359
  year: 2021
  ident: D1CS00510C/cit308/1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC02503A
– volume: 24
  start-page: 103134
  year: 2021
  ident: D1CS00510C/cit221/1
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103134
– volume: 12
  start-page: 6429
  year: 2021
  ident: D1CS00510C/cit305/1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC01389K
– start-page: 6653
  year: 2020
  ident: D1CS00510C/cit296/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202001219
– volume: 16
  start-page: 1240
  year: 2014
  ident: D1CS00510C/cit131/1
  publication-title: Org. Lett.
  doi: 10.1021/ol500374e
– volume: 11
  start-page: 10862
  year: 2021
  ident: D1CS00510C/cit220/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02823
– volume: 55
  start-page: 12212
  year: 2019
  ident: D1CS00510C/cit280/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC05949K
– volume: 20
  start-page: 1693
  year: 2018
  ident: D1CS00510C/cit173/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00410
– volume: 8
  start-page: 5448
  year: 2018
  ident: D1CS00510C/cit256/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00683
– volume: 58
  start-page: 1789
  year: 2019
  ident: D1CS00510C/cit249/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811858
– volume: 20
  start-page: 190
  year: 2018
  ident: D1CS00510C/cit62/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b03551
– volume: 4
  start-page: 2221
  year: 2017
  ident: D1CS00510C/cit295/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C7QO00634A
– volume: 55
  start-page: 13312
  year: 2016
  ident: D1CS00510C/cit231/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607813
– volume: 60
  start-page: 7353
  year: 2021
  ident: D1CS00510C/cit262/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202014111
– volume: 5
  start-page: 3153
  year: 2018
  ident: D1CS00510C/cit286/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C8QO00965A
– volume: 23
  start-page: 2754
  year: 2021
  ident: D1CS00510C/cit186/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c00664
– volume: 15
  start-page: 2092
  year: 2013
  ident: D1CS00510C/cit215/1
  publication-title: Org. Lett.
  doi: 10.1021/ol400317v
– volume: 8
  start-page: 7489
  year: 2018
  ident: D1CS00510C/cit109/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01863
– volume: 84
  start-page: 3025
  year: 2019
  ident: D1CS00510C/cit142/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b03155
– volume: 22
  start-page: 9155
  year: 2016
  ident: D1CS00510C/cit251/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201601694
– volume: 8
  start-page: 4820
  year: 2021
  ident: D1CS00510C/cit301/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00732G
– volume: 55
  start-page: 2214
  year: 2019
  ident: D1CS00510C/cit298/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00347A
– volume: 116
  start-page: 10075
  year: 2016
  ident: D1CS00510C/cit17/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00057
– volume: 132
  start-page: 5787
  year: 2020
  ident: D1CS00510C/cit180/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201914061
– volume: 56
  start-page: 10915
  year: 2017
  ident: D1CS00510C/cit100/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706263
– volume: 359
  start-page: 1308
  year: 2017
  ident: D1CS00510C/cit294/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201601341
– volume: 23
  start-page: 4328
  year: 2021
  ident: D1CS00510C/cit126/1
  publication-title: Green Chem.
  doi: 10.1039/D1GC00949D
– volume: 10
  start-page: 461
  year: 2015
  ident: D1CS00510C/cit315/1
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201402502
– volume: 84
  start-page: 15677
  year: 2019
  ident: D1CS00510C/cit77/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b02310
– volume: 51
  start-page: 2200
  year: 2012
  ident: D1CS00510C/cit199/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200997b
– volume: 10
  start-page: e15
  year: 2013
  ident: D1CS00510C/cit7/1
  publication-title: Drug Discovery Today: Technol.
  doi: 10.1016/j.ddtec.2012.10.012
– volume: 15
  start-page: 981
  year: 2015
  ident: D1CS00510C/cit12/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201500201
– volume: 8
  start-page: 5460
  year: 2021
  ident: D1CS00510C/cit11/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00313E
– volume: 23
  start-page: 6987
  year: 2021
  ident: D1CS00510C/cit79/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.1c02686
– volume: 8
  start-page: 6032
  year: 2021
  ident: D1CS00510C/cit303/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO01183A
– volume: 56
  start-page: 3732
  year: 2015
  ident: D1CS00510C/cit33/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.04.091
– volume: 8
  start-page: 3308
  year: 2021
  ident: D1CS00510C/cit293/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00344E
– volume: 24
  start-page: 2122
  year: 2019
  ident: D1CS00510C/cit26/1
  publication-title: Molecules
  doi: 10.3390/molecules24112122
– volume: 3
  start-page: 1443
  year: 2016
  ident: D1CS00510C/cit67/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/C6QO00393A
– volume: 18
  start-page: 423
  year: 2012
  ident: D1CS00510C/cit129/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201103062
– volume: 137
  start-page: 11270
  year: 2015
  ident: D1CS00510C/cit179/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07678
– volume: 4
  start-page: eaat531
  year: 2018
  ident: D1CS00510C/cit90/1
  publication-title: Sci. Adv.
– volume: 58
  start-page: 4227
  year: 2017
  ident: D1CS00510C/cit200/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2017.09.003
– volume: 85
  start-page: 1981
  year: 2020
  ident: D1CS00510C/cit177/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b02709
– volume: 57
  start-page: 17220
  year: 2018
  ident: D1CS00510C/cit103/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811266
– volume: 87
  start-page: 132111
  year: 2021
  ident: D1CS00510C/cit209/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2021.132111
– volume: 55
  start-page: 3117
  year: 2019
  ident: D1CS00510C/cit69/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00727J
– volume: 22
  start-page: 1906
  year: 2020
  ident: D1CS00510C/cit292/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC00332H
– volume: 23
  start-page: 8176
  year: 2017
  ident: D1CS00510C/cit306/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201702040
– volume: 5
  start-page: 526
  year: 2019
  ident: D1CS00510C/cit238/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.11.006
– volume: 142
  start-page: 20390
  year: 2020
  ident: D1CS00510C/cit145/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08823
– volume: 22
  start-page: 4259
  year: 2020
  ident: D1CS00510C/cit191/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC00771D
– volume: 22
  start-page: 3318
  year: 2020
  ident: D1CS00510C/cit234/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c00614
– volume: 53
  start-page: 547
  year: 2020
  ident: D1CS00510C/cit22/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00529
SSID ssj0011762
Score 2.680186
SecondaryResourceType review_article
Snippet Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2313
SubjectTerms Catalysis
Chemical reactions
Chemical reactors
Cross coupling
cross-coupling reactions
Electrochemical activation
Electrochemistry
energy efficiency
irradiation
light
Light irradiation
Organic chemistry
photocatalysis
photocatalysts
Photoredox catalysis
Reagents
redox reactions
Selectivity
Title Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency
URI https://www.ncbi.nlm.nih.gov/pubmed/35244107
https://www.proquest.com/docview/2640982636
https://www.proquest.com/docview/2636140603
https://www.proquest.com/docview/2648878261
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gAXxKtgKGgRXJDl1M46fnCrQqKCQkHCqXKz1uu1GmjsKI9D--uZfdqlFSpcLMteWyvP55n5dueB0Hs-IGCWRUOTgAJBqYCnpCSFM8I4rSoWhFwQxa-n0cks_DIfznu9q252ybbos6tb80r-R6pwDeQqsmT_QbL2pXABzkG-cAQJw_FOMpbZsyIovKnFlj74f0wFtsns__NGtEia6EY3zHR2c382CxldyFQ4HLDupctlfvKlu-R8u3G5SgjksryEyM3surC2xIAJ-NQFTe1uRrNaAV-WC-7gnC_4xbJpV0y_i_UdkUEkowhElHFtDcMZFZG5a3d8Caql1lr6l3vW76gm-dT5zpsuuusVQHV94qkkaK1iw8j3wlhVfTQ6eBh0sBa5qz64nfAYUY2JjHIlKm1VG2pz94YR8ImooVoGbCNVDmtNndneP_2WT2bTaZ6N59k9tD8AigE6cv94nH2e2j2oIJbtaO18TXFbkh61777uztzgKOCxrE0nGemxZI_QQ0018LHCzWPU4_UTdH9kcPAU8ev4wRY_GPCDJX6O_kQPFujBCj0fscAO1tjBEjtYYQe32HmGZpNxNjrxdNsNj4Uk2nosEW644JKsCsuIJTFhNKLDMChpWXESVySJU79MKU1LniQ0jYuiZJQElLM0GZADtFfDvF8gDN4zD4G-ySpHIWUFmOVh4RelPwTuzyoHfTBfL2e6Jr1ojXKRy9gIkuafgtEP-aVHDnpnx65UJZZbRx0aIeT6T93k4PT7MLGIRA56a2_DZxObY7TmzU6MIeCp-pFP_jYGzB241FHgoOdKwHYqQGSAWfixgw5A4vZyi5SXd3jtK_Sg_WUO0d52veOvwendFm80On8DEoywPA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicomponent+reactions+and+photo%2Felectrochemistry+join+forces%3A+atom+economy+meets+energy+efficiency&rft.jtitle=Chemical+Society+reviews&rft.au=Coppola%2C+Guglielmo+A&rft.au=Pillitteri%2C+Serena&rft.au=Van+der+Eycken%2C+Erik+V.&rft.au=You%2C+Shu-Li&rft.date=2022-03-21&rft.issn=1460-4744&rft.volume=51&rft.issue=6+p.2313-2382&rft.spage=2313&rft.epage=2382&rft_id=info:doi/10.1039%2Fd1cs00510c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon