Transforming Growth Factor-β Signaling in Immunity and Cancer

Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune su...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 50; no. 4; pp. 924 - 940
Main Authors Batlle, Eduard, Massagué, Joan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.04.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor. Massagué and Batlle present an overview of the complex biology of the TGF-β family and, focusing on cancer, discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged in the clinic.
AbstractList Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor. Massagué and Batlle present an overview of the complex biology of the TGF-β family and, focusing on cancer, discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged in the clinic.
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Author Massagué, Joan
Batlle, Eduard
Author_xml – sequence: 1
  givenname: Eduard
  surname: Batlle
  fullname: Batlle, Eduard
  email: eduard.batlle@irbbarcelona.org
  organization: Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
– sequence: 2
  givenname: Joan
  surname: Massagué
  fullname: Massagué, Joan
  email: j-massague@ski.mskcc.org
  organization: Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30995507$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1O3TAUha2Kqvy0O6hQpE46SbiOnTjuAAk9AUVC6qB0bDnODfVTYoPtULEtFsKa8OPBhEGZ2Jb9nXPlc_bJjvMOCflKoaJA26N1Zed5cbaqgcoKWAU1_0D2KEhRctrBzuYseClaynbJfoxrAMobCZ_ILgMpmwbEHjm-CtrF0YfZuuviPPh_6W9xpk3yoXx8KH7ba6enzZN1xcXzvHRfaDcUK-0Mhs_k46iniF9e9gPy5-z0avWzvPx1frE6uSwNZ23K6ygY7bpWIOdgNJNj3_Wmr_uR9y2VKGRTc2xFi5S2WuPQ53stG66pHjhjB-T71vcm-NsFY1KzjQanSTv0S1R1TSmrBe9kRr-9Qdd-CfkXzxSwruHQZerwhVr6GQd1E-ysw716TSYDP7aACT7GgKMyNulkvUtB20lRUJsa1Fpta1CbGhQwlWvIYv5G_Or_jux4K8Mc5Z3FoKKxmHMebECT1ODt_w2eAAOtoqE
CitedBy_id crossref_primary_10_1016_j_celrep_2022_111452
crossref_primary_10_1002_adma_202304328
crossref_primary_10_1002_jbm_b_34891
crossref_primary_10_1016_j_bcp_2022_114916
crossref_primary_10_1016_j_canlet_2022_215839
crossref_primary_10_1177_03946320231172080
crossref_primary_10_1152_ajpgi_00145_2019
crossref_primary_10_1111_imr_12978
crossref_primary_10_3390_cancers13215412
crossref_primary_10_3390_ijms21239120
crossref_primary_10_1093_jnen_nlac007
crossref_primary_10_1016_j_tranon_2025_102307
crossref_primary_10_1038_s41388_023_02668_9
crossref_primary_10_1016_j_trecan_2019_07_006
crossref_primary_10_1038_s41416_023_02552_z
crossref_primary_10_1002_aisy_202100134
crossref_primary_10_1158_1078_0432_CCR_21_3750
crossref_primary_10_2147_CMAR_S351979
crossref_primary_10_3389_fgene_2020_00185
crossref_primary_10_1016_j_ygeno_2021_11_036
crossref_primary_10_1016_j_xcrm_2025_101992
crossref_primary_10_1016_j_isci_2024_110520
crossref_primary_10_3390_cancers11091221
crossref_primary_10_1016_j_heliyon_2024_e26804
crossref_primary_10_1016_j_prp_2025_155864
crossref_primary_10_1016_j_intimp_2024_112997
crossref_primary_10_1016_j_prp_2024_155120
crossref_primary_10_3389_fimmu_2024_1427784
crossref_primary_10_3389_fimmu_2023_1110070
crossref_primary_10_1039_D2TB01195F
crossref_primary_10_3390_cancers13102500
crossref_primary_10_1016_j_jbc_2022_102843
crossref_primary_10_1136_jitc_2021_003519
crossref_primary_10_3390_cancers15041324
crossref_primary_10_3390_cancers15143592
crossref_primary_10_1093_neuonc_noab212
crossref_primary_10_1111_bjd_19421
crossref_primary_10_1136_jitc_2023_007441
crossref_primary_10_3389_fonc_2022_815437
crossref_primary_10_3390_cancers12040988
crossref_primary_10_3390_ijms21239138
crossref_primary_10_1016_j_trecan_2020_03_010
crossref_primary_10_1016_j_intimp_2024_112509
crossref_primary_10_1016_j_bbcan_2023_188945
crossref_primary_10_3389_fimmu_2021_705999
crossref_primary_10_3389_fcimb_2020_00049
crossref_primary_10_3390_cells9102218
crossref_primary_10_3389_fmolb_2021_697773
crossref_primary_10_3390_biom10020289
crossref_primary_10_1016_j_intimp_2024_111890
crossref_primary_10_1371_journal_pbio_3000591
crossref_primary_10_1172_JCI170490
crossref_primary_10_1080_21655979_2022_2075300
crossref_primary_10_1186_s12974_022_02557_0
crossref_primary_10_3390_cancers14071772
crossref_primary_10_3390_cells8090960
crossref_primary_10_1038_s41392_020_00341_1
crossref_primary_10_3389_fgene_2022_978988
crossref_primary_10_1016_j_yexcr_2021_112522
crossref_primary_10_3390_cancers14235930
crossref_primary_10_1016_j_cca_2025_120176
crossref_primary_10_3389_fnins_2022_917587
crossref_primary_10_1002_1878_0261_12773
crossref_primary_10_1007_s11538_024_01329_6
crossref_primary_10_1097_MD_0000000000032485
crossref_primary_10_3389_fonc_2021_716844
crossref_primary_10_1016_j_phymed_2023_154903
crossref_primary_10_1063_5_0250173
crossref_primary_10_1080_21655979_2021_1971029
crossref_primary_10_1016_j_biomaterials_2024_122944
crossref_primary_10_1002_1878_0261_12779
crossref_primary_10_1016_j_pharmthera_2022_108114
crossref_primary_10_1038_s41551_022_00977_0
crossref_primary_10_1155_2021_6675208
crossref_primary_10_1016_j_envres_2023_115990
crossref_primary_10_1002_adtp_202200179
crossref_primary_10_1152_ajpcell_00638_2023
crossref_primary_10_1021_acs_jnatprod_4c00317
crossref_primary_10_1084_jem_20211574
crossref_primary_10_1016_j_mvr_2024_104669
crossref_primary_10_2174_1381612828666220518102440
crossref_primary_10_3389_fimmu_2023_1278749
crossref_primary_10_3389_fimmu_2024_1344272
crossref_primary_10_1016_j_heliyon_2024_e33109
crossref_primary_10_1016_j_actbio_2021_07_051
crossref_primary_10_1016_j_celrep_2024_114270
crossref_primary_10_3389_fimmu_2023_1160340
crossref_primary_10_3389_fphar_2023_1285343
crossref_primary_10_1155_2024_4468145
crossref_primary_10_1016_j_ymthe_2023_09_015
crossref_primary_10_1016_j_cyto_2024_156833
crossref_primary_10_1038_s41698_021_00200_4
crossref_primary_10_1186_s12876_021_01869_4
crossref_primary_10_3389_fimmu_2023_1196970
crossref_primary_10_1038_s41568_024_00760_0
crossref_primary_10_1158_0008_5472_CAN_20_1692
crossref_primary_10_1002_advs_202400920
crossref_primary_10_1016_j_ebiom_2024_105228
crossref_primary_10_1016_j_immuni_2024_07_004
crossref_primary_10_1080_10985549_2023_2205344
crossref_primary_10_1016_j_canlet_2020_05_035
crossref_primary_10_1042_CS20210886
crossref_primary_10_1016_j_actbio_2022_10_024
crossref_primary_10_1038_s41467_023_39035_x
crossref_primary_10_14814_phy2_16124
crossref_primary_10_1007_s10142_020_00765_6
crossref_primary_10_3390_cancers12113177
crossref_primary_10_1016_j_trecan_2022_06_008
crossref_primary_10_1515_med_2020_0147
crossref_primary_10_1038_s41577_022_00777_2
crossref_primary_10_1002_ctm2_1141
crossref_primary_10_1007_s40944_021_00498_9
crossref_primary_10_3389_fgene_2022_850101
crossref_primary_10_1186_s12943_023_01885_w
crossref_primary_10_1186_s12967_021_02952_w
crossref_primary_10_1002_adhm_202303837
crossref_primary_10_1111_febs_16297
crossref_primary_10_1016_j_bcp_2025_116748
crossref_primary_10_1038_s41573_022_00415_5
crossref_primary_10_3389_fphar_2024_1382256
crossref_primary_10_1186_s13046_021_01960_4
crossref_primary_10_1200_PO_20_00456
crossref_primary_10_1080_17460441_2022_2114454
crossref_primary_10_1016_j_intimp_2024_112797
crossref_primary_10_3389_fonc_2021_659963
crossref_primary_10_3390_ijms23147627
crossref_primary_10_1016_j_cytogfr_2024_10_006
crossref_primary_10_1158_1535_7163_MCT_20_0944
crossref_primary_10_1016_j_carbpol_2021_118490
crossref_primary_10_1186_s12943_024_02137_1
crossref_primary_10_3389_fcell_2021_717601
crossref_primary_10_3389_fimmu_2020_00311
crossref_primary_10_3390_life12091381
crossref_primary_10_1172_JCI183366
crossref_primary_10_3390_jpm14090894
crossref_primary_10_1007_s11010_025_05241_y
crossref_primary_10_1016_j_bmcl_2022_128979
crossref_primary_10_1016_j_jbc_2022_101717
crossref_primary_10_1111_cas_15365
crossref_primary_10_1186_s12967_025_06260_5
crossref_primary_10_3390_cancers13020343
crossref_primary_10_1002_1878_0261_13614
crossref_primary_10_1155_2021_4093426
crossref_primary_10_3389_fonc_2023_1170893
crossref_primary_10_1016_j_bbrep_2022_101369
crossref_primary_10_3389_fimmu_2020_631713
crossref_primary_10_1016_j_ebiom_2022_103941
crossref_primary_10_1016_j_mam_2023_101191
crossref_primary_10_1007_s12015_021_10137_7
crossref_primary_10_1038_s41568_023_00578_2
crossref_primary_10_1182_bloodadvances_2023011632
crossref_primary_10_3389_fgene_2022_842975
crossref_primary_10_1080_07853890_2024_2439539
crossref_primary_10_1016_j_ecoenv_2023_115768
crossref_primary_10_1016_j_canlet_2024_217115
crossref_primary_10_12677_acm_2025_152546
crossref_primary_10_1155_2022_8700372
crossref_primary_10_3389_fimmu_2023_911368
crossref_primary_10_3389_fonc_2021_624421
crossref_primary_10_3390_ijms24010147
crossref_primary_10_1038_s41598_022_20162_2
crossref_primary_10_3389_fonc_2024_1376551
crossref_primary_10_1016_j_cell_2022_02_015
crossref_primary_10_1007_s10549_024_07592_4
crossref_primary_10_1016_j_acthis_2024_152171
crossref_primary_10_3390_biomedicines11010163
crossref_primary_10_3390_cancers16122270
crossref_primary_10_3390_cancers17010097
crossref_primary_10_1016_j_semcancer_2023_08_002
crossref_primary_10_1177_09603271231159799
crossref_primary_10_1016_j_bone_2020_115549
crossref_primary_10_1093_nsr_nwac169
crossref_primary_10_3389_fonc_2022_900832
crossref_primary_10_1128_MCB_00085_21
crossref_primary_10_3390_ijms23010375
crossref_primary_10_1021_acsnano_1c02103
crossref_primary_10_1089_hum_2020_078
crossref_primary_10_1038_s44319_024_00075_z
crossref_primary_10_1016_j_ijrobp_2023_09_020
crossref_primary_10_1038_s41419_023_05949_z
crossref_primary_10_1016_j_semcancer_2021_11_005
crossref_primary_10_3389_fimmu_2022_942468
crossref_primary_10_1038_s41418_021_00740_z
crossref_primary_10_1136_jitc_2020_001469
crossref_primary_10_3390_cancers17050749
crossref_primary_10_1016_j_canlet_2024_217347
crossref_primary_10_3390_cancers13122995
crossref_primary_10_3389_fimmu_2022_1026070
crossref_primary_10_1038_s41586_024_08279_y
crossref_primary_10_1080_2162402X_2024_2356942
crossref_primary_10_3390_ijms24065954
crossref_primary_10_1007_s00018_021_03873_z
crossref_primary_10_3390_ijms241512412
crossref_primary_10_1016_j_artmed_2024_102871
crossref_primary_10_1111_cns_13714
crossref_primary_10_1016_j_trecan_2019_09_009
crossref_primary_10_1016_j_omto_2021_02_001
crossref_primary_10_1136_jitc_2021_003113
crossref_primary_10_1016_j_bbrep_2024_101902
crossref_primary_10_1016_j_phymed_2025_156468
crossref_primary_10_1186_s43556_022_00109_9
crossref_primary_10_1016_j_fsi_2024_109744
crossref_primary_10_1111_cas_14639
crossref_primary_10_1038_s41419_023_06215_y
crossref_primary_10_1053_j_gastro_2021_04_064
crossref_primary_10_3389_fimmu_2020_01214
crossref_primary_10_1002_JLB_3RU0222_087RRR
crossref_primary_10_1021_acsptsci_4c00021
crossref_primary_10_3389_fimmu_2022_933779
crossref_primary_10_1186_s12967_024_05456_5
crossref_primary_10_1016_j_addr_2022_114301
crossref_primary_10_1016_j_pharmthera_2023_108458
crossref_primary_10_1016_j_isci_2024_110938
crossref_primary_10_1016_j_ebiom_2024_105026
crossref_primary_10_18632_aging_202397
crossref_primary_10_1002_ijc_33859
crossref_primary_10_1016_j_trecan_2020_02_020
crossref_primary_10_1002_advs_202207697
crossref_primary_10_1016_j_jtho_2023_06_012
crossref_primary_10_3389_fimmu_2024_1337129
crossref_primary_10_3390_ijms232415827
crossref_primary_10_1186_s13045_022_01298_0
crossref_primary_10_3390_cancers13163960
crossref_primary_10_1016_j_ncrna_2024_01_013
crossref_primary_10_3892_ijo_2022_5450
crossref_primary_10_1038_s41467_023_37727_y
crossref_primary_10_4049_immunohorizons_2100020
crossref_primary_10_1136_gutjnl_2022_327608
crossref_primary_10_1242_bio_055103
crossref_primary_10_12677_acm_2025_151221
crossref_primary_10_1136_jitc_2024_009720
crossref_primary_10_53469_jcmp_2024_06_06__13
crossref_primary_10_3389_fimmu_2023_1291530
crossref_primary_10_3390_biology13100802
crossref_primary_10_3389_fonc_2021_680985
crossref_primary_10_3389_fcell_2022_812262
crossref_primary_10_3390_jcm10173900
crossref_primary_10_1089_hum_2019_352
crossref_primary_10_1007_s00262_019_02435_4
crossref_primary_10_1016_j_cllc_2022_08_009
crossref_primary_10_1016_j_scitotenv_2024_173448
crossref_primary_10_4103_apjtb_apjtb_782_23
crossref_primary_10_1016_j_biopha_2024_116783
crossref_primary_10_1038_s41388_024_03118_w
crossref_primary_10_1016_j_brainres_2021_147711
crossref_primary_10_1002_ctm2_1552
crossref_primary_10_1016_j_neuroscience_2020_04_015
crossref_primary_10_1038_s41467_025_56796_9
crossref_primary_10_1080_1744666X_2024_2326626
crossref_primary_10_4252_wjsc_v14_i1_41
crossref_primary_10_1007_s12094_022_02932_6
crossref_primary_10_3390_brainsci13060851
crossref_primary_10_1007_s12672_022_00532_y
crossref_primary_10_1007_s10753_024_02056_9
crossref_primary_10_3389_fcvm_2022_882027
crossref_primary_10_1152_ajpcell_00201_2023
crossref_primary_10_1186_s13045_021_01045_x
crossref_primary_10_1360_TB_2024_0326
crossref_primary_10_3389_fonc_2023_1228281
crossref_primary_10_3390_cancers15143739
crossref_primary_10_1038_s43018_024_00807_z
crossref_primary_10_3390_biomedicines12102397
crossref_primary_10_15407_exp_oncology_2024_01_022
crossref_primary_10_1007_s12282_024_01557_7
crossref_primary_10_1002_cam4_6896
crossref_primary_10_1186_s12014_021_09330_0
crossref_primary_10_1016_j_oraloncology_2023_106570
crossref_primary_10_1080_28354311_2023_2264176
crossref_primary_10_1053_j_gastro_2020_09_011
crossref_primary_10_1016_j_cellsig_2025_111673
crossref_primary_10_1182_bloodadvances_2018030478
crossref_primary_10_1007_s12026_022_09267_y
crossref_primary_10_1186_s12967_023_04374_2
crossref_primary_10_1002_advs_202412282
crossref_primary_10_1093_jmcb_mjad068
crossref_primary_10_3390_biom9110743
crossref_primary_10_1371_journal_pone_0281637
crossref_primary_10_1016_j_immuni_2019_12_010
crossref_primary_10_1016_j_procbio_2023_05_024
crossref_primary_10_3390_cells11030349
crossref_primary_10_1007_s00277_024_05843_4
crossref_primary_10_1038_s41389_023_00474_2
crossref_primary_10_1002_cbin_12226
crossref_primary_10_1007_s00262_020_02525_8
crossref_primary_10_1002_cti2_1445
crossref_primary_10_3390_ijms222413311
crossref_primary_10_1007_s10238_024_01394_0
crossref_primary_10_1016_j_intimp_2024_113253
crossref_primary_10_3389_fimmu_2022_1066336
crossref_primary_10_3389_fimmu_2022_1033642
crossref_primary_10_1007_s00428_021_03256_6
crossref_primary_10_1016_j_bbcan_2024_189220
crossref_primary_10_1016_j_tim_2021_05_005
crossref_primary_10_3389_fonc_2021_642030
crossref_primary_10_1016_j_ccell_2024_11_011
crossref_primary_10_1016_j_addr_2021_05_001
crossref_primary_10_1007_s00262_021_02886_8
crossref_primary_10_1038_s41591_025_03575_0
crossref_primary_10_1124_jpet_123_001970
crossref_primary_10_3389_fimmu_2020_586126
crossref_primary_10_1155_2020_8216541
crossref_primary_10_1038_s41423_023_01120_y
crossref_primary_10_18632_aging_203682
crossref_primary_10_3389_fimmu_2022_865975
crossref_primary_10_12677_PI_2023_124039
crossref_primary_10_1038_s41423_020_00593_5
crossref_primary_10_1016_j_jare_2023_04_018
crossref_primary_10_1038_s41568_021_00413_6
crossref_primary_10_1007_s10528_023_10591_7
crossref_primary_10_1007_s10565_024_09840_1
crossref_primary_10_1080_2162402X_2024_2330194
crossref_primary_10_1111_jnc_16037
crossref_primary_10_1016_j_isci_2021_103347
crossref_primary_10_3389_fimmu_2022_873116
crossref_primary_10_1038_s42003_021_01786_y
crossref_primary_10_3390_ijms24119418
crossref_primary_10_1016_j_bcp_2021_114697
crossref_primary_10_4103_2221_1691_314052
crossref_primary_10_1038_s41467_025_55876_0
crossref_primary_10_1038_s41573_022_00615_z
crossref_primary_10_1080_19336950_2021_2004758
crossref_primary_10_1042_CS20240450
crossref_primary_10_3389_fonc_2022_849024
crossref_primary_10_1038_s42003_025_07595_x
crossref_primary_10_3390_biomedicines9020213
crossref_primary_10_1186_s12916_021_01925_6
crossref_primary_10_3389_fgene_2022_876588
crossref_primary_10_1016_j_isci_2024_110994
crossref_primary_10_1158_1078_0432_CCR_19_2840
crossref_primary_10_1016_j_jaci_2021_01_026
crossref_primary_10_2147_IJN_S505539
crossref_primary_10_3389_fimmu_2021_763877
crossref_primary_10_1016_j_isci_2024_110750
crossref_primary_10_3390_cancers13122924
crossref_primary_10_1007_s13402_020_00523_7
crossref_primary_10_1158_1078_0432_CCR_22_2601
crossref_primary_10_1016_j_ijbiomac_2024_133594
crossref_primary_10_1186_s12920_024_01932_5
crossref_primary_10_1016_j_isci_2022_104702
crossref_primary_10_1002_mc_23715
crossref_primary_10_1080_07853890_2023_2279235
crossref_primary_10_3389_or_2024_1444008
crossref_primary_10_1016_j_bbrc_2019_11_039
crossref_primary_10_3390_biomedicines10102498
crossref_primary_10_1016_j_critrevonc_2025_104628
crossref_primary_10_3389_fimmu_2021_761450
crossref_primary_10_3390_cancers12071875
crossref_primary_10_1016_j_cellsig_2019_109470
crossref_primary_10_1016_j_cellsig_2023_111027
crossref_primary_10_1038_s41577_023_00965_8
crossref_primary_10_3389_fimmu_2022_993624
crossref_primary_10_1007_s00436_022_07679_1
crossref_primary_10_1042_BSR20201885
crossref_primary_10_3389_fcell_2020_580140
crossref_primary_10_3389_fonc_2022_908156
crossref_primary_10_3390_molecules27248851
crossref_primary_10_1126_sciadv_adf9915
crossref_primary_10_1016_j_heliyon_2024_e24601
crossref_primary_10_1038_s41467_024_50967_w
crossref_primary_10_1186_s13014_025_02617_8
crossref_primary_10_1096_fba_2020_00015
crossref_primary_10_1016_j_it_2020_03_003
crossref_primary_10_1016_j_bmcl_2022_128552
crossref_primary_10_2217_pme_2023_0103
crossref_primary_10_2147_JIR_S321852
crossref_primary_10_1038_s41598_022_09793_7
crossref_primary_10_18632_aging_203677
crossref_primary_10_3390_ijms242417282
crossref_primary_10_1093_jbmrpl_ziae021
crossref_primary_10_3389_fcell_2020_00672
crossref_primary_10_1038_s41388_019_1043_8
crossref_primary_10_1038_s44303_024_00022_6
crossref_primary_10_3389_fgene_2022_818378
crossref_primary_10_3389_fmed_2022_908752
crossref_primary_10_1038_s41392_022_00944_w
crossref_primary_10_1038_s41417_024_00735_1
crossref_primary_10_3389_fonc_2021_788365
crossref_primary_10_1016_j_omton_2025_200936
crossref_primary_10_3389_fcell_2021_756458
crossref_primary_10_1038_s41416_024_02686_8
crossref_primary_10_1126_sciimmunol_abi4613
crossref_primary_10_1016_j_biopha_2023_115355
crossref_primary_10_1002_adma_202204034
crossref_primary_10_2147_IJN_S480168
crossref_primary_10_1007_s12035_023_03862_2
crossref_primary_10_1038_s41467_019_12241_2
crossref_primary_10_1021_acsami_1c02567
crossref_primary_10_1007_s13577_020_00427_6
crossref_primary_10_3389_fonc_2022_1054564
crossref_primary_10_3390_ijms23052617
crossref_primary_10_3389_fimmu_2023_1108682
crossref_primary_10_1186_s12943_021_01428_1
crossref_primary_10_1016_j_gene_2022_146677
crossref_primary_10_1200_EDBK_278853
crossref_primary_10_1016_j_tibs_2022_06_001
crossref_primary_10_3389_fcell_2020_00162
crossref_primary_10_1016_j_intimp_2022_109462
crossref_primary_10_1155_2022_2630351
crossref_primary_10_3390_biomedicines10123292
crossref_primary_10_1016_j_canlet_2021_02_013
crossref_primary_10_3390_cancers12102991
crossref_primary_10_1053_j_gastro_2023_05_038
crossref_primary_10_1038_s41375_021_01464_2
crossref_primary_10_1055_s_0043_1776127
crossref_primary_10_2174_1573406417666210628144849
crossref_primary_10_3390_biomedicines9040374
crossref_primary_10_1186_s12967_024_05534_8
crossref_primary_10_2139_ssrn_4114030
crossref_primary_10_1007_s11033_021_06640_2
crossref_primary_10_1016_j_bioorg_2024_107274
crossref_primary_10_2217_pme_2020_0003
crossref_primary_10_3389_fimmu_2022_946209
crossref_primary_10_30895_1991_2919_2022_12_4_425_443
crossref_primary_10_1016_j_biomaterials_2021_121010
crossref_primary_10_1182_blood_2023022738
crossref_primary_10_3892_ol_2021_12437
crossref_primary_10_1002_advs_202300708
crossref_primary_10_1080_2162402X_2022_2146860
crossref_primary_10_3390_antiox11040673
crossref_primary_10_3389_fimmu_2022_932055
crossref_primary_10_3390_cancers11081197
crossref_primary_10_1038_s41580_023_00638_3
crossref_primary_10_1186_s13045_021_01155_6
crossref_primary_10_3389_fimmu_2020_01295
crossref_primary_10_3390_microorganisms11020461
crossref_primary_10_3390_cancers13153897
crossref_primary_10_3389_fimmu_2023_1200201
crossref_primary_10_3389_fimmu_2022_824946
crossref_primary_10_1111_bph_16505
crossref_primary_10_1038_s41392_020_0194_y
crossref_primary_10_3389_fcell_2021_667645
crossref_primary_10_3389_fcell_2022_837849
crossref_primary_10_3390_cancers13040821
crossref_primary_10_1016_j_canlet_2024_216902
crossref_primary_10_3389_fimmu_2021_654877
crossref_primary_10_3390_cells10010100
crossref_primary_10_1073_pnas_1919764117
crossref_primary_10_3390_ijms241310643
crossref_primary_10_1038_s41563_023_01515_2
crossref_primary_10_1111_jcmm_16308
crossref_primary_10_3390_ijms25189914
crossref_primary_10_1038_s41575_021_00568_5
crossref_primary_10_1002_jcp_29928
crossref_primary_10_1039_D0NR08050K
crossref_primary_10_1080_15384101_2022_2109105
crossref_primary_10_1016_j_biopha_2024_116938
crossref_primary_10_1016_j_smim_2021_101474
crossref_primary_10_1038_s41577_021_00568_1
crossref_primary_10_1038_s41392_020_00436_9
crossref_primary_10_1016_j_cej_2022_137147
crossref_primary_10_1016_j_smim_2021_101479
crossref_primary_10_1080_14728222_2020_1744568
crossref_primary_10_1007_s00432_022_04162_3
crossref_primary_10_1042_BCJ20210233
crossref_primary_10_3389_fimmu_2022_979116
crossref_primary_10_1016_j_cbi_2022_110289
crossref_primary_10_1038_s41577_022_00796_z
crossref_primary_10_3390_ijms23073778
crossref_primary_10_3389_fimmu_2024_1320779
crossref_primary_10_3389_fimmu_2023_1256453
crossref_primary_10_3390_ijms24098267
crossref_primary_10_1007_s11845_023_03357_y
crossref_primary_10_1016_j_cytogfr_2024_07_006
crossref_primary_10_1002_jnr_25255
crossref_primary_10_1016_j_semcancer_2023_11_009
crossref_primary_10_1002_cac2_12416
crossref_primary_10_1038_s41569_021_00646_w
crossref_primary_10_3390_cancers13195032
crossref_primary_10_3389_fonc_2022_798680
crossref_primary_10_1158_2326_6066_CIR_21_0030
crossref_primary_10_1016_j_celrep_2021_109309
crossref_primary_10_1007_s13577_024_01112_8
crossref_primary_10_3390_ijms25137275
crossref_primary_10_1021_acsami_1c02116
crossref_primary_10_3389_fonc_2021_599719
crossref_primary_10_2174_1568009623666230414140609
crossref_primary_10_1038_s41388_024_03030_3
crossref_primary_10_1172_JCI152394
crossref_primary_10_1097_CM9_0000000000002460
crossref_primary_10_1111_imr_13122
crossref_primary_10_3390_cells11223541
crossref_primary_10_3390_ijms222312613
crossref_primary_10_1002_advs_202308892
crossref_primary_10_3390_molecules27113513
crossref_primary_10_3390_ijms22010238
crossref_primary_10_1038_s41467_021_23048_5
crossref_primary_10_1002_eji_202350460
crossref_primary_10_1126_sciadv_abq3951
crossref_primary_10_1016_j_ejmech_2021_113356
crossref_primary_10_1038_s41416_023_02184_3
crossref_primary_10_1186_s13046_023_02833_8
crossref_primary_10_1002_eji_202350465
crossref_primary_10_3389_fimmu_2022_784479
crossref_primary_10_3390_cancers14030490
crossref_primary_10_1016_j_tranon_2024_101938
crossref_primary_10_3390_cancers14112709
crossref_primary_10_1111_jcmm_16366
crossref_primary_10_3390_cells12091315
crossref_primary_10_2174_0109298673277243231108071620
crossref_primary_10_1007_s00262_020_02676_8
crossref_primary_10_1016_j_exer_2024_110168
crossref_primary_10_1007_s13346_021_01036_y
crossref_primary_10_1016_j_pharmthera_2025_108810
crossref_primary_10_1038_s41598_024_72989_6
crossref_primary_10_3389_fcell_2021_691937
crossref_primary_10_1021_acsanm_4c06867
crossref_primary_10_3389_fimmu_2021_810286
crossref_primary_10_2147_JIR_S503326
crossref_primary_10_3390_immuno1030010
crossref_primary_10_1016_j_cmet_2022_07_010
crossref_primary_10_1016_j_canlet_2024_216953
crossref_primary_10_1158_2159_8290_CD_19_1536
crossref_primary_10_1002_path_5655
crossref_primary_10_3389_fcell_2021_754069
crossref_primary_10_1111_cbdd_14333
crossref_primary_10_5847_wjem_j_1920_8642_2022_068
crossref_primary_10_1002_smll_202410503
crossref_primary_10_1038_s41598_024_73736_7
crossref_primary_10_3389_fimmu_2019_02689
crossref_primary_10_1158_0008_5472_CAN_22_3023
crossref_primary_10_3390_biomedicines10010163
crossref_primary_10_1111_bph_15457
crossref_primary_10_2174_1573408019666221107145705
crossref_primary_10_3390_cells8101143
crossref_primary_10_3389_fimmu_2022_973881
crossref_primary_10_3389_fphar_2022_1069204
crossref_primary_10_1016_j_jhep_2024_01_005
crossref_primary_10_3389_fphar_2023_1273987
crossref_primary_10_1016_j_actbio_2021_03_051
crossref_primary_10_1155_2022_3140263
crossref_primary_10_1007_s00277_024_05619_w
crossref_primary_10_1016_S1875_5364_21_60078_X
crossref_primary_10_3389_fonc_2022_843880
crossref_primary_10_1158_0008_5472_CAN_22_3260
crossref_primary_10_3390_diagnostics13010011
crossref_primary_10_7554_eLife_83527
crossref_primary_10_1038_s41467_020_19408_2
crossref_primary_10_1038_s41467_024_51442_2
crossref_primary_10_1016_j_cell_2024_09_003
crossref_primary_10_1158_2159_8290_CD_20_1243
crossref_primary_10_1186_s13045_021_01164_5
crossref_primary_10_1186_s12967_020_02328_6
crossref_primary_10_3390_biology14010027
crossref_primary_10_1007_s00262_021_02987_4
crossref_primary_10_1186_s12967_021_03146_0
crossref_primary_10_1016_j_advnut_2023_05_007
crossref_primary_10_3892_etm_2024_12590
crossref_primary_10_1016_j_pharmthera_2024_108757
crossref_primary_10_14348_molcells_2022_0067
crossref_primary_10_1038_s41598_020_63061_0
crossref_primary_10_3389_fonc_2021_666826
crossref_primary_10_3389_fimmu_2024_1345838
crossref_primary_10_1038_s41586_024_08305_z
crossref_primary_10_3389_fphar_2022_949608
crossref_primary_10_3390_cancers13040870
crossref_primary_10_1172_JCI176390
crossref_primary_10_1002_cam4_3627
crossref_primary_10_1038_s41389_022_00398_3
crossref_primary_10_1080_2162402X_2024_2432728
crossref_primary_10_1186_s13058_022_01590_4
crossref_primary_10_1038_s41467_023_37515_8
crossref_primary_10_1007_s11605_022_05517_4
crossref_primary_10_1016_j_bbrc_2024_149686
crossref_primary_10_1016_j_semcancer_2023_10_004
crossref_primary_10_3390_cells9040988
crossref_primary_10_1002_cti2_1286
crossref_primary_10_1016_j_jid_2020_11_007
crossref_primary_10_1038_s42003_024_06582_y
crossref_primary_10_1002_chem_202400425
crossref_primary_10_1080_19768354_2020_1808529
crossref_primary_10_1186_s12943_022_01569_x
crossref_primary_10_1007_s00018_020_03572_1
crossref_primary_10_1016_j_celrep_2023_113362
crossref_primary_10_1038_s41388_023_02674_x
crossref_primary_10_1016_j_ab_2020_113828
crossref_primary_10_1073_pnas_2417724121
crossref_primary_10_1089_aipo_2023_0008
crossref_primary_10_3389_fimmu_2022_930947
crossref_primary_10_1038_s41388_020_1238_z
crossref_primary_10_1038_s41568_024_00785_5
crossref_primary_10_1038_s42003_021_02323_7
crossref_primary_10_1016_j_addr_2021_113974
crossref_primary_10_1111_cns_14489
crossref_primary_10_3389_fimmu_2022_813888
crossref_primary_10_1038_s41421_022_00417_y
crossref_primary_10_3892_etm_2020_8674
crossref_primary_10_1016_j_ejphar_2023_175678
crossref_primary_10_1007_s00262_023_03479_3
crossref_primary_10_3389_fimmu_2024_1479399
crossref_primary_10_1016_j_addr_2021_113971
crossref_primary_10_3390_cancers14102541
crossref_primary_10_1016_j_cell_2020_03_039
crossref_primary_10_1002_jev2_12294
crossref_primary_10_7555_JBR_37_20230313
crossref_primary_10_1136_jitc_2022_005491
crossref_primary_10_3389_fonc_2021_712788
crossref_primary_10_1016_j_jtct_2024_11_017
crossref_primary_10_1096_fj_202101956RR
crossref_primary_10_3390_cancers15082260
crossref_primary_10_17816_uroved112576
crossref_primary_10_3389_fendo_2022_988295
crossref_primary_10_1146_annurev_immunol_093019_010426
crossref_primary_10_1158_2326_6066_CIR_22_0115
crossref_primary_10_3389_fimmu_2023_1330099
crossref_primary_10_1007_s10555_025_10242_w
crossref_primary_10_1080_07391102_2024_2329288
crossref_primary_10_1016_j_compbiomed_2024_107981
crossref_primary_10_1186_s12885_024_12326_2
crossref_primary_10_3390_v15030777
crossref_primary_10_1016_j_jconrel_2025_113593
crossref_primary_10_3389_fimmu_2023_1214675
crossref_primary_10_1016_j_actbio_2023_04_001
crossref_primary_10_1186_s13059_022_02800_0
crossref_primary_10_1016_j_biopha_2023_114896
crossref_primary_10_1038_s41417_023_00638_7
crossref_primary_10_1038_s41388_025_03314_2
crossref_primary_10_1080_2162402X_2024_2338558
crossref_primary_10_1016_j_jare_2024_01_013
crossref_primary_10_1093_jleuko_qiad071
crossref_primary_10_1097_SLA_0000000000003833
crossref_primary_10_1038_s41586_020_2850_3
crossref_primary_10_3389_fimmu_2021_791924
crossref_primary_10_1016_j_jhep_2024_12_016
crossref_primary_10_1186_s12894_024_01569_7
crossref_primary_10_1042_BST20200208
crossref_primary_10_1080_09553002_2024_2442690
crossref_primary_10_2147_OTT_S314561
crossref_primary_10_1146_annurev_cancerbio_042920_104912
crossref_primary_10_3389_fonc_2022_1072739
crossref_primary_10_3390_ijms21239182
crossref_primary_10_1038_s41467_022_30614_y
crossref_primary_10_1038_s41598_021_98966_x
crossref_primary_10_1158_2767_9764_CRC_24_0310
crossref_primary_10_1016_j_biopha_2023_115976
crossref_primary_10_1136_jitc_2020_001798
crossref_primary_10_3389_fmolb_2022_991612
crossref_primary_10_1016_j_ejcb_2025_151482
crossref_primary_10_1016_j_intimp_2025_114484
crossref_primary_10_1177_15353702221085203
crossref_primary_10_1136_jitc_2021_002917
crossref_primary_10_1158_1535_7163_MCT_20_0891
crossref_primary_10_3390_cancers15102774
crossref_primary_10_1126_scisignal_aay8690
crossref_primary_10_1016_j_canlet_2024_217161
crossref_primary_10_1016_j_actbio_2024_12_061
crossref_primary_10_1002_jcla_24673
crossref_primary_10_1038_s41422_021_00574_x
crossref_primary_10_1155_2024_3893671
crossref_primary_10_3389_fimmu_2022_1016646
crossref_primary_10_1016_j_jid_2023_07_011
crossref_primary_10_1016_j_mce_2022_111593
crossref_primary_10_3390_biomedicines12010191
crossref_primary_10_1016_j_ijbiomac_2023_128334
crossref_primary_10_3389_fcell_2021_729941
crossref_primary_10_3390_ph15101264
crossref_primary_10_1111_fcp_12517
crossref_primary_10_1158_1940_6207_CAPR_21_0531
crossref_primary_10_1038_s41385_021_00398_3
crossref_primary_10_3390_cancers12123650
crossref_primary_10_1186_s13045_020_00958_3
crossref_primary_10_3389_fonc_2022_905520
crossref_primary_10_1016_j_semcdb_2019_12_010
crossref_primary_10_3390_biomedicines9050579
crossref_primary_10_1002_advs_202408598
crossref_primary_10_1038_s41419_020_03197_z
crossref_primary_10_2217_imt_2020_0066
crossref_primary_10_1038_s41571_020_0426_7
crossref_primary_10_1007_s13402_023_00773_1
crossref_primary_10_1182_blood_2022016200
crossref_primary_10_3390_biology12020297
crossref_primary_10_1093_jnen_nlae119
crossref_primary_10_3389_fimmu_2021_765044
crossref_primary_10_1021_acsnano_3c00295
crossref_primary_10_1016_j_neo_2021_07_007
crossref_primary_10_3892_ijo_2021_5264
crossref_primary_10_3389_fcvm_2022_1054690
crossref_primary_10_3389_fendo_2022_842587
crossref_primary_10_1097_PRS_0000000000010227
crossref_primary_10_2478_acb_2020_0004
crossref_primary_10_1177_09636897231220073
crossref_primary_10_1016_j_xcrm_2021_100473
crossref_primary_10_3390_ijerph20032455
crossref_primary_10_3892_ijo_2019_4938
crossref_primary_10_1016_j_dci_2023_104769
crossref_primary_10_1002_cai2_154
crossref_primary_10_1007_s12034_024_03355_5
crossref_primary_10_1136_jitc_2019_000422
crossref_primary_10_1016_j_ebiom_2024_105503
crossref_primary_10_2174_1381612828666220519150821
crossref_primary_10_3389_fimmu_2020_596841
crossref_primary_10_1016_j_annonc_2020_07_009
crossref_primary_10_3390_cancers13030433
crossref_primary_10_1016_j_it_2022_03_006
crossref_primary_10_1186_s13045_019_0829_z
crossref_primary_10_1038_s43018_025_00909_2
crossref_primary_10_1038_s41598_023_47996_8
crossref_primary_10_1016_j_celrep_2024_115210
crossref_primary_10_1016_j_intimp_2024_112837
crossref_primary_10_1007_s13105_024_01041_y
crossref_primary_10_1515_tjb_2024_0193
crossref_primary_10_3389_fmolb_2022_1027236
crossref_primary_10_1016_j_phymed_2023_154898
crossref_primary_10_1136_jitc_2019_000433
crossref_primary_10_3390_ijms232113128
crossref_primary_10_1016_j_apsb_2023_08_034
crossref_primary_10_1038_s41467_022_31762_x
crossref_primary_10_3389_fonc_2022_1096717
crossref_primary_10_1016_j_biopha_2024_116930
crossref_primary_10_1016_j_tice_2024_102530
crossref_primary_10_1016_j_ijbiomac_2022_02_094
crossref_primary_10_1136_jitc_2020_000676
crossref_primary_10_3389_fgene_2019_00910
crossref_primary_10_15252_embj_2021109288
crossref_primary_10_1021_acs_jproteome_4c00715
crossref_primary_10_3389_fonc_2019_01115
crossref_primary_10_3390_ijms22147443
crossref_primary_10_1089_dna_2023_0405
crossref_primary_10_2147_CMAR_S265828
crossref_primary_10_1016_j_biocel_2021_106014
crossref_primary_10_1172_jci_insight_182766
crossref_primary_10_23736_S2724_542X_23_02944_9
crossref_primary_10_3389_fimmu_2024_1379690
crossref_primary_10_1007_s12672_024_01268_7
crossref_primary_10_3390_biom9090429
crossref_primary_10_3390_ijms23010405
crossref_primary_10_1016_j_cell_2024_08_036
crossref_primary_10_3727_096504019X15761480623959
crossref_primary_10_3389_fonc_2022_837835
crossref_primary_10_3389_fonc_2019_01145
crossref_primary_10_1016_j_biomaterials_2022_121730
crossref_primary_10_3390_ijms241914481
crossref_primary_10_1016_j_isci_2024_109094
crossref_primary_10_3389_fcell_2021_786728
crossref_primary_10_3389_fimmu_2024_1412076
crossref_primary_10_3390_biomedicines12071575
crossref_primary_10_1177_1721727X221092900
crossref_primary_10_1016_j_intimp_2020_106663
crossref_primary_10_3389_fonc_2024_1341056
crossref_primary_10_1186_s13045_023_01487_5
crossref_primary_10_3389_fonc_2023_1236246
crossref_primary_10_3390_cancers15030653
crossref_primary_10_4049_jimmunol_1901307
crossref_primary_10_1038_s42003_024_07041_4
crossref_primary_10_3390_ijms20194682
crossref_primary_10_3390_ijms221910779
crossref_primary_10_1158_1078_0432_CCR_23_2823
crossref_primary_10_1016_j_chembiol_2023_10_024
crossref_primary_10_1038_s41416_024_02635_5
crossref_primary_10_1038_s41598_023_44329_7
crossref_primary_10_1158_2159_8290_CD_22_0876
crossref_primary_10_1016_j_bioorg_2024_107251
crossref_primary_10_1002_path_6366
crossref_primary_10_3390_vaccines12111281
crossref_primary_10_3390_ijms22020476
crossref_primary_10_1016_j_cmet_2025_01_005
crossref_primary_10_3389_fcell_2021_764727
crossref_primary_10_62347_BHFA4606
crossref_primary_10_1038_s41420_023_01392_3
crossref_primary_10_1038_s41598_024_54875_3
crossref_primary_10_3390_cells11152345
crossref_primary_10_1186_s12974_024_03150_3
crossref_primary_10_2174_2211536611666220826124058
crossref_primary_10_3390_cells13181526
crossref_primary_10_1016_j_isci_2024_111502
crossref_primary_10_3390_cells11182793
crossref_primary_10_3390_microbiolres14020048
crossref_primary_10_3390_molecules30040923
crossref_primary_10_3390_cancers15204943
crossref_primary_10_1016_j_omto_2022_02_003
crossref_primary_10_1186_s43088_022_00211_5
crossref_primary_10_1016_j_cell_2023_11_032
crossref_primary_10_1080_2162402X_2022_2140534
crossref_primary_10_1155_2022_3744466
crossref_primary_10_1172_JCI161400
crossref_primary_10_3389_fmolb_2022_962908
crossref_primary_10_1016_j_slasd_2023_12_010
crossref_primary_10_1016_j_trecan_2024_11_002
crossref_primary_10_1172_jci_insight_168792
crossref_primary_10_1007_s12079_023_00766_7
crossref_primary_10_3389_fonc_2020_00641
crossref_primary_10_1016_j_pharmthera_2022_108211
crossref_primary_10_1007_s12011_023_03805_x
crossref_primary_10_1016_j_drup_2025_101206
crossref_primary_10_3892_or_2022_8467
crossref_primary_10_3389_fimmu_2021_808722
crossref_primary_10_3390_ijms25179448
crossref_primary_10_3389_fimmu_2023_1125224
crossref_primary_10_1038_s41598_022_10114_1
crossref_primary_10_1016_j_ejmech_2020_112354
crossref_primary_10_4251_wjgo_v16_i5_1705
crossref_primary_10_1042_BSR20231331
crossref_primary_10_1186_s12967_021_03076_x
crossref_primary_10_1186_s13046_022_02286_5
crossref_primary_10_1002_cam4_5025
crossref_primary_10_1016_j_cytox_2020_100041
crossref_primary_10_1016_j_addr_2021_113904
crossref_primary_10_1016_j_arres_2023_100075
crossref_primary_10_1016_j_semcancer_2022_05_006
crossref_primary_10_1158_2326_6066_CIR_23_0117
crossref_primary_10_3390_ncrna8030036
crossref_primary_10_1016_j_isci_2024_110409
crossref_primary_10_1158_0008_5472_CAN_23_0323
crossref_primary_10_1186_s12943_024_02210_9
crossref_primary_10_3389_fcell_2023_1163314
crossref_primary_10_1016_j_matbio_2023_10_001
crossref_primary_10_3390_biom12111572
crossref_primary_10_1158_0008_5472_CAN_23_2504
crossref_primary_10_1371_journal_pone_0307809
crossref_primary_10_3390_cells8111419
crossref_primary_10_1007_s11684_025_1124_8
crossref_primary_10_1038_s41417_024_00774_8
crossref_primary_10_1016_j_tranon_2024_102166
crossref_primary_10_1002_mc_23196
crossref_primary_10_1097_MD_0000000000033201
crossref_primary_10_4103_1673_5374_377588
crossref_primary_10_3389_fmicb_2023_1100465
crossref_primary_10_1038_s41388_021_02128_2
crossref_primary_10_1038_s41577_023_00884_8
crossref_primary_10_1016_j_clim_2022_109204
crossref_primary_10_1038_s41392_024_01907_z
crossref_primary_10_3390_ijms24119521
crossref_primary_10_1038_s41467_022_34456_6
crossref_primary_10_3390_cancers13112638
crossref_primary_10_1186_s13073_023_01219_x
crossref_primary_10_1158_0008_5472_CAN_20_0259
crossref_primary_10_1016_j_phrs_2020_104751
crossref_primary_10_3390_cancers11091318
crossref_primary_10_3389_fgene_2022_918319
crossref_primary_10_1158_1541_7786_MCR_20_0308
crossref_primary_10_3390_biom12020234
crossref_primary_10_1007_s12032_022_01930_6
crossref_primary_10_3390_cancers15102709
crossref_primary_10_1177_20503121211069012
crossref_primary_10_3390_cancers13194984
crossref_primary_10_3390_genes12070975
crossref_primary_10_1016_j_exphem_2022_09_004
crossref_primary_10_1093_nar_gkad907
crossref_primary_10_1155_2022_9708829
crossref_primary_10_1016_j_cbi_2020_109275
crossref_primary_10_1101_gad_348226_120
crossref_primary_10_1038_s41598_024_69233_6
crossref_primary_10_3390_cancers14040940
crossref_primary_10_1177_15330338231153618
crossref_primary_10_1053_j_gastro_2020_03_043
crossref_primary_10_1016_j_heliyon_2023_e14665
crossref_primary_10_1016_j_ijrobp_2020_05_011
crossref_primary_10_1016_j_imlet_2024_106898
crossref_primary_10_1016_j_intimp_2023_110146
crossref_primary_10_1186_s13045_021_01053_x
crossref_primary_10_4081_oncol_2021_511
crossref_primary_10_1016_j_advms_2023_03_002
crossref_primary_10_1080_2162402X_2020_1747677
crossref_primary_10_1038_s41585_024_00924_5
crossref_primary_10_3390_biology11121747
crossref_primary_10_1038_s41571_020_00459_9
crossref_primary_10_1002_JLB_3MR0320_444R
crossref_primary_10_1016_j_ccell_2020_11_009
crossref_primary_10_1016_j_omto_2022_03_002
crossref_primary_10_1016_j_canlet_2023_216293
crossref_primary_10_3390_cancers14102460
crossref_primary_10_1002_advs_202201834
crossref_primary_10_1002_1873_3468_70000
crossref_primary_10_1111_cas_15497
crossref_primary_10_3390_jcm9051513
crossref_primary_10_1002_hep_31104
crossref_primary_10_1186_s13045_024_01578_x
crossref_primary_10_1038_s41388_021_01677_w
crossref_primary_10_3390_cancers13246231
crossref_primary_10_3390_cells10051100
crossref_primary_10_1016_j_jhepr_2023_100762
crossref_primary_10_3389_fimmu_2023_1093574
crossref_primary_10_3389_fcell_2021_754507
crossref_primary_10_2217_fon_2023_0907
crossref_primary_10_1210_endocr_bqaa187
crossref_primary_10_3390_ijms21197307
crossref_primary_10_1016_j_intimp_2024_112434
crossref_primary_10_3390_ijms241612779
crossref_primary_10_1016_j_biomaterials_2023_122386
crossref_primary_10_3389_fonc_2021_761379
crossref_primary_10_15252_embr_202052234
crossref_primary_10_1016_j_prp_2024_155282
crossref_primary_10_1186_s40360_022_00632_z
crossref_primary_10_1016_j_cpt_2023_12_002
crossref_primary_10_1016_j_tube_2021_102126
crossref_primary_10_2147_CMAR_S317922
crossref_primary_10_6023_cjoc202106015
crossref_primary_10_1111_cas_15241
crossref_primary_10_3389_fphys_2024_1377329
crossref_primary_10_1158_0008_5472_CAN_22_1880
crossref_primary_10_1186_s13018_024_04733_9
crossref_primary_10_1155_2021_9918379
crossref_primary_10_1016_j_bbcan_2024_189193
crossref_primary_10_1038_s41435_021_00125_9
crossref_primary_10_1016_j_cyto_2021_155622
crossref_primary_10_3390_cancers17050880
crossref_primary_10_3390_vetsci10010019
crossref_primary_10_1021_acs_nanolett_4c06372
crossref_primary_10_1158_2326_6066_CIR_22_0306
crossref_primary_10_1158_2326_6066_CIR_22_0547
crossref_primary_10_1002_1878_0261_12887
crossref_primary_10_1007_s11010_021_04182_6
crossref_primary_10_1126_scitranslmed_adh8005
crossref_primary_10_1016_j_livres_2025_01_002
crossref_primary_10_3390_vaccines8040735
crossref_primary_10_1182_blood_2021013442
crossref_primary_10_3389_fbioe_2023_1324424
crossref_primary_10_1186_s12951_025_03129_z
crossref_primary_10_1002_adma_202500552
crossref_primary_10_1016_j_jconrel_2023_02_040
crossref_primary_10_1146_annurev_immunol_082019_081656
crossref_primary_10_1166_jbn_2023_3511
crossref_primary_10_3389_fonc_2020_593245
crossref_primary_10_3389_fimmu_2024_1352805
crossref_primary_10_1159_000543275
crossref_primary_10_3390_ijms24065600
crossref_primary_10_3389_fmolb_2023_1132353
crossref_primary_10_3390_ph17040533
crossref_primary_10_1002_1878_0261_12855
crossref_primary_10_1007_s11864_021_00870_z
crossref_primary_10_1016_j_ccell_2023_02_016
crossref_primary_10_1016_j_smim_2020_101417
crossref_primary_10_3389_fimmu_2022_1061394
crossref_primary_10_1007_s40200_025_01588_7
crossref_primary_10_1016_j_apsb_2023_05_023
crossref_primary_10_1016_j_canlet_2022_215925
crossref_primary_10_3389_fimmu_2023_1219669
crossref_primary_10_1016_j_biomaterials_2023_122162
crossref_primary_10_3390_cells11162530
crossref_primary_10_1002_ctm2_1468
crossref_primary_10_1080_14712598_2024_2426636
crossref_primary_10_3390_cancers12082248
crossref_primary_10_1158_2767_9764_CRC_23_0015
crossref_primary_10_1186_s12967_023_04810_3
crossref_primary_10_3390_cancers15041022
crossref_primary_10_1158_2767_9764_CRC_23_0019
crossref_primary_10_3390_cancers14215199
crossref_primary_10_3389_fimmu_2021_693314
crossref_primary_10_1038_s41590_025_02103_z
crossref_primary_10_3389_fonc_2021_603634
crossref_primary_10_1111_febs_17234
crossref_primary_10_1155_2022_5413504
crossref_primary_10_3390_ijms21061952
crossref_primary_10_1038_s41423_024_01178_2
crossref_primary_10_1016_j_intimp_2020_107101
crossref_primary_10_1038_s41586_020_2836_1
crossref_primary_10_1002_aisy_202400717
crossref_primary_10_1002_mco2_181
crossref_primary_10_1158_2159_8290_CD_21_0010
crossref_primary_10_1093_narcan_zcad059
crossref_primary_10_3389_fgene_2022_808041
crossref_primary_10_1111_cas_15842
crossref_primary_10_1186_s12943_019_1129_5
crossref_primary_10_1016_j_bcp_2024_116380
crossref_primary_10_1111_jnc_16102
crossref_primary_10_3390_biomedicines9080896
crossref_primary_10_3390_ijms242417152
crossref_primary_10_1016_j_jconrel_2024_09_006
crossref_primary_10_1155_2022_3922739
crossref_primary_10_23736_S0394_9508_24_05682_1
crossref_primary_10_1084_jem_20202579
crossref_primary_10_3389_fonc_2023_1228185
crossref_primary_10_1080_09553002_2021_1955998
crossref_primary_10_1186_s12929_020_00683_6
crossref_primary_10_1111_cas_14509
crossref_primary_10_1186_s40164_024_00539_x
crossref_primary_10_22201_fesz_23958723e_2020_0_200
crossref_primary_10_1002_wnan_2005
crossref_primary_10_1126_scitranslmed_ade2886
crossref_primary_10_1016_j_isci_2023_108225
crossref_primary_10_1002_adfm_202100437
crossref_primary_10_1016_j_canlet_2021_12_025
crossref_primary_10_1038_s41467_024_45340_w
crossref_primary_10_1021_acsptsci_4c00374
crossref_primary_10_3389_fimmu_2021_645850
crossref_primary_10_1016_j_jcyt_2021_01_003
crossref_primary_10_1038_s41421_023_00528_0
crossref_primary_10_3389_fonc_2022_920599
crossref_primary_10_3390_cancers16010197
crossref_primary_10_3892_ol_2021_12837
crossref_primary_10_1042_BST20210048
crossref_primary_10_1083_jcb_202012097
crossref_primary_10_1134_S1990519X22060050
crossref_primary_10_1016_j_clgc_2021_04_002
crossref_primary_10_1016_j_cyto_2020_155367
crossref_primary_10_1186_s12915_023_01522_4
crossref_primary_10_1080_10717544_2022_2069877
crossref_primary_10_3389_fimmu_2021_774807
crossref_primary_10_3390_nano11071656
crossref_primary_10_1186_s13073_022_01079_x
crossref_primary_10_1126_science_adm8485
crossref_primary_10_3390_cells12071049
crossref_primary_10_3390_vaccines9010050
crossref_primary_10_3390_ijms22010190
crossref_primary_10_1016_j_bbmt_2020_06_011
crossref_primary_10_1136_jitc_2023_008261
crossref_primary_10_3389_fimmu_2023_1332814
crossref_primary_10_2147_IJGM_S353879
crossref_primary_10_1158_0008_5472_CAN_21_4425
crossref_primary_10_3390_nu15143106
crossref_primary_10_1186_s12935_020_01298_5
crossref_primary_10_3390_biomedicines12081906
crossref_primary_10_1186_s12964_025_02033_1
crossref_primary_10_1186_s12876_023_02843_y
crossref_primary_10_1038_s41467_023_37824_y
crossref_primary_10_1136_jitc_2021_003465
crossref_primary_10_1158_2159_8290_CD_24_0102
crossref_primary_10_1016_j_semcancer_2022_03_004
crossref_primary_10_1007_s12672_023_00787_z
crossref_primary_10_1038_s41419_020_02943_7
crossref_primary_10_1002_cbdv_202402782
crossref_primary_10_1126_sciimmunol_abf0558
crossref_primary_10_1021_acsami_0c18545
crossref_primary_10_2147_ITT_S253581
crossref_primary_10_1016_j_tox_2021_152994
crossref_primary_10_1080_2162402X_2021_1881268
crossref_primary_10_2174_1573403X16666200621160742
crossref_primary_10_1097_MD_0000000000040820
crossref_primary_10_3389_fcell_2021_730380
crossref_primary_10_3389_fcell_2022_941750
crossref_primary_10_1126_scisignal_abp9521
crossref_primary_10_1007_s00262_023_03428_0
crossref_primary_10_1016_j_intimp_2021_108374
crossref_primary_10_1016_j_intimp_2022_109521
crossref_primary_10_1016_j_aqrep_2020_100310
crossref_primary_10_1002_JPER_21_0474
crossref_primary_10_1016_j_chembiol_2021_04_023
crossref_primary_10_1038_s41467_022_35134_3
crossref_primary_10_3389_fimmu_2022_1064033
crossref_primary_10_3390_bioengineering11040303
crossref_primary_10_1038_s41368_019_0064_z
crossref_primary_10_1016_j_ccell_2023_03_008
crossref_primary_10_3389_fcell_2021_734749
crossref_primary_10_1007_s10147_021_02074_9
crossref_primary_10_1016_j_mucimm_2024_06_011
crossref_primary_10_3390_cancers13081872
crossref_primary_10_1080_09553002_2023_2194398
crossref_primary_10_1084_jem_20190457
crossref_primary_10_1038_s41401_021_00741_1
crossref_primary_10_3390_biology10111200
crossref_primary_10_1111_exd_14716
crossref_primary_10_1158_0008_5472_CAN_21_0003
crossref_primary_10_1016_j_radonc_2024_110424
crossref_primary_10_3389_fimmu_2021_633436
crossref_primary_10_3390_cells12192404
crossref_primary_10_1080_07853890_2024_2426758
crossref_primary_10_3390_ani12020145
crossref_primary_10_1007_s11686_023_00751_5
crossref_primary_10_1016_j_isci_2024_110854
crossref_primary_10_1016_S1470_2045_22_00504_6
crossref_primary_10_1007_s12032_023_02021_w
crossref_primary_10_1038_s41416_022_01936_x
crossref_primary_10_1155_2021_9965916
crossref_primary_10_1007_s12094_023_03320_4
crossref_primary_10_1016_j_semradonc_2021_02_001
crossref_primary_10_3389_fmed_2022_982399
crossref_primary_10_1038_s41568_023_00562_w
crossref_primary_10_3389_fcell_2022_805623
crossref_primary_10_1038_s41577_023_00877_7
crossref_primary_10_1080_08977194_2022_2124915
crossref_primary_10_1038_s41467_021_21858_1
crossref_primary_10_1142_S0192415X21500105
crossref_primary_10_1016_j_jtct_2022_06_025
crossref_primary_10_3390_pharmaceutics15082022
crossref_primary_10_1111_imr_13107
crossref_primary_10_2147_JIR_S383191
crossref_primary_10_1016_j_heliyon_2020_e05242
crossref_primary_10_1186_s12964_023_01204_2
crossref_primary_10_1038_s41388_024_03092_3
crossref_primary_10_3390_brainsci13091269
crossref_primary_10_1016_j_heliyon_2024_e34530
crossref_primary_10_1016_j_amjoto_2023_103985
crossref_primary_10_1016_j_rdc_2024_01_004
crossref_primary_10_1002_jcp_31498
crossref_primary_10_3389_fonc_2022_1000888
crossref_primary_10_3389_fimmu_2021_643260
crossref_primary_10_3389_fonc_2022_911410
crossref_primary_10_1097_MD_0000000000035423
crossref_primary_10_3389_fcell_2021_641891
crossref_primary_10_3390_ijms20174162
crossref_primary_10_1016_j_wneu_2021_05_088
crossref_primary_10_2147_JHC_S410756
crossref_primary_10_7717_peerj_18485
crossref_primary_10_3390_ijms25094626
crossref_primary_10_1038_s41467_024_49508_2
crossref_primary_10_1016_j_lfs_2022_120849
crossref_primary_10_1186_s12967_024_05411_4
crossref_primary_10_3390_vaccines8020282
crossref_primary_10_1096_fj_202400080R
crossref_primary_10_1158_0008_5472_CAN_23_3628
crossref_primary_10_3390_cells13121033
crossref_primary_10_1016_j_esmoop_2025_104498
crossref_primary_10_3389_fgene_2022_949852
crossref_primary_10_3390_ijms242316882
crossref_primary_10_3390_life11090925
crossref_primary_10_1016_j_omto_2022_02_016
crossref_primary_10_26508_lsa_201900581
crossref_primary_10_1016_j_cellimm_2024_104898
crossref_primary_10_3389_fonc_2022_898964
crossref_primary_10_3389_fonc_2020_597672
crossref_primary_10_3390_ijms241713410
crossref_primary_10_1080_13543784_2022_2152323
crossref_primary_10_3389_fimmu_2022_1020003
crossref_primary_10_3390_ijms24108676
crossref_primary_10_1371_journal_pone_0247840
crossref_primary_10_1038_s41568_023_00660_9
crossref_primary_10_3389_fgene_2023_1220068
crossref_primary_10_3390_jcm9010143
crossref_primary_10_1186_s13287_022_02985_y
crossref_primary_10_1016_j_canlet_2023_216239
crossref_primary_10_1038_s41419_024_06992_0
crossref_primary_10_3233_CBM_230354
crossref_primary_10_3390_cancers16010131
crossref_primary_10_1038_s43018_022_00401_1
crossref_primary_10_3389_fimmu_2022_874589
crossref_primary_10_1002_ptr_7583
crossref_primary_10_3389_fimmu_2022_851004
crossref_primary_10_1186_s13046_022_02525_9
crossref_primary_10_3390_cells12232717
crossref_primary_10_1136_jitc_2022_004807
crossref_primary_10_3390_cancers13225724
crossref_primary_10_1084_jem_20202144
crossref_primary_10_5812_hepatmon_123416
crossref_primary_10_58708_2074_2088_2024_1_31__104_111
crossref_primary_10_3390_cancers14194964
crossref_primary_10_4254_wjh_v16_i7_973
crossref_primary_10_15407_exp_oncology_2023_01_051
crossref_primary_10_1016_j_cytogfr_2023_05_003
crossref_primary_10_1007_s12011_022_03146_1
crossref_primary_10_1038_s41467_022_31250_2
crossref_primary_10_1080_2162402X_2020_1811605
crossref_primary_10_1038_s41467_022_31141_6
crossref_primary_10_1021_acsami_0c10416
crossref_primary_10_1038_s41419_022_04981_9
crossref_primary_10_1002_jcb_29675
crossref_primary_10_1038_s41698_024_00742_3
crossref_primary_10_1186_s12915_023_01576_4
crossref_primary_10_1002_mco2_349
crossref_primary_10_3390_biomedicines9111658
crossref_primary_10_1007_s00262_022_03204_6
crossref_primary_10_1016_j_heliyon_2023_e19208
crossref_primary_10_3390_genes14010141
crossref_primary_10_1016_j_ecoenv_2021_112030
crossref_primary_10_3389_fimmu_2021_699633
crossref_primary_10_3389_fgene_2023_1088455
crossref_primary_10_3390_foods13223704
crossref_primary_10_3892_ol_2024_14549
crossref_primary_10_1172_jci_insight_159058
crossref_primary_10_3350_cmh_2022_0318
crossref_primary_10_2139_ssrn_3751049
crossref_primary_10_1158_1078_0432_CCR_19_2370
crossref_primary_10_1016_j_biopha_2023_115225
crossref_primary_10_1158_2159_8290_CD_20_0017
crossref_primary_10_1158_2326_6066_CIR_20_0881
crossref_primary_10_3389_fimmu_2023_1125905
crossref_primary_10_1002_cac2_12316
crossref_primary_10_3389_fimmu_2025_1486961
crossref_primary_10_1097_PPO_0000000000000610
crossref_primary_10_1016_j_biopha_2024_116609
crossref_primary_10_1007_s10585_021_10077_z
crossref_primary_10_1016_j_biopha_2020_111046
crossref_primary_10_1038_s41419_021_04493_y
crossref_primary_10_3389_fimmu_2024_1509195
crossref_primary_10_1038_s41467_023_42635_2
crossref_primary_10_1080_02656736_2024_2359496
crossref_primary_10_1007_s12094_023_03114_8
crossref_primary_10_1007_s00439_022_02464_7
crossref_primary_10_3390_ijms25021067
crossref_primary_10_3390_jcm10132872
crossref_primary_10_1016_j_ymthe_2024_07_020
crossref_primary_10_3389_fphys_2025_1562848
crossref_primary_10_70322_jrbtm_2025_10001
crossref_primary_10_1038_s41423_020_0504_x
crossref_primary_10_1016_j_celrep_2023_112129
crossref_primary_10_1016_j_esmoop_2022_100776
crossref_primary_10_2147_CMAR_S258196
crossref_primary_10_1007_s10456_021_09779_5
crossref_primary_10_1158_0008_5472_CAN_21_0590
crossref_primary_10_1186_s12943_024_02183_9
crossref_primary_10_3389_fimmu_2020_00068
crossref_primary_10_3390_biom11020130
crossref_primary_10_3390_ijms22115736
crossref_primary_10_3892_or_2023_8654
crossref_primary_10_1002_adhm_202301163
crossref_primary_10_1002_dvg_23529
crossref_primary_10_1016_j_gendis_2022_10_019
crossref_primary_10_1016_j_immuni_2020_12_010
crossref_primary_10_1038_s41392_021_00781_3
crossref_primary_10_1016_j_biomaterials_2021_121337
crossref_primary_10_3389_fonc_2022_797453
crossref_primary_10_1371_journal_pone_0252132
crossref_primary_10_1016_j_gene_2024_149166
crossref_primary_10_1093_jleuko_qiad121
crossref_primary_10_1016_j_cell_2023_07_036
crossref_primary_10_1038_s41590_023_01642_7
crossref_primary_10_3390_cells10092312
crossref_primary_10_3389_fonc_2021_734873
crossref_primary_10_1007_s00432_023_04900_1
crossref_primary_10_1002_adhm_202201240
crossref_primary_10_1093_jleuko_qiad126
crossref_primary_10_12688_f1000research_143472_1
crossref_primary_10_3390_cancers12041014
crossref_primary_10_1136_jitc_2022_005543
crossref_primary_10_1038_s41590_022_01418_5
crossref_primary_10_1186_s13045_024_01528_7
crossref_primary_10_1111_resp_14541
crossref_primary_10_1155_2020_8827920
crossref_primary_10_1155_2022_6512300
crossref_primary_10_1016_j_imbio_2020_151963
crossref_primary_10_1016_j_jobcr_2024_03_005
crossref_primary_10_3390_ijms24043473
crossref_primary_10_1136_jitc_2020_001823
crossref_primary_10_20517_jca_2023_23
crossref_primary_10_1080_10715762_2022_2037582
crossref_primary_10_3389_fcell_2022_849938
crossref_primary_10_3390_cancers14112637
crossref_primary_10_1097_MD_0000000000037387
crossref_primary_10_1111_imr_13245
crossref_primary_10_1016_j_lfs_2021_119359
crossref_primary_10_3389_fonc_2021_813897
crossref_primary_10_3389_fimmu_2022_899140
crossref_primary_10_3389_fimmu_2024_1285411
crossref_primary_10_3322_caac_21823
crossref_primary_10_1007_s13238_020_00741_7
crossref_primary_10_1016_j_micpath_2025_107453
crossref_primary_10_1007_s12013_023_01213_5
crossref_primary_10_1080_14756366_2020_1734799
crossref_primary_10_3389_fvets_2020_609443
crossref_primary_10_3389_fimmu_2024_1490035
crossref_primary_10_3390_app12146954
crossref_primary_10_1002_med_21876
crossref_primary_10_1016_j_jconrel_2024_08_008
crossref_primary_10_1136_jitc_2021_004122
crossref_primary_10_1016_j_omto_2023_100755
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_3390_cancers14143331
crossref_primary_10_1007_s13402_023_00781_1
crossref_primary_10_1038_s41467_024_53264_8
crossref_primary_10_1093_carcin_bgab035
crossref_primary_10_7717_peerj_19072
crossref_primary_10_1007_s11030_021_10183_w
crossref_primary_10_1016_j_jid_2023_03_1688
crossref_primary_10_15616_BSL_2024_30_3_137
crossref_primary_10_3390_biom13101551
crossref_primary_10_1016_j_tips_2023_08_009
crossref_primary_10_1021_acsami_3c14417
crossref_primary_10_1038_s43018_021_00326_1
crossref_primary_10_1038_s41568_022_00544_4
crossref_primary_10_3389_fphar_2021_676399
crossref_primary_10_1016_j_jhepr_2024_101212
crossref_primary_10_1016_j_jcmgh_2022_01_023
crossref_primary_10_1016_j_ctrv_2022_102433
crossref_primary_10_1038_s41571_021_00579_w
crossref_primary_10_1016_j_intimp_2025_114119
crossref_primary_10_3390_biology10090836
crossref_primary_10_1016_j_intimp_2025_114116
crossref_primary_10_1186_s12967_022_03649_4
crossref_primary_10_1155_2023_5557546
crossref_primary_10_1186_s12935_022_02599_7
crossref_primary_10_3390_biomedicines10010052
crossref_primary_10_1038_s41423_023_01036_7
crossref_primary_10_1155_2020_5494858
crossref_primary_10_1534_g3_120_401166
crossref_primary_10_1002_adtp_202300002
crossref_primary_10_1016_j_molimm_2021_05_009
crossref_primary_10_31083_j_fbl2908290
crossref_primary_10_1155_2021_5549047
crossref_primary_10_3934_mbe_2022188
crossref_primary_10_1016_j_ebiom_2022_104380
crossref_primary_10_1016_j_phrs_2022_106406
crossref_primary_10_3389_fimmu_2022_1058532
crossref_primary_10_1016_j_jconrel_2022_05_033
crossref_primary_10_1038_s41419_021_04177_7
crossref_primary_10_1158_2159_8290_CD_21_1004
crossref_primary_10_3390_biom11020336
crossref_primary_10_1016_j_avsg_2021_11_018
crossref_primary_10_1016_j_bios_2022_114884
crossref_primary_10_1002_wrna_1822
crossref_primary_10_1016_j_envpol_2023_122730
crossref_primary_10_1002_cam4_4822
crossref_primary_10_1172_JCI172919
crossref_primary_10_1007_s40259_022_00521_1
crossref_primary_10_1096_fj_202302230R
crossref_primary_10_1172_jci_insight_170015
crossref_primary_10_3389_fcell_2020_00260
crossref_primary_10_1002_ctm2_548
crossref_primary_10_1186_s12967_023_04554_0
crossref_primary_10_3390_cimb45010020
crossref_primary_10_1111_febs_16955
crossref_primary_10_3390_biom10121666
crossref_primary_10_3389_fonc_2021_582664
crossref_primary_10_3389_fonc_2021_765151
crossref_primary_10_3389_fgene_2021_619821
crossref_primary_10_1016_j_intimp_2021_108168
crossref_primary_10_1016_j_neuroscience_2020_05_004
crossref_primary_10_1136_jitc_2021_004113
crossref_primary_10_3390_pharmaceutics14112468
crossref_primary_10_1158_1078_0432_CCR_23_3632
crossref_primary_10_1177_11769351251316398
crossref_primary_10_1177_15330338231189399
crossref_primary_10_1007_s00262_022_03315_0
crossref_primary_10_1080_02713683_2021_2023192
crossref_primary_10_1016_j_actbio_2022_04_002
crossref_primary_10_1002_cbf_3730
crossref_primary_10_1080_03079457_2023_2181146
crossref_primary_10_3389_fimmu_2024_1331322
crossref_primary_10_1016_j_immuni_2023_09_004
crossref_primary_10_1186_s12967_024_05722_6
crossref_primary_10_1186_s13148_023_01478_w
crossref_primary_10_1007_s11060_023_04287_6
crossref_primary_10_3389_fmicb_2023_1286364
crossref_primary_10_3389_fimmu_2019_02109
crossref_primary_10_3892_ijo_2024_5623
crossref_primary_10_1016_j_ccell_2023_06_005
crossref_primary_10_1007_s00281_022_00966_0
crossref_primary_10_1016_j_actbio_2022_05_045
crossref_primary_10_3389_fonc_2024_1407434
crossref_primary_10_3390_cancers13102491
crossref_primary_10_1038_s41591_021_01233_9
crossref_primary_10_1016_j_devcel_2023_11_020
crossref_primary_10_1038_s41467_021_26352_2
crossref_primary_10_13005_bpj_2972
crossref_primary_10_1002_art_41467
crossref_primary_10_1016_j_preteyeres_2021_101039
crossref_primary_10_3389_fcvm_2020_00034
crossref_primary_10_7717_peerj_10062
crossref_primary_10_1042_EBC20220248
crossref_primary_10_1038_s41392_024_02063_0
crossref_primary_10_3390_ijms241511927
crossref_primary_10_1002_ctm2_160
crossref_primary_10_1186_s13073_019_0697_8
crossref_primary_10_1186_s40164_022_00277_y
crossref_primary_10_1136_jitc_2021_002823
crossref_primary_10_1007_s10555_024_10186_7
crossref_primary_10_3389_fcell_2020_621070
crossref_primary_10_3389_fonc_2022_861601
crossref_primary_10_1200_PO_19_00350
crossref_primary_10_1016_j_pharmthera_2021_107927
crossref_primary_10_1146_annurev_immunol_101921_044122
crossref_primary_10_3389_fimmu_2021_724883
crossref_primary_10_1038_s41420_021_00678_8
crossref_primary_10_3389_fcell_2022_1012326
crossref_primary_10_1016_j_heliyon_2020_e05849
crossref_primary_10_1158_2159_8290_CD_19_0529
crossref_primary_10_1038_s41392_024_02052_3
crossref_primary_10_1155_2020_5162524
crossref_primary_10_1002_1878_0261_13146
crossref_primary_10_1111_cpr_13612
crossref_primary_10_1182_bloodadvances_2023011589
crossref_primary_10_1007_s11864_022_01005_8
crossref_primary_10_3389_fonc_2020_604131
crossref_primary_10_1016_j_preteyeres_2020_100915
crossref_primary_10_1136_jitc_2020_001684
crossref_primary_10_3390_cancers14215220
crossref_primary_10_1096_fj_202302675R
crossref_primary_10_1038_s41598_024_75666_w
crossref_primary_10_3389_fimmu_2024_1328193
crossref_primary_10_1002_anbr_202300061
crossref_primary_10_1016_j_coisb_2019_10_010
crossref_primary_10_3389_fonc_2024_1412367
crossref_primary_10_3390_cells10050989
crossref_primary_10_1111_cas_16253
crossref_primary_10_1089_thy_2022_0597
crossref_primary_10_1186_s12885_020_06875_5
crossref_primary_10_1016_j_bbadis_2024_167629
crossref_primary_10_1016_j_smim_2021_101546
crossref_primary_10_1016_j_intimp_2024_111816
crossref_primary_10_1016_j_celrep_2023_113067
crossref_primary_10_1016_j_pdpdt_2023_103321
crossref_primary_10_1093_rpd_ncac063
crossref_primary_10_1080_17501911_2024_2401318
crossref_primary_10_1016_j_beha_2021_101306
crossref_primary_10_1200_EDBK_438592
crossref_primary_10_3389_fimmu_2022_915094
crossref_primary_10_3389_fonc_2021_757919
crossref_primary_10_3390_cells12050700
crossref_primary_10_1007_s12672_024_01578_w
crossref_primary_10_1161_CIRCRESAHA_124_323658
crossref_primary_10_3390_ijms24087640
crossref_primary_10_3389_fimmu_2024_1341390
crossref_primary_10_1158_2159_8290_CD_19_0790
crossref_primary_10_1007_s11154_021_09685_7
crossref_primary_10_1042_CS20201236
crossref_primary_10_1097_MD_0000000000039399
crossref_primary_10_1128_spectrum_04104_23
crossref_primary_10_1016_j_cej_2022_140830
crossref_primary_10_1016_j_jid_2021_07_179
crossref_primary_10_1126_sciimmunol_abm2508
crossref_primary_10_1016_j_heliyon_2023_e20806
crossref_primary_10_1016_j_neulet_2022_136937
crossref_primary_10_1016_j_ebiom_2022_104155
crossref_primary_10_1016_j_lwt_2025_117560
crossref_primary_10_1016_j_ijbiomac_2023_128699
crossref_primary_10_3390_life12060880
crossref_primary_10_1038_s41571_020_0403_1
crossref_primary_10_3389_fimmu_2021_760954
crossref_primary_10_1016_j_preteyeres_2024_101306
crossref_primary_10_1038_s41416_019_0661_9
crossref_primary_10_3389_fimmu_2022_891268
crossref_primary_10_1177_15353702221089910
crossref_primary_10_1272_jnms_JNMS_2024_91_307
crossref_primary_10_3389_fonc_2023_1333839
crossref_primary_10_1038_s41419_022_04959_7
crossref_primary_10_1093_rb_rbad026
crossref_primary_10_1038_s41388_020_01501_x
crossref_primary_10_1158_0008_5472_CAN_19_3954
crossref_primary_10_1182_blood_2022015474
crossref_primary_10_1016_j_ijbiomac_2021_06_110
crossref_primary_10_1016_j_annonc_2021_09_010
crossref_primary_10_1167_tvst_9_10_12
crossref_primary_10_1136_jitc_2022_006230
crossref_primary_10_1080_1744666X_2021_1911648
crossref_primary_10_1016_j_celrep_2021_110013
crossref_primary_10_1016_j_heliyon_2023_e21909
crossref_primary_10_3390_biomedicines10051206
crossref_primary_10_1016_j_semcancer_2020_06_003
crossref_primary_10_1016_j_ctrv_2024_102843
crossref_primary_10_3390_cancers15051442
crossref_primary_10_1016_j_jconrel_2022_01_015
crossref_primary_10_1016_j_ctmp_2024_200131
crossref_primary_10_1021_acsnano_1c05420
crossref_primary_10_1016_j_bmcl_2024_129797
crossref_primary_10_1016_j_phymed_2022_154482
crossref_primary_10_1186_s13045_021_01161_8
crossref_primary_10_2217_imt_2022_0079
crossref_primary_10_3390_cancers12051284
crossref_primary_10_1016_j_phrs_2023_106915
crossref_primary_10_1007_s44313_024_00048_0
crossref_primary_10_1016_j_heliyon_2024_e30727
crossref_primary_10_3389_fneur_2023_1188383
crossref_primary_10_1186_s12890_022_02204_7
crossref_primary_10_1063_5_0030693
crossref_primary_10_1038_s41420_021_00469_1
crossref_primary_10_1016_j_omtn_2023_07_026
crossref_primary_10_1016_j_smim_2019_101284
crossref_primary_10_1016_j_heliyon_2024_e39543
crossref_primary_10_1016_j_tranon_2024_102079
crossref_primary_10_1038_s41392_022_01259_6
crossref_primary_10_1080_15384047_2024_2308097
crossref_primary_10_3390_biomedicines10092148
crossref_primary_10_3390_cells11071200
crossref_primary_10_1007_s00262_020_02575_y
crossref_primary_10_1080_10409238_2020_1828260
crossref_primary_10_1210_clinem_dgaa656
crossref_primary_10_3389_fcell_2021_715027
crossref_primary_10_3389_fimmu_2021_660397
crossref_primary_10_3892_or_2021_8148
crossref_primary_10_4049_immunohorizons_2200072
crossref_primary_10_1038_s41417_023_00694_z
crossref_primary_10_3389_fimmu_2022_849984
crossref_primary_10_3389_fimmu_2024_1404373
crossref_primary_10_2147_IJN_S440619
crossref_primary_10_1016_j_ejca_2021_11_011
crossref_primary_10_2174_0115734064290905231228110023
crossref_primary_10_3389_fimmu_2023_1206504
crossref_primary_10_1186_s43042_024_00610_6
crossref_primary_10_1371_journal_ppat_1009380
crossref_primary_10_3390_cancers13246188
crossref_primary_10_3390_cancers15215242
crossref_primary_10_1007_s12026_022_09285_w
crossref_primary_10_1007_s10555_020_09921_7
crossref_primary_10_1002_mc_23275
crossref_primary_10_1186_s13045_019_0770_1
crossref_primary_10_1136_jitc_2019_000326
crossref_primary_10_1002_1878_0261_13550
crossref_primary_10_1038_s41423_021_00770_0
crossref_primary_10_1016_j_lfs_2023_121657
crossref_primary_10_1111_sji_13273
crossref_primary_10_1158_1541_7786_MCR_23_0692
crossref_primary_10_1158_2767_9764_CRC_22_0301
crossref_primary_10_1186_s12916_022_02605_9
crossref_primary_10_1126_scisignal_abo2206
crossref_primary_10_3389_fimmu_2020_585819
crossref_primary_10_3390_ijms22147575
crossref_primary_10_1126_sciadv_adn7256
crossref_primary_10_1016_j_cellsig_2023_110611
crossref_primary_10_1016_j_jconrel_2022_01_003
crossref_primary_10_1016_j_heliyon_2024_e39758
crossref_primary_10_1186_s12967_023_04303_3
crossref_primary_10_1016_j_bcp_2024_116646
crossref_primary_10_1016_j_celrep_2024_114469
crossref_primary_10_1080_02656736_2024_2430333
crossref_primary_10_1146_annurev_cancerbio_070620_103554
crossref_primary_10_2217_fon_2020_1103
crossref_primary_10_1007_s10238_023_01085_2
crossref_primary_10_1016_j_pharmthera_2020_107666
crossref_primary_10_1007_s11010_024_05175_x
crossref_primary_10_1186_s12974_019_1628_8
crossref_primary_10_1080_13543784_2021_1974838
crossref_primary_10_1093_molbev_msac252
crossref_primary_10_1038_s41392_024_01947_5
crossref_primary_10_1136_jitc_2022_006432
crossref_primary_10_3390_jcm10091889
crossref_primary_10_1016_j_cpt_2022_12_003
crossref_primary_10_3390_cancers14051221
crossref_primary_10_1016_j_tox_2025_154054
crossref_primary_10_1172_JCI143762
crossref_primary_10_1038_s41419_022_04890_x
crossref_primary_10_1002_adhm_202403998
crossref_primary_10_1016_j_heliyon_2022_e09773
crossref_primary_10_1016_j_semcancer_2022_09_004
crossref_primary_10_3390_cancers14030784
crossref_primary_10_3389_fimmu_2019_03038
crossref_primary_10_3389_fmolb_2024_1288677
crossref_primary_10_1016_j_aquaculture_2024_740983
crossref_primary_10_1126_sciadv_abc8346
crossref_primary_10_1016_j_ccell_2024_01_002
crossref_primary_10_1002_dvdy_339
crossref_primary_10_1016_j_bbrc_2024_149965
crossref_primary_10_1038_s41419_022_05086_z
crossref_primary_10_1111_hepr_13539
crossref_primary_10_1016_j_cytogfr_2023_04_001
crossref_primary_10_1007_s42452_025_06573_6
crossref_primary_10_1002_advs_202404904
crossref_primary_10_1590_1414_431x2024e14368
crossref_primary_10_3390_cancers15215224
Cites_doi 10.1084/jem.20050463
10.1016/S0092-8674(02)00801-2
10.1038/nm1001-1118
10.1038/ni1451
10.1038/ncomms1469
10.4049/jimmunol.179.1.71
10.4049/jimmunol.172.12.7335
10.1016/j.ccr.2005.10.012
10.1038/ni1383
10.4049/jimmunol.160.1.233
10.1016/j.immuni.2004.07.020
10.1016/j.cell.2016.01.009
10.4049/jimmunol.181.8.5194
10.1038/ni.3800
10.1002/humu.22977
10.4049/jimmunol.1301270
10.1016/j.immuni.2007.03.014
10.1016/j.cell.2016.06.028
10.1073/pnas.0730640100
10.1038/ng1997
10.1016/j.ccr.2009.06.017
10.1084/jem.189.2.231
10.1016/S1535-6108(03)00132-6
10.1111/imm.12061
10.1158/1078-0432.CCR-17-2257
10.1038/s41467-017-02696-6
10.1016/j.ccr.2010.12.022
10.1016/j.immuni.2006.07.011
10.1038/s41467-018-06654-8
10.1091/mbc.e11-12-1018
10.1038/nature07086
10.1073/pnas.87.10.3758
10.1016/j.stem.2016.10.002
10.1002/emmm.201302524
10.1200/jco.2014.32.3_suppl.lba173
10.1038/nm.3967
10.1016/1074-7613(95)90145-0
10.1016/j.immuni.2006.03.016
10.1038/383691a0
10.1016/S0092-8674(00)81460-9
10.1016/j.cell.2008.01.046
10.1101/gad.9.15.1831
10.1074/jbc.C400503200
10.1038/nri2808
10.1074/jbc.M202561200
10.1126/scisignal.aak9702
10.1038/nri.2016.112
10.1177/0192623311416259
10.1186/s40425-018-0399-6
10.1084/jem.20030152
10.1038/nrc.2016.52
10.1158/0008-5472.CAN-12-3381
10.1038/nature04846
10.1126/sciimmunol.aaj1738
10.1016/j.molcel.2008.09.002
10.1242/jcs.02554
10.1002/eji.201041135
10.1016/j.devcel.2017.02.017
10.4049/jimmunol.153.8.3514
10.1126/science.aau2909
10.1084/jem.20081242
10.1016/j.tibs.2015.03.012
10.1038/nrm3434
10.1016/j.cell.2011.09.044
10.1016/j.immuni.2016.03.007
10.1126/science.1105718
10.1172/JCI3523
10.1126/scisignal.aad1884
10.1038/ni.2499
10.1158/0008-5472.CAN-14-3511
10.4049/jimmunol.0712671
10.1038/ni730
10.1038/sj.onc.1210741
10.1073/pnas.1002372107
10.1101/cshperspect.a022053
10.1016/j.ccr.2012.08.013
10.1084/jem.171.1.231
10.1016/S0092-8674(04)00298-3
10.1002/ijc.27572
10.1097/CJI.0b013e318189f13c
10.1016/j.immuni.2006.04.015
10.1158/0008-5472.CAN-16-1456
10.1007/s00535-017-1350-1
10.1016/j.cell.2018.05.027
10.1016/j.ccr.2007.08.020
10.4049/jimmunol.158.3.1095
10.1038/s41416-018-0246-z
10.1083/jcb.200704042
10.1073/pnas.1710680114
10.1038/nature25501
10.1073/pnas.0406771101
10.1038/sj.emboj.7601818
10.1073/pnas.90.10.4577
10.4049/jimmunol.173.5.3093
10.1073/pnas.90.2.770
10.1038/ni.1607
10.1038/359693a0
10.1172/JCI200519229
10.1158/2326-6066.CIR-16-0297
10.1084/jem.20171491
10.4049/jimmunol.1201029
10.1074/jbc.M804777200
10.1172/JCI119017
10.1016/0092-8674(94)90572-X
10.1158/1535-7163.MCT-18-0558
10.1038/ni1549
10.1371/journal.pbio.1001674
10.4049/jimmunol.0904100
10.1016/j.ccr.2007.12.004
10.1016/j.immuni.2018.09.013
10.1073/pnas.0809784106
10.1084/jem.20021170
10.1016/S1074-7613(00)80170-3
10.1074/jbc.C110.155820
10.1158/0008-5472.CAN-04-3169
10.1038/371257a0
10.1172/jci.insight.85974
10.1083/jcb.200312172
10.1158/1078-0432.CCR-09-1758
10.1186/s40425-018-0493-9
10.1101/cshperspect.a022293
10.1038/ni.2319
10.1038/ni.2077
10.1038/ng.3225
10.4049/jimmunol.174.10.5950
10.4049/jimmunol.174.9.5215
10.1073/pnas.1319269111
10.1073/pnas.0408197102
10.1016/bs.ai.2017.01.001
10.1016/j.immuni.2015.11.008
10.4049/jimmunol.172.7.4275
10.1126/science.1090148
10.1158/1078-0432.CCR-17-3322
10.1016/j.stem.2012.11.001
10.1073/pnas.0901944106
10.1084/jem.20012076
10.1093/jnci/dju124
10.1002/eji.200425848
10.1016/j.immuni.2013.08.019
10.1186/s40425-018-0356-4
10.1083/jcb.200109037
10.4049/jimmunol.163.7.4013
10.1126/science.1129139
10.1101/cshperspect.a022285
10.1038/nature10152
10.1126/sciimmunol.aai7911
10.4049/jimmunol.172.9.5149
10.1101/cshperspect.a022236
10.1172/JCI65745
10.1038/ni.3809
10.1172/jci.insight.122591
10.1038/s41580-018-0007-0
10.1038/ng.3224
10.1007/s12012-014-9297-4
10.1371/journal.pgen.1003251
10.1101/cshperspect.a022186
10.1124/mol.118.112946
10.1016/j.celrep.2018.04.007
10.1126/science.1090922
10.1126/scitranslmed.aaa1983
10.1038/ncb1780
10.1016/j.cell.2016.02.025
10.1172/JCI45114
10.1038/ni1197
10.1084/jem.20041044
10.1016/j.immuni.2011.04.019
10.1038/nm.3909
10.1038/ni.2388
10.1158/2159-8290.CD-12-0527
10.1016/j.immuni.2008.03.003
10.1016/j.yexcr.2012.01.020
10.1146/annurev-immunol-032713-120257
10.1016/j.cell.2011.08.050
10.1038/nature06878
10.1038/nature25492
10.1016/j.cell.2010.06.010
10.1016/j.immuni.2006.07.012
10.1038/ncomms14649
10.1073/pnas.0703642104
10.1200/JCO.2017.74.3179
10.1093/neuonc/nop009
10.1101/gad.1478706
10.1038/ncomms7840
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Inc.
Copyright Elsevier Limited Apr 16, 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Apr 16, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
DOI 10.1016/j.immuni.2019.03.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 940
ExternalDocumentID 30995507
10_1016_j_immuni_2019_03_024
S1074761319301414
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA034610
– fundername: NCI NIH HHS
  grantid: P01 CA129243
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: P01 CA094060
GroupedDBID ---
--K
-DZ
0R~
0SF
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAVLU
AAXUO
ABMAC
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
.55
.GJ
29I
5VS
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKBMS
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c436t-c4f7318867e440ca39fb8bcb2bf4b619e79524e676e116aaedb4b6a954a1ad433
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Sun Aug 24 04:03:04 EDT 2025
Fri Jul 25 11:14:24 EDT 2025
Thu Apr 03 07:02:18 EDT 2025
Tue Jul 01 01:58:41 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Tue Jul 16 04:31:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2019. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-c4f7318867e440ca39fb8bcb2bf4b619e79524e676e116aaedb4b6a954a1ad433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://www.cell.com/article/S1074761319301414/pdf
PMID 30995507
PQID 2210385408
PQPubID 2031079
PageCount 17
ParticipantIDs proquest_miscellaneous_2211327489
proquest_journals_2210385408
pubmed_primary_30995507
crossref_citationtrail_10_1016_j_immuni_2019_03_024
crossref_primary_10_1016_j_immuni_2019_03_024
elsevier_sciencedirect_doi_10_1016_j_immuni_2019_03_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-16
PublicationDateYYYYMMDD 2019-04-16
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Lin, Martin, Xia, Gorham (bib97) 2005; 174
Shull, Ormsby, Kier, Pawlowski, Diebold, Yin, Allen, Sidman, Proetzel, Calvin (bib147) 1992; 359
Donatelli, Zhou, Gilvary, Eksioglu, Chen, Cress, Haura, Schabath, Coppola, Wei, Djeu (bib40) 2014; 111
Ozdamar, Bose, Barrios-Rodiles, Wang, Zhang, Wrana (bib121) 2005; 307
Sorrentino, Thakur, Grimsby, Marcusson, von Bulow, Schuster, Zhang, Heldin, Landström (bib150) 2008; 10
Tone, Furuuchi, Kojima, Tykocinski, Greene, Tone (bib159) 2008; 9
Brabletz, Pfeuffer, Schorr, Siebelt, Wirth, Serfling (bib14) 1993; 13
Lee, Lee, Kim, Heo (bib88) 2004; 172
Gorelik, Constant, Flavell (bib62) 2002; 195
Janda, Lehmann, Killisch, Jechlinger, Herzig, Downward, Beug, Grünert (bib74) 2002; 156
Melisi, Garcia-Carbonero, Macarulla, Pezet, Deplanque, Fuchs, Trojan, Oettle, Kozloff, Cleverly (bib109) 2018; 119
Moo-Young, Larson, Belt, Tan, Hawkins, Eberlein, Goedegebuure, Linehan (bib112) 2009; 32
Cruz-Guilloty, Pipkin, Djuretic, Levanon, Lotem, Lichtenheld, Groner, Rao (bib34) 2009; 206
Hong, Lim, Li, Lee, Lee, Lee, Park, Wang, Kim (bib70) 2007; 8
Donkor, Sarkar, Savage, Franklin, Johnson, Jungbluth, Allison, Li (bib41) 2011; 35
Dodagatta-Marri, Meyer, Reeves, Paniagua, To, Binnewies, Broz, Mori, Wu, Adoumie (bib39) 2019; 7
Pearce, Mullen, Martins, Krawczyk, Hutchins, Zediak, Banica, DiCioccio, Gross, Mao (bib127) 2003; 302
Chen, Ten Dijke (bib21) 2016; 16
Travis, Sheppard (bib161) 2014; 32
Bhowmick, Chytil, Plieth, Gorska, Dumont, Shappell, Washington, Neilson, Moses (bib12) 2004; 303
Courau, Nehar-Belaid, Florez, Levacher, Vazquez, Brimaud, Bellier, Klatzmann (bib31) 2016; 1
Mullen, Orlando, Newman, Lovén, Kumar, Bilodeau, Reddy, Guenther, DeKoter, Young (bib115) 2011; 147
Mempel, Pittet, Khazaie, Weninger, Weissleder, von Boehmer, von Andrian (bib110) 2006; 25
Piskurich, Wang, Linhoff, White, Ting (bib130) 1998; 160
Thomas, Massagué (bib158) 2005; 8
Bardeesy, Cheng, Berger, Chu, Pahler, Olson, Hezel, Horner, Lauwers, Hanahan, DePinho (bib7) 2006; 20
Rachidi, Metelli, Riesenberg, Wu, Nelson, Wallace, Paulos, Rubinstein, Garrett-Mayer, Hennig (bib134) 2017; 2
Templeton, McNamara, Šeruga, Vera-Badillo, Aneja, Ocaña, Leibowitz-Amit, Sonpavde, Knox, Tran (bib157) 2014; 106
Wang, Wen, Yuan, Helfand, Li, Shi, Tian, Zheng, Wang, Chen (bib168) 2010; 16
Yin, Selander, Chirgwin, Dallas, Grubbs, Wieser, Massagué, Mundy, Guise (bib178) 1999; 103
Ahmadzadeh, Rosenberg (bib2) 2005; 174
Bollard, Tripic, Cruz, Dotti, Gottschalk, Torrano, Dakhova, Carrum, Ramos, Liu (bib13) 2018; 36
Heldin, Moustakas (bib68) 2016; 8
Wei, Duramad, Perng, Reiner, Liu, Qin (bib171) 2007; 104
Li, Sanjabi, Flavell (bib93) 2006; 25
Allen, Manthey, Hand, Ohura, Ellingsworth, Wahl (bib3) 1990; 171
Massagué (bib107) 2012; 13
Downs-Canner, Berkey, Delgoffe, Edwards, Curiel, Odunsi, Bartlett, Obermajer (bib42) 2017; 8
Yamashita, Fatyol, Jin, Wang, Liu, Zhang (bib175) 2008; 31
Calon, Espinet, Palomo-Ponce, Tauriello, Iglesias, Céspedes, Sevillano, Nadal, Jung, Zhang (bib16) 2012; 22
Liénart, Merceron, Vanderaa, Lambert, Colau, Stockis, van der Woning, De Haard, Saunders, Coulie (bib96) 2018; 362
Liu, Zhang, Li, Kulkarni, Perruche, Chen (bib98) 2008; 9
Chen, Jin, Hardegen, Lei, Li, Marinos, McGrady, Wahl (bib25) 2003; 198
Li, Flavell (bib92) 2008; 28
Letterio, Geiser, Kulkarni, Dang, Kong, Nakabayashi, Mackall, Gress, Roberts (bib91) 1996; 98
Yi, Barnes, Hand, Polleux, Ehlers (bib177) 2010; 142
Arwert, Harney, Entenberg, Wang, Sahai, Pollard, Condeelis (bib6) 2018; 23
Hannon, Beach (bib67) 1994; 371
Mackay, Wynne-Jones, Freestone, Pellicci, Mielke, Newman, Braun, Masson, Kallies, Belz, Carbone (bib100) 2015; 43
Tran, Andersson, Wang, Ramsey, Unutmaz, Shevach (bib160) 2009; 106
Horiguchi, Shirakihara, Nakano, Imamura, Miyazono, Saitoh (bib71) 2009; 284
Cuende, Liénart, Dedobbeleer, van der Woning, De Boeck, Stockis, Huygens, Colau, Somja, Delvenne (bib35) 2015; 7
Porta, Rimoldi, Raes, Brys, Ghezzi, Di Liberto, Dieli, Ghisletti, Natoli, De Baetselier (bib132) 2009; 106
Takimoto, Wakabayashi, Sekiya, Inoue, Morita, Ichiyama, Takahashi, Asakawa, Muto, Mori (bib155) 2010; 185
Wang, Zhu, Dong, Shi, Lu, Springer (bib170) 2012; 23
Fridlender, Sun, Kim, Kapoor, Cheng, Ling, Worthen, Albelda (bib50) 2009; 16
Budhu, Schaer, Li, Toledo-Crow, Panageas, Yang, Zhong, Houghton, Silverstein, Merghoub, Wolchok (bib15) 2017; 10
Guinney, Dienstmann, Wang, de Reyniès, Schlicker, Soneson, Marisa, Roepman, Nyamundanda, Angelino (bib64) 2015; 21
Pietenpol, Holt, Stein, Moses (bib129) 1990; 87
Becker, Fantini, Schramm, Lehr, Wirtz, Nikolaev, Burg, Strand, Kiesslich, Huber (bib9) 2004; 21
Battaglia, Buzzonetti, Baranello, Fanelli, Fossati, Catzola, Scambia, Fattorossi (bib8) 2013; 139
Kelly, Houston, Sherwood, Casulli, Travis (bib78) 2017; 134
Kelly, Gunaltay, McEntee, Shuttleworth, Smedley, Houston, Fenton, Levison, Mann, Travis (bib79) 2018; 215
Gorelik, Flavell (bib60) 2000; 12
Nieto, Huang, Jackson, Thiery (bib119) 2016; 166
Ravi, Noonan, Pham, Bedi, Zhavoronkov, Ozerov, Makarev, V Artemov, Wysocki, Mehra (bib137) 2018; 9
McKarns, Schwartz, Kaminski (bib108) 2004; 172
Park, Seo, Choi, Stavnezer, Kim (bib126) 2005; 35
Formenti, Lee, Adams, Goldberg, Li, Xie, Ratikan, Felix, Hwang, Faull (bib49) 2018; 24
Galon, Costes, Sanchez-Cabo, Kirilovsky, Mlecnik, Lagorce-Pagès, Tosolini, Camus, Berger, Wind (bib54) 2006; 313
Crawford, Stellmach, Murphy-Ullrich, Ribeiro, Lawler, Hynes, Boivin, Bouck (bib33) 1998; 93
Edwards, Wilmott, Madore, Gide, Quek, Tasker, Ferguson, Chen, Hewavisenti, Hersey (bib44) 2018; 24
Cortez, Ulland, Cervantes-Barragan, Bando, Robinette, Wang, White, Gilfillan, Cella, Colonna (bib30) 2017; 18
Pang, Gara, Achyut, Li, Yan, Day, Weiss, Trinchieri, Morris, Yang (bib124) 2013; 3
Yu, Wei, Becknell, Trotta, Liu, Boyd, Jaung, Blaser, Sun, Benson (bib180) 2006; 24
Marcoe, Lim, Schaubert, Fodil-Cornu, Matka, McCubbrey, Farr, Vidal, Laouar (bib103) 2012; 13
Vanpouille-Box, Diamond, Pilones, Zavadil, Babb, Formenti, Barcellos-Hoff, Demaria (bib164) 2015; 75
Davis, Hilyard, Lagna, Hata (bib38) 2008; 454
Calon, Lonardo, Berenguer-Llergo, Espinet, Hernando-Momblona, Iglesias, Sevillano, Palomo-Ponce, Tauriello, Byrom (bib17) 2015; 47
Padua, Zhang, Wang, Nadal, Gerald, Gomis, Massagué (bib122) 2008; 133
Tauriello, Palomo-Ponce, Stork, Berenguer-Llergo, Badia-Ramentol, Iglesias, Sevillano, Ibiza, Cañellas, Hernando-Momblona (bib156) 2018; 554
Rodríguez-Ruiz, Rodríguez, Mayorga, Labiano, Barbes, Etxeberria, Ponz-Sarvise, Azpilikueta, Bolaños, Sanmamed (bib140) 2019; 18
Sanjabi, Oh, Li (bib142) 2017; 9
Castriconi, Cantoni, Della Chiesa, Vitale, Marcenaro, Conte, Biassoni, Bottino, Moretta, Moretta (bib18) 2003; 100
Flavell, Sanjabi, Wrzesinski, Licona-Limón (bib48) 2010; 10
Wahl, Allen, Weeks, Wong, Klotman (bib167) 1993; 90
Yang, Huang, Ren, Gorska, Chytil, Aakre, Carbone, Matrisian, Richmond, Lin, Moses (bib176) 2008; 13
Mullen, Wrana (bib114) 2017; 9
Wipff, Rifkin, Meister, Hinz (bib173) 2007; 179
Tzachanis, Freeman, Hirano, van Puijenbroek, Delfs, Berezovskaya, Nadler, Boussiotis (bib163) 2001; 2
Robinson, Gorham (bib139) 2007; 179
Polyak, Lee, Erdjument-Bromage, Koff, Roberts, Tempst, Massagué (bib131) 1994; 78
Ramalingam, Larmonier, Thurston, Midura-Kiela, Zheng, Ghishan, Kiela (bib135) 2012; 189
Kulkarni, Huh, Becker, Geiser, Lyght, Flanders, Roberts, Sporn, Ward, Karlsson (bib86) 1993; 90
Lee, Park, Kim, Jung, Lee, Kim, Park (bib90) 2011; 2
Coffelt, Wellenstein, de Visser (bib28) 2016; 16
Zhang, Bevan (bib181) 2012; 13
Cortez, Cervantes-Barragan, Robinette, Bando, Wang, Geiger, Gilfillan, Fuchs, Vivier, Sun (bib29) 2016; 44
Pallotta, Orabona, Volpi, Vacca, Belladonna, Bianchi, Servillo, Brunacci, Calvitti, Bicciato (bib123) 2011; 12
Spender, Ferguson, Hughes, Davies, Goldberg, Herrera, Taylor, Strathearn, Sansom, Barry, Inman (bib151) 2019; 95
Charney, Forouzmand, Cho, Cheung, Paraiso, Yasuoka, Takahashi, Taira, Blitz, Xie, Cho (bib20) 2017; 40
Faivre, Santoro, Kelley, Merle, Gane, Douillard, Waldschmidt, Mulcahy, Costentin, Minguez (bib46) 2014; 32
Martinez, Zhang, Reynolds, Tanaka, Chung, Liu, Robertson, Lin, Feng, Dong (bib106) 2010; 285
Dumitriu, Dunbar, Howie, Sethi, Gregory (bib43) 2009; 182
Holmgaard, Schaer, Li, Castaneda, Murphy, Xu, Inigo, Dobkin, Manro, Iversen (bib69) 2018; 6
Mami-Chouaib, Blanc, Corgnac, Hans, Malenica, Granier, Tihy, Tartour (bib102) 2018; 6
Chakravarthy, Khan, Bensler, Bose, De Carvalho (bib19) 2018; 9
Choi, Lee, Lim, Choi, Lee, Lee, Hong, Kim, Kim, Park (bib27) 2006; 7
Scandura, Boccuni, Massagué, Nimer (bib143) 2004; 101
Chen, Rubock, Whitman (bib26) 1996; 383
Trompouki, Bowman, Lawton, Fan, Wu, DiBiase, Martin, Cech, Sessa, Leblanc (bib162) 2011; 147
David, Huang, Chen, Su, Zou, Bardeesy, Iacobuzio-Donahue, Massagué (bib37) 2016; 164
Ihara, Hirata, Koike (bib72) 2017; 52
Naiki, Michelsen, Zhang, Chen, Doherty, Arditi (bib116) 2005; 280
Sledzińska, Hemmers, Mair, Gorka, Ruland, Fairbairn, Nissler, Müller, Waisman, Becher, Buch (bib148) 2013; 11
Malladi, Macalinao, Jin, He, Basnet, Zou, de Stanchina, Massagué (bib101) 2016; 165
Stockis, Liénart, Colau, Collignon, Nishimura, Sheppard, Coulie, Lucas (bib152) 2017; 114
Chen, Seguin-Devaux, Burke, Oriss, Watkins, Clipstone, Ray (bib22) 2003; 197
Hanks, Holtzhausen, Evans, Jamieson, Gimpel, Campbell, Hector-Greene, Sun, Tewari, George (bib66) 2013; 123
Wang, Zou, Nowotschin, Kim, Li, Soh, Su, Zhang, Shu, Xi (bib169) 2017; 20
Qin, Garrison, Ma, Wang, Jiang, Li, Mistry, Bronson, Santoro, Franco (bib133) 2018; 174
Belladonna, Volpi, Bianchi, Vacca, Orabona, Pallotta, Boon, Gizzi, Fioretti, Grohmann, Puccetti (bib10) 2008; 181
Zhou, Lopes, Chong, Ivanov, Min, Victora, Shen, Du, Rubtsov, Rudensky (bib184) 2008; 453
Gal, Sjöblom, Fedorova, Imreh, Beug, Moustakas (bib53) 2008; 27
Gentles, Newman, Liu, Bratman, Feng, Kim, Nair, Xu, Khuong, Hoang (bib57) 2015; 21
Marie, Liggitt, Rudensky (bib105) 2006; 25
Mariathasan, Turley, Nickles, Castiglioni, Yuen, Wang, Kadel, Koeppen, Astarita, Cubas (bib104) 2018; 554
Verstraeten, Alaerts, Van Laer, Loeys (bib165) 2016; 37
Annes, Chen, Munger, Rifkin (bib5) 2004; 165
Sh
Li (10.1016/j.immuni.2019.03.024_bib95) 2012; 131
Polyak (10.1016/j.immuni.2019.03.024_bib131) 1994; 78
Trompouki (10.1016/j.immuni.2019.03.024_bib162) 2011; 147
Porta (10.1016/j.immuni.2019.03.024_bib132) 2009; 106
Yu (10.1016/j.immuni.2019.03.024_bib180) 2006; 24
Lee (10.1016/j.immuni.2019.03.024_bib90) 2011; 2
Lin (10.1016/j.immuni.2019.03.024_bib97) 2005; 174
Downs-Canner (10.1016/j.immuni.2019.03.024_bib42) 2017; 8
Vanpouille-Box (10.1016/j.immuni.2019.03.024_bib164) 2015; 75
Kelly (10.1016/j.immuni.2019.03.024_bib78) 2017; 134
Bhowmick (10.1016/j.immuni.2019.03.024_bib12) 2004; 303
Kalathil (10.1016/j.immuni.2019.03.024_bib76) 2013; 73
Li (10.1016/j.immuni.2019.03.024_bib93) 2006; 25
Robinson (10.1016/j.immuni.2019.03.024_bib139) 2007; 179
Park (10.1016/j.immuni.2019.03.024_bib126) 2005; 35
Kulkarni (10.1016/j.immuni.2019.03.024_bib86) 1993; 90
Fantini (10.1016/j.immuni.2019.03.024_bib47) 2004; 172
Stockis (10.1016/j.immuni.2019.03.024_bib152) 2017; 114
Zhang (10.1016/j.immuni.2019.03.024_bib181) 2012; 13
Isella (10.1016/j.immuni.2019.03.024_bib73) 2015; 47
Kobayashi (10.1016/j.immuni.2019.03.024_bib84) 1999; 163
Brabletz (10.1016/j.immuni.2019.03.024_bib14) 1993; 13
Fridlender (10.1016/j.immuni.2019.03.024_bib50) 2009; 16
Yin (10.1016/j.immuni.2019.03.024_bib178) 1999; 103
Ozdamar (10.1016/j.immuni.2019.03.024_bib121) 2005; 307
Ramalingam (10.1016/j.immuni.2019.03.024_bib135) 2012; 189
Lee (10.1016/j.immuni.2019.03.024_bib88) 2004; 172
Tran (10.1016/j.immuni.2019.03.024_bib160) 2009; 106
Choi (10.1016/j.immuni.2019.03.024_bib27) 2006; 7
Yoon (10.1016/j.immuni.2019.03.024_bib179) 2013; 5
Chen (10.1016/j.immuni.2019.03.024_bib23) 2002; 110
Chen (10.1016/j.immuni.2019.03.024_bib25) 2003; 198
Kitamura (10.1016/j.immuni.2019.03.024_bib83) 2010; 107
Li (10.1016/j.immuni.2019.03.024_bib92) 2008; 28
Moustakas (10.1016/j.immuni.2019.03.024_bib113) 2005; 118
Sledzińska (10.1016/j.immuni.2019.03.024_bib148) 2013; 11
Edwards (10.1016/j.immuni.2019.03.024_bib44) 2018; 24
Yi (10.1016/j.immuni.2019.03.024_bib177) 2010; 142
Reynisdóttir (10.1016/j.immuni.2019.03.024_bib138) 1995; 9
Marie (10.1016/j.immuni.2019.03.024_bib105) 2006; 25
Giacomini (10.1016/j.immuni.2019.03.024_bib59) 2012; 318
Kakonen (10.1016/j.immuni.2019.03.024_bib75) 2002; 277
Kelly (10.1016/j.immuni.2019.03.024_bib79) 2018; 215
Cuende (10.1016/j.immuni.2019.03.024_bib35) 2015; 7
Oshimori (10.1016/j.immuni.2019.03.024_bib120) 2012; 11
Qin (10.1016/j.immuni.2019.03.024_bib133) 2018; 174
Lee (10.1016/j.immuni.2019.03.024_bib89) 2007; 26
Mami-Chouaib (10.1016/j.immuni.2019.03.024_bib102) 2018; 6
Pietenpol (10.1016/j.immuni.2019.03.024_bib129) 1990; 87
Davis (10.1016/j.immuni.2019.03.024_bib38) 2008; 454
Mackay (10.1016/j.immuni.2019.03.024_bib100) 2015; 43
Takimoto (10.1016/j.immuni.2019.03.024_bib155) 2010; 185
Shull (10.1016/j.immuni.2019.03.024_bib147) 1992; 359
Thomas (10.1016/j.immuni.2019.03.024_bib158) 2005; 8
Nieto (10.1016/j.immuni.2019.03.024_bib119) 2016; 166
Dodagatta-Marri (10.1016/j.immuni.2019.03.024_bib39) 2019; 7
Sethi (10.1016/j.immuni.2019.03.024_bib145) 2011; 19
Wang (10.1016/j.immuni.2019.03.024_bib169) 2017; 20
Annes (10.1016/j.immuni.2019.03.024_bib5) 2004; 165
Gentles (10.1016/j.immuni.2019.03.024_bib57) 2015; 21
Nandan (10.1016/j.immuni.2019.03.024_bib118) 1997; 158
Zhou (10.1016/j.immuni.2019.03.024_bib184) 2008; 453
Budhu (10.1016/j.immuni.2019.03.024_bib15) 2017; 10
El-Asady (10.1016/j.immuni.2019.03.024_bib45) 2005; 201
Ravi (10.1016/j.immuni.2019.03.024_bib137) 2018; 9
Bendle (10.1016/j.immuni.2019.03.024_bib11) 2013; 191
Kang (10.1016/j.immuni.2019.03.024_bib77) 2003; 3
Nakanishi (10.1016/j.immuni.2019.03.024_bib117) 2018; 49
Yang (10.1016/j.immuni.2019.03.024_bib176) 2008; 13
Templeton (10.1016/j.immuni.2019.03.024_bib157) 2014; 106
Gorelik (10.1016/j.immuni.2019.03.024_bib62) 2002; 195
Bardeesy (10.1016/j.immuni.2019.03.024_bib7) 2006; 20
Castriconi (10.1016/j.immuni.2019.03.024_bib18) 2003; 100
Mullen (10.1016/j.immuni.2019.03.024_bib115) 2011; 147
Cruz-Guilloty (10.1016/j.immuni.2019.03.024_bib34) 2009; 206
Guasch (10.1016/j.immuni.2019.03.024_bib63) 2007; 12
Wipff (10.1016/j.immuni.2019.03.024_bib173) 2007; 179
Gabriely (10.1016/j.immuni.2019.03.024_bib51) 2017; 2
Cortez (10.1016/j.immuni.2019.03.024_bib30) 2017; 18
Li (10.1016/j.immuni.2019.03.024_bib94) 2007; 26
Spender (10.1016/j.immuni.2019.03.024_bib151) 2019; 95
Chen (10.1016/j.immuni.2019.03.024_bib22) 2003; 197
Pang (10.1016/j.immuni.2019.03.024_bib124) 2013; 3
Pearce (10.1016/j.immuni.2019.03.024_bib127) 2003; 302
Heldin (10.1016/j.immuni.2019.03.024_bib68) 2016; 8
Horiguchi (10.1016/j.immuni.2019.03.024_bib71) 2009; 284
Ahmadzadeh (10.1016/j.immuni.2019.03.024_bib2) 2005; 174
Yamashita (10.1016/j.immuni.2019.03.024_bib175) 2008; 31
Massagué (10.1016/j.immuni.2019.03.024_bib107) 2012; 13
Crane (10.1016/j.immuni.2019.03.024_bib32) 2010; 12
Donatelli (10.1016/j.immuni.2019.03.024_bib40) 2014; 111
Zhang (10.1016/j.immuni.2019.03.024_bib183) 2005; 65
Battaglia (10.1016/j.immuni.2019.03.024_bib8) 2013; 139
Metelli (10.1016/j.immuni.2019.03.024_bib111) 2016; 76
Papaspyridonos (10.1016/j.immuni.2019.03.024_bib125) 2015; 6
Janda (10.1016/j.immuni.2019.03.024_bib74) 2002; 156
Macias (10.1016/j.immuni.2019.03.024_bib99) 2015; 40
Dumitriu (10.1016/j.immuni.2019.03.024_bib43) 2009; 182
Rachidi (10.1016/j.immuni.2019.03.024_bib134) 2017; 2
Genestier (10.1016/j.immuni.2019.03.024_bib56) 1999; 189
Achyut (10.1016/j.immuni.2019.03.024_bib1) 2013; 9
Kim (10.1016/j.immuni.2019.03.024_bib80) 2006; 441
Liénart (10.1016/j.immuni.2019.03.024_bib96) 2018; 362
Mariathasan (10.1016/j.immuni.2019.03.024_bib104) 2018; 554
Sorrentino (10.1016/j.immuni.2019.03.024_bib150) 2008; 10
Moo-Young (10.1016/j.immuni.2019.03.024_bib112) 2009; 32
Naiki (10.1016/j.immuni.2019.03.024_bib116) 2005; 280
Courau (10.1016/j.immuni.2019.03.024_bib31) 2016; 1
Ihara (10.1016/j.immuni.2019.03.024_bib72) 2017; 52
Bollard (10.1016/j.immuni.2019.03.024_bib13) 2018; 36
Tzachanis (10.1016/j.immuni.2019.03.024_bib163) 2001; 2
Gabrilovich (10.1016/j.immuni.2019.03.024_bib52) 2017; 5
Tone (10.1016/j.immuni.2019.03.024_bib159) 2008; 9
Arwert (10.1016/j.immuni.2019.03.024_bib6) 2018; 23
Crawford (10.1016/j.immuni.2019.03.024_bib33) 1998; 93
David (10.1016/j.immuni.2019.03.024_bib36) 2018; 19
Laouar (10.1016/j.immuni.2019.03.024_bib87) 2005; 6
Malladi (10.1016/j.immuni.2019.03.024_bib101) 2016; 165
Piskurich (10.1016/j.immuni.2019.03.024_bib130) 1998; 160
Smythies (10.1016/j.immuni.2019.03.024_bib149) 2005; 115
Gorelik (10.1016/j.immuni.2019.03.024_bib61) 2001; 7
Sad (10.1016/j.immuni.2019.03.024_bib141) 1994; 153
Takasaka (10.1016/j.immuni.2019.03.024_bib154) 2018; 3
Wei (10.1016/j.immuni.2019.03.024_bib171) 2007; 104
Liu (10.1016/j.immuni.2019.03.024_bib98) 2008; 9
Wahl (10.1016/j.immuni.2019.03.024_bib167) 1993; 90
Calon (10.1016/j.immuni.2019.03.024_bib17) 2015; 47
Becker (10.1016/j.immuni.2019.03.024_bib9) 2004; 21
Mempel (10.1016/j.immuni.2019.03.024_bib110) 2006; 25
Chen (10.1016/j.immuni.2019.03.024_bib21) 2016; 16
Wolfraim (10.1016/j.immuni.2019.03.024_bib174) 2004; 173
Allen (10.1016/j.immuni.2019.03.024_bib3) 1990; 171
Holmgaard (10.1016/j.immuni.2019.03.024_bib69) 2018; 6
Faivre (10.1016/j.immuni.2019.03.024_bib46) 2014; 32
Melisi (10.1016/j.immuni.2019.03.024_bib109) 2018; 119
Guinney (10.1016/j.immuni.2019.03.024_bib64) 2015; 21
Coffelt (10.1016/j.immuni.2019.03.024_bib28) 2016; 16
Zhang (10.1016/j.immuni.2019.03.024_bib182) 2013; 39
Gal (10.1016/j.immuni.2019.03.024_bib53) 2008; 27
Flavell (10.1016/j.immuni.2019.03.024_bib48) 2010; 10
Windhagen (10.1016/j.immuni.2019.03.024_bib172) 1995; 2
Charney (10.1016/j.immuni.2019.03.024_bib20) 2017; 40
Padua (10.1016/j.immuni.2019.03.024_bib122) 2008; 133
Belladonna (10.1016/j.immuni.2019.03.024_bib10) 2008; 181
Pallotta (10.1016/j.immuni.2019.03.024_bib123) 2011; 12
Marcoe (10.1016/j.immuni.2019.03.024_bib103) 2012; 13
Chen (10.1016/j.immuni.2019.03.024_bib24) 2005; 102
David (10.1016/j.immuni.2019.03.024_bib37) 2016; 164
Scandura (10.1016/j.immuni.2019.03.024_bib143) 2004; 101
Hong (10.1016/j.immuni.2019.03.024_bib70) 2007; 8
Pickup (10.1016/j.immuni.2019.03.024_bib128) 2017; 9
McKarns (10.1016/j.immuni.2019.03.024_bib108) 2004; 172
Rani (10.1016/j.immuni.2019.03.024_bib136) 2011; 41
Viel (10.1016/j.immuni.2019.03.024_bib166) 2016; 9
Tauriello (10.1016/j.immuni.2019.03.024_bib156) 2018; 554
Hannon (10.1016/j.immuni.2019.03.024_bib67) 1994; 371
Gao (10.1016/j.immuni.2019.03.024_bib55) 2017; 18
Travis (10.1016/j.immuni.2019.03.024_bib161) 2014; 32
Chakravarthy (10.1016/j.immuni.2019.03.024_bib19) 2018; 9
Anderton (10.1016/j.immuni.2019.03.024_bib4) 2011; 39
Wang (10.1016/j.immuni.2019.03.024_bib170) 2012; 23
Calon (10.1016/j.immuni.2019.03.024_bib16) 2012; 22
Galon (10.1016/j.immuni.2019.03.024_bib54) 2006; 313
Rodríguez-Ruiz (10.1016/j.immuni.2019.03.024_bib140) 2019; 18
Donkor (10.1016/j.immuni.2019.03.024_bib41) 2011; 35
Letterio (10.1016/j.immuni.2019.03.024_bib91) 1996; 98
Strainic (10.1016/j.immuni.2019.03.024_bib153) 2013; 14
Hanks (10.1016/j.immuni.2019.03.024_bib66) 2013; 123
Formenti (10.1016/j.immuni.2019.03.024_bib49) 2018; 24
Sanjabi (10.1016/j.immuni.2019.03.024_bib142) 2017; 9
Gorelik (10.1016/j.immuni.2019.03.024_bib60) 2000; 12
Wang (10.1016/j.immuni.2019.03.024_bib168) 2010; 16
Kitamura (10.1016/j.immuni.2019.03.024_bib82) 2007; 39
Seoane (10.1016/j.immuni.2019.03.024_bib144) 2004; 117
Ghiringhelli (10.1016/j.immuni.2019.03.024_bib58) 2005; 202
Mullen (10.1016/j.immuni.2019.03.024_bib114) 2017; 9
Hahn (10.1016/j.immuni.2019.03.024_bib65) 2011; 121
Kovacs (10.1016/j.immuni.2019.03.024_bib85) 2015; 15
Shi (10.1016/j.immuni.2019.03.024_bib146) 2011; 474
Verstraeten (10.1016/j.immuni.2019.03.024_bib165) 2016; 37
Martinez (10.1016/j.immuni.2019.03.024_bib106) 2010; 285
Cortez (10.1016/j.immuni.2019.03.024_bib29) 2016; 44
Chen (10.1016/j.immuni.2019.03.024_bib26) 1996; 383
Kim (10.1016/j.immuni.2019.03.024_bib81) 2018; 10
References_xml – volume: 195
  start-page: 1499
  year: 2002
  end-page: 1505
  ident: bib62
  article-title: Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation
  publication-title: J. Exp. Med.
– volume: 75
  start-page: 2232
  year: 2015
  end-page: 2242
  ident: bib164
  article-title: TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity
  publication-title: Cancer Res.
– volume: 114
  start-page: E10161
  year: 2017
  end-page: E10168
  ident: bib152
  article-title: Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 4692
  year: 2018
  ident: bib19
  article-title: TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure
  publication-title: Nat. Commun.
– volume: 284
  start-page: 245
  year: 2009
  end-page: 253
  ident: bib71
  article-title: Role of Ras signaling in the induction of snail by transforming growth factor-beta
  publication-title: J. Biol. Chem.
– volume: 147
  start-page: 565
  year: 2011
  end-page: 576
  ident: bib115
  article-title: Master transcription factors determine cell-type-specific responses to TGF-β signaling
  publication-title: Cell
– volume: 121
  start-page: 4030
  year: 2011
  end-page: 4042
  ident: bib65
  article-title: Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice
  publication-title: J. Clin. Invest.
– volume: 117
  start-page: 211
  year: 2004
  end-page: 223
  ident: bib144
  article-title: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation
  publication-title: Cell
– volume: 173
  start-page: 3093
  year: 2004
  end-page: 3102
  ident: bib174
  article-title: p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-beta-mediated G1 arrest through modulation of IL-2 responsiveness
  publication-title: J. Immunol.
– volume: 454
  start-page: 56
  year: 2008
  end-page: 61
  ident: bib38
  article-title: SMAD proteins control DROSHA-mediated microRNA maturation
  publication-title: Nature
– volume: 7
  start-page: 62
  year: 2019
  ident: bib39
  article-title: α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas
  publication-title: J. Immunother. Cancer
– volume: 65
  start-page: 1761
  year: 2005
  end-page: 1769
  ident: bib183
  article-title: Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8
  publication-title: Cancer Res.
– volume: 182
  start-page: 2795
  year: 2009
  end-page: 2807
  ident: bib43
  article-title: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells
  publication-title: J. Immunol.
– volume: 27
  start-page: 1218
  year: 2008
  end-page: 1230
  ident: bib53
  article-title: Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis
  publication-title: Oncogene
– volume: 25
  start-page: 129
  year: 2006
  end-page: 141
  ident: bib110
  article-title: Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation
  publication-title: Immunity
– volume: 90
  start-page: 4577
  year: 1993
  end-page: 4581
  ident: bib167
  article-title: Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 936
  year: 2013
  end-page: 951
  ident: bib124
  article-title: TGF-β signaling in myeloid cells is required for tumor metastasis
  publication-title: Cancer Discov.
– volume: 40
  start-page: 296
  year: 2015
  end-page: 308
  ident: bib99
  article-title: Structural determinants of Smad function in TGF-β signaling
  publication-title: Trends Biochem. Sci.
– volume: 5
  start-page: 1720
  year: 2013
  end-page: 1739
  ident: bib179
  article-title: Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes
  publication-title: EMBO Mol. Med.
– volume: 8
  start-page: 369
  year: 2005
  end-page: 380
  ident: bib158
  article-title: TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance
  publication-title: Cancer Cell
– volume: 47
  start-page: 312
  year: 2015
  end-page: 319
  ident: bib73
  article-title: Stromal contribution to the colorectal cancer transcriptome
  publication-title: Nat. Genet.
– volume: 166
  start-page: 21
  year: 2016
  end-page: 45
  ident: bib119
  article-title: EMT: 2016
  publication-title: Cell
– volume: 9
  start-page: 1831
  year: 1995
  end-page: 1845
  ident: bib138
  article-title: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta
  publication-title: Genes Dev.
– volume: 41
  start-page: 2000
  year: 2011
  end-page: 2009
  ident: bib136
  article-title: TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function
  publication-title: Eur. J. Immunol.
– volume: 47
  start-page: 320
  year: 2015
  end-page: 329
  ident: bib17
  article-title: Stromal gene expression defines poor-prognosis subtypes in colorectal cancer
  publication-title: Nat. Genet.
– volume: 9
  start-page: 741
  year: 2018
  ident: bib137
  article-title: Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy
  publication-title: Nat. Commun.
– volume: 181
  start-page: 5194
  year: 2008
  end-page: 5198
  ident: bib10
  article-title: Cutting edge: Autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells
  publication-title: J. Immunol.
– volume: 100
  start-page: 4120
  year: 2003
  end-page: 4125
  ident: bib18
  article-title: Transforming growth factor β 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 39
  start-page: 467
  year: 2007
  end-page: 475
  ident: bib82
  article-title: SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion
  publication-title: Nat. Genet.
– volume: 9
  start-page: 194
  year: 2008
  end-page: 202
  ident: bib159
  article-title: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer
  publication-title: Nat. Immunol.
– volume: 40
  start-page: 595
  year: 2017
  end-page: 607
  ident: bib20
  article-title: Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program
  publication-title: Dev. Cell
– volume: 153
  start-page: 3514
  year: 1994
  end-page: 3522
  ident: bib141
  article-title: Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype
  publication-title: J. Immunol.
– volume: 23
  start-page: 1239
  year: 2018
  end-page: 1248
  ident: bib6
  article-title: A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation
  publication-title: Cell Rep.
– volume: 6
  start-page: 47
  year: 2018
  ident: bib69
  article-title: Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade
  publication-title: J. Immunother. Cancer
– volume: 119
  start-page: 1208
  year: 2018
  end-page: 1214
  ident: bib109
  article-title: Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer
  publication-title: Br. J. Cancer
– volume: 9
  start-page: 632
  year: 2008
  end-page: 640
  ident: bib98
  article-title: A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells
  publication-title: Nat. Immunol.
– volume: 16
  start-page: 431
  year: 2016
  end-page: 446
  ident: bib28
  article-title: Neutrophils in cancer: neutral no more
  publication-title: Nat. Rev. Cancer
– volume: 36
  start-page: 1128
  year: 2018
  end-page: 1139
  ident: bib13
  article-title: Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma
  publication-title: J. Clin. Oncol.
– volume: 26
  start-page: 3957
  year: 2007
  end-page: 3967
  ident: bib89
  article-title: TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA
  publication-title: EMBO J.
– volume: 179
  start-page: 1311
  year: 2007
  end-page: 1323
  ident: bib173
  article-title: Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix
  publication-title: J. Cell Biol.
– volume: 147
  start-page: 577
  year: 2011
  end-page: 589
  ident: bib162
  article-title: Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration
  publication-title: Cell
– volume: 9
  start-page: a022285
  year: 2017
  ident: bib128
  article-title: TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 318
  start-page: 716
  year: 2012
  end-page: 722
  ident: bib59
  article-title: Epithelial cells utilize cortical actin/myosin to activate latent TGF-β through integrin α(v)β(6)-dependent physical force
  publication-title: Exp. Cell Res.
– volume: 163
  start-page: 4013
  year: 1999
  end-page: 4019
  ident: bib84
  article-title: Beta 2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-beta 1 null mouse
  publication-title: J. Immunol.
– volume: 87
  start-page: 3758
  year: 1990
  end-page: 3762
  ident: bib129
  article-title: Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 106
  start-page: 13445
  year: 2009
  end-page: 13450
  ident: bib160
  article-title: GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 139
  start-page: 109
  year: 2013
  end-page: 120
  ident: bib8
  article-title: Interleukin-21 (IL-21) synergizes with IL-2 to enhance T-cell receptor-induced human T-cell proliferation and counteracts IL-2/transforming growth factor-β-induced regulatory T-cell development
  publication-title: Immunology
– volume: 6
  start-page: 87
  year: 2018
  ident: bib102
  article-title: Resident memory T cells, critical components in tumor immunology
  publication-title: J. Immunother. Cancer
– volume: 303
  start-page: 848
  year: 2004
  end-page: 851
  ident: bib12
  article-title: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia
  publication-title: Science
– volume: 9
  start-page: a022186
  year: 2017
  ident: bib114
  article-title: TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 362
  start-page: 952
  year: 2018
  end-page: 956
  ident: bib96
  article-title: Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells
  publication-title: Science
– volume: 12
  start-page: 870
  year: 2011
  end-page: 878
  ident: bib123
  article-title: Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells
  publication-title: Nat. Immunol.
– volume: 16
  start-page: 164
  year: 2010
  end-page: 173
  ident: bib168
  article-title: Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor beta-insensitive CD8+ T cells
  publication-title: Clin. Cancer Res.
– volume: 165
  start-page: 45
  year: 2016
  end-page: 60
  ident: bib101
  article-title: Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT
  publication-title: Cell
– volume: 201
  start-page: 1647
  year: 2005
  end-page: 1657
  ident: bib45
  article-title: TGF-beta-dependent CD103 expression by CD8(+) T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease
  publication-title: J. Exp. Med.
– volume: 2
  start-page: 460
  year: 2011
  ident: bib90
  article-title: Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling
  publication-title: Nat. Commun.
– volume: 35
  start-page: 946
  year: 2005
  end-page: 956
  ident: bib126
  article-title: Analysis of transforming growth factor-beta1-induced Ig germ-line gamma2b transcription and its implication for IgA isotype switching
  publication-title: Eur. J. Immunol.
– volume: 21
  start-page: 491
  year: 2004
  end-page: 501
  ident: bib9
  article-title: TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling
  publication-title: Immunity
– volume: 10
  year: 2017
  ident: bib15
  article-title: Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment
  publication-title: Sci. Signal.
– volume: 1
  start-page: e85974
  year: 2016
  ident: bib31
  article-title: TGF-
  publication-title: JCI Insight
– volume: 197
  start-page: 1689
  year: 2003
  end-page: 1699
  ident: bib22
  article-title: Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation
  publication-title: J. Exp. Med.
– volume: 142
  start-page: 144
  year: 2010
  end-page: 157
  ident: bib177
  article-title: TGF-beta signaling specifies axons during brain development
  publication-title: Cell
– volume: 16
  start-page: 183
  year: 2009
  end-page: 194
  ident: bib50
  article-title: Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN
  publication-title: Cancer Cell
– volume: 111
  start-page: 4203
  year: 2014
  end-page: 4208
  ident: bib40
  article-title: TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 554
  start-page: 538
  year: 2018
  end-page: 543
  ident: bib156
  article-title: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis
  publication-title: Nature
– volume: 110
  start-page: 19
  year: 2002
  end-page: 32
  ident: bib23
  article-title: E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression
  publication-title: Cell
– volume: 191
  start-page: 3232
  year: 2013
  end-page: 3239
  ident: bib11
  article-title: Blockade of TGF-β signaling greatly enhances the efficacy of TCR gene therapy of cancer
  publication-title: J. Immunol.
– volume: 43
  start-page: 1101
  year: 2015
  end-page: 1111
  ident: bib100
  article-title: T-box Transcription Factors Combine with the Cytokines TGF-β and IL-15 to Control Tissue-Resident Memory T Cell Fate
  publication-title: Immunity
– volume: 8
  start-page: 14649
  year: 2017
  ident: bib42
  article-title: Suppressive IL-17A
  publication-title: Nat. Commun.
– volume: 24
  start-page: 2493
  year: 2018
  end-page: 2504
  ident: bib49
  article-title: Focal Irradiation and Systemic TGFβ Blockade in Metastatic Breast Cancer
  publication-title: Clin. Cancer Res.
– volume: 185
  start-page: 842
  year: 2010
  end-page: 855
  ident: bib155
  article-title: Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development
  publication-title: J. Immunol.
– volume: 18
  start-page: 1004
  year: 2017
  end-page: 1015
  ident: bib55
  article-title: Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells
  publication-title: Nat. Immunol.
– volume: 102
  start-page: 419
  year: 2005
  end-page: 424
  ident: bib24
  article-title: Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 101
  start-page: 15231
  year: 2004
  end-page: 15236
  ident: bib143
  article-title: Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 3036
  year: 2018
  end-page: 3045
  ident: bib44
  article-title: CD103
  publication-title: Clin. Cancer Res.
– volume: 307
  start-page: 1603
  year: 2005
  end-page: 1609
  ident: bib121
  article-title: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity
  publication-title: Science
– volume: 174
  start-page: 156
  year: 2018
  end-page: 171
  ident: bib133
  article-title: A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System
  publication-title: Cell
– volume: 164
  start-page: 1015
  year: 2016
  end-page: 1030
  ident: bib37
  article-title: TGF-β Tumor Suppression through a Lethal EMT
  publication-title: Cell
– volume: 25
  start-page: 455
  year: 2006
  end-page: 471
  ident: bib93
  article-title: Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms
  publication-title: Immunity
– volume: 32
  start-page: 51
  year: 2014
  end-page: 82
  ident: bib161
  article-title: TGF-β activation and function in immunity
  publication-title: Annu. Rev. Immunol.
– volume: 24
  start-page: 575
  year: 2006
  end-page: 590
  ident: bib180
  article-title: Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells
  publication-title: Immunity
– volume: 44
  start-page: 1127
  year: 2016
  end-page: 1139
  ident: bib29
  article-title: Transforming Growth Factor-β Signaling Guides the Differentiation of Innate Lymphoid Cells in Salivary Glands
  publication-title: Immunity
– volume: 3
  year: 2018
  ident: bib154
  article-title: Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells
  publication-title: JCI Insight
– volume: 28
  start-page: 468
  year: 2008
  end-page: 476
  ident: bib92
  article-title: Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10
  publication-title: Immunity
– volume: 115
  start-page: 66
  year: 2005
  end-page: 75
  ident: bib149
  article-title: Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity
  publication-title: J. Clin. Invest.
– volume: 179
  start-page: 71
  year: 2007
  end-page: 79
  ident: bib139
  article-title: TGF-beta 1 regulates antigen-specific CD4+ T cell responses in the periphery
  publication-title: J. Immunol.
– volume: 174
  start-page: 5215
  year: 2005
  end-page: 5223
  ident: bib2
  article-title: TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells
  publication-title: J. Immunol.
– volume: 277
  start-page: 24571
  year: 2002
  end-page: 24578
  ident: bib75
  article-title: Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 537
  year: 2003
  end-page: 549
  ident: bib77
  article-title: A multigenic program mediating breast cancer metastasis to bone
  publication-title: Cancer Cell
– volume: 10
  start-page: 1199
  year: 2008
  end-page: 1207
  ident: bib150
  article-title: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
  publication-title: Nat. Cell Biol.
– volume: 165
  start-page: 723
  year: 2004
  end-page: 734
  ident: bib5
  article-title: Integrin alphaVbeta6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1
  publication-title: J. Cell Biol.
– volume: 123
  start-page: 3925
  year: 2013
  end-page: 3940
  ident: bib66
  article-title: Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment
  publication-title: J. Clin. Invest.
– volume: 25
  start-page: 441
  year: 2006
  end-page: 454
  ident: bib105
  article-title: Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor
  publication-title: Immunity
– volume: 73
  start-page: 2435
  year: 2013
  end-page: 2444
  ident: bib76
  article-title: Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality
  publication-title: Cancer Res.
– volume: 49
  start-page: 1132
  year: 2018
  end-page: 1147
  ident: bib117
  article-title: Simultaneous Loss of Both Atypical Protein Kinase C Genes in the Intestinal Epithelium Drives Serrated Intestinal Cancer by Impairing Immunosurveillance
  publication-title: Immunity
– volume: 371
  start-page: 257
  year: 1994
  end-page: 261
  ident: bib67
  article-title: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest
  publication-title: Nature
– volume: 10
  start-page: 554
  year: 2010
  end-page: 567
  ident: bib48
  article-title: The polarization of immune cells in the tumour environment by TGFbeta
  publication-title: Nat. Rev. Immunol.
– volume: 441
  start-page: 1015
  year: 2006
  end-page: 1019
  ident: bib80
  article-title: Smad4 signalling in T cells is required for suppression of gastrointestinal cancer
  publication-title: Nature
– volume: 19
  start-page: 192
  year: 2011
  end-page: 205
  ident: bib145
  article-title: Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells
  publication-title: Cancer Cell
– volume: 171
  start-page: 231
  year: 1990
  end-page: 247
  ident: bib3
  article-title: Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta
  publication-title: J. Exp. Med.
– volume: 383
  start-page: 691
  year: 1996
  end-page: 696
  ident: bib26
  article-title: A transcriptional partner for MAD proteins in TGF-beta signalling
  publication-title: Nature
– volume: 7
  start-page: 1057
  year: 2006
  end-page: 1065
  ident: bib27
  article-title: Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1
  publication-title: Nat. Immunol.
– volume: 11
  start-page: 751
  year: 2012
  end-page: 764
  ident: bib120
  article-title: The harmonies played by TGF-β in stem cell biology
  publication-title: Cell Stem Cell
– volume: 2
  year: 2017
  ident: bib134
  article-title: Platelets subvert T cell immunity against cancer via GARP-TGFβ axis
  publication-title: Sci. Immunol.
– volume: 16
  start-page: 723
  year: 2016
  end-page: 740
  ident: bib21
  article-title: Immunoregulation by members of the TGFβ superfamily
  publication-title: Nat. Rev. Immunol.
– volume: 19
  start-page: 419
  year: 2018
  end-page: 435
  ident: bib36
  article-title: Contextual determinants of TGFβ action in development, immunity and cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 106
  start-page: 14978
  year: 2009
  end-page: 14983
  ident: bib132
  article-title: Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 103
  start-page: 197
  year: 1999
  end-page: 206
  ident: bib178
  article-title: TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development
  publication-title: J. Clin. Invest.
– volume: 172
  start-page: 7335
  year: 2004
  end-page: 7340
  ident: bib88
  article-title: Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients
  publication-title: J. Immunol.
– volume: 156
  start-page: 299
  year: 2002
  end-page: 313
  ident: bib74
  article-title: Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways
  publication-title: J. Cell Biol.
– volume: 13
  start-page: 616
  year: 2012
  end-page: 630
  ident: bib107
  article-title: TGFβ signalling in context
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 32
  start-page: 12
  year: 2009
  end-page: 21
  ident: bib112
  article-title: Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer
  publication-title: J. Immunother.
– volume: 313
  start-page: 1960
  year: 2006
  end-page: 1964
  ident: bib54
  article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome
  publication-title: Science
– volume: 7
  start-page: 1118
  year: 2001
  end-page: 1122
  ident: bib61
  article-title: Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells
  publication-title: Nat. Med.
– volume: 131
  start-page: 2584
  year: 2012
  end-page: 2595
  ident: bib95
  article-title: Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-β in breast cancer progression
  publication-title: Int. J. Cancer
– volume: 10
  start-page: a022293
  year: 2018
  ident: bib81
  article-title: TGF-β1 Signaling and Tissue Fibrosis
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 172
  start-page: 4275
  year: 2004
  end-page: 4284
  ident: bib108
  article-title: Smad3 is essential for TGF-β 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation
  publication-title: J. Immunol.
– volume: 22
  start-page: 571
  year: 2012
  end-page: 584
  ident: bib16
  article-title: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation
  publication-title: Cancer Cell
– volume: 31
  start-page: 918
  year: 2008
  end-page: 924
  ident: bib175
  article-title: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta
  publication-title: Mol. Cell
– volume: 15
  start-page: 309
  year: 2015
  end-page: 323
  ident: bib85
  article-title: Cardiac Safety of TGF-β Receptor I Kinase Inhibitor LY2157299 Monohydrate in Cancer Patients in a First-in-Human Dose Study
  publication-title: Cardiovasc. Toxicol.
– volume: 7
  start-page: 284ra56
  year: 2015
  ident: bib35
  article-title: Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo
  publication-title: Sci. Transl. Med.
– volume: 5
  start-page: 3
  year: 2017
  end-page: 8
  ident: bib52
  article-title: Myeloid-Derived Suppressor Cells
  publication-title: Cancer Immunol. Res.
– volume: 98
  start-page: 2109
  year: 1996
  end-page: 2119
  ident: bib91
  article-title: Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression
  publication-title: J. Clin. Invest.
– volume: 202
  start-page: 919
  year: 2005
  end-page: 929
  ident: bib58
  article-title: Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4
  publication-title: J. Exp. Med.
– volume: 13
  start-page: 23
  year: 2008
  end-page: 35
  ident: bib176
  article-title: Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis
  publication-title: Cancer Cell
– volume: 20
  start-page: 70
  year: 2017
  end-page: 86
  ident: bib169
  article-title: The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells
  publication-title: Cell Stem Cell
– volume: 39
  start-page: 916
  year: 2011
  end-page: 924
  ident: bib4
  article-title: Induction of heart valve lesions by small-molecule ALK5 inhibitors
  publication-title: Toxicol. Pathol.
– volume: 76
  start-page: 7106
  year: 2016
  end-page: 7117
  ident: bib111
  article-title: Surface Expression of TGFβ Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer
  publication-title: Cancer Res.
– volume: 285
  start-page: 29039
  year: 2010
  end-page: 29043
  ident: bib106
  article-title: Smad2 positively regulates the generation of Th17 cells
  publication-title: J. Biol. Chem.
– volume: 104
  start-page: 18169
  year: 2007
  end-page: 18174
  ident: bib171
  article-title: Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 171
  year: 2000
  end-page: 181
  ident: bib60
  article-title: Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease
  publication-title: Immunity
– volume: 52
  start-page: 777
  year: 2017
  end-page: 787
  ident: bib72
  article-title: TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota
  publication-title: J. Gastroenterol.
– volume: 8
  start-page: a022053
  year: 2016
  ident: bib68
  article-title: Signaling Receptors for TGF-β Family Members
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 78
  start-page: 59
  year: 1994
  end-page: 66
  ident: bib131
  article-title: Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals
  publication-title: Cell
– volume: 35
  start-page: 123
  year: 2011
  end-page: 134
  ident: bib41
  article-title: T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-β1 cytokine
  publication-title: Immunity
– volume: 453
  start-page: 236
  year: 2008
  end-page: 240
  ident: bib184
  article-title: TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function
  publication-title: Nature
– volume: 13
  start-page: 1155
  year: 1993
  end-page: 1162
  ident: bib14
  article-title: Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site
  publication-title: Mol. Cell. Biol.
– volume: 215
  start-page: 2725
  year: 2018
  end-page: 2736
  ident: bib79
  article-title: Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation
  publication-title: J. Exp. Med.
– volume: 474
  start-page: 343
  year: 2011
  end-page: 349
  ident: bib146
  article-title: Latent TGF-β structure and activation
  publication-title: Nature
– volume: 12
  start-page: 313
  year: 2007
  end-page: 327
  ident: bib63
  article-title: Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia
  publication-title: Cancer Cell
– volume: 21
  start-page: 1350
  year: 2015
  end-page: 1356
  ident: bib64
  article-title: The consensus molecular subtypes of colorectal cancer
  publication-title: Nat. Med.
– volume: 26
  start-page: 579
  year: 2007
  end-page: 591
  ident: bib94
  article-title: T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation
  publication-title: Immunity
– volume: 160
  start-page: 233
  year: 1998
  end-page: 240
  ident: bib130
  article-title: Identification of distinct regions of 5′ flanking DNA that mediate constitutive, IFN-gamma, STAT1, and TGF-beta-regulated expression of the class II transactivator gene
  publication-title: J. Immunol.
– volume: 14
  start-page: 162
  year: 2013
  end-page: 171
  ident: bib153
  article-title: Absence of signaling into CD4
  publication-title: Nat. Immunol.
– volume: 134
  start-page: 137
  year: 2017
  end-page: 233
  ident: bib78
  article-title: Regulation of Innate and Adaptive Immunity by TGFβ
  publication-title: Adv. Immunol.
– volume: 90
  start-page: 770
  year: 1993
  end-page: 774
  ident: bib86
  article-title: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 600
  year: 2005
  end-page: 607
  ident: bib87
  article-title: Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ
  publication-title: Nat. Immunol.
– volume: 2
  start-page: 1174
  year: 2001
  end-page: 1182
  ident: bib163
  article-title: Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells
  publication-title: Nat. Immunol.
– volume: 9
  start-page: e1003251
  year: 2013
  ident: bib1
  article-title: Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling
  publication-title: PLoS Genet.
– volume: 11
  start-page: e1001674
  year: 2013
  ident: bib148
  article-title: TGF-β signalling is required for CD4
  publication-title: PLoS Biol.
– volume: 37
  start-page: 524
  year: 2016
  end-page: 531
  ident: bib165
  article-title: Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery
  publication-title: Hum. Mutat.
– volume: 6
  start-page: 6840
  year: 2015
  ident: bib125
  article-title: Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation
  publication-title: Nat. Commun.
– volume: 2
  start-page: 373
  year: 1995
  end-page: 380
  ident: bib172
  article-title: Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand
  publication-title: Immunity
– volume: 13
  start-page: 667
  year: 2012
  end-page: 673
  ident: bib181
  article-title: TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation
  publication-title: Nat. Immunol.
– volume: 280
  start-page: 5491
  year: 2005
  end-page: 5495
  ident: bib116
  article-title: Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling
  publication-title: J. Biol. Chem.
– volume: 133
  start-page: 66
  year: 2008
  end-page: 77
  ident: bib122
  article-title: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4
  publication-title: Cell
– volume: 18
  start-page: 621
  year: 2019
  end-page: 631
  ident: bib140
  article-title: TGFβ Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies
  publication-title: Mol. Cancer Ther.
– volume: 8
  start-page: 504
  year: 2007
  end-page: 513
  ident: bib70
  article-title: Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2
  publication-title: Nat. Immunol.
– volume: 172
  start-page: 5149
  year: 2004
  end-page: 5153
  ident: bib47
  article-title: Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7
  publication-title: J. Immunol.
– volume: 23
  start-page: 1129
  year: 2012
  end-page: 1139
  ident: bib170
  article-title: GARP regulates the bioavailability and activation of TGFβ
  publication-title: Mol. Biol. Cell
– volume: 39
  start-page: 687
  year: 2013
  end-page: 696
  ident: bib182
  article-title: Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention
  publication-title: Immunity
– volume: 18
  start-page: 995
  year: 2017
  end-page: 1003
  ident: bib30
  article-title: SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling
  publication-title: Nat. Immunol.
– volume: 95
  start-page: 222
  year: 2019
  end-page: 234
  ident: bib151
  article-title: Preclinical Evaluation of AZ12601011 and AZ12799734, Inhibitors of Transforming Growth Factor
  publication-title: Mol. Pharmacol.
– volume: 9
  start-page: a022236
  year: 2017
  ident: bib142
  article-title: Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 20
  start-page: 3130
  year: 2006
  end-page: 3146
  ident: bib7
  article-title: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer
  publication-title: Genes Dev.
– volume: 21
  start-page: 938
  year: 2015
  end-page: 945
  ident: bib57
  article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers
  publication-title: Nat. Med.
– volume: 302
  start-page: 1041
  year: 2003
  end-page: 1043
  ident: bib127
  article-title: Control of effector CD8+ T cell function by the transcription factor Eomesodermin
  publication-title: Science
– volume: 13
  start-page: 843
  year: 2012
  end-page: 850
  ident: bib103
  article-title: TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy
  publication-title: Nat. Immunol.
– volume: 189
  start-page: 3878
  year: 2012
  end-page: 3893
  ident: bib135
  article-title: Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity
  publication-title: J. Immunol.
– volume: 189
  start-page: 231
  year: 1999
  end-page: 239
  ident: bib56
  article-title: Transforming growth factor beta1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc
  publication-title: J. Exp. Med.
– volume: 107
  start-page: 13063
  year: 2010
  end-page: 13068
  ident: bib83
  article-title: Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  year: 2014
  ident: bib46
  article-title: A phase 2 study of a novel transforming growth factor-beta (TGF-β1) receptor I kinase inhibitor, LY2157299 monohydrate (LY), in patients with advanced hepatocellular carcinoma (HCC)
  publication-title: J. Clin. Oncol.
– volume: 93
  start-page: 1159
  year: 1998
  end-page: 1170
  ident: bib33
  article-title: Thrombospondin-1 is a major activator of TGF-beta1 in vivo
  publication-title: Cell
– volume: 554
  start-page: 544
  year: 2018
  end-page: 548
  ident: bib104
  article-title: TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells
  publication-title: Nature
– volume: 9
  start-page: ra19
  year: 2016
  ident: bib166
  article-title: TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway
  publication-title: Sci. Signal.
– volume: 359
  start-page: 693
  year: 1992
  end-page: 699
  ident: bib147
  article-title: Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease
  publication-title: Nature
– volume: 198
  start-page: 1875
  year: 2003
  end-page: 1886
  ident: bib25
  article-title: Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3
  publication-title: J. Exp. Med.
– volume: 12
  start-page: 7
  year: 2010
  end-page: 13
  ident: bib32
  article-title: TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients
  publication-title: Neuro-oncol.
– volume: 158
  start-page: 1095
  year: 1997
  end-page: 1101
  ident: bib118
  article-title: TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action
  publication-title: J. Immunol.
– volume: 118
  start-page: 3573
  year: 2005
  end-page: 3584
  ident: bib113
  article-title: Non-Smad TGF-beta signals
  publication-title: J. Cell Sci.
– volume: 174
  start-page: 5950
  year: 2005
  end-page: 5958
  ident: bib97
  article-title: TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet
  publication-title: J. Immunol.
– volume: 206
  start-page: 51
  year: 2009
  end-page: 59
  ident: bib34
  article-title: Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs
  publication-title: J. Exp. Med.
– volume: 106
  year: 2014
  ident: bib157
  article-title: Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis
  publication-title: J. Natl. Cancer Inst.
– volume: 2
  year: 2017
  ident: bib51
  article-title: Targeting latency-associated peptide promotes antitumor immunity
  publication-title: Sci. Immunol
– volume: 202
  start-page: 919
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib58
  article-title: Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050463
– volume: 110
  start-page: 19
  year: 2002
  ident: 10.1016/j.immuni.2019.03.024_bib23
  article-title: E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00801-2
– volume: 7
  start-page: 1118
  year: 2001
  ident: 10.1016/j.immuni.2019.03.024_bib61
  article-title: Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells
  publication-title: Nat. Med.
  doi: 10.1038/nm1001-1118
– volume: 8
  start-page: 504
  year: 2007
  ident: 10.1016/j.immuni.2019.03.024_bib70
  article-title: Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1451
– volume: 2
  start-page: 460
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib90
  article-title: Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1469
– volume: 179
  start-page: 71
  year: 2007
  ident: 10.1016/j.immuni.2019.03.024_bib139
  article-title: TGF-beta 1 regulates antigen-specific CD4+ T cell responses in the periphery
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.1.71
– volume: 172
  start-page: 7335
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib88
  article-title: Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.12.7335
– volume: 8
  start-page: 369
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib158
  article-title: TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.10.012
– volume: 7
  start-page: 1057
  year: 2006
  ident: 10.1016/j.immuni.2019.03.024_bib27
  article-title: Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1383
– volume: 160
  start-page: 233
  year: 1998
  ident: 10.1016/j.immuni.2019.03.024_bib130
  article-title: Identification of distinct regions of 5′ flanking DNA that mediate constitutive, IFN-gamma, STAT1, and TGF-beta-regulated expression of the class II transactivator gene
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.160.1.233
– volume: 21
  start-page: 491
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib9
  article-title: TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.07.020
– volume: 164
  start-page: 1015
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib37
  article-title: TGF-β Tumor Suppression through a Lethal EMT
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.009
– volume: 181
  start-page: 5194
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib10
  article-title: Cutting edge: Autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.8.5194
– volume: 18
  start-page: 1004
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib55
  article-title: Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3800
– volume: 37
  start-page: 524
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib165
  article-title: Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22977
– volume: 191
  start-page: 3232
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib11
  article-title: Blockade of TGF-β signaling greatly enhances the efficacy of TCR gene therapy of cancer
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1301270
– volume: 26
  start-page: 579
  year: 2007
  ident: 10.1016/j.immuni.2019.03.024_bib94
  article-title: T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.03.014
– volume: 166
  start-page: 21
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib119
  article-title: EMT: 2016
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.028
– volume: 100
  start-page: 4120
  year: 2003
  ident: 10.1016/j.immuni.2019.03.024_bib18
  article-title: Transforming growth factor β 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0730640100
– volume: 39
  start-page: 467
  year: 2007
  ident: 10.1016/j.immuni.2019.03.024_bib82
  article-title: SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion
  publication-title: Nat. Genet.
  doi: 10.1038/ng1997
– volume: 16
  start-page: 183
  year: 2009
  ident: 10.1016/j.immuni.2019.03.024_bib50
  article-title: Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.06.017
– volume: 189
  start-page: 231
  year: 1999
  ident: 10.1016/j.immuni.2019.03.024_bib56
  article-title: Transforming growth factor beta1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.189.2.231
– volume: 3
  start-page: 537
  year: 2003
  ident: 10.1016/j.immuni.2019.03.024_bib77
  article-title: A multigenic program mediating breast cancer metastasis to bone
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00132-6
– volume: 139
  start-page: 109
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib8
  article-title: Interleukin-21 (IL-21) synergizes with IL-2 to enhance T-cell receptor-induced human T-cell proliferation and counteracts IL-2/transforming growth factor-β-induced regulatory T-cell development
  publication-title: Immunology
  doi: 10.1111/imm.12061
– volume: 24
  start-page: 3036
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib44
  article-title: CD103+ Tumor-Resident CD8+ T Cells Are Associated with Improved Survival in Immunotherapy-Naïve Melanoma Patients and Expand Significantly During Anti-PD-1 Treatment
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-2257
– volume: 9
  start-page: 741
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib137
  article-title: Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02696-6
– volume: 19
  start-page: 192
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib145
  article-title: Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.12.022
– volume: 25
  start-page: 455
  year: 2006
  ident: 10.1016/j.immuni.2019.03.024_bib93
  article-title: Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.07.011
– volume: 9
  start-page: 4692
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib19
  article-title: TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06654-8
– volume: 23
  start-page: 1129
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib170
  article-title: GARP regulates the bioavailability and activation of TGFβ
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-12-1018
– volume: 454
  start-page: 56
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib38
  article-title: SMAD proteins control DROSHA-mediated microRNA maturation
  publication-title: Nature
  doi: 10.1038/nature07086
– volume: 87
  start-page: 3758
  year: 1990
  ident: 10.1016/j.immuni.2019.03.024_bib129
  article-title: Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.10.3758
– volume: 20
  start-page: 70
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib169
  article-title: The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.10.002
– volume: 5
  start-page: 1720
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib179
  article-title: Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201302524
– volume: 32
  year: 2014
  ident: 10.1016/j.immuni.2019.03.024_bib46
  article-title: A phase 2 study of a novel transforming growth factor-beta (TGF-β1) receptor I kinase inhibitor, LY2157299 monohydrate (LY), in patients with advanced hepatocellular carcinoma (HCC)
  publication-title: J. Clin. Oncol.
  doi: 10.1200/jco.2014.32.3_suppl.lba173
– volume: 21
  start-page: 1350
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib64
  article-title: The consensus molecular subtypes of colorectal cancer
  publication-title: Nat. Med.
  doi: 10.1038/nm.3967
– volume: 2
  start-page: 373
  year: 1995
  ident: 10.1016/j.immuni.2019.03.024_bib172
  article-title: Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand
  publication-title: Immunity
  doi: 10.1016/1074-7613(95)90145-0
– volume: 24
  start-page: 575
  year: 2006
  ident: 10.1016/j.immuni.2019.03.024_bib180
  article-title: Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.03.016
– volume: 383
  start-page: 691
  year: 1996
  ident: 10.1016/j.immuni.2019.03.024_bib26
  article-title: A transcriptional partner for MAD proteins in TGF-beta signalling
  publication-title: Nature
  doi: 10.1038/383691a0
– volume: 93
  start-page: 1159
  year: 1998
  ident: 10.1016/j.immuni.2019.03.024_bib33
  article-title: Thrombospondin-1 is a major activator of TGF-beta1 in vivo
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81460-9
– volume: 133
  start-page: 66
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib122
  article-title: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.046
– volume: 9
  start-page: 1831
  year: 1995
  ident: 10.1016/j.immuni.2019.03.024_bib138
  article-title: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.15.1831
– volume: 280
  start-page: 5491
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib116
  article-title: Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C400503200
– volume: 10
  start-page: 554
  year: 2010
  ident: 10.1016/j.immuni.2019.03.024_bib48
  article-title: The polarization of immune cells in the tumour environment by TGFbeta
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2808
– volume: 277
  start-page: 24571
  year: 2002
  ident: 10.1016/j.immuni.2019.03.024_bib75
  article-title: Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202561200
– volume: 10
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib15
  article-title: Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aak9702
– volume: 16
  start-page: 723
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib21
  article-title: Immunoregulation by members of the TGFβ superfamily
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.112
– volume: 39
  start-page: 916
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib4
  article-title: Induction of heart valve lesions by small-molecule ALK5 inhibitors
  publication-title: Toxicol. Pathol.
  doi: 10.1177/0192623311416259
– volume: 6
  start-page: 87
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib102
  article-title: Resident memory T cells, critical components in tumor immunology
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-018-0399-6
– volume: 198
  start-page: 1875
  year: 2003
  ident: 10.1016/j.immuni.2019.03.024_bib25
  article-title: Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20030152
– volume: 16
  start-page: 431
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib28
  article-title: Neutrophils in cancer: neutral no more
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.52
– volume: 73
  start-page: 2435
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib76
  article-title: Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3381
– volume: 441
  start-page: 1015
  year: 2006
  ident: 10.1016/j.immuni.2019.03.024_bib80
  article-title: Smad4 signalling in T cells is required for suppression of gastrointestinal cancer
  publication-title: Nature
  doi: 10.1038/nature04846
– volume: 2
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib51
  article-title: Targeting latency-associated peptide promotes antitumor immunity
  publication-title: Sci. Immunol
  doi: 10.1126/sciimmunol.aaj1738
– volume: 31
  start-page: 918
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib175
  article-title: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.09.002
– volume: 118
  start-page: 3573
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib113
  article-title: Non-Smad TGF-beta signals
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02554
– volume: 41
  start-page: 2000
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib136
  article-title: TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201041135
– volume: 40
  start-page: 595
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib20
  article-title: Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.02.017
– volume: 153
  start-page: 3514
  year: 1994
  ident: 10.1016/j.immuni.2019.03.024_bib141
  article-title: Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.153.8.3514
– volume: 362
  start-page: 952
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib96
  article-title: Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells
  publication-title: Science
  doi: 10.1126/science.aau2909
– volume: 206
  start-page: 51
  year: 2009
  ident: 10.1016/j.immuni.2019.03.024_bib34
  article-title: Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20081242
– volume: 40
  start-page: 296
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib99
  article-title: Structural determinants of Smad function in TGF-β signaling
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.03.012
– volume: 13
  start-page: 616
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib107
  article-title: TGFβ signalling in context
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3434
– volume: 147
  start-page: 577
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib162
  article-title: Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.044
– volume: 44
  start-page: 1127
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib29
  article-title: Transforming Growth Factor-β Signaling Guides the Differentiation of Innate Lymphoid Cells in Salivary Glands
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.03.007
– volume: 307
  start-page: 1603
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib121
  article-title: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity
  publication-title: Science
  doi: 10.1126/science.1105718
– volume: 103
  start-page: 197
  year: 1999
  ident: 10.1016/j.immuni.2019.03.024_bib178
  article-title: TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI3523
– volume: 9
  start-page: ra19
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib166
  article-title: TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aad1884
– volume: 13
  start-page: 1155
  year: 1993
  ident: 10.1016/j.immuni.2019.03.024_bib14
  article-title: Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site
  publication-title: Mol. Cell. Biol.
– volume: 14
  start-page: 162
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib153
  article-title: Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2499
– volume: 75
  start-page: 2232
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib164
  article-title: TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3511
– volume: 182
  start-page: 2795
  year: 2009
  ident: 10.1016/j.immuni.2019.03.024_bib43
  article-title: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0712671
– volume: 2
  start-page: 1174
  year: 2001
  ident: 10.1016/j.immuni.2019.03.024_bib163
  article-title: Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni730
– volume: 27
  start-page: 1218
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib53
  article-title: Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210741
– volume: 107
  start-page: 13063
  year: 2010
  ident: 10.1016/j.immuni.2019.03.024_bib83
  article-title: Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1002372107
– volume: 8
  start-page: a022053
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib68
  article-title: Signaling Receptors for TGF-β Family Members
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a022053
– volume: 22
  start-page: 571
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib16
  article-title: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.08.013
– volume: 171
  start-page: 231
  year: 1990
  ident: 10.1016/j.immuni.2019.03.024_bib3
  article-title: Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.171.1.231
– volume: 117
  start-page: 211
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib144
  article-title: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00298-3
– volume: 131
  start-page: 2584
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib95
  article-title: Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-β in breast cancer progression
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.27572
– volume: 32
  start-page: 12
  year: 2009
  ident: 10.1016/j.immuni.2019.03.024_bib112
  article-title: Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0b013e318189f13c
– volume: 25
  start-page: 129
  year: 2006
  ident: 10.1016/j.immuni.2019.03.024_bib110
  article-title: Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.04.015
– volume: 76
  start-page: 7106
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib111
  article-title: Surface Expression of TGFβ Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-1456
– volume: 52
  start-page: 777
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib72
  article-title: TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota
  publication-title: J. Gastroenterol.
  doi: 10.1007/s00535-017-1350-1
– volume: 174
  start-page: 156
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib133
  article-title: A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.027
– volume: 12
  start-page: 313
  year: 2007
  ident: 10.1016/j.immuni.2019.03.024_bib63
  article-title: Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.08.020
– volume: 158
  start-page: 1095
  year: 1997
  ident: 10.1016/j.immuni.2019.03.024_bib118
  article-title: TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.158.3.1095
– volume: 119
  start-page: 1208
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib109
  article-title: Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-018-0246-z
– volume: 179
  start-page: 1311
  year: 2007
  ident: 10.1016/j.immuni.2019.03.024_bib173
  article-title: Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200704042
– volume: 114
  start-page: E10161
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib152
  article-title: Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1710680114
– volume: 554
  start-page: 544
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib104
  article-title: TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells
  publication-title: Nature
  doi: 10.1038/nature25501
– volume: 101
  start-page: 15231
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib143
  article-title: Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0406771101
– volume: 26
  start-page: 3957
  year: 2007
  ident: 10.1016/j.immuni.2019.03.024_bib89
  article-title: TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601818
– volume: 90
  start-page: 4577
  year: 1993
  ident: 10.1016/j.immuni.2019.03.024_bib167
  article-title: Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.10.4577
– volume: 173
  start-page: 3093
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib174
  article-title: p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-beta-mediated G1 arrest through modulation of IL-2 responsiveness
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.5.3093
– volume: 90
  start-page: 770
  year: 1993
  ident: 10.1016/j.immuni.2019.03.024_bib86
  article-title: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.2.770
– volume: 9
  start-page: 632
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib98
  article-title: A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1607
– volume: 359
  start-page: 693
  year: 1992
  ident: 10.1016/j.immuni.2019.03.024_bib147
  article-title: Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease
  publication-title: Nature
  doi: 10.1038/359693a0
– volume: 115
  start-page: 66
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib149
  article-title: Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200519229
– volume: 5
  start-page: 3
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib52
  article-title: Myeloid-Derived Suppressor Cells
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-16-0297
– volume: 215
  start-page: 2725
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib79
  article-title: Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171491
– volume: 189
  start-page: 3878
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib135
  article-title: Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201029
– volume: 284
  start-page: 245
  year: 2009
  ident: 10.1016/j.immuni.2019.03.024_bib71
  article-title: Role of Ras signaling in the induction of snail by transforming growth factor-beta
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804777200
– volume: 98
  start-page: 2109
  year: 1996
  ident: 10.1016/j.immuni.2019.03.024_bib91
  article-title: Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI119017
– volume: 78
  start-page: 59
  year: 1994
  ident: 10.1016/j.immuni.2019.03.024_bib131
  article-title: Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90572-X
– volume: 18
  start-page: 621
  year: 2019
  ident: 10.1016/j.immuni.2019.03.024_bib140
  article-title: TGFβ Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-18-0558
– volume: 9
  start-page: 194
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib159
  article-title: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1549
– volume: 11
  start-page: e1001674
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib148
  article-title: TGF-β signalling is required for CD4+ T cell homeostasis but dispensable for regulatory T cell function
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001674
– volume: 185
  start-page: 842
  year: 2010
  ident: 10.1016/j.immuni.2019.03.024_bib155
  article-title: Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0904100
– volume: 13
  start-page: 23
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib176
  article-title: Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.12.004
– volume: 49
  start-page: 1132
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib117
  article-title: Simultaneous Loss of Both Atypical Protein Kinase C Genes in the Intestinal Epithelium Drives Serrated Intestinal Cancer by Impairing Immunosurveillance
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.09.013
– volume: 106
  start-page: 14978
  year: 2009
  ident: 10.1016/j.immuni.2019.03.024_bib132
  article-title: Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0809784106
– volume: 197
  start-page: 1689
  year: 2003
  ident: 10.1016/j.immuni.2019.03.024_bib22
  article-title: Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20021170
– volume: 12
  start-page: 171
  year: 2000
  ident: 10.1016/j.immuni.2019.03.024_bib60
  article-title: Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80170-3
– volume: 285
  start-page: 29039
  year: 2010
  ident: 10.1016/j.immuni.2019.03.024_bib106
  article-title: Smad2 positively regulates the generation of Th17 cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C110.155820
– volume: 65
  start-page: 1761
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib183
  article-title: Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-3169
– volume: 371
  start-page: 257
  year: 1994
  ident: 10.1016/j.immuni.2019.03.024_bib67
  article-title: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest
  publication-title: Nature
  doi: 10.1038/371257a0
– volume: 1
  start-page: e85974
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib31
  article-title: TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.85974
– volume: 165
  start-page: 723
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib5
  article-title: Integrin alphaVbeta6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200312172
– volume: 16
  start-page: 164
  year: 2010
  ident: 10.1016/j.immuni.2019.03.024_bib168
  article-title: Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor beta-insensitive CD8+ T cells
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-1758
– volume: 7
  start-page: 62
  year: 2019
  ident: 10.1016/j.immuni.2019.03.024_bib39
  article-title: α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-018-0493-9
– volume: 10
  start-page: a022293
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib81
  article-title: TGF-β1 Signaling and Tissue Fibrosis
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a022293
– volume: 13
  start-page: 667
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib181
  article-title: TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2319
– volume: 12
  start-page: 870
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib123
  article-title: Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2077
– volume: 47
  start-page: 320
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib17
  article-title: Stromal gene expression defines poor-prognosis subtypes in colorectal cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3225
– volume: 174
  start-page: 5950
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib97
  article-title: TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.10.5950
– volume: 174
  start-page: 5215
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib2
  article-title: TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.9.5215
– volume: 111
  start-page: 4203
  year: 2014
  ident: 10.1016/j.immuni.2019.03.024_bib40
  article-title: TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1319269111
– volume: 102
  start-page: 419
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib24
  article-title: Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0408197102
– volume: 134
  start-page: 137
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib78
  article-title: Regulation of Innate and Adaptive Immunity by TGFβ
  publication-title: Adv. Immunol.
  doi: 10.1016/bs.ai.2017.01.001
– volume: 43
  start-page: 1101
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib100
  article-title: T-box Transcription Factors Combine with the Cytokines TGF-β and IL-15 to Control Tissue-Resident Memory T Cell Fate
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.008
– volume: 172
  start-page: 4275
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib108
  article-title: Smad3 is essential for TGF-β 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.7.4275
– volume: 302
  start-page: 1041
  year: 2003
  ident: 10.1016/j.immuni.2019.03.024_bib127
  article-title: Control of effector CD8+ T cell function by the transcription factor Eomesodermin
  publication-title: Science
  doi: 10.1126/science.1090148
– volume: 24
  start-page: 2493
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib49
  article-title: Focal Irradiation and Systemic TGFβ Blockade in Metastatic Breast Cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-3322
– volume: 11
  start-page: 751
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib120
  article-title: The harmonies played by TGF-β in stem cell biology
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.11.001
– volume: 106
  start-page: 13445
  year: 2009
  ident: 10.1016/j.immuni.2019.03.024_bib160
  article-title: GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0901944106
– volume: 195
  start-page: 1499
  year: 2002
  ident: 10.1016/j.immuni.2019.03.024_bib62
  article-title: Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20012076
– volume: 106
  year: 2014
  ident: 10.1016/j.immuni.2019.03.024_bib157
  article-title: Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/dju124
– volume: 35
  start-page: 946
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib126
  article-title: Analysis of transforming growth factor-beta1-induced Ig germ-line gamma2b transcription and its implication for IgA isotype switching
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200425848
– volume: 39
  start-page: 687
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib182
  article-title: Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.019
– volume: 6
  start-page: 47
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib69
  article-title: Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-018-0356-4
– volume: 156
  start-page: 299
  year: 2002
  ident: 10.1016/j.immuni.2019.03.024_bib74
  article-title: Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200109037
– volume: 163
  start-page: 4013
  year: 1999
  ident: 10.1016/j.immuni.2019.03.024_bib84
  article-title: Beta 2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-beta 1 null mouse
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.7.4013
– volume: 313
  start-page: 1960
  year: 2006
  ident: 10.1016/j.immuni.2019.03.024_bib54
  article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome
  publication-title: Science
  doi: 10.1126/science.1129139
– volume: 9
  start-page: a022285
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib128
  article-title: TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a022285
– volume: 474
  start-page: 343
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib146
  article-title: Latent TGF-β structure and activation
  publication-title: Nature
  doi: 10.1038/nature10152
– volume: 2
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib134
  article-title: Platelets subvert T cell immunity against cancer via GARP-TGFβ axis
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aai7911
– volume: 172
  start-page: 5149
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib47
  article-title: Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.9.5149
– volume: 9
  start-page: a022236
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib142
  article-title: Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a022236
– volume: 123
  start-page: 3925
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib66
  article-title: Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI65745
– volume: 18
  start-page: 995
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib30
  article-title: SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3809
– volume: 3
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib154
  article-title: Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.122591
– volume: 19
  start-page: 419
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib36
  article-title: Contextual determinants of TGFβ action in development, immunity and cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0007-0
– volume: 47
  start-page: 312
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib73
  article-title: Stromal contribution to the colorectal cancer transcriptome
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3224
– volume: 15
  start-page: 309
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib85
  article-title: Cardiac Safety of TGF-β Receptor I Kinase Inhibitor LY2157299 Monohydrate in Cancer Patients in a First-in-Human Dose Study
  publication-title: Cardiovasc. Toxicol.
  doi: 10.1007/s12012-014-9297-4
– volume: 9
  start-page: e1003251
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib1
  article-title: Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003251
– volume: 9
  start-page: a022186
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib114
  article-title: TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a022186
– volume: 95
  start-page: 222
  year: 2019
  ident: 10.1016/j.immuni.2019.03.024_bib151
  article-title: Preclinical Evaluation of AZ12601011 and AZ12799734, Inhibitors of Transforming Growth Factor β Superfamily Type 1 Receptors
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.118.112946
– volume: 23
  start-page: 1239
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib6
  article-title: A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.04.007
– volume: 303
  start-page: 848
  year: 2004
  ident: 10.1016/j.immuni.2019.03.024_bib12
  article-title: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia
  publication-title: Science
  doi: 10.1126/science.1090922
– volume: 7
  start-page: 284ra56
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib35
  article-title: Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa1983
– volume: 10
  start-page: 1199
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib150
  article-title: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1780
– volume: 165
  start-page: 45
  year: 2016
  ident: 10.1016/j.immuni.2019.03.024_bib101
  article-title: Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.025
– volume: 121
  start-page: 4030
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib65
  article-title: Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI45114
– volume: 6
  start-page: 600
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib87
  article-title: Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1197
– volume: 201
  start-page: 1647
  year: 2005
  ident: 10.1016/j.immuni.2019.03.024_bib45
  article-title: TGF-beta-dependent CD103 expression by CD8(+) T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20041044
– volume: 35
  start-page: 123
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib41
  article-title: T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-β1 cytokine
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.04.019
– volume: 21
  start-page: 938
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib57
  article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers
  publication-title: Nat. Med.
  doi: 10.1038/nm.3909
– volume: 13
  start-page: 843
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib103
  article-title: TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2388
– volume: 3
  start-page: 936
  year: 2013
  ident: 10.1016/j.immuni.2019.03.024_bib124
  article-title: TGF-β signaling in myeloid cells is required for tumor metastasis
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-12-0527
– volume: 28
  start-page: 468
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib92
  article-title: Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.03.003
– volume: 318
  start-page: 716
  year: 2012
  ident: 10.1016/j.immuni.2019.03.024_bib59
  article-title: Epithelial cells utilize cortical actin/myosin to activate latent TGF-β through integrin α(v)β(6)-dependent physical force
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2012.01.020
– volume: 32
  start-page: 51
  year: 2014
  ident: 10.1016/j.immuni.2019.03.024_bib161
  article-title: TGF-β activation and function in immunity
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120257
– volume: 147
  start-page: 565
  year: 2011
  ident: 10.1016/j.immuni.2019.03.024_bib115
  article-title: Master transcription factors determine cell-type-specific responses to TGF-β signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.050
– volume: 453
  start-page: 236
  year: 2008
  ident: 10.1016/j.immuni.2019.03.024_bib184
  article-title: TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function
  publication-title: Nature
  doi: 10.1038/nature06878
– volume: 554
  start-page: 538
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib156
  article-title: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis
  publication-title: Nature
  doi: 10.1038/nature25492
– volume: 142
  start-page: 144
  year: 2010
  ident: 10.1016/j.immuni.2019.03.024_bib177
  article-title: TGF-beta signaling specifies axons during brain development
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.010
– volume: 25
  start-page: 441
  year: 2006
  ident: 10.1016/j.immuni.2019.03.024_bib105
  article-title: Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.07.012
– volume: 8
  start-page: 14649
  year: 2017
  ident: 10.1016/j.immuni.2019.03.024_bib42
  article-title: Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14649
– volume: 104
  start-page: 18169
  year: 2007
  ident: 10.1016/j.immuni.2019.03.024_bib171
  article-title: Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0703642104
– volume: 36
  start-page: 1128
  year: 2018
  ident: 10.1016/j.immuni.2019.03.024_bib13
  article-title: Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.74.3179
– volume: 12
  start-page: 7
  year: 2010
  ident: 10.1016/j.immuni.2019.03.024_bib32
  article-title: TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients
  publication-title: Neuro-oncol.
  doi: 10.1093/neuonc/nop009
– volume: 20
  start-page: 3130
  year: 2006
  ident: 10.1016/j.immuni.2019.03.024_bib7
  article-title: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.1478706
– volume: 6
  start-page: 6840
  year: 2015
  ident: 10.1016/j.immuni.2019.03.024_bib125
  article-title: Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7840
SSID ssj0014590
Score 2.7204313
SecondaryResourceType review_article
Snippet Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 924
SubjectTerms Adaptive Immunity
Animals
Antigens
Apoptosis
Breast cancer
Cancer
Cancer immunotherapy
Colorectal cancer
Cytokines
Dendritic Cells - immunology
Disease Progression
Epithelial-Mesenchymal Transition
Fibroblasts - immunology
Gastric cancer
Growth factors
Homeostasis
Humans
Immune system
Immunity
Immunity, Innate
Immunoglobulins
Immunological tolerance
Immunotherapy
Inflammation
Inflammatory diseases
Kidney cancer
Kinases
Laboratories
Ligands
Macrophages - immunology
Medical research
Melanoma
Metastasis
Mice, Knockout
Mutation
Neoplasms - immunology
Neutrophils - immunology
Pancreatic cancer
Prostate cancer
Proteins
Radiation therapy
Receptors, Transforming Growth Factor beta - physiology
Signal transduction
Signal Transduction - immunology
Signaling
T-Lymphocyte Subsets - immunology
Transforming Growth Factor beta - immunology
Transforming Growth Factor beta - physiology
Transforming growth factor-b
Tumor Escape
Tumor Microenvironment
Tumors
Title Transforming Growth Factor-β Signaling in Immunity and Cancer
URI https://dx.doi.org/10.1016/j.immuni.2019.03.024
https://www.ncbi.nlm.nih.gov/pubmed/30995507
https://www.proquest.com/docview/2210385408
https://www.proquest.com/docview/2211327489
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kongR39YXEbyGdrObTXoRtFirUg-2xd6W3WSjEUlF00P_lj_E3-Ts5gEeSsEcAtndwDA7u_MN8wK4oAE-qEfc2KfcZVpyV8lEu0mE-l2qmGnbeW7wyPtjdj_xJyvQrXJhTFhlefcXd7q9rcuRVsnN1keatoYmlBCNcJQhYxbYZtaUhTaJb3JdexKY32nXcYe4ukqfszFeqc3BMAFeRalTjy1ST4vgp1VDvS3YLPGjc1WQuA0rOtuBtaKj5HwH1gelr3wXLkcVJkXt5NyiuZ2_Oj3bXsf9-XaG6YvB4DiVZs6dpTCfOzKLna4RhM89GPduRt2-W3ZLcCNGeY7vJMADGvJAM9aOJO0kKlSR8lTCFJpJOuj4HtM84JoQLqWOFY7Ljs8kkTGjdB8a2TTTh-BQhihR42iCyotEKpQkiUOipQoSIglpAq2YJKKylLjpaPEuqpixN1GwVhjWijYVyNomuPVfH0UpjSXrg4r_4o9ICLztl_x5Um2XKI_kl_A8UwseAWrYhPN6Gg-T8ZDITE9ndg1a56YgTxMOim2uSaWIpU3xt6N_k3UMG-bL-KIIP4FG_jnTpwhpcnUGq1cPT88PZ1Z2fwEDIvUp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwEB0hEJRLVaCFbYEaCY7RrmPHyR5AaoHtLrBcWKS9uXbitKmqgCAI7W_R_-CbOnacSBwQEhI55GA70mg8nnmTGc8A7LIYH7QjQRYxEXCjRKBVboI8RfuudMaN6zw3PhfDS34yjaZz8K-5C2PTKr3ur3W609Z-pOu52b0uiu6FTSVEJxxlyLoFlPvMylMzu0e_7XZ_dISbvBeGg-PJ4TDwrQWClDNR4TuPUZoTERvOe6li_VwnOtWhzrlGn8LE_SjkRsTCUCqUMpnGcdWPuKIq4_YvKOr9BUQfsdUGo-n3NnTBo36vTXRE8pr7ei6prHCXPmxGWV1bNeTP2cPn8K6ze4MP8N4DVvKt5skKzJlyFRbrFpazVVga--D8GhxMGhCM5pD8QP---k0Grp9P8PhALopfFvTjVFGSkaOwmhFVZuTQSt7NR7h8Ex5-gvnyqjQbQBhHWGpwNEdrSVOdKJpnCTVKxzlVlHaANUySqa9dblto_JVNktofWbNWWtbKHpPI2g4E7VfXde2OF9bHDf_lExmUaF5e-HKz2S7pdcCtDENbfB4RcdKBnXYaT68NyajSXN25NZSFtgJQB9brbW5JZQjebbW5z68m6yu8G07GZ_JsdH76BZbtjA2EUbEJ89XNndlCPFXpbSe_BH6-9YH5D67IMVU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transforming+Growth+Factor-%CE%B2+Signaling+in+Immunity+and+Cancer&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Batlle%2C+Eduard&rft.au=Massagu%C3%A9%2C+Joan&rft.date=2019-04-16&rft.issn=1097-4180&rft.eissn=1097-4180&rft.volume=50&rft.issue=4&rft.spage=924&rft_id=info:doi/10.1016%2Fj.immuni.2019.03.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon