Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as w...
Saved in:
Published in | Chemical Society reviews Vol. 51; no. 6; pp. 2313 - 2382 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
This review offers an overview of recent synthetic strategies employing photoredox catalysis and electrochemistry in the framework of multicomponent reactions. |
---|---|
AbstractList | Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent. Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent. This review offers an overview of recent synthetic strategies employing photoredox catalysis and electrochemistry in the framework of multicomponent reactions. Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent. |
Author | You, Shu-Li Coppola, Guglielmo A Sharma, Upendra K Pillitteri, Serena Van der Eycken, Erik V |
AuthorAffiliation | State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Peoples' Friendship University of Russia (RUDN University) Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) |
AuthorAffiliation_xml | – name: Peoples' Friendship University of Russia (RUDN University) – name: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences – name: Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) |
Author_xml | – sequence: 1 givenname: Guglielmo A surname: Coppola fullname: Coppola, Guglielmo A – sequence: 2 givenname: Serena surname: Pillitteri fullname: Pillitteri, Serena – sequence: 3 givenname: Erik V surname: Van der Eycken fullname: Van der Eycken, Erik V – sequence: 4 givenname: Shu-Li surname: You fullname: You, Shu-Li – sequence: 5 givenname: Upendra K surname: Sharma fullname: Sharma, Upendra K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35244107$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0k1v1DAQBmALFdFt4cIdZIlLhRQ6jr2O0xtayodUxAE4R97xhGaV2IvtHPLv8bKlSBUHTvbhmdcej8_YiQ-eGHsu4I0A2V46gQlgLQAfsZVQGirVKHXCViBBVwCiPmVnKe3KTjS6fsJO5bpWSkCzYvR5HvOAYdqXTJ95JIt5CD5x6x3f34YcLmkkzDHgLU1DynHhuzB43oeIlK64zWHihMGHaeETUU6cPMUfC6e-H3Agj8tT9ri3Y6Jnd-s5-_7--tvmY3Xz5cOnzdubCpXUuUIDprRRbo29chpNI9Fqu1bCWdeTbHppmhZca23ryBjbNtutQyuFJWxNLc_ZxTF3H8PPmVLuyo2RxtF6CnPqaq2MaUytxX9QqYUCDbLQVw_oLszRl0YOgVAOLraol3dq3k7kun0cJhuX7s9bF_D6CDCGlCL190RAdxhk905svv4e5KZgeIBxyPYwmRztMP675MWxJCa8j_77N-QvdwSp_w |
CitedBy_id | crossref_primary_10_1002_aoc_6949 crossref_primary_10_1002_ejoc_202201288 crossref_primary_10_1016_j_matchemphys_2023_128126 crossref_primary_10_3390_molecules28031145 crossref_primary_10_1016_j_cep_2025_110205 crossref_primary_10_1039_D2GC04906F crossref_primary_10_1002_ijch_202300067 crossref_primary_10_1039_D2CC03799H crossref_primary_10_1002_ajoc_202200232 crossref_primary_10_1021_acs_accounts_4c00638 crossref_primary_10_1002_ajoc_202200356 crossref_primary_10_1039_D4CC01969E crossref_primary_10_1039_D4GC03768E crossref_primary_10_1039_D4AN00355A crossref_primary_10_1039_D4NJ05074F crossref_primary_10_1016_j_checat_2023_100567 crossref_primary_10_1002_adsc_202300822 crossref_primary_10_1002_chem_202402995 crossref_primary_10_1039_D4EY00259H crossref_primary_10_1002_ajoc_202200629 crossref_primary_10_1002_jhet_4868 crossref_primary_10_1039_D3GC02831C crossref_primary_10_1039_D2GC03829C crossref_primary_10_1021_acs_joc_3c01091 crossref_primary_10_1039_D2NJ03933H crossref_primary_10_1007_s11426_022_1438_0 crossref_primary_10_1039_D2CC02823A crossref_primary_10_1002_anie_202314208 crossref_primary_10_1021_acs_orglett_3c01946 crossref_primary_10_1002_slct_202401102 crossref_primary_10_1039_D4NJ02051K crossref_primary_10_1002_adsc_202300272 crossref_primary_10_1021_acs_joc_4c00892 crossref_primary_10_1021_acs_orglett_4c04767 crossref_primary_10_1021_acs_orglett_4c01258 crossref_primary_10_1039_D3RA00049D crossref_primary_10_1021_acs_joc_4c01229 crossref_primary_10_1016_j_cclet_2023_108902 crossref_primary_10_1021_acs_orglett_3c01020 crossref_primary_10_1021_acs_orglett_3c04099 crossref_primary_10_1016_j_jcat_2024_115746 crossref_primary_10_1016_j_jphotochem_2022_114120 crossref_primary_10_1021_acs_joc_3c01483 crossref_primary_10_1002_cssc_202401840 crossref_primary_10_1002_ajoc_202300181 crossref_primary_10_1002_anie_202500942 crossref_primary_10_1021_acs_jchemed_2c01088 crossref_primary_10_1039_D2NA00233G crossref_primary_10_1002_slct_202204294 crossref_primary_10_1039_D2QO01387H crossref_primary_10_1002_cctc_202401524 crossref_primary_10_1021_acs_joc_4c02567 crossref_primary_10_1039_D2OB01833K crossref_primary_10_1016_j_checat_2024_101110 crossref_primary_10_1371_journal_pone_0314421 crossref_primary_10_1016_j_tchem_2024_100070 crossref_primary_10_1016_j_molliq_2024_124592 crossref_primary_10_1002_anse_202300031 crossref_primary_10_6023_cjoc202400007 crossref_primary_10_1021_acs_orglett_3c01379 crossref_primary_10_1002_tcr_202500002 crossref_primary_10_1021_acs_orglett_3c02744 crossref_primary_10_1016_j_jorganchem_2024_123384 crossref_primary_10_1039_D2NJ06257G crossref_primary_10_1016_j_mcat_2024_114685 crossref_primary_10_1002_chem_202302142 crossref_primary_10_1002_ajoc_202400715 crossref_primary_10_1002_ange_202500942 crossref_primary_10_1002_aoc_7789 crossref_primary_10_1039_D3SC05530B crossref_primary_10_1002_adsc_202401401 crossref_primary_10_2478_amns_2024_0032 crossref_primary_10_1039_D2RA01752K crossref_primary_10_1021_acs_orglett_3c02734 crossref_primary_10_1021_acs_orglett_4c03252 crossref_primary_10_1016_j_mcat_2023_113582 crossref_primary_10_3390_molecules30030607 crossref_primary_10_1002_cjoc_202400207 crossref_primary_10_1021_acs_orglett_3c03786 crossref_primary_10_1039_D4QO00797B crossref_primary_10_1039_D3GC02575F crossref_primary_10_1002_slct_202303943 crossref_primary_10_1007_s11172_024_4303_x crossref_primary_10_1002_adsc_202300462 crossref_primary_10_1002_adsc_202401276 crossref_primary_10_1039_D4OB00055B crossref_primary_10_1021_acs_orglett_4c03741 crossref_primary_10_2174_1568026623666230403102437 crossref_primary_10_3390_molecules29153620 crossref_primary_10_1021_acs_orglett_3c01877 crossref_primary_10_1021_acs_accounts_2c00540 crossref_primary_10_1021_acscatal_3c05988 crossref_primary_10_1016_j_mencom_2024_02_001 crossref_primary_10_1002_ejoc_202200569 crossref_primary_10_1021_acs_orglett_2c03697 crossref_primary_10_1055_a_2179_6570 crossref_primary_10_1039_D5QO00352K crossref_primary_10_1021_acs_orglett_4c03754 crossref_primary_10_1039_D3OB00313B crossref_primary_10_1021_acs_orglett_4c04209 crossref_primary_10_1039_D2OB00795A crossref_primary_10_1038_s41570_024_00612_3 crossref_primary_10_1038_s41929_024_01211_7 crossref_primary_10_1002_cjoc_202400149 crossref_primary_10_1039_D2GC00855F crossref_primary_10_3390_ijms24076581 crossref_primary_10_1007_s11164_023_05104_5 crossref_primary_10_1002_ange_202314208 crossref_primary_10_1021_acs_jmedchem_3c02109 crossref_primary_10_1039_D4GC04495A crossref_primary_10_3390_molecules28186488 crossref_primary_10_1021_acs_orglett_2c03985 crossref_primary_10_1360_TB_2023_0205 crossref_primary_10_1002_tcr_202300275 crossref_primary_10_1021_acs_jchemed_4c01069 crossref_primary_10_6023_cjoc202308008 crossref_primary_10_1007_s12633_022_02275_5 crossref_primary_10_1002_ajoc_202300303 crossref_primary_10_1002_ejoc_202401473 crossref_primary_10_1002_open_202300128 crossref_primary_10_59761_RCR5104 crossref_primary_10_1039_D3RA02746E crossref_primary_10_1021_acs_joc_3c02946 crossref_primary_10_1021_jacs_3c10460 crossref_primary_10_3390_molecules28176356 crossref_primary_10_1016_j_biortech_2023_129509 crossref_primary_10_1002_adsc_202300400 crossref_primary_10_6023_cjoc202212017 crossref_primary_10_1002_adsc_202300645 crossref_primary_10_1016_j_tetlet_2022_154055 crossref_primary_10_1007_s11426_023_1622_1 crossref_primary_10_1002_anie_202300166 crossref_primary_10_1002_chem_202303553 crossref_primary_10_1039_D2OB01612E crossref_primary_10_1002_ejoc_202201038 crossref_primary_10_1021_acs_joc_4c02374 crossref_primary_10_1021_acscatal_3c02332 crossref_primary_10_1038_s41598_023_36059_7 crossref_primary_10_1039_D4OB01822B crossref_primary_10_1021_acs_inorgchem_4c01383 crossref_primary_10_1021_acscatal_5c00755 crossref_primary_10_1055_a_2019_0399 crossref_primary_10_1016_j_inoche_2024_112280 crossref_primary_10_3390_molecules29112559 crossref_primary_10_1002_cssc_202300523 crossref_primary_10_1039_D3CC02337K crossref_primary_10_1039_D3QO00662J crossref_primary_10_1021_acs_orglett_4c01831 crossref_primary_10_1016_j_molstruc_2024_138104 crossref_primary_10_1016_j_cej_2024_149775 crossref_primary_10_1016_j_tet_2023_133691 crossref_primary_10_1039_D4QO00846D crossref_primary_10_1002_ange_202300166 crossref_primary_10_1038_s41598_023_47794_2 crossref_primary_10_1039_D3QO00387F crossref_primary_10_1039_D4QO02304H |
Cites_doi | 10.1021/ja9053338 10.1039/C8CC01124A 10.1021/acs.orglett.0c00602 10.1002/adsc.202001105 10.1002/tcr.201600044 10.1038/s41467-021-22690-3 10.1021/jacs.0c08532 10.1021/acs.orglett.1c01412 10.1039/C6GC00924G 10.1002/chem.201803409 10.1016/j.cclet.2021.05.007 10.1039/D0CC03235B 10.1039/C8CC06567E 10.1039/C4CS00253A 10.1038/s41586-020-2213-0 10.1039/D1CC01560E 10.1002/ejoc.202100505 10.1021/acs.orglett.7b01145 10.1039/D0CC01775B 10.1021/acs.joc.6b00234 10.1002/anie.201908987 10.1002/anie.201504559 10.1021/acs.orglett.9b01677 10.1021/acs.orglett.1c01494 10.1002/chem.201605336 10.1002/ajoc.201900172 10.1016/j.tet.2016.11.009 10.1021/acs.orglett.9b00620 10.1038/s41467-019-08669-1 10.1007/s11164-013-1387-6 10.1002/ejoc.201601485 10.1021/acs.orglett.8b01385 10.1039/D0SC02178D 10.1021/acscatal.9b02830 10.1002/cctc.202001589 10.1038/s41929-019-0311-x 10.1038/s41467-018-06904-9 10.1149/2.009307jes 10.1039/D1OB00142F 10.1039/C9RA10555G 10.1021/acs.orglett.8b03274 10.1021/acs.joc.9b01077 10.1016/j.mencom.2011.04.002 10.1021/jacs.0c00629 10.1016/j.jorganchem.2021.121712 10.1002/anie.201408837 10.1002/anie.201006515 10.1039/b512308a 10.1002/chem.201804708 10.1021/jacs.0c03144 10.1002/chem.201504838 10.1039/c1cs15071e 10.1039/C9GC03608C 10.1021/acscatal.7b02892 10.1021/cr800296p 10.1016/j.tetlet.2015.02.098 10.1021/acs.orglett.8b02923 10.1021/acs.joc.9b01569 10.1002/adsc.202100136 10.1016/j.tetlet.2017.01.049 10.1039/C9CC06037E 10.1039/C9CC03004B 10.1002/anie.201809820 10.1039/C9CC06746A 10.1002/chem.202001180 10.1039/C8CC10246E 10.1002/anie.202005745 10.1021/acs.orglett.0c01182 10.1002/anie.201408516 10.1039/B610213C 10.1039/C5GC00644A 10.1039/C9QO01058K 10.1039/D0SC05551D 10.1021/jacs.0c12162 10.1039/D0QO00893A 10.1039/C8OB02812E 10.1021/acs.orglett.8b01760 10.1039/C8GC01337C 10.1021/acscatal.0c05690 10.1021/cr050992x 10.1016/j.tet.2020.131059 10.1039/D0SC04853D 10.1002/chem.202101056 10.1039/C6CC09172E 10.1021/ar010065m 10.1002/ejoc.201700678 10.1002/adsc.201800734 10.3390/molecules26010105 10.1039/C9OB00717B 10.1039/C7QO00939A 10.1002/adsc.202000314 10.1021/acs.orglett.9b00867 10.1002/adsc.201800532 10.1039/C8QO00528A 10.1021/acs.orglett.9b03594 10.1002/anie.202016620 10.1002/chem.201704619 10.1039/C8SC03447H 10.1021/acs.joc.1c01831 10.1002/anie.201707862 10.1039/C9OB01040H 10.1038/s41467-019-11528-8 10.1039/D1CC03018C 10.1002/ajoc.202000403 10.1039/D0QO01307B 10.1039/C7CC01903C 10.1021/acs.orglett.8b01268 10.1039/D1GC00993A 10.1002/anie.202014632 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 10.1002/anie.202110084 10.1021/cr0680843 10.1002/cssc.201803058 10.1021/acs.joc.0c01985 10.1021/acs.orglett.8b00963 10.1021/acs.joc.8b01808 10.1039/C4GC00013G 10.1038/s41586-020-2060-z 10.1021/acs.joc.6b02377 10.1002/anie.201806522 10.1002/chem.201501590 10.1016/j.cclet.2015.04.016 10.1002/adsc.201900585 10.1021/acs.joc.8b02193 10.1016/S1872-2067(19)63278-X 10.1039/C9CC10057A 10.1002/ajoc.201900020 10.1002/anie.202005652 10.1021/ar500035q 10.1002/anie.201307051 10.1039/D0GC00375A 10.1002/anie.201403590 10.1021/acs.orglett.9b01169 10.1016/j.bmcl.2011.10.091 10.1039/c2cs15356d 10.1021/acscatal.8b03209 10.1039/D0CC07927H 10.1021/acs.orglett.9b02700 10.1021/acs.orglett.9b00771 10.1039/C7NJ01211J 10.1002/ardp.19122500151 10.1002/anie.201605288 10.2174/1568026615666150915111741 10.1039/D0CS00128G 10.1021/acs.orglett.8b03081 10.1002/chem.201701589 10.3390/molecules26071986 10.1021/acs.orglett.9b04454 10.1002/anie.201913332 10.1002/cjoc.201800320 10.1039/C9OB00278B 10.1021/acs.orglett.0c04148 10.1039/c2md20089a 10.1002/chem.201802167 10.1039/c3cs60464k 10.1002/anie.201704690 10.1021/acs.joc.1c01350 10.1039/D1QO00957E 10.1016/j.cclet.2015.10.012 10.1002/adsc.201801492 10.1021/acs.orglett.9b01747 10.1002/anie.201700290 10.1039/C7SC01703K 10.1021/jacs.1c06036 10.1002/adsc.201900521 10.1039/C9GC03173A 10.1021/jacs.8b00391 10.1039/C8OB02239A 10.1039/C8CC03105C 10.1002/adsc.202000999 10.1002/chem.201804225 10.1039/D0QO00460J 10.1002/anie.202000140 10.1021/acscatal.8b04284 10.1021/acs.orglett.0c01163 10.1021/acs.orglett.8b01971 10.1002/anie.201813315 10.1016/j.cclet.2020.04.023 10.1016/j.jfluchem.2014.05.013 10.1002/ejoc.201801128 10.1039/D0QO01161D 10.1039/D0QO00100G 10.1021/jacs.7b13387 10.1016/j.tetlet.2008.10.006 10.1039/C8CC04618B 10.1039/C8CC07434H 10.1002/anie.201903726 10.1016/j.crci.2013.09.017 10.1021/acs.orglett.8b02670 10.1021/jacs.8b08592 10.1021/acs.orglett.0c01470 10.1021/jm901241e 10.1039/C9SC00833K 10.1021/ol401940c 10.1038/s41586-018-0537-9 10.1002/adsc.201701187 10.1021/acs.orglett.1c02661 10.1039/C7QO01073G 10.1039/C4CC07066F 10.1039/C9CC01801H 10.1021/acs.joc.5b02373 10.1021/acs.orglett.9b01529 10.1002/chem.201901175 10.1016/j.tetlet.2006.10.075 10.1007/s41061-017-0169-9 10.1021/acs.orglett.0c00287 10.1021/acs.orglett.9b02317 10.1016/j.tetlet.2013.07.060 10.1039/C8CC01096J 10.1039/D1CS00311A 10.1021/acs.orglett.0c02582 10.1021/acs.orglett.0c00584 10.1002/jhet.3562 10.1021/acs.orglett.8b00272 10.1021/acs.chemrev.7b00397 10.1021/jacs.6b13113 10.1002/anie.201813689 10.1021/acs.orglett.6b01257 10.1002/anie.201607292 10.1021/acs.orglett.0c03338 10.1039/C6CC03335K 10.1021/ol5021477 10.1038/nature10647 10.1039/D1CC03288G 10.1021/cr100233r 10.1002/anie.202016156 10.1126/science.aba5901 10.1021/acscatal.1c03545 10.1021/acs.orglett.9b02152 10.1039/C7QO00987A 10.1016/S0160-9327(05)80086-9 10.1021/jm401788m 10.1002/anie.201502980 10.1021/ja01192a022 10.1038/ncomms6933 10.1016/j.mcat.2021.111841 10.1002/ejoc.201900396 10.1021/acs.orglett.9b01323 10.1021/jacs.6b13229 10.1002/anie.201706799 10.1039/C7CS00619E 10.1039/C9CC08333B 10.2298/JSC150210048K 10.1002/anie.201911109 10.1002/anie.201205071 10.1039/C6CC10035J 10.1039/C6CC05506K 10.1002/adsc.202000637 10.1039/D0CC03591B 10.1021/acscatal.0c02660 10.1002/anie.201916279 10.1002/adsc.202001434 10.1002/chem.201801628 10.1002/anie.201210276 10.1039/D1QO00112D 10.1039/D1QO00816A 10.1039/C4GC01623H 10.1021/acscatal.9b01580 10.1002/jlac.18500750103 10.1002/anie.202016164 10.1039/D1GC00027F 10.1021/acscatal.0c03422 10.1016/j.tet.2016.05.045 10.1021/ol4006272 10.1039/D1SC02503A 10.1016/j.isci.2021.103134 10.1039/D1SC01389K 10.1002/ejoc.202001219 10.1021/ol500374e 10.1021/acscatal.1c02823 10.1039/C9CC05949K 10.1021/acs.orglett.8b00410 10.1021/acscatal.8b00683 10.1002/anie.201811858 10.1021/acs.orglett.7b03551 10.1039/C7QO00634A 10.1002/anie.201607813 10.1002/anie.202014111 10.1039/C8QO00965A 10.1021/acs.orglett.1c00664 10.1021/ol400317v 10.1021/acscatal.8b01863 10.1021/acs.joc.8b03155 10.1002/chem.201601694 10.1039/D1QO00732G 10.1039/C9CC00347A 10.1021/acs.chemrev.6b00057 10.1002/ange.201914061 10.1002/anie.201706263 10.1002/adsc.201601341 10.1039/D1GC00949D 10.1002/cmdc.201402502 10.1021/acs.joc.9b02310 10.1021/ie200997b 10.1016/j.ddtec.2012.10.012 10.1002/tcr.201500201 10.1039/D1QO00313E 10.1021/acs.orglett.1c02686 10.1039/D1QO01183A 10.1016/j.tetlet.2015.04.091 10.1039/D1QO00344E 10.3390/molecules24112122 10.1039/C6QO00393A 10.1002/chem.201103062 10.1021/jacs.5b07678 10.1016/j.tetlet.2017.09.003 10.1021/acs.joc.9b02709 10.1002/anie.201811266 10.1016/j.tet.2021.132111 10.1039/C9CC00727J 10.1039/D0GC00332H 10.1002/chem.201702040 10.1016/j.chempr.2018.11.006 10.1021/jacs.0c08823 10.1039/D0GC00771D 10.1021/acs.orglett.0c00614 10.1021/acs.accounts.9b00529 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d1cs00510c |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 2382 |
ExternalDocumentID | 35244107 10_1039_D1CS00510C d1cs00510c |
Genre | Journal Article Review |
GroupedDBID | - 0-7 02 0R 29B 4.4 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X XOL --- -DZ -~X 0R~ 2WC 53G 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 -JG NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-c808510306cf4d6c873ca6a541dadfe37f38790d9aa9de88a97bbdca31aec9823 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 10:09:25 EDT 2025 Thu Jul 10 19:02:22 EDT 2025 Mon Jun 30 12:39:25 EDT 2025 Wed Feb 19 02:26:27 EST 2025 Thu Apr 24 22:51:50 EDT 2025 Tue Jul 01 04:18:47 EDT 2025 Tue Mar 22 05:00:39 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-c808510306cf4d6c873ca6a541dadfe37f38790d9aa9de88a97bbdca31aec9823 |
Notes | Serena Pillitteri received her Master's degree with summa cum laude in Pharmaceutical Chemistry and Technology at the University of Turin (Italy) in 2019. Her undergraduate thesis focused on novel approaches for the generation of C-based radicals from boronic acid derivatives under photocatalyzed conditions and was conducted under the guidance of Prof. Erik Van der Eycken and Dr Upendra K. Sharma at KU Leuven (Belgium). After her master thesis, she started her PhD in the same group as an FWO researcher. Her research interests focus on the application of visible-light photoredox catalysis in continuous flow and on the development of novel synthetic methodologies for the generation of C-based radicals. Shu-Li You received his BSc in Chemistry from Nankai University (1996). He then obtained his PhD from the Shanghai Institute of Organic Chemistry (SIOC) in 2001 under the supervision of Prof. Lixin Dai before doing postdoctoral studies with Prof. Jeffery Kelly at The Scripps Research Institute. From 2004, he worked at the Genomics Institute of the Novartis Research Foundation as a PI before returning to SIOC as a Professor in 2006. His research interests mainly focus on asymmetric C-H functionalization and catalytic asymmetric dearomatization (CADA) reactions. He has published over 300 research papers in international peer-reviewed journals and edited two books. Upendra K. Sharma received his PhD (2011) from CSIR-Institute of Himalayan Bioresource Technology, Palampur, India. Thereafter, he worked as an assistant professor for a short period at the National Institute of Technology, Jalandhar, India. In 2013, he joined the research group of Prof. Erik Van der Eycken at the University of Leuven, Belgium, followed by postdoctoral stints with Prof. Steven Ley (University of Cambridge), Prof. Timothy Noël (University of Eindhoven), and Prof. Shu-Li You (SIOC, China). In 2020, he joined KU Leuven as a senior research-expert. His research interests include new reaction methodologies, photoredox catalysis, C-H functionalizations, and flow chemistry. Guglielmo A. Coppola received his Master's degree in Pharmaceutical Chemistry and Technology (2017) from Sapienza University of Rome. Later in the same year, he joined LOMAC through an Erasmus+ scholarship working on metal-free spirocyclizations. He is currently working as a PhD student under the supervision of Prof. Erik Van der Eycken and Prof. Hans Steenackers at KU Leuven. His research focuses on the synthesis of bioactive heterocycles. Erik V. Van der Eycken is Full Prof. of Organic Chemistry and Head of the Division of Molecular Design & Synthesis at KU Leuven, Belgium. He received his PhD degree (1987) in organic chemistry from the University of Ghent, Belgium. He spent time as a visiting scientist at the University of Graz (2002) with Prof. C. O. Kappe, at The Scripps Research Institute (La Jolla, USA) (2003) in the group of K. B. Sharpless, and at Uppsala University (2004) with Prof. M. Larhed and Prof. A. Hallberg. The main focus of his research is on the development of new synthetic methodologies in combination with enabling techniques. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4586-8359 0000-0001-7489-2337 0000-0001-7478-5742 0000-0001-5172-7208 0000-0001-9744-3665 |
PMID | 35244107 |
PQID | 2640982636 |
PQPubID | 2047503 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2636140603 proquest_journals_2640982636 crossref_primary_10_1039_D1CS00510C rsc_primary_d1cs00510c crossref_citationtrail_10_1039_D1CS00510C pubmed_primary_35244107 proquest_miscellaneous_2648878261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-21 |
PublicationDateYYYYMMDD | 2022-03-21 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chinchilla (D1CS00510C/cit157/1) 2011; 40 Purser (D1CS00510C/cit34/1) 2008; 37 Tomita (D1CS00510C/cit42/1) 2014; 53 Xu (D1CS00510C/cit150/1) 2021; 60 Ni (D1CS00510C/cit278/1) 2020; 22 Guo (D1CS00510C/cit145/1) 2020; 142 Lux (D1CS00510C/cit78/1) 2020; 22 Wang (D1CS00510C/cit139/1) 2020; 22 Luo (D1CS00510C/cit96/1) 2019; 361 Li (D1CS00510C/cit147/1) 2020; 22 Kumar (D1CS00510C/cit222/1) 2020; 581 Liu (D1CS00510C/cit297/1) 2018 Chu (D1CS00510C/cit52/1) 2018; 20 Woo (D1CS00510C/cit259/1) 2014; 57 Capaldo (D1CS00510C/cit20/1) 2017 Ouyang (D1CS00510C/cit76/1) 2018; 20 Peng (D1CS00510C/cit238/1) 2019; 5 Louvel (D1CS00510C/cit284/1) 2021; 27 Gu (D1CS00510C/cit243/1) 2015; 17 Yasu (D1CS00510C/cit37/1) 2012; 51 Chen (D1CS00510C/cit107/1) 2019; 21 Makarem (D1CS00510C/cit198/1) 2008; 49 Sagadevan (D1CS00510C/cit217/1) 2019; 58 Prasad Hari (D1CS00510C/cit73/1) 2014; 53 Ruijter (D1CS00510C/cit5/1) 2011; 50 Wu (D1CS00510C/cit257/1) 2021; 143 Guo (D1CS00510C/cit178/1) 2018; 9 Liu (D1CS00510C/cit294/1) 2017; 359 Zarganes-Tzitzikas (D1CS00510C/cit12/1) 2015; 15 Ren (D1CS00510C/cit160/1) 2019; 40 Mykhailiuk (D1CS00510C/cit314/1) 2019; 17 Liu (D1CS00510C/cit63/1) 2015; 6 Dubey (D1CS00510C/cit204/1) 2017; 41 Lee (D1CS00510C/cit174/1) 2020; 7 Kammer (D1CS00510C/cit234/1) 2020; 22 Chen (D1CS00510C/cit302/1) 2021; 19 Kim (D1CS00510C/cit319/1) 2020; 59 Ragupathi (D1CS00510C/cit165/1) 2016; 52 Bao (D1CS00510C/cit301/1) 2021; 8 Jin (D1CS00510C/cit135/1) 2018; 54 Zeng (D1CS00510C/cit210/1) 2020; 22 Sagadevan (D1CS00510C/cit166/1) 2017; 139 Oliva (D1CS00510C/cit221/1) 2021; 24 Wang (D1CS00510C/cit91/1) 2018; 20 Rueping (D1CS00510C/cit215/1) 2013; 15 Feng (D1CS00510C/cit258/1) 2016; 16 Fang (D1CS00510C/cit133/1) 2017; 53 Ma (D1CS00510C/cit136/1) 2018; 24 Qi (D1CS00510C/cit231/1) 2016; 55 Carboni (D1CS00510C/cit66/1) 2014; 50 Li (D1CS00510C/cit236/1) 2018; 5 Huang (D1CS00510C/cit151/1) 2020; 59 Yatham (D1CS00510C/cit100/1) 2017; 56 Tian (D1CS00510C/cit121/1) 2019; 55 Yuan (D1CS00510C/cit90/1) 2018; 4 Fu (D1CS00510C/cit102/1) 2019; 10 Dai (D1CS00510C/cit115/1) 2021; 86 Ye (D1CS00510C/cit116/1) 2017; 56 Gong (D1CS00510C/cit281/1) 2018; 54 Chilamari (D1CS00510C/cit219/1) 2020; 10 Ye (D1CS00510C/cit267/1) 2020; 56 Majek (D1CS00510C/cit241/1) 2015; 54 Pramanik (D1CS00510C/cit94/1) 2020; 22 Bell (D1CS00510C/cit18/1) 2021; 50 Sayyar (D1CS00510C/cit205/1) 2019; 56 Qin (D1CS00510C/cit88/1) 2017; 19 Sultan (D1CS00510C/cit168/1) 2018; 24 Elinson (D1CS00510C/cit194/1) 2013; 160 Elinson (D1CS00510C/cit193/1) 2011; 21 Zong (D1CS00510C/cit274/1) 2019; 21 Daniel (D1CS00510C/cit51/1) 2017; 56 Xia (D1CS00510C/cit75/1) 2018; 20 Pampana (D1CS00510C/cit172/1) 2020; 22 Pelliccia (D1CS00510C/cit177/1) 2020; 85 Yadav (D1CS00510C/cit92/1) 2016; 18 Guo (D1CS00510C/cit140/1) 2021; 363 Wang (D1CS00510C/cit309/1) 2019; 55 Xiong (D1CS00510C/cit123/1) 2019; 8 Noto (D1CS00510C/cit58/1) 2017; 8 Fuentes de Arriba (D1CS00510C/cit230/1) 2016; 52 Xia (D1CS00510C/cit44/1) 2019; 84 Gong (D1CS00510C/cit292/1) 2020; 22 Blackwell (D1CS00510C/cit223/1) 2021; 143 Blum (D1CS00510C/cit311/1) 2021; 60 Romero (D1CS00510C/cit17/1) 2016; 116 Yue (D1CS00510C/cit180/1) 2020; 132 Zhong (D1CS00510C/cit308/1) 2021; 12 Duan (D1CS00510C/cit67/1) 2016; 3 Zhao (D1CS00510C/cit209/1) 2021; 87 Gosset (D1CS00510C/cit245/1) 2018; 360 Du (D1CS00510C/cit185/1) 2021; 23 Verschueren (D1CS00510C/cit26/1) 2019; 24 Pettersson (D1CS00510C/cit130/1) 2017; 23 Ugi (D1CS00510C/cit16/1) 1994; 18 Wang (D1CS00510C/cit226/1) 2021; 57 Wang (D1CS00510C/cit291/1) 2019; 55 Liu (D1CS00510C/cit269/1) 2018; 360 Zhang (D1CS00510C/cit184/1) 2021 Breton-Patient (D1CS00510C/cit296/1) 2020 Leifert (D1CS00510C/cit19/1) 2020; 59 Yin (D1CS00510C/cit62/1) 2018; 20 Cao (D1CS00510C/cit304/1) 2021; 12 Yang (D1CS00510C/cit60/1) 2018; 24 Sun (D1CS00510C/cit54/1) 2019; 21 Sun (D1CS00510C/cit98/1) 2019; 21 Zhou (D1CS00510C/cit246/1) 2015; 54 Katta (D1CS00510C/cit169/1) 2020; 10 Roy Chowdhury (D1CS00510C/cit114/1) 2020; 85 He (D1CS00510C/cit318/1) 2020; 31 Xiang (D1CS00510C/cit175/1) 2017; 23 Nawrat (D1CS00510C/cit179/1) 2015; 137 Arai (D1CS00510C/cit47/1) 2016; 22 Ye (D1CS00510C/cit287/1) 2019; 8 Cao (D1CS00510C/cit33/1) 2015; 56 Jud (D1CS00510C/cit40/1) 2018; 24 Zhang (D1CS00510C/cit213/1) 2013; 54 Sim (D1CS00510C/cit138/1) 2019; 9 Wang (D1CS00510C/cit188/1) 2021; 363 Chu (D1CS00510C/cit53/1) 2019; 361 Chinchilla (D1CS00510C/cit156/1) 2007; 107 Courant (D1CS00510C/cit129/1) 2012; 18 Jiang (D1CS00510C/cit248/1) 2019; 58 Zhou (D1CS00510C/cit186/1) 2021; 23 Ranjan (D1CS00510C/cit220/1) 2021; 11 Strecker (D1CS00510C/cit212/1) 1850; 75 Touré (D1CS00510C/cit9/1) 2009; 109 Hou (D1CS00510C/cit103/1) 2018; 57 Elinson (D1CS00510C/cit196/1) 2016; 16 Yu (D1CS00510C/cit132/1) 2016; 52 Qiu (D1CS00510C/cit264/1) 2018; 54 Upadhyay (D1CS00510C/cit201/1) 2017; 58 Yang (D1CS00510C/cit112/1) 2020; 56 Xiong (D1CS00510C/cit122/1) 2018; 140 Ritter (D1CS00510C/cit57/1) 1948; 70 Wang (D1CS00510C/cit203/1) 2015; 41 Qian (D1CS00510C/cit79/1) 2021; 23 Sha (D1CS00510C/cit109/1) 2018; 8 Makarem (D1CS00510C/cit199/1) 2012; 51 Elinson (D1CS00510C/cit192/1) 2006; 47 Chow (D1CS00510C/cit251/1) 2016; 22 Zeng (D1CS00510C/cit256/1) 2018; 8 Wang (D1CS00510C/cit164/1) 2020; 22 Zhang (D1CS00510C/cit244/1) 2016; 27 Anastas (D1CS00510C/cit2/1) 1998 Chalotra (D1CS00510C/cit170/1) 2018; 83 Qin (D1CS00510C/cit101/1) 2017; 53 Zheng (D1CS00510C/cit146/1) 2019; 58 Shen (D1CS00510C/cit143/1) 2020; 10 Veatch (D1CS00510C/cit252/1) 2020; 11 Dömling (D1CS00510C/cit10/1) 2012; 112 Veisi (D1CS00510C/cit206/1) 2015; 56 Kolb (D1CS00510C/cit158/1) 2001; 40 Zhu (D1CS00510C/cit181/1) 2019; 2 Pillitteri (D1CS00510C/cit228/1) 2021; 514 Makarov (D1CS00510C/cit316/1) 2017; 56 Yoshida (D1CS00510C/cit25/1) 2008; 108 Xiong (D1CS00510C/cit126/1) 2021; 23 Chen (D1CS00510C/cit207/1) 2020; 76 Francke (D1CS00510C/cit21/1) 2014; 43 Chalotra (D1CS00510C/cit171/1) 2019; 21 Singh (D1CS00510C/cit200/1) 2017; 58 Joseph (D1CS00510C/cit265/1) 2021; 11 Kefayati (D1CS00510C/cit197/1) 2014; 17 Shen (D1CS00510C/cit149/1) 2021; 23 Mohjer (D1CS00510C/cit161/1) 2021; 936 Lu (D1CS00510C/cit254/1) 2019; 9 Sharma (D1CS00510C/cit13/1) 2020; 49 Liu (D1CS00510C/cit286/1) 2018; 5 Zhou (D1CS00510C/cit303/1) 2021; 8 Sahoo (D1CS00510C/cit182/1) 2021; 86 Zhang (D1CS00510C/cit124/1) 2020; 22 Jia (D1CS00510C/cit262/1) 2021; 60 Kärkäs (D1CS00510C/cit27/1) 2018; 47 Liu (D1CS00510C/cit300/1) 2020; 56 Vafajoo (D1CS00510C/cit202/1) 2015; 26 Sumino (D1CS00510C/cit239/1) 2014; 47 Li (D1CS00510C/cit247/1) 2016; 72 Locke (D1CS00510C/cit312/1) 2019; 25 Anastas (D1CS00510C/cit1/1) 2002; 35 Zhou (D1CS00510C/cit69/1) 2019; 55 Wang (D1CS00510C/cit104/1) 2020; 142 Gong (D1CS00510C/cit295/1) 2017; 4 Slobbe (D1CS00510C/cit8/1) 2012; 3 Ke (D1CS00510C/cit155/1) 2021; 60 Ye (D1CS00510C/cit189/1) 2018; 24 Nair (D1CS00510C/cit282/1) 2019; 17 Nagib (D1CS00510C/cit36/1) 2011; 480 Ye (D1CS00510C/cit298/1) 2019; 55 Choi (D1CS00510C/cit141/1) 2018; 360 Pramanik (D1CS00510C/cit317/1) 2020; 7 Claraz (D1CS00510C/cit65/1) 2021; 8 Qian (D1CS00510C/cit229/1) 2019; 21 Luo (D1CS00510C/cit46/1) 2019; 55 Xiong (D1CS00510C/cit49/1) 2018; 140 Yi (D1CS00510C/cit225/1) 2019; 21 D1CS00510C/cit3/1 Ran (D1CS00510C/cit48/1) 2016; 81 Barthelemy (D1CS00510C/cit97/1) 2018; 57 Zhang (D1CS00510C/cit235/1) 2019; 21 Miyazawa (D1CS00510C/cit85/1) 2016; 72 Das (D1CS00510C/cit163/1) 2018; 9 Qi (D1CS00510C/cit227/1) 2021; 23 Zhang (D1CS00510C/cit191/1) 2020; 22 Guo (D1CS00510C/cit240/1) 2015; 54 Lu (D1CS00510C/cit105/1) 2021; 23 Qiu (D1CS00510C/cit263/1) 2018; 5 Cong (D1CS00510C/cit82/1) 2018; 54 He (D1CS00510C/cit275/1) 2020; 56 Lahm (D1CS00510C/cit214/1) 2015; 80 Micic (D1CS00510C/cit242/1) 2018; 20 Gong (D1CS00510C/cit288/1) 2020; 7 Lan (D1CS00510C/cit32/1) 2017 Zhang (D1CS00510C/cit128/1) 2020; 59 Zhang (D1CS00510C/cit270/1) 2018; 5 Liu (D1CS00510C/cit280/1) 2019; 55 Zhang (D1CS00510C/cit320/1) 2020; 580 Huang (D1CS00510C/cit159/1) 2018; 54 Kolahdouzan (D1CS00510C/cit224/1) 2020; 11 Carboni (D1CS00510C/cit131/1) 2014; 16 Kong (D1CS00510C/cit183/1) 2020; 9 Nguyen (D1CS00510C/cit305/1) 2021; 12 Govaerts (D1CS00510C/cit89/1) 2020; 59 Pan (D1CS00510C/cit216/1) 2019; 21 Rossolini (D1CS00510C/cit232/1) 2018; 20 Yang (D1CS00510C/cit187/1) 2020; 7 Bellotti (D1CS00510C/cit152/1) 2021; 12 Sun (D1CS00510C/cit99/1) 2021; 23 Cartier (D1CS00510C/cit250/1) 2020; 362 Lv (D1CS00510C/cit283/1) 2021; 8 He (D1CS00510C/cit272/1) 2018; 5 Ruijter (D1CS00510C/cit7/1) 2013; 10 Liu (D1CS00510C/cit285/1) 2018; 20 Sperry (D1CS00510C/cit24/1) 2006; 35 Wu (D1CS00510C/cit113/1) 2019; 17 Buquoi (D1CS00510C/cit148/1) 2019; 9 Blum (D1CS00510C/cit266/1) 2021; 57 Trowbridge (D1CS00510C/cit233/1) 2018; 561 Dagousset (D1CS00510C/cit59/1) 2014; 16 Wan (D1CS00510C/cit125/1) 2019; 21 Cioc (D1CS00510C/cit4/1) 2014; 16 Lovering (D1CS00510C/cit30/1) 2009; 52 Jarrige (D1CS00510C/cit61/1) 2016; 18 Cuadros (D1CS00510C/cit134/1) 2019; 10 Qi (D1CS00510C/cit255/1) 2021; 23 Malpani (D1CS00510C/cit173/1) 2018; 20 Cartier (D1CS00510C/cit249/1) 2019; 58 Wang (D1CS00510C/cit154/1) 2021; 60 Yang (D1CS00510C/cit110/1) 2017; 7 Wang (D1CS00510C/cit293/1) 2021; 8 Nagib (D1CS00510C/cit35/1) 2009; 131 Ye (D1CS00510C/cit95/1) 2021; 57 Chen (D1CS00510C/cit307/1) 2021; 8 Fumagalli (D1CS00510C/cit81/1) 2015; 54 Yang (D1CS00510C/cit208/1) 2018; 83 Wang (D1CS00510C/cit290/1) 2019; 55 Fang (D1CS00510C/cit77/1) 2019; 84 Fu (D1CS00510C/cit120/1) 2019; 9 Flores-Reyes (D1CS00510C/cit11/1) 2021; 8 Xu (D1CS00510C/cit50/1) 2019; 12 Li (D1CS00510C/cit137/1) 2019; 21 Blum (D1CS00510C/cit310/1) 2020; 26 Garbarino (D1CS00510C/cit29/1) 2016; 55 Fumagalli (D1CS00510C/cit70/1) 2013; 15 Zhang (D1CS00510C/cit83/1) 2020; 362 Yu (D1CS00510C/cit106/1) 2018; 57 Lopchuk (D1CS00510C/cit313/1) 2017; 139 Forster (D1CS00510C/cit153/1) 2021; 11 Yi (D1CS00510C/cit218/1) 2019; 21 Shin (D1CS00510C/cit321/1) 2021; 60 Ma (D1CS00510C/cit14/1) 2021; 26 Gijsen (D1CS00510C/cit261/1) 2012; 22 Zhang (D1CS00510C/cit299/1) 2019; 21 Huang (D1CS00510C/cit41/1) 2019; 17 Babu (D1CS00510C/cit71/1) 2021; 363 Mao (D1CS00510C/cit306/1) 2017; 23 Siu (D1CS00510C/cit22/1) 2020; 53 Kazemi-Rad (D1CS00510C/cit195/1) 2016; 81 Ye (D1CS00510C/cit268/1) 2020 Yang (D1CS00510C/cit111/1) 2018; 36 Levitre (D1CS00510C/cit38/1) 2019; 21 Zhu (D1CS00510C/cit118/1) 2019; 10 Devendar (D1CS00510C/ci |
References_xml | – issn: 1998 publication-title: Green chemistry: Theory and practice doi: Anastas Warner – volume: 131 start-page: 10875 year: 2009 ident: D1CS00510C/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9053338 – volume: 54 start-page: 3891 year: 2018 ident: D1CS00510C/cit271/1 publication-title: Chem. Commun. doi: 10.1039/C8CC01124A – volume: 22 start-page: 2639 year: 2020 ident: D1CS00510C/cit94/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c00602 – volume: 363 start-page: 1022 year: 2021 ident: D1CS00510C/cit188/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202001105 – volume: 16 start-page: 1950 year: 2016 ident: D1CS00510C/cit196/1 publication-title: Chem. Rec. doi: 10.1002/tcr.201600044 – volume: 12 start-page: 2377 year: 2021 ident: D1CS00510C/cit304/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22690-3 – volume: 142 start-page: 20661 year: 2020 ident: D1CS00510C/cit80/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08532 – volume: 23 start-page: 4473 year: 2021 ident: D1CS00510C/cit227/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c01412 – volume: 18 start-page: 4240 year: 2016 ident: D1CS00510C/cit92/1 publication-title: Green Chem. doi: 10.1039/C6GC00924G – volume: 24 start-page: 14363 year: 2018 ident: D1CS00510C/cit60/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201803409 – volume: 32 start-page: 3535 year: 2021 ident: D1CS00510C/cit289/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.05.007 – volume: 56 start-page: 9549 year: 2020 ident: D1CS00510C/cit112/1 publication-title: Chem. Commun. doi: 10.1039/D0CC03235B – volume: 54 start-page: 11172 year: 2018 ident: D1CS00510C/cit281/1 publication-title: Chem. Commun. doi: 10.1039/C8CC06567E – volume: 44 start-page: 1836 year: 2015 ident: D1CS00510C/cit6/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00253A – volume: 581 start-page: 415 year: 2020 ident: D1CS00510C/cit222/1 publication-title: Nature doi: 10.1038/s41586-020-2213-0 – volume: 57 start-page: 5028 year: 2021 ident: D1CS00510C/cit226/1 publication-title: Chem. Commun. doi: 10.1039/D1CC01560E – start-page: 4284 year: 2021 ident: D1CS00510C/cit184/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202100505 – volume: 19 start-page: 2909 year: 2017 ident: D1CS00510C/cit88/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b01145 – volume: 56 start-page: 4145 year: 2020 ident: D1CS00510C/cit267/1 publication-title: Chem. Commun. doi: 10.1039/D0CC01775B – volume: 81 start-page: 7001 year: 2016 ident: D1CS00510C/cit48/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b00234 – volume: 58 start-page: 15803 year: 2019 ident: D1CS00510C/cit146/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908987 – volume: 54 start-page: 11196 year: 2015 ident: D1CS00510C/cit246/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504559 – volume: 21 start-page: 4793 year: 2019 ident: D1CS00510C/cit171/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01677 – volume: 23 start-page: 4769 year: 2021 ident: D1CS00510C/cit255/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c01494 – volume: 23 start-page: 1032 year: 2017 ident: D1CS00510C/cit175/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201605336 – volume: 8 start-page: 893 year: 2019 ident: D1CS00510C/cit287/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201900172 – volume: 72 start-page: 8442 year: 2016 ident: D1CS00510C/cit247/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2016.11.009 – volume: 21 start-page: 1935 year: 2019 ident: D1CS00510C/cit274/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b00620 – volume: 10 start-page: 749 year: 2019 ident: D1CS00510C/cit118/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08669-1 – volume: 41 start-page: 2775 year: 2015 ident: D1CS00510C/cit203/1 publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-013-1387-6 – start-page: 2056 year: 2017 ident: D1CS00510C/cit20/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201601485 – volume: 20 start-page: 3605 year: 2018 ident: D1CS00510C/cit285/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b01385 – volume: 11 start-page: 7210 year: 2020 ident: D1CS00510C/cit252/1 publication-title: Chem. Sci. doi: 10.1039/D0SC02178D – volume: 9 start-page: 8159 year: 2019 ident: D1CS00510C/cit254/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02830 – volume: 13 start-page: 543 year: 2021 ident: D1CS00510C/cit127/1 publication-title: ChemCatChem doi: 10.1002/cctc.202001589 – volume: 2 start-page: 678 year: 2019 ident: D1CS00510C/cit181/1 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0311-x – volume: 9 start-page: 4543 year: 2018 ident: D1CS00510C/cit178/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06904-9 – volume: 160 start-page: G3053 year: 2013 ident: D1CS00510C/cit194/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.009307jes – volume: 19 start-page: 3181 year: 2021 ident: D1CS00510C/cit302/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D1OB00142F – volume: 10 start-page: 12599 year: 2020 ident: D1CS00510C/cit169/1 publication-title: RSC Adv. doi: 10.1039/C9RA10555G – volume: 21 start-page: 1297 year: 2019 ident: D1CS00510C/cit98/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b03274 – volume: 84 start-page: 7388 year: 2019 ident: D1CS00510C/cit44/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b01077 – volume: 21 start-page: 122 year: 2011 ident: D1CS00510C/cit193/1 publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2011.04.002 – volume: 142 start-page: 7524 year: 2020 ident: D1CS00510C/cit237/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00629 – volume: 936 start-page: 121712 year: 2021 ident: D1CS00510C/cit161/1 publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2021.121712 – volume: 54 start-page: 2265 year: 2015 ident: D1CS00510C/cit240/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408837 – volume: 50 start-page: 6234 year: 2011 ident: D1CS00510C/cit5/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201006515 – volume: 35 start-page: 605 year: 2006 ident: D1CS00510C/cit24/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b512308a – volume: 24 start-page: 17234 year: 2018 ident: D1CS00510C/cit40/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201804708 – volume: 142 start-page: 8122 year: 2020 ident: D1CS00510C/cit104/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03144 – volume: 22 start-page: 1262 year: 2016 ident: D1CS00510C/cit47/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201504838 – volume: 40 start-page: 5084 year: 2011 ident: D1CS00510C/cit157/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15071e – volume: 22 start-page: 1164 year: 2020 ident: D1CS00510C/cit172/1 publication-title: Green Chem. doi: 10.1039/C9GC03608C – volume: 7 start-page: 8362 year: 2017 ident: D1CS00510C/cit110/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02892 – volume: 109 start-page: 4439 year: 2009 ident: D1CS00510C/cit9/1 publication-title: Chem. Rev. doi: 10.1021/cr800296p – volume: 56 start-page: 1882 year: 2015 ident: D1CS00510C/cit206/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2015.02.098 – volume: 20 start-page: 6794 year: 2018 ident: D1CS00510C/cit232/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b02923 – volume: 84 start-page: 10978 year: 2019 ident: D1CS00510C/cit108/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b01569 – volume: 363 start-page: 1782 year: 2021 ident: D1CS00510C/cit71/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202100136 – volume: 58 start-page: 1245 year: 2017 ident: D1CS00510C/cit201/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2017.01.049 – volume: 55 start-page: 10980 year: 2019 ident: D1CS00510C/cit46/1 publication-title: Chem. Commun. doi: 10.1039/C9CC06037E – volume: 55 start-page: 6010 year: 2019 ident: D1CS00510C/cit291/1 publication-title: Chem. Commun. doi: 10.1039/C9CC03004B – volume: 57 start-page: 15505 year: 2018 ident: D1CS00510C/cit106/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809820 – volume: 55 start-page: 12104 year: 2019 ident: D1CS00510C/cit121/1 publication-title: Chem. Commun. doi: 10.1039/C9CC06746A – volume: 26 start-page: 8358 year: 2020 ident: D1CS00510C/cit310/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202001180 – volume: 55 start-page: 2062 year: 2019 ident: D1CS00510C/cit290/1 publication-title: Chem. Commun. doi: 10.1039/C8CC10246E – volume: 59 start-page: 18866 year: 2020 ident: D1CS00510C/cit28/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005745 – volume: 22 start-page: 3697 year: 2020 ident: D1CS00510C/cit78/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c01182 – volume: 54 start-page: 2270 year: 2015 ident: D1CS00510C/cit241/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408516 – volume: 37 start-page: 320 year: 2008 ident: D1CS00510C/cit34/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B610213C – volume: 17 start-page: 3733 year: 2015 ident: D1CS00510C/cit243/1 publication-title: Green Chem. doi: 10.1039/C5GC00644A – volume: 6 start-page: 3944 year: 2019 ident: D1CS00510C/cit93/1 publication-title: Org. Chem. Front. doi: 10.1039/C9QO01058K – volume: 12 start-page: 1810 year: 2021 ident: D1CS00510C/cit152/1 publication-title: Chem. Sci. doi: 10.1039/D0SC05551D – volume: 143 start-page: 1598 year: 2021 ident: D1CS00510C/cit223/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12162 – volume: 7 start-page: 3209 year: 2020 ident: D1CS00510C/cit174/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO00893A – volume: 17 start-page: 2839 year: 2019 ident: D1CS00510C/cit314/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C8OB02812E – volume: 20 start-page: 4471 year: 2018 ident: D1CS00510C/cit87/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b01760 – volume: 20 start-page: 3444 year: 2018 ident: D1CS00510C/cit91/1 publication-title: Green Chem. doi: 10.1039/C8GC01337C – volume: 11 start-page: 4169 year: 2021 ident: D1CS00510C/cit265/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c05690 – volume: 107 start-page: 874 year: 2007 ident: D1CS00510C/cit156/1 publication-title: Chem. Rev. doi: 10.1021/cr050992x – volume: 76 start-page: 131059 year: 2020 ident: D1CS00510C/cit207/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2020.131059 – volume: 11 start-page: 12089 year: 2020 ident: D1CS00510C/cit224/1 publication-title: Chem. Sci. doi: 10.1039/D0SC04853D – volume: 27 start-page: 8704 year: 2021 ident: D1CS00510C/cit284/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202101056 – volume: 52 start-page: 14434 year: 2016 ident: D1CS00510C/cit230/1 publication-title: Chem. Commun. doi: 10.1039/C6CC09172E – volume: 35 start-page: 686 year: 2002 ident: D1CS00510C/cit1/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar010065m – start-page: 5821 year: 2017 ident: D1CS00510C/cit32/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201700678 – volume: 360 start-page: 3553 year: 2018 ident: D1CS00510C/cit141/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201800734 – volume: 26 start-page: 105 year: 2020 ident: D1CS00510C/cit31/1 publication-title: Molecules doi: 10.3390/molecules26010105 – volume: 17 start-page: 5014 year: 2019 ident: D1CS00510C/cit41/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB00717B – volume: 5 start-page: 1003 year: 2018 ident: D1CS00510C/cit236/1 publication-title: Org. Chem. Front. doi: 10.1039/C7QO00939A – volume: 362 start-page: 2254 year: 2020 ident: D1CS00510C/cit250/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202000314 – volume: 21 start-page: 3167 year: 2019 ident: D1CS00510C/cit54/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b00867 – volume: 360 start-page: 3401 year: 2018 ident: D1CS00510C/cit245/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201800532 – volume: 5 start-page: 2437 year: 2018 ident: D1CS00510C/cit272/1 publication-title: Org. Chem. Front. doi: 10.1039/C8QO00528A – volume: 21 start-page: 9228 year: 2019 ident: D1CS00510C/cit137/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b03594 – volume: 60 start-page: 8744 year: 2021 ident: D1CS00510C/cit155/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016620 – volume: 24 start-page: 259 year: 2018 ident: D1CS00510C/cit136/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201704619 – volume: 9 start-page: 7318 year: 2018 ident: D1CS00510C/cit163/1 publication-title: Chem. Sci. doi: 10.1039/C8SC03447H – volume: 86 start-page: 13711 year: 2021 ident: D1CS00510C/cit115/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.1c01831 – volume: 56 start-page: 15416 year: 2017 ident: D1CS00510C/cit116/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201707862 – volume: 17 start-page: 5897 year: 2019 ident: D1CS00510C/cit282/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB01040H – volume: 10 start-page: 3592 year: 2019 ident: D1CS00510C/cit102/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11528-8 – volume: 57 start-page: 8236 year: 2021 ident: D1CS00510C/cit266/1 publication-title: Chem. Commun. doi: 10.1039/D1CC03018C – volume: 9 start-page: 1760 year: 2020 ident: D1CS00510C/cit183/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202000403 – volume: 8 start-page: 288 year: 2021 ident: D1CS00510C/cit65/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO01307B – volume: 53 start-page: 7638 year: 2017 ident: D1CS00510C/cit133/1 publication-title: Chem. Commun. doi: 10.1039/C7CC01903C – volume: 20 start-page: 3496 year: 2018 ident: D1CS00510C/cit75/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b01268 – volume: 23 start-page: 5379 year: 2021 ident: D1CS00510C/cit105/1 publication-title: Green Chem. doi: 10.1039/D1GC00993A – volume: 60 start-page: 7405 year: 2021 ident: D1CS00510C/cit150/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202014632 – volume: 40 start-page: 2004 year: 2001 ident: D1CS00510C/cit158/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 – volume: 60 start-page: 22956 year: 2021 ident: D1CS00510C/cit154/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202110084 – volume: 108 start-page: 2265 year: 2008 ident: D1CS00510C/cit25/1 publication-title: Chem. Rev. doi: 10.1021/cr0680843 – volume: 12 start-page: 3060 year: 2019 ident: D1CS00510C/cit50/1 publication-title: ChemSusChem doi: 10.1002/cssc.201803058 – volume: 85 start-page: 13939 year: 2020 ident: D1CS00510C/cit114/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c01985 – volume: 20 start-page: 2749 year: 2018 ident: D1CS00510C/cit52/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00963 – volume: 83 start-page: 11963 year: 2018 ident: D1CS00510C/cit208/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b01808 – volume: 16 start-page: 2958 year: 2014 ident: D1CS00510C/cit4/1 publication-title: Green Chem. doi: 10.1039/C4GC00013G – volume: 580 start-page: 220 year: 2020 ident: D1CS00510C/cit320/1 publication-title: Nature doi: 10.1038/s41586-020-2060-z – volume: 82 start-page: 243 year: 2017 ident: D1CS00510C/cit86/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b02377 – volume: 57 start-page: 13790 year: 2018 ident: D1CS00510C/cit97/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806522 – volume: 21 start-page: 11677 year: 2015 ident: D1CS00510C/cit84/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201501590 – volume: 26 start-page: 973 year: 2015 ident: D1CS00510C/cit202/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2015.04.016 – volume: 361 start-page: 4082 year: 2019 ident: D1CS00510C/cit53/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900585 – volume: 83 start-page: 14443 year: 2018 ident: D1CS00510C/cit170/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b02193 – volume: 40 start-page: 1003 year: 2019 ident: D1CS00510C/cit160/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63278-X – volume: 56 start-page: 3011 year: 2020 ident: D1CS00510C/cit300/1 publication-title: Chem. Commun. doi: 10.1039/C9CC10057A – volume: 8 start-page: 658 year: 2019 ident: D1CS00510C/cit123/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201900020 – volume: 59 start-page: 15021 year: 2020 ident: D1CS00510C/cit89/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005652 – volume: 47 start-page: 1563 year: 2014 ident: D1CS00510C/cit239/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500035q – volume: 53 start-page: 725 year: 2014 ident: D1CS00510C/cit73/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307051 – volume: 22 start-page: 3416 year: 2020 ident: D1CS00510C/cit210/1 publication-title: Green Chem. doi: 10.1039/D0GC00375A – volume: 53 start-page: 7144 year: 2014 ident: D1CS00510C/cit42/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201403590 – volume: 21 start-page: 3711 year: 2019 ident: D1CS00510C/cit235/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01169 – volume: 22 start-page: 547 year: 2012 ident: D1CS00510C/cit261/1 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2011.10.091 – volume: 41 start-page: 3790 year: 2012 ident: D1CS00510C/cit15/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15356d – volume: 9 start-page: 746 year: 2019 ident: D1CS00510C/cit120/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b03209 – volume: 57 start-page: 2883 year: 2021 ident: D1CS00510C/cit277/1 publication-title: Chem. Commun. doi: 10.1039/D0CC07927H – volume: 21 start-page: 6579 year: 2019 ident: D1CS00510C/cit64/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b02700 – volume: 21 start-page: 2800 year: 2019 ident: D1CS00510C/cit125/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b00771 – volume: 41 start-page: 7836 year: 2017 ident: D1CS00510C/cit204/1 publication-title: New J. Chem. doi: 10.1039/C7NJ01211J – volume: 250 start-page: 647 year: 1912 ident: D1CS00510C/cit211/1 publication-title: Arch. Pharm. doi: 10.1002/ardp.19122500151 – volume: 55 start-page: 15476 year: 2016 ident: D1CS00510C/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201605288 – volume: 16 start-page: 1200 year: 2016 ident: D1CS00510C/cit258/1 publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026615666150915111741 – volume: 49 start-page: 8721 year: 2020 ident: D1CS00510C/cit13/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00128G – volume: 20 start-page: 7396 year: 2018 ident: D1CS00510C/cit39/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b03081 – volume: 23 start-page: 7444 year: 2017 ident: D1CS00510C/cit130/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201701589 – volume: 26 start-page: 1986 year: 2021 ident: D1CS00510C/cit14/1 publication-title: Molecules doi: 10.3390/molecules26071986 – volume: 22 start-page: 670 year: 2020 ident: D1CS00510C/cit278/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b04454 – volume: 59 start-page: 3465 year: 2020 ident: D1CS00510C/cit128/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913332 – volume: 36 start-page: 1017 year: 2018 ident: D1CS00510C/cit111/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201800320 – volume: 17 start-page: 3507 year: 2019 ident: D1CS00510C/cit113/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB00278B – volume: 23 start-page: 1204 year: 2021 ident: D1CS00510C/cit149/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c04148 – volume: 3 start-page: 1189 year: 2012 ident: D1CS00510C/cit8/1 publication-title: MedChemComm doi: 10.1039/c2md20089a – volume: 24 start-page: 12274 year: 2018 ident: D1CS00510C/cit189/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201802167 – volume: 43 start-page: 2492 year: 2014 ident: D1CS00510C/cit21/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60464k – volume: 56 start-page: 9527 year: 2017 ident: D1CS00510C/cit68/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201704690 – volume: 86 start-page: 11968 year: 2021 ident: D1CS00510C/cit182/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.1c01350 – volume: 8 start-page: 5316 year: 2021 ident: D1CS00510C/cit307/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO00957E – volume: 27 start-page: 256 year: 2016 ident: D1CS00510C/cit244/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2015.10.012 – volume: 361 start-page: 1538 year: 2019 ident: D1CS00510C/cit96/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201801492 – volume: 21 start-page: 4853 year: 2019 ident: D1CS00510C/cit218/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01747 – volume: 56 start-page: 3997 year: 2017 ident: D1CS00510C/cit51/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201700290 – volume: 8 start-page: 6375 year: 2017 ident: D1CS00510C/cit58/1 publication-title: Chem. Sci. doi: 10.1039/C7SC01703K – volume: 143 start-page: 12460 year: 2021 ident: D1CS00510C/cit257/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c06036 – volume: 361 start-page: 3723 year: 2019 ident: D1CS00510C/cit45/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900521 – volume: 21 start-page: 6194 year: 2019 ident: D1CS00510C/cit216/1 publication-title: Green Chem. doi: 10.1039/C9GC03173A – volume: 140 start-page: 2460 year: 2018 ident: D1CS00510C/cit49/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00391 – volume: 17 start-page: 24 year: 2019 ident: D1CS00510C/cit55/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C8OB02239A – volume: 54 start-page: 7924 year: 2018 ident: D1CS00510C/cit135/1 publication-title: Chem. Commun. doi: 10.1039/C8CC03105C – volume: 362 start-page: 5391 year: 2020 ident: D1CS00510C/cit276/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202000999 – volume: 25 start-page: 4590 year: 2019 ident: D1CS00510C/cit312/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201804225 – volume: 7 start-page: 2531 year: 2020 ident: D1CS00510C/cit317/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO00460J – volume: 59 start-page: 8225 year: 2020 ident: D1CS00510C/cit319/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000140 – volume: 9 start-page: 1558 year: 2019 ident: D1CS00510C/cit138/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04284 – volume: 22 start-page: 3667 year: 2020 ident: D1CS00510C/cit176/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c01163 – volume: 20 start-page: 4663 year: 2018 ident: D1CS00510C/cit242/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b01971 – volume: 58 start-page: 3838 year: 2019 ident: D1CS00510C/cit217/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813315 – volume: 31 start-page: 3065 year: 2020 ident: D1CS00510C/cit318/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.04.023 – volume: 167 start-page: 79 year: 2014 ident: D1CS00510C/cit43/1 publication-title: J. Fluorine Chem. doi: 10.1016/j.jfluchem.2014.05.013 – start-page: 5725 year: 2018 ident: D1CS00510C/cit297/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201801128 – volume: 7 start-page: 4064 year: 2020 ident: D1CS00510C/cit187/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO01161D – volume: 7 start-page: 938 year: 2020 ident: D1CS00510C/cit288/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO00100G – volume: 140 start-page: 2438 year: 2018 ident: D1CS00510C/cit119/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13387 – volume: 49 start-page: 7194 year: 2008 ident: D1CS00510C/cit198/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2008.10.006 – volume: 54 start-page: 10791 year: 2018 ident: D1CS00510C/cit159/1 publication-title: Chem. Commun. doi: 10.1039/C8CC04618B – volume: 54 start-page: 12561 year: 2018 ident: D1CS00510C/cit264/1 publication-title: Chem. Commun. doi: 10.1039/C8CC07434H – volume: 59 start-page: 74 year: 2020 ident: D1CS00510C/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201903726 – volume: 17 start-page: 894 year: 2014 ident: D1CS00510C/cit197/1 publication-title: C. R. Chim. doi: 10.1016/j.crci.2013.09.017 – volume: 20 start-page: 6659 year: 2018 ident: D1CS00510C/cit76/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b02670 – volume: 140 start-page: 16387 year: 2018 ident: D1CS00510C/cit122/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08592 – volume: 22 start-page: 4471 year: 2020 ident: D1CS00510C/cit190/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c01470 – volume: 52 start-page: 6752 year: 2009 ident: D1CS00510C/cit30/1 publication-title: J. Med. Chem. doi: 10.1021/jm901241e – volume: 10 start-page: 5484 year: 2019 ident: D1CS00510C/cit134/1 publication-title: Chem. Sci. doi: 10.1039/C9SC00833K – volume: 15 start-page: 4398 year: 2013 ident: D1CS00510C/cit70/1 publication-title: Org. Lett. doi: 10.1021/ol401940c – volume: 561 start-page: 522 year: 2018 ident: D1CS00510C/cit233/1 publication-title: Nature doi: 10.1038/s41586-018-0537-9 – volume: 360 start-page: 865 year: 2018 ident: D1CS00510C/cit269/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201701187 – volume: 23 start-page: 7724 year: 2021 ident: D1CS00510C/cit99/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c02661 – volume: 5 start-page: 691 year: 2018 ident: D1CS00510C/cit263/1 publication-title: Org. Chem. Front. doi: 10.1039/C7QO01073G – volume: 50 start-page: 14197 year: 2014 ident: D1CS00510C/cit66/1 publication-title: Chem. Commun. doi: 10.1039/C4CC07066F – volume: 55 start-page: 5151 year: 2019 ident: D1CS00510C/cit167/1 publication-title: Chem. Commun. doi: 10.1039/C9CC01801H – volume: 80 start-page: 12711 year: 2015 ident: D1CS00510C/cit214/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b02373 – volume: 21 start-page: 4359 year: 2019 ident: D1CS00510C/cit107/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01529 – volume: 25 start-page: 8965 year: 2019 ident: D1CS00510C/cit117/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201901175 – volume: 47 start-page: 9129 year: 2006 ident: D1CS00510C/cit192/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2006.10.075 – volume: 375 start-page: 82 year: 2017 ident: D1CS00510C/cit260/1 publication-title: Top. Curr. Chem. doi: 10.1007/s41061-017-0169-9 – volume: 22 start-page: 1924 year: 2020 ident: D1CS00510C/cit139/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c00287 – volume: 21 start-page: 6403 year: 2019 ident: D1CS00510C/cit229/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b02317 – volume: 54 start-page: 5217 year: 2013 ident: D1CS00510C/cit213/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2013.07.060 – volume: 54 start-page: 4473 year: 2018 ident: D1CS00510C/cit82/1 publication-title: Chem. Commun. doi: 10.1039/C8CC01096J – volume: 50 start-page: 9540 year: 2021 ident: D1CS00510C/cit18/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00311A – volume: 22 start-page: 7250 year: 2020 ident: D1CS00510C/cit124/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c02582 – volume: 22 start-page: 2386 year: 2020 ident: D1CS00510C/cit147/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c00584 – volume: 56 start-page: 1839 year: 2019 ident: D1CS00510C/cit205/1 publication-title: J. Heterocycl. Chem. doi: 10.1002/jhet.3562 – volume: 20 start-page: 1546 year: 2018 ident: D1CS00510C/cit74/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00272 – volume: 117 start-page: 13230 year: 2017 ident: D1CS00510C/cit23/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00397 – volume: 139 start-page: 2896 year: 2017 ident: D1CS00510C/cit166/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13113 – volume: 58 start-page: 2402 year: 2019 ident: D1CS00510C/cit248/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813689 – ident: D1CS00510C/cit3/1 – volume: 18 start-page: 2906 year: 2016 ident: D1CS00510C/cit61/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b01257 – volume: 55 start-page: 11925 year: 2016 ident: D1CS00510C/cit273/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607292 – volume: 22 start-page: 8937 year: 2020 ident: D1CS00510C/cit164/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c03338 – volume: 52 start-page: 8275 year: 2016 ident: D1CS00510C/cit132/1 publication-title: Chem. Commun. doi: 10.1039/C6CC03335K – volume: 16 start-page: 4340 year: 2014 ident: D1CS00510C/cit59/1 publication-title: Org. Lett. doi: 10.1021/ol5021477 – volume: 480 start-page: 224 year: 2011 ident: D1CS00510C/cit36/1 publication-title: Nature doi: 10.1038/nature10647 – volume: 57 start-page: 8969 year: 2021 ident: D1CS00510C/cit95/1 publication-title: Chem. Commun. doi: 10.1039/D1CC03288G – volume: 112 start-page: 3083 year: 2012 ident: D1CS00510C/cit10/1 publication-title: Chem. Rev. doi: 10.1021/cr100233r – volume: 60 start-page: 7873 year: 2021 ident: D1CS00510C/cit321/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016156 – volume: 368 start-page: 318 year: 2020 ident: D1CS00510C/cit253/1 publication-title: Science doi: 10.1126/science.aba5901 – volume-title: Green chemistry: Theory and practice year: 1998 ident: D1CS00510C/cit2/1 – volume: 11 start-page: 10871 year: 2021 ident: D1CS00510C/cit153/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c03545 – volume: 21 start-page: 6005 year: 2019 ident: D1CS00510C/cit38/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b02152 – volume: 5 start-page: 813 year: 2018 ident: D1CS00510C/cit270/1 publication-title: Org. Chem. Front. doi: 10.1039/C7QO00987A – volume: 18 start-page: 115 year: 1994 ident: D1CS00510C/cit16/1 publication-title: Endeavour doi: 10.1016/S0160-9327(05)80086-9 – volume: 57 start-page: 1473 year: 2014 ident: D1CS00510C/cit259/1 publication-title: J. Med. Chem. doi: 10.1021/jm401788m – volume: 54 start-page: 11481 year: 2015 ident: D1CS00510C/cit81/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502980 – volume: 70 start-page: 4045 year: 1948 ident: D1CS00510C/cit57/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01192a022 – volume: 6 start-page: 5933 year: 2015 ident: D1CS00510C/cit63/1 publication-title: Nat. Commun. doi: 10.1038/ncomms6933 – volume: 514 start-page: 111841 year: 2021 ident: D1CS00510C/cit228/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2021.111841 – start-page: 1274 year: 2020 ident: D1CS00510C/cit268/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201900396 – volume: 21 start-page: 4950 year: 2019 ident: D1CS00510C/cit299/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01323 – volume: 139 start-page: 3209 year: 2017 ident: D1CS00510C/cit313/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13229 – volume: 56 start-page: 12774 year: 2017 ident: D1CS00510C/cit316/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706799 – volume: 47 start-page: 5786 year: 2018 ident: D1CS00510C/cit27/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00619E – volume: 55 start-page: 14962 year: 2019 ident: D1CS00510C/cit309/1 publication-title: Chem. Commun. doi: 10.1039/C9CC08333B – volume: 81 start-page: 29 year: 2016 ident: D1CS00510C/cit195/1 publication-title: J. Serbian Chem. Soc. doi: 10.2298/JSC150210048K – volume: 59 start-page: 457 year: 2020 ident: D1CS00510C/cit151/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911109 – volume: 51 start-page: 9567 year: 2012 ident: D1CS00510C/cit37/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205071 – volume: 53 start-page: 1696 year: 2017 ident: D1CS00510C/cit101/1 publication-title: Chem. Commun. doi: 10.1039/C6CC10035J – volume: 52 start-page: 11756 year: 2016 ident: D1CS00510C/cit165/1 publication-title: Chem. Commun. doi: 10.1039/C6CC05506K – volume: 362 start-page: 3131 year: 2020 ident: D1CS00510C/cit83/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202000637 – volume: 56 start-page: 9469 year: 2020 ident: D1CS00510C/cit275/1 publication-title: Chem. Commun. doi: 10.1039/D0CC03591B – volume: 10 start-page: 8247 year: 2020 ident: D1CS00510C/cit143/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c02660 – volume: 59 start-page: 4370 year: 2020 ident: D1CS00510C/cit144/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916279 – volume: 363 start-page: 1651 year: 2021 ident: D1CS00510C/cit140/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202001434 – volume: 24 start-page: 10617 year: 2018 ident: D1CS00510C/cit168/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201801628 – volume: 21 start-page: 4853 year: 2019 ident: D1CS00510C/cit225/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01747 – volume: 52 start-page: 4734 year: 2013 ident: D1CS00510C/cit72/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201210276 – volume: 8 start-page: 2461 year: 2021 ident: D1CS00510C/cit283/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO00112D – volume: 8 start-page: 5403 year: 2021 ident: D1CS00510C/cit279/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO00816A – volume: 17 start-page: 1113 year: 2015 ident: D1CS00510C/cit162/1 publication-title: Green Chem. doi: 10.1039/C4GC01623H – volume: 9 start-page: 5330 year: 2019 ident: D1CS00510C/cit148/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01580 – volume: 75 start-page: 27 year: 1850 ident: D1CS00510C/cit212/1 publication-title: Ann. Chem. Pharm. doi: 10.1002/jlac.18500750103 – volume: 60 start-page: 5056 year: 2021 ident: D1CS00510C/cit311/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016164 – volume: 23 start-page: 2420 year: 2021 ident: D1CS00510C/cit185/1 publication-title: Green Chem. doi: 10.1039/D1GC00027F – volume: 10 start-page: 12727 year: 2020 ident: D1CS00510C/cit219/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03422 – volume: 72 start-page: 7813 year: 2016 ident: D1CS00510C/cit85/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2016.05.045 – volume: 15 start-page: 2136 year: 2013 ident: D1CS00510C/cit56/1 publication-title: Org. Lett. doi: 10.1021/ol4006272 – volume: 12 start-page: 9359 year: 2021 ident: D1CS00510C/cit308/1 publication-title: Chem. Sci. doi: 10.1039/D1SC02503A – volume: 24 start-page: 103134 year: 2021 ident: D1CS00510C/cit221/1 publication-title: iScience doi: 10.1016/j.isci.2021.103134 – volume: 12 start-page: 6429 year: 2021 ident: D1CS00510C/cit305/1 publication-title: Chem. Sci. doi: 10.1039/D1SC01389K – start-page: 6653 year: 2020 ident: D1CS00510C/cit296/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202001219 – volume: 16 start-page: 1240 year: 2014 ident: D1CS00510C/cit131/1 publication-title: Org. Lett. doi: 10.1021/ol500374e – volume: 11 start-page: 10862 year: 2021 ident: D1CS00510C/cit220/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02823 – volume: 55 start-page: 12212 year: 2019 ident: D1CS00510C/cit280/1 publication-title: Chem. Commun. doi: 10.1039/C9CC05949K – volume: 20 start-page: 1693 year: 2018 ident: D1CS00510C/cit173/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00410 – volume: 8 start-page: 5448 year: 2018 ident: D1CS00510C/cit256/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00683 – volume: 58 start-page: 1789 year: 2019 ident: D1CS00510C/cit249/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811858 – volume: 20 start-page: 190 year: 2018 ident: D1CS00510C/cit62/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b03551 – volume: 4 start-page: 2221 year: 2017 ident: D1CS00510C/cit295/1 publication-title: Org. Chem. Front. doi: 10.1039/C7QO00634A – volume: 55 start-page: 13312 year: 2016 ident: D1CS00510C/cit231/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607813 – volume: 60 start-page: 7353 year: 2021 ident: D1CS00510C/cit262/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202014111 – volume: 5 start-page: 3153 year: 2018 ident: D1CS00510C/cit286/1 publication-title: Org. Chem. Front. doi: 10.1039/C8QO00965A – volume: 23 start-page: 2754 year: 2021 ident: D1CS00510C/cit186/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c00664 – volume: 15 start-page: 2092 year: 2013 ident: D1CS00510C/cit215/1 publication-title: Org. Lett. doi: 10.1021/ol400317v – volume: 8 start-page: 7489 year: 2018 ident: D1CS00510C/cit109/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01863 – volume: 84 start-page: 3025 year: 2019 ident: D1CS00510C/cit142/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b03155 – volume: 22 start-page: 9155 year: 2016 ident: D1CS00510C/cit251/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201601694 – volume: 8 start-page: 4820 year: 2021 ident: D1CS00510C/cit301/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO00732G – volume: 55 start-page: 2214 year: 2019 ident: D1CS00510C/cit298/1 publication-title: Chem. Commun. doi: 10.1039/C9CC00347A – volume: 116 start-page: 10075 year: 2016 ident: D1CS00510C/cit17/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00057 – volume: 132 start-page: 5787 year: 2020 ident: D1CS00510C/cit180/1 publication-title: Angew. Chem. doi: 10.1002/ange.201914061 – volume: 56 start-page: 10915 year: 2017 ident: D1CS00510C/cit100/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706263 – volume: 359 start-page: 1308 year: 2017 ident: D1CS00510C/cit294/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201601341 – volume: 23 start-page: 4328 year: 2021 ident: D1CS00510C/cit126/1 publication-title: Green Chem. doi: 10.1039/D1GC00949D – volume: 10 start-page: 461 year: 2015 ident: D1CS00510C/cit315/1 publication-title: ChemMedChem doi: 10.1002/cmdc.201402502 – volume: 84 start-page: 15677 year: 2019 ident: D1CS00510C/cit77/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b02310 – volume: 51 start-page: 2200 year: 2012 ident: D1CS00510C/cit199/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie200997b – volume: 10 start-page: e15 year: 2013 ident: D1CS00510C/cit7/1 publication-title: Drug Discovery Today: Technol. doi: 10.1016/j.ddtec.2012.10.012 – volume: 15 start-page: 981 year: 2015 ident: D1CS00510C/cit12/1 publication-title: Chem. Rec. doi: 10.1002/tcr.201500201 – volume: 8 start-page: 5460 year: 2021 ident: D1CS00510C/cit11/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO00313E – volume: 23 start-page: 6987 year: 2021 ident: D1CS00510C/cit79/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.1c02686 – volume: 8 start-page: 6032 year: 2021 ident: D1CS00510C/cit303/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO01183A – volume: 56 start-page: 3732 year: 2015 ident: D1CS00510C/cit33/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2015.04.091 – volume: 8 start-page: 3308 year: 2021 ident: D1CS00510C/cit293/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO00344E – volume: 24 start-page: 2122 year: 2019 ident: D1CS00510C/cit26/1 publication-title: Molecules doi: 10.3390/molecules24112122 – volume: 3 start-page: 1443 year: 2016 ident: D1CS00510C/cit67/1 publication-title: Org. Chem. Front. doi: 10.1039/C6QO00393A – volume: 18 start-page: 423 year: 2012 ident: D1CS00510C/cit129/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201103062 – volume: 137 start-page: 11270 year: 2015 ident: D1CS00510C/cit179/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07678 – volume: 4 start-page: eaat531 year: 2018 ident: D1CS00510C/cit90/1 publication-title: Sci. Adv. – volume: 58 start-page: 4227 year: 2017 ident: D1CS00510C/cit200/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2017.09.003 – volume: 85 start-page: 1981 year: 2020 ident: D1CS00510C/cit177/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b02709 – volume: 57 start-page: 17220 year: 2018 ident: D1CS00510C/cit103/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811266 – volume: 87 start-page: 132111 year: 2021 ident: D1CS00510C/cit209/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2021.132111 – volume: 55 start-page: 3117 year: 2019 ident: D1CS00510C/cit69/1 publication-title: Chem. Commun. doi: 10.1039/C9CC00727J – volume: 22 start-page: 1906 year: 2020 ident: D1CS00510C/cit292/1 publication-title: Green Chem. doi: 10.1039/D0GC00332H – volume: 23 start-page: 8176 year: 2017 ident: D1CS00510C/cit306/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201702040 – volume: 5 start-page: 526 year: 2019 ident: D1CS00510C/cit238/1 publication-title: Chem doi: 10.1016/j.chempr.2018.11.006 – volume: 142 start-page: 20390 year: 2020 ident: D1CS00510C/cit145/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08823 – volume: 22 start-page: 4259 year: 2020 ident: D1CS00510C/cit191/1 publication-title: Green Chem. doi: 10.1039/D0GC00771D – volume: 22 start-page: 3318 year: 2020 ident: D1CS00510C/cit234/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c00614 – volume: 53 start-page: 547 year: 2020 ident: D1CS00510C/cit22/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00529 |
SSID | ssj0011762 |
Score | 2.680186 |
SecondaryResourceType | review_article |
Snippet | Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2313 |
SubjectTerms | Catalysis Chemical reactions Chemical reactors Cross coupling cross-coupling reactions Electrochemical activation Electrochemistry energy efficiency irradiation light Light irradiation Organic chemistry photocatalysis photocatalysts Photoredox catalysis Reagents redox reactions Selectivity |
Title | Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35244107 https://www.proquest.com/docview/2640982636 https://www.proquest.com/docview/2636140603 https://www.proquest.com/docview/2648878261 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gAXxKtgKGgRXJDl1M46fnCrQqKCQkHCqXKz1uu1GmjsKI9D--uZfdqlFSpcLMteWyvP55n5dueB0Hs-IGCWRUOTgAJBqYCnpCSFM8I4rSoWhFwQxa-n0cks_DIfznu9q252ybbos6tb80r-R6pwDeQqsmT_QbL2pXABzkG-cAQJw_FOMpbZsyIovKnFlj74f0wFtsns__NGtEia6EY3zHR2c382CxldyFQ4HLDupctlfvKlu-R8u3G5SgjksryEyM3surC2xIAJ-NQFTe1uRrNaAV-WC-7gnC_4xbJpV0y_i_UdkUEkowhElHFtDcMZFZG5a3d8Caql1lr6l3vW76gm-dT5zpsuuusVQHV94qkkaK1iw8j3wlhVfTQ6eBh0sBa5qz64nfAYUY2JjHIlKm1VG2pz94YR8ImooVoGbCNVDmtNndneP_2WT2bTaZ6N59k9tD8AigE6cv94nH2e2j2oIJbtaO18TXFbkh61777uztzgKOCxrE0nGemxZI_QQ0018LHCzWPU4_UTdH9kcPAU8ev4wRY_GPCDJX6O_kQPFujBCj0fscAO1tjBEjtYYQe32HmGZpNxNjrxdNsNj4Uk2nosEW644JKsCsuIJTFhNKLDMChpWXESVySJU79MKU1LniQ0jYuiZJQElLM0GZADtFfDvF8gDN4zD4G-ySpHIWUFmOVh4RelPwTuzyoHfTBfL2e6Jr1ojXKRy9gIkuafgtEP-aVHDnpnx65UJZZbRx0aIeT6T93k4PT7MLGIRA56a2_DZxObY7TmzU6MIeCp-pFP_jYGzB241FHgoOdKwHYqQGSAWfixgw5A4vZyi5SXd3jtK_Sg_WUO0d52veOvwendFm80On8DEoywPA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicomponent+reactions+and+photo%2Felectrochemistry+join+forces%3A+atom+economy+meets+energy+efficiency&rft.jtitle=Chemical+Society+reviews&rft.au=Coppola%2C+Guglielmo+A&rft.au=Pillitteri%2C+Serena&rft.au=Van+der+Eycken%2C+Erik+V.&rft.au=You%2C+Shu-Li&rft.date=2022-03-21&rft.issn=1460-4744&rft.volume=51&rft.issue=6+p.2313-2382&rft.spage=2313&rft.epage=2382&rft_id=info:doi/10.1039%2Fd1cs00510c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |