Transforming Growth Factor-β Signaling in Immunity and Cancer
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune su...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 50; no. 4; pp. 924 - 940 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.04.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Massagué and Batlle present an overview of the complex biology of the TGF-β family and, focusing on cancer, discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged in the clinic. |
---|---|
AbstractList | Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor. Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor. Massagué and Batlle present an overview of the complex biology of the TGF-β family and, focusing on cancer, discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged in the clinic. Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor. Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor. |
Author | Massagué, Joan Batlle, Eduard |
Author_xml | – sequence: 1 givenname: Eduard surname: Batlle fullname: Batlle, Eduard email: eduard.batlle@irbbarcelona.org organization: Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain – sequence: 2 givenname: Joan surname: Massagué fullname: Massagué, Joan email: j-massague@ski.mskcc.org organization: Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30995507$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1O3TAUha2Kqvy0O6hQpE46SbiOnTjuAAk9AUVC6qB0bDnODfVTYoPtULEtFsKa8OPBhEGZ2Jb9nXPlc_bJjvMOCflKoaJA26N1Zed5cbaqgcoKWAU1_0D2KEhRctrBzuYseClaynbJfoxrAMobCZ_ILgMpmwbEHjm-CtrF0YfZuuviPPh_6W9xpk3yoXx8KH7ba6enzZN1xcXzvHRfaDcUK-0Mhs_k46iniF9e9gPy5-z0avWzvPx1frE6uSwNZ23K6ygY7bpWIOdgNJNj3_Wmr_uR9y2VKGRTc2xFi5S2WuPQ53stG66pHjhjB-T71vcm-NsFY1KzjQanSTv0S1R1TSmrBe9kRr-9Qdd-CfkXzxSwruHQZerwhVr6GQd1E-ysw716TSYDP7aACT7GgKMyNulkvUtB20lRUJsa1Fpta1CbGhQwlWvIYv5G_Or_jux4K8Mc5Z3FoKKxmHMebECT1ODt_w2eAAOtoqE |
CitedBy_id | crossref_primary_10_1016_j_celrep_2022_111452 crossref_primary_10_1002_adma_202304328 crossref_primary_10_1002_jbm_b_34891 crossref_primary_10_1016_j_bcp_2022_114916 crossref_primary_10_1016_j_canlet_2022_215839 crossref_primary_10_1177_03946320231172080 crossref_primary_10_1152_ajpgi_00145_2019 crossref_primary_10_1111_imr_12978 crossref_primary_10_3390_cancers13215412 crossref_primary_10_3390_ijms21239120 crossref_primary_10_1093_jnen_nlac007 crossref_primary_10_1016_j_tranon_2025_102307 crossref_primary_10_1038_s41388_023_02668_9 crossref_primary_10_1016_j_trecan_2019_07_006 crossref_primary_10_1038_s41416_023_02552_z crossref_primary_10_1002_aisy_202100134 crossref_primary_10_1158_1078_0432_CCR_21_3750 crossref_primary_10_2147_CMAR_S351979 crossref_primary_10_3389_fgene_2020_00185 crossref_primary_10_1016_j_ygeno_2021_11_036 crossref_primary_10_1016_j_xcrm_2025_101992 crossref_primary_10_1016_j_isci_2024_110520 crossref_primary_10_3390_cancers11091221 crossref_primary_10_1016_j_heliyon_2024_e26804 crossref_primary_10_1016_j_prp_2025_155864 crossref_primary_10_1016_j_intimp_2024_112997 crossref_primary_10_1016_j_prp_2024_155120 crossref_primary_10_3389_fimmu_2024_1427784 crossref_primary_10_3389_fimmu_2023_1110070 crossref_primary_10_1039_D2TB01195F crossref_primary_10_3390_cancers13102500 crossref_primary_10_1016_j_jbc_2022_102843 crossref_primary_10_1136_jitc_2021_003519 crossref_primary_10_3390_cancers15041324 crossref_primary_10_3390_cancers15143592 crossref_primary_10_1093_neuonc_noab212 crossref_primary_10_1111_bjd_19421 crossref_primary_10_1136_jitc_2023_007441 crossref_primary_10_3389_fonc_2022_815437 crossref_primary_10_3390_cancers12040988 crossref_primary_10_3390_ijms21239138 crossref_primary_10_1016_j_trecan_2020_03_010 crossref_primary_10_1016_j_intimp_2024_112509 crossref_primary_10_1016_j_bbcan_2023_188945 crossref_primary_10_3389_fimmu_2021_705999 crossref_primary_10_3389_fcimb_2020_00049 crossref_primary_10_3390_cells9102218 crossref_primary_10_3389_fmolb_2021_697773 crossref_primary_10_3390_biom10020289 crossref_primary_10_1016_j_intimp_2024_111890 crossref_primary_10_1371_journal_pbio_3000591 crossref_primary_10_1172_JCI170490 crossref_primary_10_1080_21655979_2022_2075300 crossref_primary_10_1186_s12974_022_02557_0 crossref_primary_10_3390_cancers14071772 crossref_primary_10_3390_cells8090960 crossref_primary_10_1038_s41392_020_00341_1 crossref_primary_10_3389_fgene_2022_978988 crossref_primary_10_1016_j_yexcr_2021_112522 crossref_primary_10_3390_cancers14235930 crossref_primary_10_1016_j_cca_2025_120176 crossref_primary_10_3389_fnins_2022_917587 crossref_primary_10_1002_1878_0261_12773 crossref_primary_10_1007_s11538_024_01329_6 crossref_primary_10_1097_MD_0000000000032485 crossref_primary_10_3389_fonc_2021_716844 crossref_primary_10_1016_j_phymed_2023_154903 crossref_primary_10_1063_5_0250173 crossref_primary_10_1080_21655979_2021_1971029 crossref_primary_10_1016_j_biomaterials_2024_122944 crossref_primary_10_1002_1878_0261_12779 crossref_primary_10_1016_j_pharmthera_2022_108114 crossref_primary_10_1038_s41551_022_00977_0 crossref_primary_10_1155_2021_6675208 crossref_primary_10_1016_j_envres_2023_115990 crossref_primary_10_1002_adtp_202200179 crossref_primary_10_1152_ajpcell_00638_2023 crossref_primary_10_1021_acs_jnatprod_4c00317 crossref_primary_10_1084_jem_20211574 crossref_primary_10_1016_j_mvr_2024_104669 crossref_primary_10_2174_1381612828666220518102440 crossref_primary_10_3389_fimmu_2023_1278749 crossref_primary_10_3389_fimmu_2024_1344272 crossref_primary_10_1016_j_heliyon_2024_e33109 crossref_primary_10_1016_j_actbio_2021_07_051 crossref_primary_10_1016_j_celrep_2024_114270 crossref_primary_10_3389_fimmu_2023_1160340 crossref_primary_10_3389_fphar_2023_1285343 crossref_primary_10_1155_2024_4468145 crossref_primary_10_1016_j_ymthe_2023_09_015 crossref_primary_10_1016_j_cyto_2024_156833 crossref_primary_10_1038_s41698_021_00200_4 crossref_primary_10_1186_s12876_021_01869_4 crossref_primary_10_3389_fimmu_2023_1196970 crossref_primary_10_1038_s41568_024_00760_0 crossref_primary_10_1158_0008_5472_CAN_20_1692 crossref_primary_10_1002_advs_202400920 crossref_primary_10_1016_j_ebiom_2024_105228 crossref_primary_10_1016_j_immuni_2024_07_004 crossref_primary_10_1080_10985549_2023_2205344 crossref_primary_10_1016_j_canlet_2020_05_035 crossref_primary_10_1042_CS20210886 crossref_primary_10_1016_j_actbio_2022_10_024 crossref_primary_10_1038_s41467_023_39035_x crossref_primary_10_14814_phy2_16124 crossref_primary_10_1007_s10142_020_00765_6 crossref_primary_10_3390_cancers12113177 crossref_primary_10_1016_j_trecan_2022_06_008 crossref_primary_10_1515_med_2020_0147 crossref_primary_10_1038_s41577_022_00777_2 crossref_primary_10_1002_ctm2_1141 crossref_primary_10_1007_s40944_021_00498_9 crossref_primary_10_3389_fgene_2022_850101 crossref_primary_10_1186_s12943_023_01885_w crossref_primary_10_1186_s12967_021_02952_w crossref_primary_10_1002_adhm_202303837 crossref_primary_10_1111_febs_16297 crossref_primary_10_1016_j_bcp_2025_116748 crossref_primary_10_1038_s41573_022_00415_5 crossref_primary_10_3389_fphar_2024_1382256 crossref_primary_10_1186_s13046_021_01960_4 crossref_primary_10_1200_PO_20_00456 crossref_primary_10_1080_17460441_2022_2114454 crossref_primary_10_1016_j_intimp_2024_112797 crossref_primary_10_3389_fonc_2021_659963 crossref_primary_10_3390_ijms23147627 crossref_primary_10_1016_j_cytogfr_2024_10_006 crossref_primary_10_1158_1535_7163_MCT_20_0944 crossref_primary_10_1016_j_carbpol_2021_118490 crossref_primary_10_1186_s12943_024_02137_1 crossref_primary_10_3389_fcell_2021_717601 crossref_primary_10_3389_fimmu_2020_00311 crossref_primary_10_3390_life12091381 crossref_primary_10_1172_JCI183366 crossref_primary_10_3390_jpm14090894 crossref_primary_10_1007_s11010_025_05241_y crossref_primary_10_1016_j_bmcl_2022_128979 crossref_primary_10_1016_j_jbc_2022_101717 crossref_primary_10_1111_cas_15365 crossref_primary_10_1186_s12967_025_06260_5 crossref_primary_10_3390_cancers13020343 crossref_primary_10_1002_1878_0261_13614 crossref_primary_10_1155_2021_4093426 crossref_primary_10_3389_fonc_2023_1170893 crossref_primary_10_1016_j_bbrep_2022_101369 crossref_primary_10_3389_fimmu_2020_631713 crossref_primary_10_1016_j_ebiom_2022_103941 crossref_primary_10_1016_j_mam_2023_101191 crossref_primary_10_1007_s12015_021_10137_7 crossref_primary_10_1038_s41568_023_00578_2 crossref_primary_10_1182_bloodadvances_2023011632 crossref_primary_10_3389_fgene_2022_842975 crossref_primary_10_1080_07853890_2024_2439539 crossref_primary_10_1016_j_ecoenv_2023_115768 crossref_primary_10_1016_j_canlet_2024_217115 crossref_primary_10_12677_acm_2025_152546 crossref_primary_10_1155_2022_8700372 crossref_primary_10_3389_fimmu_2023_911368 crossref_primary_10_3389_fonc_2021_624421 crossref_primary_10_3390_ijms24010147 crossref_primary_10_1038_s41598_022_20162_2 crossref_primary_10_3389_fonc_2024_1376551 crossref_primary_10_1016_j_cell_2022_02_015 crossref_primary_10_1007_s10549_024_07592_4 crossref_primary_10_1016_j_acthis_2024_152171 crossref_primary_10_3390_biomedicines11010163 crossref_primary_10_3390_cancers16122270 crossref_primary_10_3390_cancers17010097 crossref_primary_10_1016_j_semcancer_2023_08_002 crossref_primary_10_1177_09603271231159799 crossref_primary_10_1016_j_bone_2020_115549 crossref_primary_10_1093_nsr_nwac169 crossref_primary_10_3389_fonc_2022_900832 crossref_primary_10_1128_MCB_00085_21 crossref_primary_10_3390_ijms23010375 crossref_primary_10_1021_acsnano_1c02103 crossref_primary_10_1089_hum_2020_078 crossref_primary_10_1038_s44319_024_00075_z crossref_primary_10_1016_j_ijrobp_2023_09_020 crossref_primary_10_1038_s41419_023_05949_z crossref_primary_10_1016_j_semcancer_2021_11_005 crossref_primary_10_3389_fimmu_2022_942468 crossref_primary_10_1038_s41418_021_00740_z crossref_primary_10_1136_jitc_2020_001469 crossref_primary_10_3390_cancers17050749 crossref_primary_10_1016_j_canlet_2024_217347 crossref_primary_10_3390_cancers13122995 crossref_primary_10_3389_fimmu_2022_1026070 crossref_primary_10_1038_s41586_024_08279_y crossref_primary_10_1080_2162402X_2024_2356942 crossref_primary_10_3390_ijms24065954 crossref_primary_10_1007_s00018_021_03873_z crossref_primary_10_3390_ijms241512412 crossref_primary_10_1016_j_artmed_2024_102871 crossref_primary_10_1111_cns_13714 crossref_primary_10_1016_j_trecan_2019_09_009 crossref_primary_10_1016_j_omto_2021_02_001 crossref_primary_10_1136_jitc_2021_003113 crossref_primary_10_1016_j_bbrep_2024_101902 crossref_primary_10_1016_j_phymed_2025_156468 crossref_primary_10_1186_s43556_022_00109_9 crossref_primary_10_1016_j_fsi_2024_109744 crossref_primary_10_1111_cas_14639 crossref_primary_10_1038_s41419_023_06215_y crossref_primary_10_1053_j_gastro_2021_04_064 crossref_primary_10_3389_fimmu_2020_01214 crossref_primary_10_1002_JLB_3RU0222_087RRR crossref_primary_10_1021_acsptsci_4c00021 crossref_primary_10_3389_fimmu_2022_933779 crossref_primary_10_1186_s12967_024_05456_5 crossref_primary_10_1016_j_addr_2022_114301 crossref_primary_10_1016_j_pharmthera_2023_108458 crossref_primary_10_1016_j_isci_2024_110938 crossref_primary_10_1016_j_ebiom_2024_105026 crossref_primary_10_18632_aging_202397 crossref_primary_10_1002_ijc_33859 crossref_primary_10_1016_j_trecan_2020_02_020 crossref_primary_10_1002_advs_202207697 crossref_primary_10_1016_j_jtho_2023_06_012 crossref_primary_10_3389_fimmu_2024_1337129 crossref_primary_10_3390_ijms232415827 crossref_primary_10_1186_s13045_022_01298_0 crossref_primary_10_3390_cancers13163960 crossref_primary_10_1016_j_ncrna_2024_01_013 crossref_primary_10_3892_ijo_2022_5450 crossref_primary_10_1038_s41467_023_37727_y crossref_primary_10_4049_immunohorizons_2100020 crossref_primary_10_1136_gutjnl_2022_327608 crossref_primary_10_1242_bio_055103 crossref_primary_10_12677_acm_2025_151221 crossref_primary_10_1136_jitc_2024_009720 crossref_primary_10_53469_jcmp_2024_06_06__13 crossref_primary_10_3389_fimmu_2023_1291530 crossref_primary_10_3390_biology13100802 crossref_primary_10_3389_fonc_2021_680985 crossref_primary_10_3389_fcell_2022_812262 crossref_primary_10_3390_jcm10173900 crossref_primary_10_1089_hum_2019_352 crossref_primary_10_1007_s00262_019_02435_4 crossref_primary_10_1016_j_cllc_2022_08_009 crossref_primary_10_1016_j_scitotenv_2024_173448 crossref_primary_10_4103_apjtb_apjtb_782_23 crossref_primary_10_1016_j_biopha_2024_116783 crossref_primary_10_1038_s41388_024_03118_w crossref_primary_10_1016_j_brainres_2021_147711 crossref_primary_10_1002_ctm2_1552 crossref_primary_10_1016_j_neuroscience_2020_04_015 crossref_primary_10_1038_s41467_025_56796_9 crossref_primary_10_1080_1744666X_2024_2326626 crossref_primary_10_4252_wjsc_v14_i1_41 crossref_primary_10_1007_s12094_022_02932_6 crossref_primary_10_3390_brainsci13060851 crossref_primary_10_1007_s12672_022_00532_y crossref_primary_10_1007_s10753_024_02056_9 crossref_primary_10_3389_fcvm_2022_882027 crossref_primary_10_1152_ajpcell_00201_2023 crossref_primary_10_1186_s13045_021_01045_x crossref_primary_10_1360_TB_2024_0326 crossref_primary_10_3389_fonc_2023_1228281 crossref_primary_10_3390_cancers15143739 crossref_primary_10_1038_s43018_024_00807_z crossref_primary_10_3390_biomedicines12102397 crossref_primary_10_15407_exp_oncology_2024_01_022 crossref_primary_10_1007_s12282_024_01557_7 crossref_primary_10_1002_cam4_6896 crossref_primary_10_1186_s12014_021_09330_0 crossref_primary_10_1016_j_oraloncology_2023_106570 crossref_primary_10_1080_28354311_2023_2264176 crossref_primary_10_1053_j_gastro_2020_09_011 crossref_primary_10_1016_j_cellsig_2025_111673 crossref_primary_10_1182_bloodadvances_2018030478 crossref_primary_10_1007_s12026_022_09267_y crossref_primary_10_1186_s12967_023_04374_2 crossref_primary_10_1002_advs_202412282 crossref_primary_10_1093_jmcb_mjad068 crossref_primary_10_3390_biom9110743 crossref_primary_10_1371_journal_pone_0281637 crossref_primary_10_1016_j_immuni_2019_12_010 crossref_primary_10_1016_j_procbio_2023_05_024 crossref_primary_10_3390_cells11030349 crossref_primary_10_1007_s00277_024_05843_4 crossref_primary_10_1038_s41389_023_00474_2 crossref_primary_10_1002_cbin_12226 crossref_primary_10_1007_s00262_020_02525_8 crossref_primary_10_1002_cti2_1445 crossref_primary_10_3390_ijms222413311 crossref_primary_10_1007_s10238_024_01394_0 crossref_primary_10_1016_j_intimp_2024_113253 crossref_primary_10_3389_fimmu_2022_1066336 crossref_primary_10_3389_fimmu_2022_1033642 crossref_primary_10_1007_s00428_021_03256_6 crossref_primary_10_1016_j_bbcan_2024_189220 crossref_primary_10_1016_j_tim_2021_05_005 crossref_primary_10_3389_fonc_2021_642030 crossref_primary_10_1016_j_ccell_2024_11_011 crossref_primary_10_1016_j_addr_2021_05_001 crossref_primary_10_1007_s00262_021_02886_8 crossref_primary_10_1038_s41591_025_03575_0 crossref_primary_10_1124_jpet_123_001970 crossref_primary_10_3389_fimmu_2020_586126 crossref_primary_10_1155_2020_8216541 crossref_primary_10_1038_s41423_023_01120_y crossref_primary_10_18632_aging_203682 crossref_primary_10_3389_fimmu_2022_865975 crossref_primary_10_12677_PI_2023_124039 crossref_primary_10_1038_s41423_020_00593_5 crossref_primary_10_1016_j_jare_2023_04_018 crossref_primary_10_1038_s41568_021_00413_6 crossref_primary_10_1007_s10528_023_10591_7 crossref_primary_10_1007_s10565_024_09840_1 crossref_primary_10_1080_2162402X_2024_2330194 crossref_primary_10_1111_jnc_16037 crossref_primary_10_1016_j_isci_2021_103347 crossref_primary_10_3389_fimmu_2022_873116 crossref_primary_10_1038_s42003_021_01786_y crossref_primary_10_3390_ijms24119418 crossref_primary_10_1016_j_bcp_2021_114697 crossref_primary_10_4103_2221_1691_314052 crossref_primary_10_1038_s41467_025_55876_0 crossref_primary_10_1038_s41573_022_00615_z crossref_primary_10_1080_19336950_2021_2004758 crossref_primary_10_1042_CS20240450 crossref_primary_10_3389_fonc_2022_849024 crossref_primary_10_1038_s42003_025_07595_x crossref_primary_10_3390_biomedicines9020213 crossref_primary_10_1186_s12916_021_01925_6 crossref_primary_10_3389_fgene_2022_876588 crossref_primary_10_1016_j_isci_2024_110994 crossref_primary_10_1158_1078_0432_CCR_19_2840 crossref_primary_10_1016_j_jaci_2021_01_026 crossref_primary_10_2147_IJN_S505539 crossref_primary_10_3389_fimmu_2021_763877 crossref_primary_10_1016_j_isci_2024_110750 crossref_primary_10_3390_cancers13122924 crossref_primary_10_1007_s13402_020_00523_7 crossref_primary_10_1158_1078_0432_CCR_22_2601 crossref_primary_10_1016_j_ijbiomac_2024_133594 crossref_primary_10_1186_s12920_024_01932_5 crossref_primary_10_1016_j_isci_2022_104702 crossref_primary_10_1002_mc_23715 crossref_primary_10_1080_07853890_2023_2279235 crossref_primary_10_3389_or_2024_1444008 crossref_primary_10_1016_j_bbrc_2019_11_039 crossref_primary_10_3390_biomedicines10102498 crossref_primary_10_1016_j_critrevonc_2025_104628 crossref_primary_10_3389_fimmu_2021_761450 crossref_primary_10_3390_cancers12071875 crossref_primary_10_1016_j_cellsig_2019_109470 crossref_primary_10_1016_j_cellsig_2023_111027 crossref_primary_10_1038_s41577_023_00965_8 crossref_primary_10_3389_fimmu_2022_993624 crossref_primary_10_1007_s00436_022_07679_1 crossref_primary_10_1042_BSR20201885 crossref_primary_10_3389_fcell_2020_580140 crossref_primary_10_3389_fonc_2022_908156 crossref_primary_10_3390_molecules27248851 crossref_primary_10_1126_sciadv_adf9915 crossref_primary_10_1016_j_heliyon_2024_e24601 crossref_primary_10_1038_s41467_024_50967_w crossref_primary_10_1186_s13014_025_02617_8 crossref_primary_10_1096_fba_2020_00015 crossref_primary_10_1016_j_it_2020_03_003 crossref_primary_10_1016_j_bmcl_2022_128552 crossref_primary_10_2217_pme_2023_0103 crossref_primary_10_2147_JIR_S321852 crossref_primary_10_1038_s41598_022_09793_7 crossref_primary_10_18632_aging_203677 crossref_primary_10_3390_ijms242417282 crossref_primary_10_1093_jbmrpl_ziae021 crossref_primary_10_3389_fcell_2020_00672 crossref_primary_10_1038_s41388_019_1043_8 crossref_primary_10_1038_s44303_024_00022_6 crossref_primary_10_3389_fgene_2022_818378 crossref_primary_10_3389_fmed_2022_908752 crossref_primary_10_1038_s41392_022_00944_w crossref_primary_10_1038_s41417_024_00735_1 crossref_primary_10_3389_fonc_2021_788365 crossref_primary_10_1016_j_omton_2025_200936 crossref_primary_10_3389_fcell_2021_756458 crossref_primary_10_1038_s41416_024_02686_8 crossref_primary_10_1126_sciimmunol_abi4613 crossref_primary_10_1016_j_biopha_2023_115355 crossref_primary_10_1002_adma_202204034 crossref_primary_10_2147_IJN_S480168 crossref_primary_10_1007_s12035_023_03862_2 crossref_primary_10_1038_s41467_019_12241_2 crossref_primary_10_1021_acsami_1c02567 crossref_primary_10_1007_s13577_020_00427_6 crossref_primary_10_3389_fonc_2022_1054564 crossref_primary_10_3390_ijms23052617 crossref_primary_10_3389_fimmu_2023_1108682 crossref_primary_10_1186_s12943_021_01428_1 crossref_primary_10_1016_j_gene_2022_146677 crossref_primary_10_1200_EDBK_278853 crossref_primary_10_1016_j_tibs_2022_06_001 crossref_primary_10_3389_fcell_2020_00162 crossref_primary_10_1016_j_intimp_2022_109462 crossref_primary_10_1155_2022_2630351 crossref_primary_10_3390_biomedicines10123292 crossref_primary_10_1016_j_canlet_2021_02_013 crossref_primary_10_3390_cancers12102991 crossref_primary_10_1053_j_gastro_2023_05_038 crossref_primary_10_1038_s41375_021_01464_2 crossref_primary_10_1055_s_0043_1776127 crossref_primary_10_2174_1573406417666210628144849 crossref_primary_10_3390_biomedicines9040374 crossref_primary_10_1186_s12967_024_05534_8 crossref_primary_10_2139_ssrn_4114030 crossref_primary_10_1007_s11033_021_06640_2 crossref_primary_10_1016_j_bioorg_2024_107274 crossref_primary_10_2217_pme_2020_0003 crossref_primary_10_3389_fimmu_2022_946209 crossref_primary_10_30895_1991_2919_2022_12_4_425_443 crossref_primary_10_1016_j_biomaterials_2021_121010 crossref_primary_10_1182_blood_2023022738 crossref_primary_10_3892_ol_2021_12437 crossref_primary_10_1002_advs_202300708 crossref_primary_10_1080_2162402X_2022_2146860 crossref_primary_10_3390_antiox11040673 crossref_primary_10_3389_fimmu_2022_932055 crossref_primary_10_3390_cancers11081197 crossref_primary_10_1038_s41580_023_00638_3 crossref_primary_10_1186_s13045_021_01155_6 crossref_primary_10_3389_fimmu_2020_01295 crossref_primary_10_3390_microorganisms11020461 crossref_primary_10_3390_cancers13153897 crossref_primary_10_3389_fimmu_2023_1200201 crossref_primary_10_3389_fimmu_2022_824946 crossref_primary_10_1111_bph_16505 crossref_primary_10_1038_s41392_020_0194_y crossref_primary_10_3389_fcell_2021_667645 crossref_primary_10_3389_fcell_2022_837849 crossref_primary_10_3390_cancers13040821 crossref_primary_10_1016_j_canlet_2024_216902 crossref_primary_10_3389_fimmu_2021_654877 crossref_primary_10_3390_cells10010100 crossref_primary_10_1073_pnas_1919764117 crossref_primary_10_3390_ijms241310643 crossref_primary_10_1038_s41563_023_01515_2 crossref_primary_10_1111_jcmm_16308 crossref_primary_10_3390_ijms25189914 crossref_primary_10_1038_s41575_021_00568_5 crossref_primary_10_1002_jcp_29928 crossref_primary_10_1039_D0NR08050K crossref_primary_10_1080_15384101_2022_2109105 crossref_primary_10_1016_j_biopha_2024_116938 crossref_primary_10_1016_j_smim_2021_101474 crossref_primary_10_1038_s41577_021_00568_1 crossref_primary_10_1038_s41392_020_00436_9 crossref_primary_10_1016_j_cej_2022_137147 crossref_primary_10_1016_j_smim_2021_101479 crossref_primary_10_1080_14728222_2020_1744568 crossref_primary_10_1007_s00432_022_04162_3 crossref_primary_10_1042_BCJ20210233 crossref_primary_10_3389_fimmu_2022_979116 crossref_primary_10_1016_j_cbi_2022_110289 crossref_primary_10_1038_s41577_022_00796_z crossref_primary_10_3390_ijms23073778 crossref_primary_10_3389_fimmu_2024_1320779 crossref_primary_10_3389_fimmu_2023_1256453 crossref_primary_10_3390_ijms24098267 crossref_primary_10_1007_s11845_023_03357_y crossref_primary_10_1016_j_cytogfr_2024_07_006 crossref_primary_10_1002_jnr_25255 crossref_primary_10_1016_j_semcancer_2023_11_009 crossref_primary_10_1002_cac2_12416 crossref_primary_10_1038_s41569_021_00646_w crossref_primary_10_3390_cancers13195032 crossref_primary_10_3389_fonc_2022_798680 crossref_primary_10_1158_2326_6066_CIR_21_0030 crossref_primary_10_1016_j_celrep_2021_109309 crossref_primary_10_1007_s13577_024_01112_8 crossref_primary_10_3390_ijms25137275 crossref_primary_10_1021_acsami_1c02116 crossref_primary_10_3389_fonc_2021_599719 crossref_primary_10_2174_1568009623666230414140609 crossref_primary_10_1038_s41388_024_03030_3 crossref_primary_10_1172_JCI152394 crossref_primary_10_1097_CM9_0000000000002460 crossref_primary_10_1111_imr_13122 crossref_primary_10_3390_cells11223541 crossref_primary_10_3390_ijms222312613 crossref_primary_10_1002_advs_202308892 crossref_primary_10_3390_molecules27113513 crossref_primary_10_3390_ijms22010238 crossref_primary_10_1038_s41467_021_23048_5 crossref_primary_10_1002_eji_202350460 crossref_primary_10_1126_sciadv_abq3951 crossref_primary_10_1016_j_ejmech_2021_113356 crossref_primary_10_1038_s41416_023_02184_3 crossref_primary_10_1186_s13046_023_02833_8 crossref_primary_10_1002_eji_202350465 crossref_primary_10_3389_fimmu_2022_784479 crossref_primary_10_3390_cancers14030490 crossref_primary_10_1016_j_tranon_2024_101938 crossref_primary_10_3390_cancers14112709 crossref_primary_10_1111_jcmm_16366 crossref_primary_10_3390_cells12091315 crossref_primary_10_2174_0109298673277243231108071620 crossref_primary_10_1007_s00262_020_02676_8 crossref_primary_10_1016_j_exer_2024_110168 crossref_primary_10_1007_s13346_021_01036_y crossref_primary_10_1016_j_pharmthera_2025_108810 crossref_primary_10_1038_s41598_024_72989_6 crossref_primary_10_3389_fcell_2021_691937 crossref_primary_10_1021_acsanm_4c06867 crossref_primary_10_3389_fimmu_2021_810286 crossref_primary_10_2147_JIR_S503326 crossref_primary_10_3390_immuno1030010 crossref_primary_10_1016_j_cmet_2022_07_010 crossref_primary_10_1016_j_canlet_2024_216953 crossref_primary_10_1158_2159_8290_CD_19_1536 crossref_primary_10_1002_path_5655 crossref_primary_10_3389_fcell_2021_754069 crossref_primary_10_1111_cbdd_14333 crossref_primary_10_5847_wjem_j_1920_8642_2022_068 crossref_primary_10_1002_smll_202410503 crossref_primary_10_1038_s41598_024_73736_7 crossref_primary_10_3389_fimmu_2019_02689 crossref_primary_10_1158_0008_5472_CAN_22_3023 crossref_primary_10_3390_biomedicines10010163 crossref_primary_10_1111_bph_15457 crossref_primary_10_2174_1573408019666221107145705 crossref_primary_10_3390_cells8101143 crossref_primary_10_3389_fimmu_2022_973881 crossref_primary_10_3389_fphar_2022_1069204 crossref_primary_10_1016_j_jhep_2024_01_005 crossref_primary_10_3389_fphar_2023_1273987 crossref_primary_10_1016_j_actbio_2021_03_051 crossref_primary_10_1155_2022_3140263 crossref_primary_10_1007_s00277_024_05619_w crossref_primary_10_1016_S1875_5364_21_60078_X crossref_primary_10_3389_fonc_2022_843880 crossref_primary_10_1158_0008_5472_CAN_22_3260 crossref_primary_10_3390_diagnostics13010011 crossref_primary_10_7554_eLife_83527 crossref_primary_10_1038_s41467_020_19408_2 crossref_primary_10_1038_s41467_024_51442_2 crossref_primary_10_1016_j_cell_2024_09_003 crossref_primary_10_1158_2159_8290_CD_20_1243 crossref_primary_10_1186_s13045_021_01164_5 crossref_primary_10_1186_s12967_020_02328_6 crossref_primary_10_3390_biology14010027 crossref_primary_10_1007_s00262_021_02987_4 crossref_primary_10_1186_s12967_021_03146_0 crossref_primary_10_1016_j_advnut_2023_05_007 crossref_primary_10_3892_etm_2024_12590 crossref_primary_10_1016_j_pharmthera_2024_108757 crossref_primary_10_14348_molcells_2022_0067 crossref_primary_10_1038_s41598_020_63061_0 crossref_primary_10_3389_fonc_2021_666826 crossref_primary_10_3389_fimmu_2024_1345838 crossref_primary_10_1038_s41586_024_08305_z crossref_primary_10_3389_fphar_2022_949608 crossref_primary_10_3390_cancers13040870 crossref_primary_10_1172_JCI176390 crossref_primary_10_1002_cam4_3627 crossref_primary_10_1038_s41389_022_00398_3 crossref_primary_10_1080_2162402X_2024_2432728 crossref_primary_10_1186_s13058_022_01590_4 crossref_primary_10_1038_s41467_023_37515_8 crossref_primary_10_1007_s11605_022_05517_4 crossref_primary_10_1016_j_bbrc_2024_149686 crossref_primary_10_1016_j_semcancer_2023_10_004 crossref_primary_10_3390_cells9040988 crossref_primary_10_1002_cti2_1286 crossref_primary_10_1016_j_jid_2020_11_007 crossref_primary_10_1038_s42003_024_06582_y crossref_primary_10_1002_chem_202400425 crossref_primary_10_1080_19768354_2020_1808529 crossref_primary_10_1186_s12943_022_01569_x crossref_primary_10_1007_s00018_020_03572_1 crossref_primary_10_1016_j_celrep_2023_113362 crossref_primary_10_1038_s41388_023_02674_x crossref_primary_10_1016_j_ab_2020_113828 crossref_primary_10_1073_pnas_2417724121 crossref_primary_10_1089_aipo_2023_0008 crossref_primary_10_3389_fimmu_2022_930947 crossref_primary_10_1038_s41388_020_1238_z crossref_primary_10_1038_s41568_024_00785_5 crossref_primary_10_1038_s42003_021_02323_7 crossref_primary_10_1016_j_addr_2021_113974 crossref_primary_10_1111_cns_14489 crossref_primary_10_3389_fimmu_2022_813888 crossref_primary_10_1038_s41421_022_00417_y crossref_primary_10_3892_etm_2020_8674 crossref_primary_10_1016_j_ejphar_2023_175678 crossref_primary_10_1007_s00262_023_03479_3 crossref_primary_10_3389_fimmu_2024_1479399 crossref_primary_10_1016_j_addr_2021_113971 crossref_primary_10_3390_cancers14102541 crossref_primary_10_1016_j_cell_2020_03_039 crossref_primary_10_1002_jev2_12294 crossref_primary_10_7555_JBR_37_20230313 crossref_primary_10_1136_jitc_2022_005491 crossref_primary_10_3389_fonc_2021_712788 crossref_primary_10_1016_j_jtct_2024_11_017 crossref_primary_10_1096_fj_202101956RR crossref_primary_10_3390_cancers15082260 crossref_primary_10_17816_uroved112576 crossref_primary_10_3389_fendo_2022_988295 crossref_primary_10_1146_annurev_immunol_093019_010426 crossref_primary_10_1158_2326_6066_CIR_22_0115 crossref_primary_10_3389_fimmu_2023_1330099 crossref_primary_10_1007_s10555_025_10242_w crossref_primary_10_1080_07391102_2024_2329288 crossref_primary_10_1016_j_compbiomed_2024_107981 crossref_primary_10_1186_s12885_024_12326_2 crossref_primary_10_3390_v15030777 crossref_primary_10_1016_j_jconrel_2025_113593 crossref_primary_10_3389_fimmu_2023_1214675 crossref_primary_10_1016_j_actbio_2023_04_001 crossref_primary_10_1186_s13059_022_02800_0 crossref_primary_10_1016_j_biopha_2023_114896 crossref_primary_10_1038_s41417_023_00638_7 crossref_primary_10_1038_s41388_025_03314_2 crossref_primary_10_1080_2162402X_2024_2338558 crossref_primary_10_1016_j_jare_2024_01_013 crossref_primary_10_1093_jleuko_qiad071 crossref_primary_10_1097_SLA_0000000000003833 crossref_primary_10_1038_s41586_020_2850_3 crossref_primary_10_3389_fimmu_2021_791924 crossref_primary_10_1016_j_jhep_2024_12_016 crossref_primary_10_1186_s12894_024_01569_7 crossref_primary_10_1042_BST20200208 crossref_primary_10_1080_09553002_2024_2442690 crossref_primary_10_2147_OTT_S314561 crossref_primary_10_1146_annurev_cancerbio_042920_104912 crossref_primary_10_3389_fonc_2022_1072739 crossref_primary_10_3390_ijms21239182 crossref_primary_10_1038_s41467_022_30614_y crossref_primary_10_1038_s41598_021_98966_x crossref_primary_10_1158_2767_9764_CRC_24_0310 crossref_primary_10_1016_j_biopha_2023_115976 crossref_primary_10_1136_jitc_2020_001798 crossref_primary_10_3389_fmolb_2022_991612 crossref_primary_10_1016_j_ejcb_2025_151482 crossref_primary_10_1016_j_intimp_2025_114484 crossref_primary_10_1177_15353702221085203 crossref_primary_10_1136_jitc_2021_002917 crossref_primary_10_1158_1535_7163_MCT_20_0891 crossref_primary_10_3390_cancers15102774 crossref_primary_10_1126_scisignal_aay8690 crossref_primary_10_1016_j_canlet_2024_217161 crossref_primary_10_1016_j_actbio_2024_12_061 crossref_primary_10_1002_jcla_24673 crossref_primary_10_1038_s41422_021_00574_x crossref_primary_10_1155_2024_3893671 crossref_primary_10_3389_fimmu_2022_1016646 crossref_primary_10_1016_j_jid_2023_07_011 crossref_primary_10_1016_j_mce_2022_111593 crossref_primary_10_3390_biomedicines12010191 crossref_primary_10_1016_j_ijbiomac_2023_128334 crossref_primary_10_3389_fcell_2021_729941 crossref_primary_10_3390_ph15101264 crossref_primary_10_1111_fcp_12517 crossref_primary_10_1158_1940_6207_CAPR_21_0531 crossref_primary_10_1038_s41385_021_00398_3 crossref_primary_10_3390_cancers12123650 crossref_primary_10_1186_s13045_020_00958_3 crossref_primary_10_3389_fonc_2022_905520 crossref_primary_10_1016_j_semcdb_2019_12_010 crossref_primary_10_3390_biomedicines9050579 crossref_primary_10_1002_advs_202408598 crossref_primary_10_1038_s41419_020_03197_z crossref_primary_10_2217_imt_2020_0066 crossref_primary_10_1038_s41571_020_0426_7 crossref_primary_10_1007_s13402_023_00773_1 crossref_primary_10_1182_blood_2022016200 crossref_primary_10_3390_biology12020297 crossref_primary_10_1093_jnen_nlae119 crossref_primary_10_3389_fimmu_2021_765044 crossref_primary_10_1021_acsnano_3c00295 crossref_primary_10_1016_j_neo_2021_07_007 crossref_primary_10_3892_ijo_2021_5264 crossref_primary_10_3389_fcvm_2022_1054690 crossref_primary_10_3389_fendo_2022_842587 crossref_primary_10_1097_PRS_0000000000010227 crossref_primary_10_2478_acb_2020_0004 crossref_primary_10_1177_09636897231220073 crossref_primary_10_1016_j_xcrm_2021_100473 crossref_primary_10_3390_ijerph20032455 crossref_primary_10_3892_ijo_2019_4938 crossref_primary_10_1016_j_dci_2023_104769 crossref_primary_10_1002_cai2_154 crossref_primary_10_1007_s12034_024_03355_5 crossref_primary_10_1136_jitc_2019_000422 crossref_primary_10_1016_j_ebiom_2024_105503 crossref_primary_10_2174_1381612828666220519150821 crossref_primary_10_3389_fimmu_2020_596841 crossref_primary_10_1016_j_annonc_2020_07_009 crossref_primary_10_3390_cancers13030433 crossref_primary_10_1016_j_it_2022_03_006 crossref_primary_10_1186_s13045_019_0829_z crossref_primary_10_1038_s43018_025_00909_2 crossref_primary_10_1038_s41598_023_47996_8 crossref_primary_10_1016_j_celrep_2024_115210 crossref_primary_10_1016_j_intimp_2024_112837 crossref_primary_10_1007_s13105_024_01041_y crossref_primary_10_1515_tjb_2024_0193 crossref_primary_10_3389_fmolb_2022_1027236 crossref_primary_10_1016_j_phymed_2023_154898 crossref_primary_10_1136_jitc_2019_000433 crossref_primary_10_3390_ijms232113128 crossref_primary_10_1016_j_apsb_2023_08_034 crossref_primary_10_1038_s41467_022_31762_x crossref_primary_10_3389_fonc_2022_1096717 crossref_primary_10_1016_j_biopha_2024_116930 crossref_primary_10_1016_j_tice_2024_102530 crossref_primary_10_1016_j_ijbiomac_2022_02_094 crossref_primary_10_1136_jitc_2020_000676 crossref_primary_10_3389_fgene_2019_00910 crossref_primary_10_15252_embj_2021109288 crossref_primary_10_1021_acs_jproteome_4c00715 crossref_primary_10_3389_fonc_2019_01115 crossref_primary_10_3390_ijms22147443 crossref_primary_10_1089_dna_2023_0405 crossref_primary_10_2147_CMAR_S265828 crossref_primary_10_1016_j_biocel_2021_106014 crossref_primary_10_1172_jci_insight_182766 crossref_primary_10_23736_S2724_542X_23_02944_9 crossref_primary_10_3389_fimmu_2024_1379690 crossref_primary_10_1007_s12672_024_01268_7 crossref_primary_10_3390_biom9090429 crossref_primary_10_3390_ijms23010405 crossref_primary_10_1016_j_cell_2024_08_036 crossref_primary_10_3727_096504019X15761480623959 crossref_primary_10_3389_fonc_2022_837835 crossref_primary_10_3389_fonc_2019_01145 crossref_primary_10_1016_j_biomaterials_2022_121730 crossref_primary_10_3390_ijms241914481 crossref_primary_10_1016_j_isci_2024_109094 crossref_primary_10_3389_fcell_2021_786728 crossref_primary_10_3389_fimmu_2024_1412076 crossref_primary_10_3390_biomedicines12071575 crossref_primary_10_1177_1721727X221092900 crossref_primary_10_1016_j_intimp_2020_106663 crossref_primary_10_3389_fonc_2024_1341056 crossref_primary_10_1186_s13045_023_01487_5 crossref_primary_10_3389_fonc_2023_1236246 crossref_primary_10_3390_cancers15030653 crossref_primary_10_4049_jimmunol_1901307 crossref_primary_10_1038_s42003_024_07041_4 crossref_primary_10_3390_ijms20194682 crossref_primary_10_3390_ijms221910779 crossref_primary_10_1158_1078_0432_CCR_23_2823 crossref_primary_10_1016_j_chembiol_2023_10_024 crossref_primary_10_1038_s41416_024_02635_5 crossref_primary_10_1038_s41598_023_44329_7 crossref_primary_10_1158_2159_8290_CD_22_0876 crossref_primary_10_1016_j_bioorg_2024_107251 crossref_primary_10_1002_path_6366 crossref_primary_10_3390_vaccines12111281 crossref_primary_10_3390_ijms22020476 crossref_primary_10_1016_j_cmet_2025_01_005 crossref_primary_10_3389_fcell_2021_764727 crossref_primary_10_62347_BHFA4606 crossref_primary_10_1038_s41420_023_01392_3 crossref_primary_10_1038_s41598_024_54875_3 crossref_primary_10_3390_cells11152345 crossref_primary_10_1186_s12974_024_03150_3 crossref_primary_10_2174_2211536611666220826124058 crossref_primary_10_3390_cells13181526 crossref_primary_10_1016_j_isci_2024_111502 crossref_primary_10_3390_cells11182793 crossref_primary_10_3390_microbiolres14020048 crossref_primary_10_3390_molecules30040923 crossref_primary_10_3390_cancers15204943 crossref_primary_10_1016_j_omto_2022_02_003 crossref_primary_10_1186_s43088_022_00211_5 crossref_primary_10_1016_j_cell_2023_11_032 crossref_primary_10_1080_2162402X_2022_2140534 crossref_primary_10_1155_2022_3744466 crossref_primary_10_1172_JCI161400 crossref_primary_10_3389_fmolb_2022_962908 crossref_primary_10_1016_j_slasd_2023_12_010 crossref_primary_10_1016_j_trecan_2024_11_002 crossref_primary_10_1172_jci_insight_168792 crossref_primary_10_1007_s12079_023_00766_7 crossref_primary_10_3389_fonc_2020_00641 crossref_primary_10_1016_j_pharmthera_2022_108211 crossref_primary_10_1007_s12011_023_03805_x crossref_primary_10_1016_j_drup_2025_101206 crossref_primary_10_3892_or_2022_8467 crossref_primary_10_3389_fimmu_2021_808722 crossref_primary_10_3390_ijms25179448 crossref_primary_10_3389_fimmu_2023_1125224 crossref_primary_10_1038_s41598_022_10114_1 crossref_primary_10_1016_j_ejmech_2020_112354 crossref_primary_10_4251_wjgo_v16_i5_1705 crossref_primary_10_1042_BSR20231331 crossref_primary_10_1186_s12967_021_03076_x crossref_primary_10_1186_s13046_022_02286_5 crossref_primary_10_1002_cam4_5025 crossref_primary_10_1016_j_cytox_2020_100041 crossref_primary_10_1016_j_addr_2021_113904 crossref_primary_10_1016_j_arres_2023_100075 crossref_primary_10_1016_j_semcancer_2022_05_006 crossref_primary_10_1158_2326_6066_CIR_23_0117 crossref_primary_10_3390_ncrna8030036 crossref_primary_10_1016_j_isci_2024_110409 crossref_primary_10_1158_0008_5472_CAN_23_0323 crossref_primary_10_1186_s12943_024_02210_9 crossref_primary_10_3389_fcell_2023_1163314 crossref_primary_10_1016_j_matbio_2023_10_001 crossref_primary_10_3390_biom12111572 crossref_primary_10_1158_0008_5472_CAN_23_2504 crossref_primary_10_1371_journal_pone_0307809 crossref_primary_10_3390_cells8111419 crossref_primary_10_1007_s11684_025_1124_8 crossref_primary_10_1038_s41417_024_00774_8 crossref_primary_10_1016_j_tranon_2024_102166 crossref_primary_10_1002_mc_23196 crossref_primary_10_1097_MD_0000000000033201 crossref_primary_10_4103_1673_5374_377588 crossref_primary_10_3389_fmicb_2023_1100465 crossref_primary_10_1038_s41388_021_02128_2 crossref_primary_10_1038_s41577_023_00884_8 crossref_primary_10_1016_j_clim_2022_109204 crossref_primary_10_1038_s41392_024_01907_z crossref_primary_10_3390_ijms24119521 crossref_primary_10_1038_s41467_022_34456_6 crossref_primary_10_3390_cancers13112638 crossref_primary_10_1186_s13073_023_01219_x crossref_primary_10_1158_0008_5472_CAN_20_0259 crossref_primary_10_1016_j_phrs_2020_104751 crossref_primary_10_3390_cancers11091318 crossref_primary_10_3389_fgene_2022_918319 crossref_primary_10_1158_1541_7786_MCR_20_0308 crossref_primary_10_3390_biom12020234 crossref_primary_10_1007_s12032_022_01930_6 crossref_primary_10_3390_cancers15102709 crossref_primary_10_1177_20503121211069012 crossref_primary_10_3390_cancers13194984 crossref_primary_10_3390_genes12070975 crossref_primary_10_1016_j_exphem_2022_09_004 crossref_primary_10_1093_nar_gkad907 crossref_primary_10_1155_2022_9708829 crossref_primary_10_1016_j_cbi_2020_109275 crossref_primary_10_1101_gad_348226_120 crossref_primary_10_1038_s41598_024_69233_6 crossref_primary_10_3390_cancers14040940 crossref_primary_10_1177_15330338231153618 crossref_primary_10_1053_j_gastro_2020_03_043 crossref_primary_10_1016_j_heliyon_2023_e14665 crossref_primary_10_1016_j_ijrobp_2020_05_011 crossref_primary_10_1016_j_imlet_2024_106898 crossref_primary_10_1016_j_intimp_2023_110146 crossref_primary_10_1186_s13045_021_01053_x crossref_primary_10_4081_oncol_2021_511 crossref_primary_10_1016_j_advms_2023_03_002 crossref_primary_10_1080_2162402X_2020_1747677 crossref_primary_10_1038_s41585_024_00924_5 crossref_primary_10_3390_biology11121747 crossref_primary_10_1038_s41571_020_00459_9 crossref_primary_10_1002_JLB_3MR0320_444R crossref_primary_10_1016_j_ccell_2020_11_009 crossref_primary_10_1016_j_omto_2022_03_002 crossref_primary_10_1016_j_canlet_2023_216293 crossref_primary_10_3390_cancers14102460 crossref_primary_10_1002_advs_202201834 crossref_primary_10_1002_1873_3468_70000 crossref_primary_10_1111_cas_15497 crossref_primary_10_3390_jcm9051513 crossref_primary_10_1002_hep_31104 crossref_primary_10_1186_s13045_024_01578_x crossref_primary_10_1038_s41388_021_01677_w crossref_primary_10_3390_cancers13246231 crossref_primary_10_3390_cells10051100 crossref_primary_10_1016_j_jhepr_2023_100762 crossref_primary_10_3389_fimmu_2023_1093574 crossref_primary_10_3389_fcell_2021_754507 crossref_primary_10_2217_fon_2023_0907 crossref_primary_10_1210_endocr_bqaa187 crossref_primary_10_3390_ijms21197307 crossref_primary_10_1016_j_intimp_2024_112434 crossref_primary_10_3390_ijms241612779 crossref_primary_10_1016_j_biomaterials_2023_122386 crossref_primary_10_3389_fonc_2021_761379 crossref_primary_10_15252_embr_202052234 crossref_primary_10_1016_j_prp_2024_155282 crossref_primary_10_1186_s40360_022_00632_z crossref_primary_10_1016_j_cpt_2023_12_002 crossref_primary_10_1016_j_tube_2021_102126 crossref_primary_10_2147_CMAR_S317922 crossref_primary_10_6023_cjoc202106015 crossref_primary_10_1111_cas_15241 crossref_primary_10_3389_fphys_2024_1377329 crossref_primary_10_1158_0008_5472_CAN_22_1880 crossref_primary_10_1186_s13018_024_04733_9 crossref_primary_10_1155_2021_9918379 crossref_primary_10_1016_j_bbcan_2024_189193 crossref_primary_10_1038_s41435_021_00125_9 crossref_primary_10_1016_j_cyto_2021_155622 crossref_primary_10_3390_cancers17050880 crossref_primary_10_3390_vetsci10010019 crossref_primary_10_1021_acs_nanolett_4c06372 crossref_primary_10_1158_2326_6066_CIR_22_0306 crossref_primary_10_1158_2326_6066_CIR_22_0547 crossref_primary_10_1002_1878_0261_12887 crossref_primary_10_1007_s11010_021_04182_6 crossref_primary_10_1126_scitranslmed_adh8005 crossref_primary_10_1016_j_livres_2025_01_002 crossref_primary_10_3390_vaccines8040735 crossref_primary_10_1182_blood_2021013442 crossref_primary_10_3389_fbioe_2023_1324424 crossref_primary_10_1186_s12951_025_03129_z crossref_primary_10_1002_adma_202500552 crossref_primary_10_1016_j_jconrel_2023_02_040 crossref_primary_10_1146_annurev_immunol_082019_081656 crossref_primary_10_1166_jbn_2023_3511 crossref_primary_10_3389_fonc_2020_593245 crossref_primary_10_3389_fimmu_2024_1352805 crossref_primary_10_1159_000543275 crossref_primary_10_3390_ijms24065600 crossref_primary_10_3389_fmolb_2023_1132353 crossref_primary_10_3390_ph17040533 crossref_primary_10_1002_1878_0261_12855 crossref_primary_10_1007_s11864_021_00870_z crossref_primary_10_1016_j_ccell_2023_02_016 crossref_primary_10_1016_j_smim_2020_101417 crossref_primary_10_3389_fimmu_2022_1061394 crossref_primary_10_1007_s40200_025_01588_7 crossref_primary_10_1016_j_apsb_2023_05_023 crossref_primary_10_1016_j_canlet_2022_215925 crossref_primary_10_3389_fimmu_2023_1219669 crossref_primary_10_1016_j_biomaterials_2023_122162 crossref_primary_10_3390_cells11162530 crossref_primary_10_1002_ctm2_1468 crossref_primary_10_1080_14712598_2024_2426636 crossref_primary_10_3390_cancers12082248 crossref_primary_10_1158_2767_9764_CRC_23_0015 crossref_primary_10_1186_s12967_023_04810_3 crossref_primary_10_3390_cancers15041022 crossref_primary_10_1158_2767_9764_CRC_23_0019 crossref_primary_10_3390_cancers14215199 crossref_primary_10_3389_fimmu_2021_693314 crossref_primary_10_1038_s41590_025_02103_z crossref_primary_10_3389_fonc_2021_603634 crossref_primary_10_1111_febs_17234 crossref_primary_10_1155_2022_5413504 crossref_primary_10_3390_ijms21061952 crossref_primary_10_1038_s41423_024_01178_2 crossref_primary_10_1016_j_intimp_2020_107101 crossref_primary_10_1038_s41586_020_2836_1 crossref_primary_10_1002_aisy_202400717 crossref_primary_10_1002_mco2_181 crossref_primary_10_1158_2159_8290_CD_21_0010 crossref_primary_10_1093_narcan_zcad059 crossref_primary_10_3389_fgene_2022_808041 crossref_primary_10_1111_cas_15842 crossref_primary_10_1186_s12943_019_1129_5 crossref_primary_10_1016_j_bcp_2024_116380 crossref_primary_10_1111_jnc_16102 crossref_primary_10_3390_biomedicines9080896 crossref_primary_10_3390_ijms242417152 crossref_primary_10_1016_j_jconrel_2024_09_006 crossref_primary_10_1155_2022_3922739 crossref_primary_10_23736_S0394_9508_24_05682_1 crossref_primary_10_1084_jem_20202579 crossref_primary_10_3389_fonc_2023_1228185 crossref_primary_10_1080_09553002_2021_1955998 crossref_primary_10_1186_s12929_020_00683_6 crossref_primary_10_1111_cas_14509 crossref_primary_10_1186_s40164_024_00539_x crossref_primary_10_22201_fesz_23958723e_2020_0_200 crossref_primary_10_1002_wnan_2005 crossref_primary_10_1126_scitranslmed_ade2886 crossref_primary_10_1016_j_isci_2023_108225 crossref_primary_10_1002_adfm_202100437 crossref_primary_10_1016_j_canlet_2021_12_025 crossref_primary_10_1038_s41467_024_45340_w crossref_primary_10_1021_acsptsci_4c00374 crossref_primary_10_3389_fimmu_2021_645850 crossref_primary_10_1016_j_jcyt_2021_01_003 crossref_primary_10_1038_s41421_023_00528_0 crossref_primary_10_3389_fonc_2022_920599 crossref_primary_10_3390_cancers16010197 crossref_primary_10_3892_ol_2021_12837 crossref_primary_10_1042_BST20210048 crossref_primary_10_1083_jcb_202012097 crossref_primary_10_1134_S1990519X22060050 crossref_primary_10_1016_j_clgc_2021_04_002 crossref_primary_10_1016_j_cyto_2020_155367 crossref_primary_10_1186_s12915_023_01522_4 crossref_primary_10_1080_10717544_2022_2069877 crossref_primary_10_3389_fimmu_2021_774807 crossref_primary_10_3390_nano11071656 crossref_primary_10_1186_s13073_022_01079_x crossref_primary_10_1126_science_adm8485 crossref_primary_10_3390_cells12071049 crossref_primary_10_3390_vaccines9010050 crossref_primary_10_3390_ijms22010190 crossref_primary_10_1016_j_bbmt_2020_06_011 crossref_primary_10_1136_jitc_2023_008261 crossref_primary_10_3389_fimmu_2023_1332814 crossref_primary_10_2147_IJGM_S353879 crossref_primary_10_1158_0008_5472_CAN_21_4425 crossref_primary_10_3390_nu15143106 crossref_primary_10_1186_s12935_020_01298_5 crossref_primary_10_3390_biomedicines12081906 crossref_primary_10_1186_s12964_025_02033_1 crossref_primary_10_1186_s12876_023_02843_y crossref_primary_10_1038_s41467_023_37824_y crossref_primary_10_1136_jitc_2021_003465 crossref_primary_10_1158_2159_8290_CD_24_0102 crossref_primary_10_1016_j_semcancer_2022_03_004 crossref_primary_10_1007_s12672_023_00787_z crossref_primary_10_1038_s41419_020_02943_7 crossref_primary_10_1002_cbdv_202402782 crossref_primary_10_1126_sciimmunol_abf0558 crossref_primary_10_1021_acsami_0c18545 crossref_primary_10_2147_ITT_S253581 crossref_primary_10_1016_j_tox_2021_152994 crossref_primary_10_1080_2162402X_2021_1881268 crossref_primary_10_2174_1573403X16666200621160742 crossref_primary_10_1097_MD_0000000000040820 crossref_primary_10_3389_fcell_2021_730380 crossref_primary_10_3389_fcell_2022_941750 crossref_primary_10_1126_scisignal_abp9521 crossref_primary_10_1007_s00262_023_03428_0 crossref_primary_10_1016_j_intimp_2021_108374 crossref_primary_10_1016_j_intimp_2022_109521 crossref_primary_10_1016_j_aqrep_2020_100310 crossref_primary_10_1002_JPER_21_0474 crossref_primary_10_1016_j_chembiol_2021_04_023 crossref_primary_10_1038_s41467_022_35134_3 crossref_primary_10_3389_fimmu_2022_1064033 crossref_primary_10_3390_bioengineering11040303 crossref_primary_10_1038_s41368_019_0064_z crossref_primary_10_1016_j_ccell_2023_03_008 crossref_primary_10_3389_fcell_2021_734749 crossref_primary_10_1007_s10147_021_02074_9 crossref_primary_10_1016_j_mucimm_2024_06_011 crossref_primary_10_3390_cancers13081872 crossref_primary_10_1080_09553002_2023_2194398 crossref_primary_10_1084_jem_20190457 crossref_primary_10_1038_s41401_021_00741_1 crossref_primary_10_3390_biology10111200 crossref_primary_10_1111_exd_14716 crossref_primary_10_1158_0008_5472_CAN_21_0003 crossref_primary_10_1016_j_radonc_2024_110424 crossref_primary_10_3389_fimmu_2021_633436 crossref_primary_10_3390_cells12192404 crossref_primary_10_1080_07853890_2024_2426758 crossref_primary_10_3390_ani12020145 crossref_primary_10_1007_s11686_023_00751_5 crossref_primary_10_1016_j_isci_2024_110854 crossref_primary_10_1016_S1470_2045_22_00504_6 crossref_primary_10_1007_s12032_023_02021_w crossref_primary_10_1038_s41416_022_01936_x crossref_primary_10_1155_2021_9965916 crossref_primary_10_1007_s12094_023_03320_4 crossref_primary_10_1016_j_semradonc_2021_02_001 crossref_primary_10_3389_fmed_2022_982399 crossref_primary_10_1038_s41568_023_00562_w crossref_primary_10_3389_fcell_2022_805623 crossref_primary_10_1038_s41577_023_00877_7 crossref_primary_10_1080_08977194_2022_2124915 crossref_primary_10_1038_s41467_021_21858_1 crossref_primary_10_1142_S0192415X21500105 crossref_primary_10_1016_j_jtct_2022_06_025 crossref_primary_10_3390_pharmaceutics15082022 crossref_primary_10_1111_imr_13107 crossref_primary_10_2147_JIR_S383191 crossref_primary_10_1016_j_heliyon_2020_e05242 crossref_primary_10_1186_s12964_023_01204_2 crossref_primary_10_1038_s41388_024_03092_3 crossref_primary_10_3390_brainsci13091269 crossref_primary_10_1016_j_heliyon_2024_e34530 crossref_primary_10_1016_j_amjoto_2023_103985 crossref_primary_10_1016_j_rdc_2024_01_004 crossref_primary_10_1002_jcp_31498 crossref_primary_10_3389_fonc_2022_1000888 crossref_primary_10_3389_fimmu_2021_643260 crossref_primary_10_3389_fonc_2022_911410 crossref_primary_10_1097_MD_0000000000035423 crossref_primary_10_3389_fcell_2021_641891 crossref_primary_10_3390_ijms20174162 crossref_primary_10_1016_j_wneu_2021_05_088 crossref_primary_10_2147_JHC_S410756 crossref_primary_10_7717_peerj_18485 crossref_primary_10_3390_ijms25094626 crossref_primary_10_1038_s41467_024_49508_2 crossref_primary_10_1016_j_lfs_2022_120849 crossref_primary_10_1186_s12967_024_05411_4 crossref_primary_10_3390_vaccines8020282 crossref_primary_10_1096_fj_202400080R crossref_primary_10_1158_0008_5472_CAN_23_3628 crossref_primary_10_3390_cells13121033 crossref_primary_10_1016_j_esmoop_2025_104498 crossref_primary_10_3389_fgene_2022_949852 crossref_primary_10_3390_ijms242316882 crossref_primary_10_3390_life11090925 crossref_primary_10_1016_j_omto_2022_02_016 crossref_primary_10_26508_lsa_201900581 crossref_primary_10_1016_j_cellimm_2024_104898 crossref_primary_10_3389_fonc_2022_898964 crossref_primary_10_3389_fonc_2020_597672 crossref_primary_10_3390_ijms241713410 crossref_primary_10_1080_13543784_2022_2152323 crossref_primary_10_3389_fimmu_2022_1020003 crossref_primary_10_3390_ijms24108676 crossref_primary_10_1371_journal_pone_0247840 crossref_primary_10_1038_s41568_023_00660_9 crossref_primary_10_3389_fgene_2023_1220068 crossref_primary_10_3390_jcm9010143 crossref_primary_10_1186_s13287_022_02985_y crossref_primary_10_1016_j_canlet_2023_216239 crossref_primary_10_1038_s41419_024_06992_0 crossref_primary_10_3233_CBM_230354 crossref_primary_10_3390_cancers16010131 crossref_primary_10_1038_s43018_022_00401_1 crossref_primary_10_3389_fimmu_2022_874589 crossref_primary_10_1002_ptr_7583 crossref_primary_10_3389_fimmu_2022_851004 crossref_primary_10_1186_s13046_022_02525_9 crossref_primary_10_3390_cells12232717 crossref_primary_10_1136_jitc_2022_004807 crossref_primary_10_3390_cancers13225724 crossref_primary_10_1084_jem_20202144 crossref_primary_10_5812_hepatmon_123416 crossref_primary_10_58708_2074_2088_2024_1_31__104_111 crossref_primary_10_3390_cancers14194964 crossref_primary_10_4254_wjh_v16_i7_973 crossref_primary_10_15407_exp_oncology_2023_01_051 crossref_primary_10_1016_j_cytogfr_2023_05_003 crossref_primary_10_1007_s12011_022_03146_1 crossref_primary_10_1038_s41467_022_31250_2 crossref_primary_10_1080_2162402X_2020_1811605 crossref_primary_10_1038_s41467_022_31141_6 crossref_primary_10_1021_acsami_0c10416 crossref_primary_10_1038_s41419_022_04981_9 crossref_primary_10_1002_jcb_29675 crossref_primary_10_1038_s41698_024_00742_3 crossref_primary_10_1186_s12915_023_01576_4 crossref_primary_10_1002_mco2_349 crossref_primary_10_3390_biomedicines9111658 crossref_primary_10_1007_s00262_022_03204_6 crossref_primary_10_1016_j_heliyon_2023_e19208 crossref_primary_10_3390_genes14010141 crossref_primary_10_1016_j_ecoenv_2021_112030 crossref_primary_10_3389_fimmu_2021_699633 crossref_primary_10_3389_fgene_2023_1088455 crossref_primary_10_3390_foods13223704 crossref_primary_10_3892_ol_2024_14549 crossref_primary_10_1172_jci_insight_159058 crossref_primary_10_3350_cmh_2022_0318 crossref_primary_10_2139_ssrn_3751049 crossref_primary_10_1158_1078_0432_CCR_19_2370 crossref_primary_10_1016_j_biopha_2023_115225 crossref_primary_10_1158_2159_8290_CD_20_0017 crossref_primary_10_1158_2326_6066_CIR_20_0881 crossref_primary_10_3389_fimmu_2023_1125905 crossref_primary_10_1002_cac2_12316 crossref_primary_10_3389_fimmu_2025_1486961 crossref_primary_10_1097_PPO_0000000000000610 crossref_primary_10_1016_j_biopha_2024_116609 crossref_primary_10_1007_s10585_021_10077_z crossref_primary_10_1016_j_biopha_2020_111046 crossref_primary_10_1038_s41419_021_04493_y crossref_primary_10_3389_fimmu_2024_1509195 crossref_primary_10_1038_s41467_023_42635_2 crossref_primary_10_1080_02656736_2024_2359496 crossref_primary_10_1007_s12094_023_03114_8 crossref_primary_10_1007_s00439_022_02464_7 crossref_primary_10_3390_ijms25021067 crossref_primary_10_3390_jcm10132872 crossref_primary_10_1016_j_ymthe_2024_07_020 crossref_primary_10_3389_fphys_2025_1562848 crossref_primary_10_70322_jrbtm_2025_10001 crossref_primary_10_1038_s41423_020_0504_x crossref_primary_10_1016_j_celrep_2023_112129 crossref_primary_10_1016_j_esmoop_2022_100776 crossref_primary_10_2147_CMAR_S258196 crossref_primary_10_1007_s10456_021_09779_5 crossref_primary_10_1158_0008_5472_CAN_21_0590 crossref_primary_10_1186_s12943_024_02183_9 crossref_primary_10_3389_fimmu_2020_00068 crossref_primary_10_3390_biom11020130 crossref_primary_10_3390_ijms22115736 crossref_primary_10_3892_or_2023_8654 crossref_primary_10_1002_adhm_202301163 crossref_primary_10_1002_dvg_23529 crossref_primary_10_1016_j_gendis_2022_10_019 crossref_primary_10_1016_j_immuni_2020_12_010 crossref_primary_10_1038_s41392_021_00781_3 crossref_primary_10_1016_j_biomaterials_2021_121337 crossref_primary_10_3389_fonc_2022_797453 crossref_primary_10_1371_journal_pone_0252132 crossref_primary_10_1016_j_gene_2024_149166 crossref_primary_10_1093_jleuko_qiad121 crossref_primary_10_1016_j_cell_2023_07_036 crossref_primary_10_1038_s41590_023_01642_7 crossref_primary_10_3390_cells10092312 crossref_primary_10_3389_fonc_2021_734873 crossref_primary_10_1007_s00432_023_04900_1 crossref_primary_10_1002_adhm_202201240 crossref_primary_10_1093_jleuko_qiad126 crossref_primary_10_12688_f1000research_143472_1 crossref_primary_10_3390_cancers12041014 crossref_primary_10_1136_jitc_2022_005543 crossref_primary_10_1038_s41590_022_01418_5 crossref_primary_10_1186_s13045_024_01528_7 crossref_primary_10_1111_resp_14541 crossref_primary_10_1155_2020_8827920 crossref_primary_10_1155_2022_6512300 crossref_primary_10_1016_j_imbio_2020_151963 crossref_primary_10_1016_j_jobcr_2024_03_005 crossref_primary_10_3390_ijms24043473 crossref_primary_10_1136_jitc_2020_001823 crossref_primary_10_20517_jca_2023_23 crossref_primary_10_1080_10715762_2022_2037582 crossref_primary_10_3389_fcell_2022_849938 crossref_primary_10_3390_cancers14112637 crossref_primary_10_1097_MD_0000000000037387 crossref_primary_10_1111_imr_13245 crossref_primary_10_1016_j_lfs_2021_119359 crossref_primary_10_3389_fonc_2021_813897 crossref_primary_10_3389_fimmu_2022_899140 crossref_primary_10_3389_fimmu_2024_1285411 crossref_primary_10_3322_caac_21823 crossref_primary_10_1007_s13238_020_00741_7 crossref_primary_10_1016_j_micpath_2025_107453 crossref_primary_10_1007_s12013_023_01213_5 crossref_primary_10_1080_14756366_2020_1734799 crossref_primary_10_3389_fvets_2020_609443 crossref_primary_10_3389_fimmu_2024_1490035 crossref_primary_10_3390_app12146954 crossref_primary_10_1002_med_21876 crossref_primary_10_1016_j_jconrel_2024_08_008 crossref_primary_10_1136_jitc_2021_004122 crossref_primary_10_1016_j_omto_2023_100755 crossref_primary_10_1186_s13045_022_01349_6 crossref_primary_10_3390_cancers14143331 crossref_primary_10_1007_s13402_023_00781_1 crossref_primary_10_1038_s41467_024_53264_8 crossref_primary_10_1093_carcin_bgab035 crossref_primary_10_7717_peerj_19072 crossref_primary_10_1007_s11030_021_10183_w crossref_primary_10_1016_j_jid_2023_03_1688 crossref_primary_10_15616_BSL_2024_30_3_137 crossref_primary_10_3390_biom13101551 crossref_primary_10_1016_j_tips_2023_08_009 crossref_primary_10_1021_acsami_3c14417 crossref_primary_10_1038_s43018_021_00326_1 crossref_primary_10_1038_s41568_022_00544_4 crossref_primary_10_3389_fphar_2021_676399 crossref_primary_10_1016_j_jhepr_2024_101212 crossref_primary_10_1016_j_jcmgh_2022_01_023 crossref_primary_10_1016_j_ctrv_2022_102433 crossref_primary_10_1038_s41571_021_00579_w crossref_primary_10_1016_j_intimp_2025_114119 crossref_primary_10_3390_biology10090836 crossref_primary_10_1016_j_intimp_2025_114116 crossref_primary_10_1186_s12967_022_03649_4 crossref_primary_10_1155_2023_5557546 crossref_primary_10_1186_s12935_022_02599_7 crossref_primary_10_3390_biomedicines10010052 crossref_primary_10_1038_s41423_023_01036_7 crossref_primary_10_1155_2020_5494858 crossref_primary_10_1534_g3_120_401166 crossref_primary_10_1002_adtp_202300002 crossref_primary_10_1016_j_molimm_2021_05_009 crossref_primary_10_31083_j_fbl2908290 crossref_primary_10_1155_2021_5549047 crossref_primary_10_3934_mbe_2022188 crossref_primary_10_1016_j_ebiom_2022_104380 crossref_primary_10_1016_j_phrs_2022_106406 crossref_primary_10_3389_fimmu_2022_1058532 crossref_primary_10_1016_j_jconrel_2022_05_033 crossref_primary_10_1038_s41419_021_04177_7 crossref_primary_10_1158_2159_8290_CD_21_1004 crossref_primary_10_3390_biom11020336 crossref_primary_10_1016_j_avsg_2021_11_018 crossref_primary_10_1016_j_bios_2022_114884 crossref_primary_10_1002_wrna_1822 crossref_primary_10_1016_j_envpol_2023_122730 crossref_primary_10_1002_cam4_4822 crossref_primary_10_1172_JCI172919 crossref_primary_10_1007_s40259_022_00521_1 crossref_primary_10_1096_fj_202302230R crossref_primary_10_1172_jci_insight_170015 crossref_primary_10_3389_fcell_2020_00260 crossref_primary_10_1002_ctm2_548 crossref_primary_10_1186_s12967_023_04554_0 crossref_primary_10_3390_cimb45010020 crossref_primary_10_1111_febs_16955 crossref_primary_10_3390_biom10121666 crossref_primary_10_3389_fonc_2021_582664 crossref_primary_10_3389_fonc_2021_765151 crossref_primary_10_3389_fgene_2021_619821 crossref_primary_10_1016_j_intimp_2021_108168 crossref_primary_10_1016_j_neuroscience_2020_05_004 crossref_primary_10_1136_jitc_2021_004113 crossref_primary_10_3390_pharmaceutics14112468 crossref_primary_10_1158_1078_0432_CCR_23_3632 crossref_primary_10_1177_11769351251316398 crossref_primary_10_1177_15330338231189399 crossref_primary_10_1007_s00262_022_03315_0 crossref_primary_10_1080_02713683_2021_2023192 crossref_primary_10_1016_j_actbio_2022_04_002 crossref_primary_10_1002_cbf_3730 crossref_primary_10_1080_03079457_2023_2181146 crossref_primary_10_3389_fimmu_2024_1331322 crossref_primary_10_1016_j_immuni_2023_09_004 crossref_primary_10_1186_s12967_024_05722_6 crossref_primary_10_1186_s13148_023_01478_w crossref_primary_10_1007_s11060_023_04287_6 crossref_primary_10_3389_fmicb_2023_1286364 crossref_primary_10_3389_fimmu_2019_02109 crossref_primary_10_3892_ijo_2024_5623 crossref_primary_10_1016_j_ccell_2023_06_005 crossref_primary_10_1007_s00281_022_00966_0 crossref_primary_10_1016_j_actbio_2022_05_045 crossref_primary_10_3389_fonc_2024_1407434 crossref_primary_10_3390_cancers13102491 crossref_primary_10_1038_s41591_021_01233_9 crossref_primary_10_1016_j_devcel_2023_11_020 crossref_primary_10_1038_s41467_021_26352_2 crossref_primary_10_13005_bpj_2972 crossref_primary_10_1002_art_41467 crossref_primary_10_1016_j_preteyeres_2021_101039 crossref_primary_10_3389_fcvm_2020_00034 crossref_primary_10_7717_peerj_10062 crossref_primary_10_1042_EBC20220248 crossref_primary_10_1038_s41392_024_02063_0 crossref_primary_10_3390_ijms241511927 crossref_primary_10_1002_ctm2_160 crossref_primary_10_1186_s13073_019_0697_8 crossref_primary_10_1186_s40164_022_00277_y crossref_primary_10_1136_jitc_2021_002823 crossref_primary_10_1007_s10555_024_10186_7 crossref_primary_10_3389_fcell_2020_621070 crossref_primary_10_3389_fonc_2022_861601 crossref_primary_10_1200_PO_19_00350 crossref_primary_10_1016_j_pharmthera_2021_107927 crossref_primary_10_1146_annurev_immunol_101921_044122 crossref_primary_10_3389_fimmu_2021_724883 crossref_primary_10_1038_s41420_021_00678_8 crossref_primary_10_3389_fcell_2022_1012326 crossref_primary_10_1016_j_heliyon_2020_e05849 crossref_primary_10_1158_2159_8290_CD_19_0529 crossref_primary_10_1038_s41392_024_02052_3 crossref_primary_10_1155_2020_5162524 crossref_primary_10_1002_1878_0261_13146 crossref_primary_10_1111_cpr_13612 crossref_primary_10_1182_bloodadvances_2023011589 crossref_primary_10_1007_s11864_022_01005_8 crossref_primary_10_3389_fonc_2020_604131 crossref_primary_10_1016_j_preteyeres_2020_100915 crossref_primary_10_1136_jitc_2020_001684 crossref_primary_10_3390_cancers14215220 crossref_primary_10_1096_fj_202302675R crossref_primary_10_1038_s41598_024_75666_w crossref_primary_10_3389_fimmu_2024_1328193 crossref_primary_10_1002_anbr_202300061 crossref_primary_10_1016_j_coisb_2019_10_010 crossref_primary_10_3389_fonc_2024_1412367 crossref_primary_10_3390_cells10050989 crossref_primary_10_1111_cas_16253 crossref_primary_10_1089_thy_2022_0597 crossref_primary_10_1186_s12885_020_06875_5 crossref_primary_10_1016_j_bbadis_2024_167629 crossref_primary_10_1016_j_smim_2021_101546 crossref_primary_10_1016_j_intimp_2024_111816 crossref_primary_10_1016_j_celrep_2023_113067 crossref_primary_10_1016_j_pdpdt_2023_103321 crossref_primary_10_1093_rpd_ncac063 crossref_primary_10_1080_17501911_2024_2401318 crossref_primary_10_1016_j_beha_2021_101306 crossref_primary_10_1200_EDBK_438592 crossref_primary_10_3389_fimmu_2022_915094 crossref_primary_10_3389_fonc_2021_757919 crossref_primary_10_3390_cells12050700 crossref_primary_10_1007_s12672_024_01578_w crossref_primary_10_1161_CIRCRESAHA_124_323658 crossref_primary_10_3390_ijms24087640 crossref_primary_10_3389_fimmu_2024_1341390 crossref_primary_10_1158_2159_8290_CD_19_0790 crossref_primary_10_1007_s11154_021_09685_7 crossref_primary_10_1042_CS20201236 crossref_primary_10_1097_MD_0000000000039399 crossref_primary_10_1128_spectrum_04104_23 crossref_primary_10_1016_j_cej_2022_140830 crossref_primary_10_1016_j_jid_2021_07_179 crossref_primary_10_1126_sciimmunol_abm2508 crossref_primary_10_1016_j_heliyon_2023_e20806 crossref_primary_10_1016_j_neulet_2022_136937 crossref_primary_10_1016_j_ebiom_2022_104155 crossref_primary_10_1016_j_lwt_2025_117560 crossref_primary_10_1016_j_ijbiomac_2023_128699 crossref_primary_10_3390_life12060880 crossref_primary_10_1038_s41571_020_0403_1 crossref_primary_10_3389_fimmu_2021_760954 crossref_primary_10_1016_j_preteyeres_2024_101306 crossref_primary_10_1038_s41416_019_0661_9 crossref_primary_10_3389_fimmu_2022_891268 crossref_primary_10_1177_15353702221089910 crossref_primary_10_1272_jnms_JNMS_2024_91_307 crossref_primary_10_3389_fonc_2023_1333839 crossref_primary_10_1038_s41419_022_04959_7 crossref_primary_10_1093_rb_rbad026 crossref_primary_10_1038_s41388_020_01501_x crossref_primary_10_1158_0008_5472_CAN_19_3954 crossref_primary_10_1182_blood_2022015474 crossref_primary_10_1016_j_ijbiomac_2021_06_110 crossref_primary_10_1016_j_annonc_2021_09_010 crossref_primary_10_1167_tvst_9_10_12 crossref_primary_10_1136_jitc_2022_006230 crossref_primary_10_1080_1744666X_2021_1911648 crossref_primary_10_1016_j_celrep_2021_110013 crossref_primary_10_1016_j_heliyon_2023_e21909 crossref_primary_10_3390_biomedicines10051206 crossref_primary_10_1016_j_semcancer_2020_06_003 crossref_primary_10_1016_j_ctrv_2024_102843 crossref_primary_10_3390_cancers15051442 crossref_primary_10_1016_j_jconrel_2022_01_015 crossref_primary_10_1016_j_ctmp_2024_200131 crossref_primary_10_1021_acsnano_1c05420 crossref_primary_10_1016_j_bmcl_2024_129797 crossref_primary_10_1016_j_phymed_2022_154482 crossref_primary_10_1186_s13045_021_01161_8 crossref_primary_10_2217_imt_2022_0079 crossref_primary_10_3390_cancers12051284 crossref_primary_10_1016_j_phrs_2023_106915 crossref_primary_10_1007_s44313_024_00048_0 crossref_primary_10_1016_j_heliyon_2024_e30727 crossref_primary_10_3389_fneur_2023_1188383 crossref_primary_10_1186_s12890_022_02204_7 crossref_primary_10_1063_5_0030693 crossref_primary_10_1038_s41420_021_00469_1 crossref_primary_10_1016_j_omtn_2023_07_026 crossref_primary_10_1016_j_smim_2019_101284 crossref_primary_10_1016_j_heliyon_2024_e39543 crossref_primary_10_1016_j_tranon_2024_102079 crossref_primary_10_1038_s41392_022_01259_6 crossref_primary_10_1080_15384047_2024_2308097 crossref_primary_10_3390_biomedicines10092148 crossref_primary_10_3390_cells11071200 crossref_primary_10_1007_s00262_020_02575_y crossref_primary_10_1080_10409238_2020_1828260 crossref_primary_10_1210_clinem_dgaa656 crossref_primary_10_3389_fcell_2021_715027 crossref_primary_10_3389_fimmu_2021_660397 crossref_primary_10_3892_or_2021_8148 crossref_primary_10_4049_immunohorizons_2200072 crossref_primary_10_1038_s41417_023_00694_z crossref_primary_10_3389_fimmu_2022_849984 crossref_primary_10_3389_fimmu_2024_1404373 crossref_primary_10_2147_IJN_S440619 crossref_primary_10_1016_j_ejca_2021_11_011 crossref_primary_10_2174_0115734064290905231228110023 crossref_primary_10_3389_fimmu_2023_1206504 crossref_primary_10_1186_s43042_024_00610_6 crossref_primary_10_1371_journal_ppat_1009380 crossref_primary_10_3390_cancers13246188 crossref_primary_10_3390_cancers15215242 crossref_primary_10_1007_s12026_022_09285_w crossref_primary_10_1007_s10555_020_09921_7 crossref_primary_10_1002_mc_23275 crossref_primary_10_1186_s13045_019_0770_1 crossref_primary_10_1136_jitc_2019_000326 crossref_primary_10_1002_1878_0261_13550 crossref_primary_10_1038_s41423_021_00770_0 crossref_primary_10_1016_j_lfs_2023_121657 crossref_primary_10_1111_sji_13273 crossref_primary_10_1158_1541_7786_MCR_23_0692 crossref_primary_10_1158_2767_9764_CRC_22_0301 crossref_primary_10_1186_s12916_022_02605_9 crossref_primary_10_1126_scisignal_abo2206 crossref_primary_10_3389_fimmu_2020_585819 crossref_primary_10_3390_ijms22147575 crossref_primary_10_1126_sciadv_adn7256 crossref_primary_10_1016_j_cellsig_2023_110611 crossref_primary_10_1016_j_jconrel_2022_01_003 crossref_primary_10_1016_j_heliyon_2024_e39758 crossref_primary_10_1186_s12967_023_04303_3 crossref_primary_10_1016_j_bcp_2024_116646 crossref_primary_10_1016_j_celrep_2024_114469 crossref_primary_10_1080_02656736_2024_2430333 crossref_primary_10_1146_annurev_cancerbio_070620_103554 crossref_primary_10_2217_fon_2020_1103 crossref_primary_10_1007_s10238_023_01085_2 crossref_primary_10_1016_j_pharmthera_2020_107666 crossref_primary_10_1007_s11010_024_05175_x crossref_primary_10_1186_s12974_019_1628_8 crossref_primary_10_1080_13543784_2021_1974838 crossref_primary_10_1093_molbev_msac252 crossref_primary_10_1038_s41392_024_01947_5 crossref_primary_10_1136_jitc_2022_006432 crossref_primary_10_3390_jcm10091889 crossref_primary_10_1016_j_cpt_2022_12_003 crossref_primary_10_3390_cancers14051221 crossref_primary_10_1016_j_tox_2025_154054 crossref_primary_10_1172_JCI143762 crossref_primary_10_1038_s41419_022_04890_x crossref_primary_10_1002_adhm_202403998 crossref_primary_10_1016_j_heliyon_2022_e09773 crossref_primary_10_1016_j_semcancer_2022_09_004 crossref_primary_10_3390_cancers14030784 crossref_primary_10_3389_fimmu_2019_03038 crossref_primary_10_3389_fmolb_2024_1288677 crossref_primary_10_1016_j_aquaculture_2024_740983 crossref_primary_10_1126_sciadv_abc8346 crossref_primary_10_1016_j_ccell_2024_01_002 crossref_primary_10_1002_dvdy_339 crossref_primary_10_1016_j_bbrc_2024_149965 crossref_primary_10_1038_s41419_022_05086_z crossref_primary_10_1111_hepr_13539 crossref_primary_10_1016_j_cytogfr_2023_04_001 crossref_primary_10_1007_s42452_025_06573_6 crossref_primary_10_1002_advs_202404904 crossref_primary_10_1590_1414_431x2024e14368 crossref_primary_10_3390_cancers15215224 |
Cites_doi | 10.1084/jem.20050463 10.1016/S0092-8674(02)00801-2 10.1038/nm1001-1118 10.1038/ni1451 10.1038/ncomms1469 10.4049/jimmunol.179.1.71 10.4049/jimmunol.172.12.7335 10.1016/j.ccr.2005.10.012 10.1038/ni1383 10.4049/jimmunol.160.1.233 10.1016/j.immuni.2004.07.020 10.1016/j.cell.2016.01.009 10.4049/jimmunol.181.8.5194 10.1038/ni.3800 10.1002/humu.22977 10.4049/jimmunol.1301270 10.1016/j.immuni.2007.03.014 10.1016/j.cell.2016.06.028 10.1073/pnas.0730640100 10.1038/ng1997 10.1016/j.ccr.2009.06.017 10.1084/jem.189.2.231 10.1016/S1535-6108(03)00132-6 10.1111/imm.12061 10.1158/1078-0432.CCR-17-2257 10.1038/s41467-017-02696-6 10.1016/j.ccr.2010.12.022 10.1016/j.immuni.2006.07.011 10.1038/s41467-018-06654-8 10.1091/mbc.e11-12-1018 10.1038/nature07086 10.1073/pnas.87.10.3758 10.1016/j.stem.2016.10.002 10.1002/emmm.201302524 10.1200/jco.2014.32.3_suppl.lba173 10.1038/nm.3967 10.1016/1074-7613(95)90145-0 10.1016/j.immuni.2006.03.016 10.1038/383691a0 10.1016/S0092-8674(00)81460-9 10.1016/j.cell.2008.01.046 10.1101/gad.9.15.1831 10.1074/jbc.C400503200 10.1038/nri2808 10.1074/jbc.M202561200 10.1126/scisignal.aak9702 10.1038/nri.2016.112 10.1177/0192623311416259 10.1186/s40425-018-0399-6 10.1084/jem.20030152 10.1038/nrc.2016.52 10.1158/0008-5472.CAN-12-3381 10.1038/nature04846 10.1126/sciimmunol.aaj1738 10.1016/j.molcel.2008.09.002 10.1242/jcs.02554 10.1002/eji.201041135 10.1016/j.devcel.2017.02.017 10.4049/jimmunol.153.8.3514 10.1126/science.aau2909 10.1084/jem.20081242 10.1016/j.tibs.2015.03.012 10.1038/nrm3434 10.1016/j.cell.2011.09.044 10.1016/j.immuni.2016.03.007 10.1126/science.1105718 10.1172/JCI3523 10.1126/scisignal.aad1884 10.1038/ni.2499 10.1158/0008-5472.CAN-14-3511 10.4049/jimmunol.0712671 10.1038/ni730 10.1038/sj.onc.1210741 10.1073/pnas.1002372107 10.1101/cshperspect.a022053 10.1016/j.ccr.2012.08.013 10.1084/jem.171.1.231 10.1016/S0092-8674(04)00298-3 10.1002/ijc.27572 10.1097/CJI.0b013e318189f13c 10.1016/j.immuni.2006.04.015 10.1158/0008-5472.CAN-16-1456 10.1007/s00535-017-1350-1 10.1016/j.cell.2018.05.027 10.1016/j.ccr.2007.08.020 10.4049/jimmunol.158.3.1095 10.1038/s41416-018-0246-z 10.1083/jcb.200704042 10.1073/pnas.1710680114 10.1038/nature25501 10.1073/pnas.0406771101 10.1038/sj.emboj.7601818 10.1073/pnas.90.10.4577 10.4049/jimmunol.173.5.3093 10.1073/pnas.90.2.770 10.1038/ni.1607 10.1038/359693a0 10.1172/JCI200519229 10.1158/2326-6066.CIR-16-0297 10.1084/jem.20171491 10.4049/jimmunol.1201029 10.1074/jbc.M804777200 10.1172/JCI119017 10.1016/0092-8674(94)90572-X 10.1158/1535-7163.MCT-18-0558 10.1038/ni1549 10.1371/journal.pbio.1001674 10.4049/jimmunol.0904100 10.1016/j.ccr.2007.12.004 10.1016/j.immuni.2018.09.013 10.1073/pnas.0809784106 10.1084/jem.20021170 10.1016/S1074-7613(00)80170-3 10.1074/jbc.C110.155820 10.1158/0008-5472.CAN-04-3169 10.1038/371257a0 10.1172/jci.insight.85974 10.1083/jcb.200312172 10.1158/1078-0432.CCR-09-1758 10.1186/s40425-018-0493-9 10.1101/cshperspect.a022293 10.1038/ni.2319 10.1038/ni.2077 10.1038/ng.3225 10.4049/jimmunol.174.10.5950 10.4049/jimmunol.174.9.5215 10.1073/pnas.1319269111 10.1073/pnas.0408197102 10.1016/bs.ai.2017.01.001 10.1016/j.immuni.2015.11.008 10.4049/jimmunol.172.7.4275 10.1126/science.1090148 10.1158/1078-0432.CCR-17-3322 10.1016/j.stem.2012.11.001 10.1073/pnas.0901944106 10.1084/jem.20012076 10.1093/jnci/dju124 10.1002/eji.200425848 10.1016/j.immuni.2013.08.019 10.1186/s40425-018-0356-4 10.1083/jcb.200109037 10.4049/jimmunol.163.7.4013 10.1126/science.1129139 10.1101/cshperspect.a022285 10.1038/nature10152 10.1126/sciimmunol.aai7911 10.4049/jimmunol.172.9.5149 10.1101/cshperspect.a022236 10.1172/JCI65745 10.1038/ni.3809 10.1172/jci.insight.122591 10.1038/s41580-018-0007-0 10.1038/ng.3224 10.1007/s12012-014-9297-4 10.1371/journal.pgen.1003251 10.1101/cshperspect.a022186 10.1124/mol.118.112946 10.1016/j.celrep.2018.04.007 10.1126/science.1090922 10.1126/scitranslmed.aaa1983 10.1038/ncb1780 10.1016/j.cell.2016.02.025 10.1172/JCI45114 10.1038/ni1197 10.1084/jem.20041044 10.1016/j.immuni.2011.04.019 10.1038/nm.3909 10.1038/ni.2388 10.1158/2159-8290.CD-12-0527 10.1016/j.immuni.2008.03.003 10.1016/j.yexcr.2012.01.020 10.1146/annurev-immunol-032713-120257 10.1016/j.cell.2011.08.050 10.1038/nature06878 10.1038/nature25492 10.1016/j.cell.2010.06.010 10.1016/j.immuni.2006.07.012 10.1038/ncomms14649 10.1073/pnas.0703642104 10.1200/JCO.2017.74.3179 10.1093/neuonc/nop009 10.1101/gad.1478706 10.1038/ncomms7840 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Inc. Copyright Elsevier Limited Apr 16, 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Apr 16, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
DOI | 10.1016/j.immuni.2019.03.024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 940 |
ExternalDocumentID | 30995507 10_1016_j_immuni_2019_03_024 S1074761319301414 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA034610 – fundername: NCI NIH HHS grantid: P01 CA129243 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: P01 CA094060 |
GroupedDBID | --- --K -DZ 0R~ 0SF 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAVLU AAXUO ABMAC ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGKMS AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 .55 .GJ 29I 5VS AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKBMS AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c436t-c4f7318867e440ca39fb8bcb2bf4b619e79524e676e116aaedb4b6a954a1ad433 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Sun Aug 24 04:03:04 EDT 2025 Fri Jul 25 11:14:24 EDT 2025 Thu Apr 03 07:02:18 EDT 2025 Tue Jul 01 01:58:41 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Tue Jul 16 04:31:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright © 2019. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-c4f7318867e440ca39fb8bcb2bf4b619e79524e676e116aaedb4b6a954a1ad433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1074761319301414/pdf |
PMID | 30995507 |
PQID | 2210385408 |
PQPubID | 2031079 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2211327489 proquest_journals_2210385408 pubmed_primary_30995507 crossref_citationtrail_10_1016_j_immuni_2019_03_024 crossref_primary_10_1016_j_immuni_2019_03_024 elsevier_sciencedirect_doi_10_1016_j_immuni_2019_03_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-16 |
PublicationDateYYYYMMDD | 2019-04-16 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Lin, Martin, Xia, Gorham (bib97) 2005; 174 Shull, Ormsby, Kier, Pawlowski, Diebold, Yin, Allen, Sidman, Proetzel, Calvin (bib147) 1992; 359 Donatelli, Zhou, Gilvary, Eksioglu, Chen, Cress, Haura, Schabath, Coppola, Wei, Djeu (bib40) 2014; 111 Ozdamar, Bose, Barrios-Rodiles, Wang, Zhang, Wrana (bib121) 2005; 307 Sorrentino, Thakur, Grimsby, Marcusson, von Bulow, Schuster, Zhang, Heldin, Landström (bib150) 2008; 10 Tone, Furuuchi, Kojima, Tykocinski, Greene, Tone (bib159) 2008; 9 Brabletz, Pfeuffer, Schorr, Siebelt, Wirth, Serfling (bib14) 1993; 13 Lee, Lee, Kim, Heo (bib88) 2004; 172 Gorelik, Constant, Flavell (bib62) 2002; 195 Janda, Lehmann, Killisch, Jechlinger, Herzig, Downward, Beug, Grünert (bib74) 2002; 156 Melisi, Garcia-Carbonero, Macarulla, Pezet, Deplanque, Fuchs, Trojan, Oettle, Kozloff, Cleverly (bib109) 2018; 119 Moo-Young, Larson, Belt, Tan, Hawkins, Eberlein, Goedegebuure, Linehan (bib112) 2009; 32 Cruz-Guilloty, Pipkin, Djuretic, Levanon, Lotem, Lichtenheld, Groner, Rao (bib34) 2009; 206 Hong, Lim, Li, Lee, Lee, Lee, Park, Wang, Kim (bib70) 2007; 8 Donkor, Sarkar, Savage, Franklin, Johnson, Jungbluth, Allison, Li (bib41) 2011; 35 Dodagatta-Marri, Meyer, Reeves, Paniagua, To, Binnewies, Broz, Mori, Wu, Adoumie (bib39) 2019; 7 Pearce, Mullen, Martins, Krawczyk, Hutchins, Zediak, Banica, DiCioccio, Gross, Mao (bib127) 2003; 302 Chen, Ten Dijke (bib21) 2016; 16 Travis, Sheppard (bib161) 2014; 32 Bhowmick, Chytil, Plieth, Gorska, Dumont, Shappell, Washington, Neilson, Moses (bib12) 2004; 303 Courau, Nehar-Belaid, Florez, Levacher, Vazquez, Brimaud, Bellier, Klatzmann (bib31) 2016; 1 Mullen, Orlando, Newman, Lovén, Kumar, Bilodeau, Reddy, Guenther, DeKoter, Young (bib115) 2011; 147 Mempel, Pittet, Khazaie, Weninger, Weissleder, von Boehmer, von Andrian (bib110) 2006; 25 Piskurich, Wang, Linhoff, White, Ting (bib130) 1998; 160 Thomas, Massagué (bib158) 2005; 8 Bardeesy, Cheng, Berger, Chu, Pahler, Olson, Hezel, Horner, Lauwers, Hanahan, DePinho (bib7) 2006; 20 Rachidi, Metelli, Riesenberg, Wu, Nelson, Wallace, Paulos, Rubinstein, Garrett-Mayer, Hennig (bib134) 2017; 2 Templeton, McNamara, Šeruga, Vera-Badillo, Aneja, Ocaña, Leibowitz-Amit, Sonpavde, Knox, Tran (bib157) 2014; 106 Wang, Wen, Yuan, Helfand, Li, Shi, Tian, Zheng, Wang, Chen (bib168) 2010; 16 Yin, Selander, Chirgwin, Dallas, Grubbs, Wieser, Massagué, Mundy, Guise (bib178) 1999; 103 Ahmadzadeh, Rosenberg (bib2) 2005; 174 Bollard, Tripic, Cruz, Dotti, Gottschalk, Torrano, Dakhova, Carrum, Ramos, Liu (bib13) 2018; 36 Heldin, Moustakas (bib68) 2016; 8 Wei, Duramad, Perng, Reiner, Liu, Qin (bib171) 2007; 104 Li, Sanjabi, Flavell (bib93) 2006; 25 Allen, Manthey, Hand, Ohura, Ellingsworth, Wahl (bib3) 1990; 171 Massagué (bib107) 2012; 13 Downs-Canner, Berkey, Delgoffe, Edwards, Curiel, Odunsi, Bartlett, Obermajer (bib42) 2017; 8 Yamashita, Fatyol, Jin, Wang, Liu, Zhang (bib175) 2008; 31 Calon, Espinet, Palomo-Ponce, Tauriello, Iglesias, Céspedes, Sevillano, Nadal, Jung, Zhang (bib16) 2012; 22 Liénart, Merceron, Vanderaa, Lambert, Colau, Stockis, van der Woning, De Haard, Saunders, Coulie (bib96) 2018; 362 Liu, Zhang, Li, Kulkarni, Perruche, Chen (bib98) 2008; 9 Chen, Jin, Hardegen, Lei, Li, Marinos, McGrady, Wahl (bib25) 2003; 198 Li, Flavell (bib92) 2008; 28 Letterio, Geiser, Kulkarni, Dang, Kong, Nakabayashi, Mackall, Gress, Roberts (bib91) 1996; 98 Yi, Barnes, Hand, Polleux, Ehlers (bib177) 2010; 142 Arwert, Harney, Entenberg, Wang, Sahai, Pollard, Condeelis (bib6) 2018; 23 Hannon, Beach (bib67) 1994; 371 Mackay, Wynne-Jones, Freestone, Pellicci, Mielke, Newman, Braun, Masson, Kallies, Belz, Carbone (bib100) 2015; 43 Tran, Andersson, Wang, Ramsey, Unutmaz, Shevach (bib160) 2009; 106 Horiguchi, Shirakihara, Nakano, Imamura, Miyazono, Saitoh (bib71) 2009; 284 Cuende, Liénart, Dedobbeleer, van der Woning, De Boeck, Stockis, Huygens, Colau, Somja, Delvenne (bib35) 2015; 7 Porta, Rimoldi, Raes, Brys, Ghezzi, Di Liberto, Dieli, Ghisletti, Natoli, De Baetselier (bib132) 2009; 106 Takimoto, Wakabayashi, Sekiya, Inoue, Morita, Ichiyama, Takahashi, Asakawa, Muto, Mori (bib155) 2010; 185 Wang, Zhu, Dong, Shi, Lu, Springer (bib170) 2012; 23 Fridlender, Sun, Kim, Kapoor, Cheng, Ling, Worthen, Albelda (bib50) 2009; 16 Budhu, Schaer, Li, Toledo-Crow, Panageas, Yang, Zhong, Houghton, Silverstein, Merghoub, Wolchok (bib15) 2017; 10 Guinney, Dienstmann, Wang, de Reyniès, Schlicker, Soneson, Marisa, Roepman, Nyamundanda, Angelino (bib64) 2015; 21 Pietenpol, Holt, Stein, Moses (bib129) 1990; 87 Becker, Fantini, Schramm, Lehr, Wirtz, Nikolaev, Burg, Strand, Kiesslich, Huber (bib9) 2004; 21 Battaglia, Buzzonetti, Baranello, Fanelli, Fossati, Catzola, Scambia, Fattorossi (bib8) 2013; 139 Kelly, Houston, Sherwood, Casulli, Travis (bib78) 2017; 134 Kelly, Gunaltay, McEntee, Shuttleworth, Smedley, Houston, Fenton, Levison, Mann, Travis (bib79) 2018; 215 Gorelik, Flavell (bib60) 2000; 12 Nieto, Huang, Jackson, Thiery (bib119) 2016; 166 Ravi, Noonan, Pham, Bedi, Zhavoronkov, Ozerov, Makarev, V Artemov, Wysocki, Mehra (bib137) 2018; 9 McKarns, Schwartz, Kaminski (bib108) 2004; 172 Park, Seo, Choi, Stavnezer, Kim (bib126) 2005; 35 Formenti, Lee, Adams, Goldberg, Li, Xie, Ratikan, Felix, Hwang, Faull (bib49) 2018; 24 Galon, Costes, Sanchez-Cabo, Kirilovsky, Mlecnik, Lagorce-Pagès, Tosolini, Camus, Berger, Wind (bib54) 2006; 313 Crawford, Stellmach, Murphy-Ullrich, Ribeiro, Lawler, Hynes, Boivin, Bouck (bib33) 1998; 93 Edwards, Wilmott, Madore, Gide, Quek, Tasker, Ferguson, Chen, Hewavisenti, Hersey (bib44) 2018; 24 Cortez, Ulland, Cervantes-Barragan, Bando, Robinette, Wang, White, Gilfillan, Cella, Colonna (bib30) 2017; 18 Pang, Gara, Achyut, Li, Yan, Day, Weiss, Trinchieri, Morris, Yang (bib124) 2013; 3 Yu, Wei, Becknell, Trotta, Liu, Boyd, Jaung, Blaser, Sun, Benson (bib180) 2006; 24 Marcoe, Lim, Schaubert, Fodil-Cornu, Matka, McCubbrey, Farr, Vidal, Laouar (bib103) 2012; 13 Vanpouille-Box, Diamond, Pilones, Zavadil, Babb, Formenti, Barcellos-Hoff, Demaria (bib164) 2015; 75 Davis, Hilyard, Lagna, Hata (bib38) 2008; 454 Calon, Lonardo, Berenguer-Llergo, Espinet, Hernando-Momblona, Iglesias, Sevillano, Palomo-Ponce, Tauriello, Byrom (bib17) 2015; 47 Padua, Zhang, Wang, Nadal, Gerald, Gomis, Massagué (bib122) 2008; 133 Tauriello, Palomo-Ponce, Stork, Berenguer-Llergo, Badia-Ramentol, Iglesias, Sevillano, Ibiza, Cañellas, Hernando-Momblona (bib156) 2018; 554 Rodríguez-Ruiz, Rodríguez, Mayorga, Labiano, Barbes, Etxeberria, Ponz-Sarvise, Azpilikueta, Bolaños, Sanmamed (bib140) 2019; 18 Sanjabi, Oh, Li (bib142) 2017; 9 Castriconi, Cantoni, Della Chiesa, Vitale, Marcenaro, Conte, Biassoni, Bottino, Moretta, Moretta (bib18) 2003; 100 Flavell, Sanjabi, Wrzesinski, Licona-Limón (bib48) 2010; 10 Wahl, Allen, Weeks, Wong, Klotman (bib167) 1993; 90 Yang, Huang, Ren, Gorska, Chytil, Aakre, Carbone, Matrisian, Richmond, Lin, Moses (bib176) 2008; 13 Mullen, Wrana (bib114) 2017; 9 Wipff, Rifkin, Meister, Hinz (bib173) 2007; 179 Tzachanis, Freeman, Hirano, van Puijenbroek, Delfs, Berezovskaya, Nadler, Boussiotis (bib163) 2001; 2 Robinson, Gorham (bib139) 2007; 179 Polyak, Lee, Erdjument-Bromage, Koff, Roberts, Tempst, Massagué (bib131) 1994; 78 Ramalingam, Larmonier, Thurston, Midura-Kiela, Zheng, Ghishan, Kiela (bib135) 2012; 189 Kulkarni, Huh, Becker, Geiser, Lyght, Flanders, Roberts, Sporn, Ward, Karlsson (bib86) 1993; 90 Lee, Park, Kim, Jung, Lee, Kim, Park (bib90) 2011; 2 Coffelt, Wellenstein, de Visser (bib28) 2016; 16 Zhang, Bevan (bib181) 2012; 13 Cortez, Cervantes-Barragan, Robinette, Bando, Wang, Geiger, Gilfillan, Fuchs, Vivier, Sun (bib29) 2016; 44 Pallotta, Orabona, Volpi, Vacca, Belladonna, Bianchi, Servillo, Brunacci, Calvitti, Bicciato (bib123) 2011; 12 Spender, Ferguson, Hughes, Davies, Goldberg, Herrera, Taylor, Strathearn, Sansom, Barry, Inman (bib151) 2019; 95 Charney, Forouzmand, Cho, Cheung, Paraiso, Yasuoka, Takahashi, Taira, Blitz, Xie, Cho (bib20) 2017; 40 Faivre, Santoro, Kelley, Merle, Gane, Douillard, Waldschmidt, Mulcahy, Costentin, Minguez (bib46) 2014; 32 Martinez, Zhang, Reynolds, Tanaka, Chung, Liu, Robertson, Lin, Feng, Dong (bib106) 2010; 285 Dumitriu, Dunbar, Howie, Sethi, Gregory (bib43) 2009; 182 Holmgaard, Schaer, Li, Castaneda, Murphy, Xu, Inigo, Dobkin, Manro, Iversen (bib69) 2018; 6 Mami-Chouaib, Blanc, Corgnac, Hans, Malenica, Granier, Tihy, Tartour (bib102) 2018; 6 Chakravarthy, Khan, Bensler, Bose, De Carvalho (bib19) 2018; 9 Choi, Lee, Lim, Choi, Lee, Lee, Hong, Kim, Kim, Park (bib27) 2006; 7 Scandura, Boccuni, Massagué, Nimer (bib143) 2004; 101 Chen, Rubock, Whitman (bib26) 1996; 383 Trompouki, Bowman, Lawton, Fan, Wu, DiBiase, Martin, Cech, Sessa, Leblanc (bib162) 2011; 147 David, Huang, Chen, Su, Zou, Bardeesy, Iacobuzio-Donahue, Massagué (bib37) 2016; 164 Ihara, Hirata, Koike (bib72) 2017; 52 Naiki, Michelsen, Zhang, Chen, Doherty, Arditi (bib116) 2005; 280 Sledzińska, Hemmers, Mair, Gorka, Ruland, Fairbairn, Nissler, Müller, Waisman, Becher, Buch (bib148) 2013; 11 Malladi, Macalinao, Jin, He, Basnet, Zou, de Stanchina, Massagué (bib101) 2016; 165 Stockis, Liénart, Colau, Collignon, Nishimura, Sheppard, Coulie, Lucas (bib152) 2017; 114 Chen, Seguin-Devaux, Burke, Oriss, Watkins, Clipstone, Ray (bib22) 2003; 197 Hanks, Holtzhausen, Evans, Jamieson, Gimpel, Campbell, Hector-Greene, Sun, Tewari, George (bib66) 2013; 123 Wang, Zou, Nowotschin, Kim, Li, Soh, Su, Zhang, Shu, Xi (bib169) 2017; 20 Qin, Garrison, Ma, Wang, Jiang, Li, Mistry, Bronson, Santoro, Franco (bib133) 2018; 174 Belladonna, Volpi, Bianchi, Vacca, Orabona, Pallotta, Boon, Gizzi, Fioretti, Grohmann, Puccetti (bib10) 2008; 181 Zhou, Lopes, Chong, Ivanov, Min, Victora, Shen, Du, Rubtsov, Rudensky (bib184) 2008; 453 Gal, Sjöblom, Fedorova, Imreh, Beug, Moustakas (bib53) 2008; 27 Gentles, Newman, Liu, Bratman, Feng, Kim, Nair, Xu, Khuong, Hoang (bib57) 2015; 21 Marie, Liggitt, Rudensky (bib105) 2006; 25 Mariathasan, Turley, Nickles, Castiglioni, Yuen, Wang, Kadel, Koeppen, Astarita, Cubas (bib104) 2018; 554 Verstraeten, Alaerts, Van Laer, Loeys (bib165) 2016; 37 Annes, Chen, Munger, Rifkin (bib5) 2004; 165 Sh Li (10.1016/j.immuni.2019.03.024_bib95) 2012; 131 Polyak (10.1016/j.immuni.2019.03.024_bib131) 1994; 78 Trompouki (10.1016/j.immuni.2019.03.024_bib162) 2011; 147 Porta (10.1016/j.immuni.2019.03.024_bib132) 2009; 106 Yu (10.1016/j.immuni.2019.03.024_bib180) 2006; 24 Lee (10.1016/j.immuni.2019.03.024_bib90) 2011; 2 Lin (10.1016/j.immuni.2019.03.024_bib97) 2005; 174 Downs-Canner (10.1016/j.immuni.2019.03.024_bib42) 2017; 8 Vanpouille-Box (10.1016/j.immuni.2019.03.024_bib164) 2015; 75 Kelly (10.1016/j.immuni.2019.03.024_bib78) 2017; 134 Bhowmick (10.1016/j.immuni.2019.03.024_bib12) 2004; 303 Kalathil (10.1016/j.immuni.2019.03.024_bib76) 2013; 73 Li (10.1016/j.immuni.2019.03.024_bib93) 2006; 25 Robinson (10.1016/j.immuni.2019.03.024_bib139) 2007; 179 Park (10.1016/j.immuni.2019.03.024_bib126) 2005; 35 Kulkarni (10.1016/j.immuni.2019.03.024_bib86) 1993; 90 Fantini (10.1016/j.immuni.2019.03.024_bib47) 2004; 172 Stockis (10.1016/j.immuni.2019.03.024_bib152) 2017; 114 Zhang (10.1016/j.immuni.2019.03.024_bib181) 2012; 13 Isella (10.1016/j.immuni.2019.03.024_bib73) 2015; 47 Kobayashi (10.1016/j.immuni.2019.03.024_bib84) 1999; 163 Brabletz (10.1016/j.immuni.2019.03.024_bib14) 1993; 13 Fridlender (10.1016/j.immuni.2019.03.024_bib50) 2009; 16 Yin (10.1016/j.immuni.2019.03.024_bib178) 1999; 103 Ozdamar (10.1016/j.immuni.2019.03.024_bib121) 2005; 307 Ramalingam (10.1016/j.immuni.2019.03.024_bib135) 2012; 189 Lee (10.1016/j.immuni.2019.03.024_bib88) 2004; 172 Tran (10.1016/j.immuni.2019.03.024_bib160) 2009; 106 Choi (10.1016/j.immuni.2019.03.024_bib27) 2006; 7 Yoon (10.1016/j.immuni.2019.03.024_bib179) 2013; 5 Chen (10.1016/j.immuni.2019.03.024_bib23) 2002; 110 Chen (10.1016/j.immuni.2019.03.024_bib25) 2003; 198 Kitamura (10.1016/j.immuni.2019.03.024_bib83) 2010; 107 Li (10.1016/j.immuni.2019.03.024_bib92) 2008; 28 Moustakas (10.1016/j.immuni.2019.03.024_bib113) 2005; 118 Sledzińska (10.1016/j.immuni.2019.03.024_bib148) 2013; 11 Edwards (10.1016/j.immuni.2019.03.024_bib44) 2018; 24 Yi (10.1016/j.immuni.2019.03.024_bib177) 2010; 142 Reynisdóttir (10.1016/j.immuni.2019.03.024_bib138) 1995; 9 Marie (10.1016/j.immuni.2019.03.024_bib105) 2006; 25 Giacomini (10.1016/j.immuni.2019.03.024_bib59) 2012; 318 Kakonen (10.1016/j.immuni.2019.03.024_bib75) 2002; 277 Kelly (10.1016/j.immuni.2019.03.024_bib79) 2018; 215 Cuende (10.1016/j.immuni.2019.03.024_bib35) 2015; 7 Oshimori (10.1016/j.immuni.2019.03.024_bib120) 2012; 11 Qin (10.1016/j.immuni.2019.03.024_bib133) 2018; 174 Lee (10.1016/j.immuni.2019.03.024_bib89) 2007; 26 Mami-Chouaib (10.1016/j.immuni.2019.03.024_bib102) 2018; 6 Pietenpol (10.1016/j.immuni.2019.03.024_bib129) 1990; 87 Davis (10.1016/j.immuni.2019.03.024_bib38) 2008; 454 Mackay (10.1016/j.immuni.2019.03.024_bib100) 2015; 43 Takimoto (10.1016/j.immuni.2019.03.024_bib155) 2010; 185 Shull (10.1016/j.immuni.2019.03.024_bib147) 1992; 359 Thomas (10.1016/j.immuni.2019.03.024_bib158) 2005; 8 Nieto (10.1016/j.immuni.2019.03.024_bib119) 2016; 166 Dodagatta-Marri (10.1016/j.immuni.2019.03.024_bib39) 2019; 7 Sethi (10.1016/j.immuni.2019.03.024_bib145) 2011; 19 Wang (10.1016/j.immuni.2019.03.024_bib169) 2017; 20 Annes (10.1016/j.immuni.2019.03.024_bib5) 2004; 165 Gentles (10.1016/j.immuni.2019.03.024_bib57) 2015; 21 Nandan (10.1016/j.immuni.2019.03.024_bib118) 1997; 158 Zhou (10.1016/j.immuni.2019.03.024_bib184) 2008; 453 Budhu (10.1016/j.immuni.2019.03.024_bib15) 2017; 10 El-Asady (10.1016/j.immuni.2019.03.024_bib45) 2005; 201 Ravi (10.1016/j.immuni.2019.03.024_bib137) 2018; 9 Bendle (10.1016/j.immuni.2019.03.024_bib11) 2013; 191 Kang (10.1016/j.immuni.2019.03.024_bib77) 2003; 3 Nakanishi (10.1016/j.immuni.2019.03.024_bib117) 2018; 49 Yang (10.1016/j.immuni.2019.03.024_bib176) 2008; 13 Templeton (10.1016/j.immuni.2019.03.024_bib157) 2014; 106 Gorelik (10.1016/j.immuni.2019.03.024_bib62) 2002; 195 Bardeesy (10.1016/j.immuni.2019.03.024_bib7) 2006; 20 Castriconi (10.1016/j.immuni.2019.03.024_bib18) 2003; 100 Mullen (10.1016/j.immuni.2019.03.024_bib115) 2011; 147 Cruz-Guilloty (10.1016/j.immuni.2019.03.024_bib34) 2009; 206 Guasch (10.1016/j.immuni.2019.03.024_bib63) 2007; 12 Wipff (10.1016/j.immuni.2019.03.024_bib173) 2007; 179 Gabriely (10.1016/j.immuni.2019.03.024_bib51) 2017; 2 Cortez (10.1016/j.immuni.2019.03.024_bib30) 2017; 18 Li (10.1016/j.immuni.2019.03.024_bib94) 2007; 26 Spender (10.1016/j.immuni.2019.03.024_bib151) 2019; 95 Chen (10.1016/j.immuni.2019.03.024_bib22) 2003; 197 Pang (10.1016/j.immuni.2019.03.024_bib124) 2013; 3 Pearce (10.1016/j.immuni.2019.03.024_bib127) 2003; 302 Heldin (10.1016/j.immuni.2019.03.024_bib68) 2016; 8 Horiguchi (10.1016/j.immuni.2019.03.024_bib71) 2009; 284 Ahmadzadeh (10.1016/j.immuni.2019.03.024_bib2) 2005; 174 Yamashita (10.1016/j.immuni.2019.03.024_bib175) 2008; 31 Massagué (10.1016/j.immuni.2019.03.024_bib107) 2012; 13 Crane (10.1016/j.immuni.2019.03.024_bib32) 2010; 12 Donatelli (10.1016/j.immuni.2019.03.024_bib40) 2014; 111 Zhang (10.1016/j.immuni.2019.03.024_bib183) 2005; 65 Battaglia (10.1016/j.immuni.2019.03.024_bib8) 2013; 139 Metelli (10.1016/j.immuni.2019.03.024_bib111) 2016; 76 Papaspyridonos (10.1016/j.immuni.2019.03.024_bib125) 2015; 6 Janda (10.1016/j.immuni.2019.03.024_bib74) 2002; 156 Macias (10.1016/j.immuni.2019.03.024_bib99) 2015; 40 Dumitriu (10.1016/j.immuni.2019.03.024_bib43) 2009; 182 Rachidi (10.1016/j.immuni.2019.03.024_bib134) 2017; 2 Genestier (10.1016/j.immuni.2019.03.024_bib56) 1999; 189 Achyut (10.1016/j.immuni.2019.03.024_bib1) 2013; 9 Kim (10.1016/j.immuni.2019.03.024_bib80) 2006; 441 Liénart (10.1016/j.immuni.2019.03.024_bib96) 2018; 362 Mariathasan (10.1016/j.immuni.2019.03.024_bib104) 2018; 554 Sorrentino (10.1016/j.immuni.2019.03.024_bib150) 2008; 10 Moo-Young (10.1016/j.immuni.2019.03.024_bib112) 2009; 32 Naiki (10.1016/j.immuni.2019.03.024_bib116) 2005; 280 Courau (10.1016/j.immuni.2019.03.024_bib31) 2016; 1 Ihara (10.1016/j.immuni.2019.03.024_bib72) 2017; 52 Bollard (10.1016/j.immuni.2019.03.024_bib13) 2018; 36 Tzachanis (10.1016/j.immuni.2019.03.024_bib163) 2001; 2 Gabrilovich (10.1016/j.immuni.2019.03.024_bib52) 2017; 5 Tone (10.1016/j.immuni.2019.03.024_bib159) 2008; 9 Arwert (10.1016/j.immuni.2019.03.024_bib6) 2018; 23 Crawford (10.1016/j.immuni.2019.03.024_bib33) 1998; 93 David (10.1016/j.immuni.2019.03.024_bib36) 2018; 19 Laouar (10.1016/j.immuni.2019.03.024_bib87) 2005; 6 Malladi (10.1016/j.immuni.2019.03.024_bib101) 2016; 165 Piskurich (10.1016/j.immuni.2019.03.024_bib130) 1998; 160 Smythies (10.1016/j.immuni.2019.03.024_bib149) 2005; 115 Gorelik (10.1016/j.immuni.2019.03.024_bib61) 2001; 7 Sad (10.1016/j.immuni.2019.03.024_bib141) 1994; 153 Takasaka (10.1016/j.immuni.2019.03.024_bib154) 2018; 3 Wei (10.1016/j.immuni.2019.03.024_bib171) 2007; 104 Liu (10.1016/j.immuni.2019.03.024_bib98) 2008; 9 Wahl (10.1016/j.immuni.2019.03.024_bib167) 1993; 90 Calon (10.1016/j.immuni.2019.03.024_bib17) 2015; 47 Becker (10.1016/j.immuni.2019.03.024_bib9) 2004; 21 Mempel (10.1016/j.immuni.2019.03.024_bib110) 2006; 25 Chen (10.1016/j.immuni.2019.03.024_bib21) 2016; 16 Wolfraim (10.1016/j.immuni.2019.03.024_bib174) 2004; 173 Allen (10.1016/j.immuni.2019.03.024_bib3) 1990; 171 Holmgaard (10.1016/j.immuni.2019.03.024_bib69) 2018; 6 Faivre (10.1016/j.immuni.2019.03.024_bib46) 2014; 32 Melisi (10.1016/j.immuni.2019.03.024_bib109) 2018; 119 Guinney (10.1016/j.immuni.2019.03.024_bib64) 2015; 21 Coffelt (10.1016/j.immuni.2019.03.024_bib28) 2016; 16 Zhang (10.1016/j.immuni.2019.03.024_bib182) 2013; 39 Gal (10.1016/j.immuni.2019.03.024_bib53) 2008; 27 Flavell (10.1016/j.immuni.2019.03.024_bib48) 2010; 10 Windhagen (10.1016/j.immuni.2019.03.024_bib172) 1995; 2 Charney (10.1016/j.immuni.2019.03.024_bib20) 2017; 40 Padua (10.1016/j.immuni.2019.03.024_bib122) 2008; 133 Belladonna (10.1016/j.immuni.2019.03.024_bib10) 2008; 181 Pallotta (10.1016/j.immuni.2019.03.024_bib123) 2011; 12 Marcoe (10.1016/j.immuni.2019.03.024_bib103) 2012; 13 Chen (10.1016/j.immuni.2019.03.024_bib24) 2005; 102 David (10.1016/j.immuni.2019.03.024_bib37) 2016; 164 Scandura (10.1016/j.immuni.2019.03.024_bib143) 2004; 101 Hong (10.1016/j.immuni.2019.03.024_bib70) 2007; 8 Pickup (10.1016/j.immuni.2019.03.024_bib128) 2017; 9 McKarns (10.1016/j.immuni.2019.03.024_bib108) 2004; 172 Rani (10.1016/j.immuni.2019.03.024_bib136) 2011; 41 Viel (10.1016/j.immuni.2019.03.024_bib166) 2016; 9 Tauriello (10.1016/j.immuni.2019.03.024_bib156) 2018; 554 Hannon (10.1016/j.immuni.2019.03.024_bib67) 1994; 371 Gao (10.1016/j.immuni.2019.03.024_bib55) 2017; 18 Travis (10.1016/j.immuni.2019.03.024_bib161) 2014; 32 Chakravarthy (10.1016/j.immuni.2019.03.024_bib19) 2018; 9 Anderton (10.1016/j.immuni.2019.03.024_bib4) 2011; 39 Wang (10.1016/j.immuni.2019.03.024_bib170) 2012; 23 Calon (10.1016/j.immuni.2019.03.024_bib16) 2012; 22 Galon (10.1016/j.immuni.2019.03.024_bib54) 2006; 313 Rodríguez-Ruiz (10.1016/j.immuni.2019.03.024_bib140) 2019; 18 Donkor (10.1016/j.immuni.2019.03.024_bib41) 2011; 35 Letterio (10.1016/j.immuni.2019.03.024_bib91) 1996; 98 Strainic (10.1016/j.immuni.2019.03.024_bib153) 2013; 14 Hanks (10.1016/j.immuni.2019.03.024_bib66) 2013; 123 Formenti (10.1016/j.immuni.2019.03.024_bib49) 2018; 24 Sanjabi (10.1016/j.immuni.2019.03.024_bib142) 2017; 9 Gorelik (10.1016/j.immuni.2019.03.024_bib60) 2000; 12 Wang (10.1016/j.immuni.2019.03.024_bib168) 2010; 16 Kitamura (10.1016/j.immuni.2019.03.024_bib82) 2007; 39 Seoane (10.1016/j.immuni.2019.03.024_bib144) 2004; 117 Ghiringhelli (10.1016/j.immuni.2019.03.024_bib58) 2005; 202 Mullen (10.1016/j.immuni.2019.03.024_bib114) 2017; 9 Hahn (10.1016/j.immuni.2019.03.024_bib65) 2011; 121 Kovacs (10.1016/j.immuni.2019.03.024_bib85) 2015; 15 Shi (10.1016/j.immuni.2019.03.024_bib146) 2011; 474 Verstraeten (10.1016/j.immuni.2019.03.024_bib165) 2016; 37 Martinez (10.1016/j.immuni.2019.03.024_bib106) 2010; 285 Cortez (10.1016/j.immuni.2019.03.024_bib29) 2016; 44 Chen (10.1016/j.immuni.2019.03.024_bib26) 1996; 383 Kim (10.1016/j.immuni.2019.03.024_bib81) 2018; 10 |
References_xml | – volume: 195 start-page: 1499 year: 2002 end-page: 1505 ident: bib62 article-title: Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation publication-title: J. Exp. Med. – volume: 75 start-page: 2232 year: 2015 end-page: 2242 ident: bib164 article-title: TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity publication-title: Cancer Res. – volume: 114 start-page: E10161 year: 2017 end-page: E10168 ident: bib152 article-title: Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 4692 year: 2018 ident: bib19 article-title: TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure publication-title: Nat. Commun. – volume: 284 start-page: 245 year: 2009 end-page: 253 ident: bib71 article-title: Role of Ras signaling in the induction of snail by transforming growth factor-beta publication-title: J. Biol. Chem. – volume: 147 start-page: 565 year: 2011 end-page: 576 ident: bib115 article-title: Master transcription factors determine cell-type-specific responses to TGF-β signaling publication-title: Cell – volume: 121 start-page: 4030 year: 2011 end-page: 4042 ident: bib65 article-title: Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice publication-title: J. Clin. Invest. – volume: 117 start-page: 211 year: 2004 end-page: 223 ident: bib144 article-title: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation publication-title: Cell – volume: 173 start-page: 3093 year: 2004 end-page: 3102 ident: bib174 article-title: p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-beta-mediated G1 arrest through modulation of IL-2 responsiveness publication-title: J. Immunol. – volume: 454 start-page: 56 year: 2008 end-page: 61 ident: bib38 article-title: SMAD proteins control DROSHA-mediated microRNA maturation publication-title: Nature – volume: 7 start-page: 62 year: 2019 ident: bib39 article-title: α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas publication-title: J. Immunother. Cancer – volume: 65 start-page: 1761 year: 2005 end-page: 1769 ident: bib183 article-title: Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8 publication-title: Cancer Res. – volume: 182 start-page: 2795 year: 2009 end-page: 2807 ident: bib43 article-title: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells publication-title: J. Immunol. – volume: 27 start-page: 1218 year: 2008 end-page: 1230 ident: bib53 article-title: Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis publication-title: Oncogene – volume: 25 start-page: 129 year: 2006 end-page: 141 ident: bib110 article-title: Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation publication-title: Immunity – volume: 90 start-page: 4577 year: 1993 end-page: 4581 ident: bib167 article-title: Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: 936 year: 2013 end-page: 951 ident: bib124 article-title: TGF-β signaling in myeloid cells is required for tumor metastasis publication-title: Cancer Discov. – volume: 40 start-page: 296 year: 2015 end-page: 308 ident: bib99 article-title: Structural determinants of Smad function in TGF-β signaling publication-title: Trends Biochem. Sci. – volume: 5 start-page: 1720 year: 2013 end-page: 1739 ident: bib179 article-title: Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes publication-title: EMBO Mol. Med. – volume: 8 start-page: 369 year: 2005 end-page: 380 ident: bib158 article-title: TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance publication-title: Cancer Cell – volume: 47 start-page: 312 year: 2015 end-page: 319 ident: bib73 article-title: Stromal contribution to the colorectal cancer transcriptome publication-title: Nat. Genet. – volume: 166 start-page: 21 year: 2016 end-page: 45 ident: bib119 article-title: EMT: 2016 publication-title: Cell – volume: 9 start-page: 1831 year: 1995 end-page: 1845 ident: bib138 article-title: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta publication-title: Genes Dev. – volume: 41 start-page: 2000 year: 2011 end-page: 2009 ident: bib136 article-title: TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function publication-title: Eur. J. Immunol. – volume: 47 start-page: 320 year: 2015 end-page: 329 ident: bib17 article-title: Stromal gene expression defines poor-prognosis subtypes in colorectal cancer publication-title: Nat. Genet. – volume: 9 start-page: 741 year: 2018 ident: bib137 article-title: Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy publication-title: Nat. Commun. – volume: 181 start-page: 5194 year: 2008 end-page: 5198 ident: bib10 article-title: Cutting edge: Autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells publication-title: J. Immunol. – volume: 100 start-page: 4120 year: 2003 end-page: 4125 ident: bib18 article-title: Transforming growth factor β 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 39 start-page: 467 year: 2007 end-page: 475 ident: bib82 article-title: SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion publication-title: Nat. Genet. – volume: 9 start-page: 194 year: 2008 end-page: 202 ident: bib159 article-title: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer publication-title: Nat. Immunol. – volume: 40 start-page: 595 year: 2017 end-page: 607 ident: bib20 article-title: Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program publication-title: Dev. Cell – volume: 153 start-page: 3514 year: 1994 end-page: 3522 ident: bib141 article-title: Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype publication-title: J. Immunol. – volume: 23 start-page: 1239 year: 2018 end-page: 1248 ident: bib6 article-title: A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation publication-title: Cell Rep. – volume: 6 start-page: 47 year: 2018 ident: bib69 article-title: Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade publication-title: J. Immunother. Cancer – volume: 119 start-page: 1208 year: 2018 end-page: 1214 ident: bib109 article-title: Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer publication-title: Br. J. Cancer – volume: 9 start-page: 632 year: 2008 end-page: 640 ident: bib98 article-title: A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells publication-title: Nat. Immunol. – volume: 16 start-page: 431 year: 2016 end-page: 446 ident: bib28 article-title: Neutrophils in cancer: neutral no more publication-title: Nat. Rev. Cancer – volume: 36 start-page: 1128 year: 2018 end-page: 1139 ident: bib13 article-title: Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma publication-title: J. Clin. Oncol. – volume: 26 start-page: 3957 year: 2007 end-page: 3967 ident: bib89 article-title: TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA publication-title: EMBO J. – volume: 179 start-page: 1311 year: 2007 end-page: 1323 ident: bib173 article-title: Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix publication-title: J. Cell Biol. – volume: 147 start-page: 577 year: 2011 end-page: 589 ident: bib162 article-title: Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration publication-title: Cell – volume: 9 start-page: a022285 year: 2017 ident: bib128 article-title: TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment publication-title: Cold Spring Harb. Perspect. Biol. – volume: 318 start-page: 716 year: 2012 end-page: 722 ident: bib59 article-title: Epithelial cells utilize cortical actin/myosin to activate latent TGF-β through integrin α(v)β(6)-dependent physical force publication-title: Exp. Cell Res. – volume: 163 start-page: 4013 year: 1999 end-page: 4019 ident: bib84 article-title: Beta 2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-beta 1 null mouse publication-title: J. Immunol. – volume: 87 start-page: 3758 year: 1990 end-page: 3762 ident: bib129 article-title: Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation publication-title: Proc. Natl. Acad. Sci. USA – volume: 106 start-page: 13445 year: 2009 end-page: 13450 ident: bib160 article-title: GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 139 start-page: 109 year: 2013 end-page: 120 ident: bib8 article-title: Interleukin-21 (IL-21) synergizes with IL-2 to enhance T-cell receptor-induced human T-cell proliferation and counteracts IL-2/transforming growth factor-β-induced regulatory T-cell development publication-title: Immunology – volume: 6 start-page: 87 year: 2018 ident: bib102 article-title: Resident memory T cells, critical components in tumor immunology publication-title: J. Immunother. Cancer – volume: 303 start-page: 848 year: 2004 end-page: 851 ident: bib12 article-title: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia publication-title: Science – volume: 9 start-page: a022186 year: 2017 ident: bib114 article-title: TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation publication-title: Cold Spring Harb. Perspect. Biol. – volume: 362 start-page: 952 year: 2018 end-page: 956 ident: bib96 article-title: Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells publication-title: Science – volume: 12 start-page: 870 year: 2011 end-page: 878 ident: bib123 article-title: Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells publication-title: Nat. Immunol. – volume: 16 start-page: 164 year: 2010 end-page: 173 ident: bib168 article-title: Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor beta-insensitive CD8+ T cells publication-title: Clin. Cancer Res. – volume: 165 start-page: 45 year: 2016 end-page: 60 ident: bib101 article-title: Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT publication-title: Cell – volume: 201 start-page: 1647 year: 2005 end-page: 1657 ident: bib45 article-title: TGF-beta-dependent CD103 expression by CD8(+) T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease publication-title: J. Exp. Med. – volume: 2 start-page: 460 year: 2011 ident: bib90 article-title: Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling publication-title: Nat. Commun. – volume: 35 start-page: 946 year: 2005 end-page: 956 ident: bib126 article-title: Analysis of transforming growth factor-beta1-induced Ig germ-line gamma2b transcription and its implication for IgA isotype switching publication-title: Eur. J. Immunol. – volume: 21 start-page: 491 year: 2004 end-page: 501 ident: bib9 article-title: TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling publication-title: Immunity – volume: 10 year: 2017 ident: bib15 article-title: Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment publication-title: Sci. Signal. – volume: 1 start-page: e85974 year: 2016 ident: bib31 article-title: TGF- publication-title: JCI Insight – volume: 197 start-page: 1689 year: 2003 end-page: 1699 ident: bib22 article-title: Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation publication-title: J. Exp. Med. – volume: 142 start-page: 144 year: 2010 end-page: 157 ident: bib177 article-title: TGF-beta signaling specifies axons during brain development publication-title: Cell – volume: 16 start-page: 183 year: 2009 end-page: 194 ident: bib50 article-title: Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN publication-title: Cancer Cell – volume: 111 start-page: 4203 year: 2014 end-page: 4208 ident: bib40 article-title: TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 554 start-page: 538 year: 2018 end-page: 543 ident: bib156 article-title: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis publication-title: Nature – volume: 110 start-page: 19 year: 2002 end-page: 32 ident: bib23 article-title: E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression publication-title: Cell – volume: 191 start-page: 3232 year: 2013 end-page: 3239 ident: bib11 article-title: Blockade of TGF-β signaling greatly enhances the efficacy of TCR gene therapy of cancer publication-title: J. Immunol. – volume: 43 start-page: 1101 year: 2015 end-page: 1111 ident: bib100 article-title: T-box Transcription Factors Combine with the Cytokines TGF-β and IL-15 to Control Tissue-Resident Memory T Cell Fate publication-title: Immunity – volume: 8 start-page: 14649 year: 2017 ident: bib42 article-title: Suppressive IL-17A publication-title: Nat. Commun. – volume: 24 start-page: 2493 year: 2018 end-page: 2504 ident: bib49 article-title: Focal Irradiation and Systemic TGFβ Blockade in Metastatic Breast Cancer publication-title: Clin. Cancer Res. – volume: 185 start-page: 842 year: 2010 end-page: 855 ident: bib155 article-title: Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development publication-title: J. Immunol. – volume: 18 start-page: 1004 year: 2017 end-page: 1015 ident: bib55 article-title: Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells publication-title: Nat. Immunol. – volume: 102 start-page: 419 year: 2005 end-page: 424 ident: bib24 article-title: Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo publication-title: Proc. Natl. Acad. Sci. USA – volume: 101 start-page: 15231 year: 2004 end-page: 15236 ident: bib143 article-title: Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 3036 year: 2018 end-page: 3045 ident: bib44 article-title: CD103 publication-title: Clin. Cancer Res. – volume: 307 start-page: 1603 year: 2005 end-page: 1609 ident: bib121 article-title: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity publication-title: Science – volume: 174 start-page: 156 year: 2018 end-page: 171 ident: bib133 article-title: A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System publication-title: Cell – volume: 164 start-page: 1015 year: 2016 end-page: 1030 ident: bib37 article-title: TGF-β Tumor Suppression through a Lethal EMT publication-title: Cell – volume: 25 start-page: 455 year: 2006 end-page: 471 ident: bib93 article-title: Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms publication-title: Immunity – volume: 32 start-page: 51 year: 2014 end-page: 82 ident: bib161 article-title: TGF-β activation and function in immunity publication-title: Annu. Rev. Immunol. – volume: 24 start-page: 575 year: 2006 end-page: 590 ident: bib180 article-title: Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells publication-title: Immunity – volume: 44 start-page: 1127 year: 2016 end-page: 1139 ident: bib29 article-title: Transforming Growth Factor-β Signaling Guides the Differentiation of Innate Lymphoid Cells in Salivary Glands publication-title: Immunity – volume: 3 year: 2018 ident: bib154 article-title: Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells publication-title: JCI Insight – volume: 28 start-page: 468 year: 2008 end-page: 476 ident: bib92 article-title: Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10 publication-title: Immunity – volume: 115 start-page: 66 year: 2005 end-page: 75 ident: bib149 article-title: Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity publication-title: J. Clin. Invest. – volume: 179 start-page: 71 year: 2007 end-page: 79 ident: bib139 article-title: TGF-beta 1 regulates antigen-specific CD4+ T cell responses in the periphery publication-title: J. Immunol. – volume: 174 start-page: 5215 year: 2005 end-page: 5223 ident: bib2 article-title: TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells publication-title: J. Immunol. – volume: 277 start-page: 24571 year: 2002 end-page: 24578 ident: bib75 article-title: Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways publication-title: J. Biol. Chem. – volume: 3 start-page: 537 year: 2003 end-page: 549 ident: bib77 article-title: A multigenic program mediating breast cancer metastasis to bone publication-title: Cancer Cell – volume: 10 start-page: 1199 year: 2008 end-page: 1207 ident: bib150 article-title: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner publication-title: Nat. Cell Biol. – volume: 165 start-page: 723 year: 2004 end-page: 734 ident: bib5 article-title: Integrin alphaVbeta6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1 publication-title: J. Cell Biol. – volume: 123 start-page: 3925 year: 2013 end-page: 3940 ident: bib66 article-title: Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment publication-title: J. Clin. Invest. – volume: 25 start-page: 441 year: 2006 end-page: 454 ident: bib105 article-title: Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor publication-title: Immunity – volume: 73 start-page: 2435 year: 2013 end-page: 2444 ident: bib76 article-title: Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality publication-title: Cancer Res. – volume: 49 start-page: 1132 year: 2018 end-page: 1147 ident: bib117 article-title: Simultaneous Loss of Both Atypical Protein Kinase C Genes in the Intestinal Epithelium Drives Serrated Intestinal Cancer by Impairing Immunosurveillance publication-title: Immunity – volume: 371 start-page: 257 year: 1994 end-page: 261 ident: bib67 article-title: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest publication-title: Nature – volume: 10 start-page: 554 year: 2010 end-page: 567 ident: bib48 article-title: The polarization of immune cells in the tumour environment by TGFbeta publication-title: Nat. Rev. Immunol. – volume: 441 start-page: 1015 year: 2006 end-page: 1019 ident: bib80 article-title: Smad4 signalling in T cells is required for suppression of gastrointestinal cancer publication-title: Nature – volume: 19 start-page: 192 year: 2011 end-page: 205 ident: bib145 article-title: Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells publication-title: Cancer Cell – volume: 171 start-page: 231 year: 1990 end-page: 247 ident: bib3 article-title: Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta publication-title: J. Exp. Med. – volume: 383 start-page: 691 year: 1996 end-page: 696 ident: bib26 article-title: A transcriptional partner for MAD proteins in TGF-beta signalling publication-title: Nature – volume: 7 start-page: 1057 year: 2006 end-page: 1065 ident: bib27 article-title: Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1 publication-title: Nat. Immunol. – volume: 11 start-page: 751 year: 2012 end-page: 764 ident: bib120 article-title: The harmonies played by TGF-β in stem cell biology publication-title: Cell Stem Cell – volume: 2 year: 2017 ident: bib134 article-title: Platelets subvert T cell immunity against cancer via GARP-TGFβ axis publication-title: Sci. Immunol. – volume: 16 start-page: 723 year: 2016 end-page: 740 ident: bib21 article-title: Immunoregulation by members of the TGFβ superfamily publication-title: Nat. Rev. Immunol. – volume: 19 start-page: 419 year: 2018 end-page: 435 ident: bib36 article-title: Contextual determinants of TGFβ action in development, immunity and cancer publication-title: Nat. Rev. Mol. Cell Biol. – volume: 106 start-page: 14978 year: 2009 end-page: 14983 ident: bib132 article-title: Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB publication-title: Proc. Natl. Acad. Sci. USA – volume: 103 start-page: 197 year: 1999 end-page: 206 ident: bib178 article-title: TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development publication-title: J. Clin. Invest. – volume: 172 start-page: 7335 year: 2004 end-page: 7340 ident: bib88 article-title: Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients publication-title: J. Immunol. – volume: 156 start-page: 299 year: 2002 end-page: 313 ident: bib74 article-title: Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways publication-title: J. Cell Biol. – volume: 13 start-page: 616 year: 2012 end-page: 630 ident: bib107 article-title: TGFβ signalling in context publication-title: Nat. Rev. Mol. Cell Biol. – volume: 32 start-page: 12 year: 2009 end-page: 21 ident: bib112 article-title: Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer publication-title: J. Immunother. – volume: 313 start-page: 1960 year: 2006 end-page: 1964 ident: bib54 article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome publication-title: Science – volume: 7 start-page: 1118 year: 2001 end-page: 1122 ident: bib61 article-title: Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells publication-title: Nat. Med. – volume: 131 start-page: 2584 year: 2012 end-page: 2595 ident: bib95 article-title: Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-β in breast cancer progression publication-title: Int. J. Cancer – volume: 10 start-page: a022293 year: 2018 ident: bib81 article-title: TGF-β1 Signaling and Tissue Fibrosis publication-title: Cold Spring Harb. Perspect. Biol. – volume: 172 start-page: 4275 year: 2004 end-page: 4284 ident: bib108 article-title: Smad3 is essential for TGF-β 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation publication-title: J. Immunol. – volume: 22 start-page: 571 year: 2012 end-page: 584 ident: bib16 article-title: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation publication-title: Cancer Cell – volume: 31 start-page: 918 year: 2008 end-page: 924 ident: bib175 article-title: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta publication-title: Mol. Cell – volume: 15 start-page: 309 year: 2015 end-page: 323 ident: bib85 article-title: Cardiac Safety of TGF-β Receptor I Kinase Inhibitor LY2157299 Monohydrate in Cancer Patients in a First-in-Human Dose Study publication-title: Cardiovasc. Toxicol. – volume: 7 start-page: 284ra56 year: 2015 ident: bib35 article-title: Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo publication-title: Sci. Transl. Med. – volume: 5 start-page: 3 year: 2017 end-page: 8 ident: bib52 article-title: Myeloid-Derived Suppressor Cells publication-title: Cancer Immunol. Res. – volume: 98 start-page: 2109 year: 1996 end-page: 2119 ident: bib91 article-title: Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression publication-title: J. Clin. Invest. – volume: 202 start-page: 919 year: 2005 end-page: 929 ident: bib58 article-title: Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4 publication-title: J. Exp. Med. – volume: 13 start-page: 23 year: 2008 end-page: 35 ident: bib176 article-title: Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis publication-title: Cancer Cell – volume: 20 start-page: 70 year: 2017 end-page: 86 ident: bib169 article-title: The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells publication-title: Cell Stem Cell – volume: 39 start-page: 916 year: 2011 end-page: 924 ident: bib4 article-title: Induction of heart valve lesions by small-molecule ALK5 inhibitors publication-title: Toxicol. Pathol. – volume: 76 start-page: 7106 year: 2016 end-page: 7117 ident: bib111 article-title: Surface Expression of TGFβ Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer publication-title: Cancer Res. – volume: 285 start-page: 29039 year: 2010 end-page: 29043 ident: bib106 article-title: Smad2 positively regulates the generation of Th17 cells publication-title: J. Biol. Chem. – volume: 104 start-page: 18169 year: 2007 end-page: 18174 ident: bib171 article-title: Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 171 year: 2000 end-page: 181 ident: bib60 article-title: Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease publication-title: Immunity – volume: 52 start-page: 777 year: 2017 end-page: 787 ident: bib72 article-title: TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota publication-title: J. Gastroenterol. – volume: 8 start-page: a022053 year: 2016 ident: bib68 article-title: Signaling Receptors for TGF-β Family Members publication-title: Cold Spring Harb. Perspect. Biol. – volume: 78 start-page: 59 year: 1994 end-page: 66 ident: bib131 article-title: Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals publication-title: Cell – volume: 35 start-page: 123 year: 2011 end-page: 134 ident: bib41 article-title: T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-β1 cytokine publication-title: Immunity – volume: 453 start-page: 236 year: 2008 end-page: 240 ident: bib184 article-title: TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function publication-title: Nature – volume: 13 start-page: 1155 year: 1993 end-page: 1162 ident: bib14 article-title: Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site publication-title: Mol. Cell. Biol. – volume: 215 start-page: 2725 year: 2018 end-page: 2736 ident: bib79 article-title: Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation publication-title: J. Exp. Med. – volume: 474 start-page: 343 year: 2011 end-page: 349 ident: bib146 article-title: Latent TGF-β structure and activation publication-title: Nature – volume: 12 start-page: 313 year: 2007 end-page: 327 ident: bib63 article-title: Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia publication-title: Cancer Cell – volume: 21 start-page: 1350 year: 2015 end-page: 1356 ident: bib64 article-title: The consensus molecular subtypes of colorectal cancer publication-title: Nat. Med. – volume: 26 start-page: 579 year: 2007 end-page: 591 ident: bib94 article-title: T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation publication-title: Immunity – volume: 160 start-page: 233 year: 1998 end-page: 240 ident: bib130 article-title: Identification of distinct regions of 5′ flanking DNA that mediate constitutive, IFN-gamma, STAT1, and TGF-beta-regulated expression of the class II transactivator gene publication-title: J. Immunol. – volume: 14 start-page: 162 year: 2013 end-page: 171 ident: bib153 article-title: Absence of signaling into CD4 publication-title: Nat. Immunol. – volume: 134 start-page: 137 year: 2017 end-page: 233 ident: bib78 article-title: Regulation of Innate and Adaptive Immunity by TGFβ publication-title: Adv. Immunol. – volume: 90 start-page: 770 year: 1993 end-page: 774 ident: bib86 article-title: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 600 year: 2005 end-page: 607 ident: bib87 article-title: Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ publication-title: Nat. Immunol. – volume: 2 start-page: 1174 year: 2001 end-page: 1182 ident: bib163 article-title: Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells publication-title: Nat. Immunol. – volume: 9 start-page: e1003251 year: 2013 ident: bib1 article-title: Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling publication-title: PLoS Genet. – volume: 11 start-page: e1001674 year: 2013 ident: bib148 article-title: TGF-β signalling is required for CD4 publication-title: PLoS Biol. – volume: 37 start-page: 524 year: 2016 end-page: 531 ident: bib165 article-title: Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery publication-title: Hum. Mutat. – volume: 6 start-page: 6840 year: 2015 ident: bib125 article-title: Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation publication-title: Nat. Commun. – volume: 2 start-page: 373 year: 1995 end-page: 380 ident: bib172 article-title: Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand publication-title: Immunity – volume: 13 start-page: 667 year: 2012 end-page: 673 ident: bib181 article-title: TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation publication-title: Nat. Immunol. – volume: 280 start-page: 5491 year: 2005 end-page: 5495 ident: bib116 article-title: Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling publication-title: J. Biol. Chem. – volume: 133 start-page: 66 year: 2008 end-page: 77 ident: bib122 article-title: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4 publication-title: Cell – volume: 18 start-page: 621 year: 2019 end-page: 631 ident: bib140 article-title: TGFβ Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies publication-title: Mol. Cancer Ther. – volume: 8 start-page: 504 year: 2007 end-page: 513 ident: bib70 article-title: Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2 publication-title: Nat. Immunol. – volume: 172 start-page: 5149 year: 2004 end-page: 5153 ident: bib47 article-title: Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7 publication-title: J. Immunol. – volume: 23 start-page: 1129 year: 2012 end-page: 1139 ident: bib170 article-title: GARP regulates the bioavailability and activation of TGFβ publication-title: Mol. Biol. Cell – volume: 39 start-page: 687 year: 2013 end-page: 696 ident: bib182 article-title: Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention publication-title: Immunity – volume: 18 start-page: 995 year: 2017 end-page: 1003 ident: bib30 article-title: SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling publication-title: Nat. Immunol. – volume: 95 start-page: 222 year: 2019 end-page: 234 ident: bib151 article-title: Preclinical Evaluation of AZ12601011 and AZ12799734, Inhibitors of Transforming Growth Factor publication-title: Mol. Pharmacol. – volume: 9 start-page: a022236 year: 2017 ident: bib142 article-title: Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection publication-title: Cold Spring Harb. Perspect. Biol. – volume: 20 start-page: 3130 year: 2006 end-page: 3146 ident: bib7 article-title: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer publication-title: Genes Dev. – volume: 21 start-page: 938 year: 2015 end-page: 945 ident: bib57 article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers publication-title: Nat. Med. – volume: 302 start-page: 1041 year: 2003 end-page: 1043 ident: bib127 article-title: Control of effector CD8+ T cell function by the transcription factor Eomesodermin publication-title: Science – volume: 13 start-page: 843 year: 2012 end-page: 850 ident: bib103 article-title: TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy publication-title: Nat. Immunol. – volume: 189 start-page: 3878 year: 2012 end-page: 3893 ident: bib135 article-title: Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity publication-title: J. Immunol. – volume: 189 start-page: 231 year: 1999 end-page: 239 ident: bib56 article-title: Transforming growth factor beta1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc publication-title: J. Exp. Med. – volume: 107 start-page: 13063 year: 2010 end-page: 13068 ident: bib83 article-title: Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 year: 2014 ident: bib46 article-title: A phase 2 study of a novel transforming growth factor-beta (TGF-β1) receptor I kinase inhibitor, LY2157299 monohydrate (LY), in patients with advanced hepatocellular carcinoma (HCC) publication-title: J. Clin. Oncol. – volume: 93 start-page: 1159 year: 1998 end-page: 1170 ident: bib33 article-title: Thrombospondin-1 is a major activator of TGF-beta1 in vivo publication-title: Cell – volume: 554 start-page: 544 year: 2018 end-page: 548 ident: bib104 article-title: TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells publication-title: Nature – volume: 9 start-page: ra19 year: 2016 ident: bib166 article-title: TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway publication-title: Sci. Signal. – volume: 359 start-page: 693 year: 1992 end-page: 699 ident: bib147 article-title: Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease publication-title: Nature – volume: 198 start-page: 1875 year: 2003 end-page: 1886 ident: bib25 article-title: Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3 publication-title: J. Exp. Med. – volume: 12 start-page: 7 year: 2010 end-page: 13 ident: bib32 article-title: TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients publication-title: Neuro-oncol. – volume: 158 start-page: 1095 year: 1997 end-page: 1101 ident: bib118 article-title: TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action publication-title: J. Immunol. – volume: 118 start-page: 3573 year: 2005 end-page: 3584 ident: bib113 article-title: Non-Smad TGF-beta signals publication-title: J. Cell Sci. – volume: 174 start-page: 5950 year: 2005 end-page: 5958 ident: bib97 article-title: TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet publication-title: J. Immunol. – volume: 206 start-page: 51 year: 2009 end-page: 59 ident: bib34 article-title: Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs publication-title: J. Exp. Med. – volume: 106 year: 2014 ident: bib157 article-title: Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis publication-title: J. Natl. Cancer Inst. – volume: 2 year: 2017 ident: bib51 article-title: Targeting latency-associated peptide promotes antitumor immunity publication-title: Sci. Immunol – volume: 202 start-page: 919 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib58 article-title: Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation publication-title: J. Exp. Med. doi: 10.1084/jem.20050463 – volume: 110 start-page: 19 year: 2002 ident: 10.1016/j.immuni.2019.03.024_bib23 article-title: E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression publication-title: Cell doi: 10.1016/S0092-8674(02)00801-2 – volume: 7 start-page: 1118 year: 2001 ident: 10.1016/j.immuni.2019.03.024_bib61 article-title: Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells publication-title: Nat. Med. doi: 10.1038/nm1001-1118 – volume: 8 start-page: 504 year: 2007 ident: 10.1016/j.immuni.2019.03.024_bib70 article-title: Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2 publication-title: Nat. Immunol. doi: 10.1038/ni1451 – volume: 2 start-page: 460 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib90 article-title: Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling publication-title: Nat. Commun. doi: 10.1038/ncomms1469 – volume: 179 start-page: 71 year: 2007 ident: 10.1016/j.immuni.2019.03.024_bib139 article-title: TGF-beta 1 regulates antigen-specific CD4+ T cell responses in the periphery publication-title: J. Immunol. doi: 10.4049/jimmunol.179.1.71 – volume: 172 start-page: 7335 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib88 article-title: Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients publication-title: J. Immunol. doi: 10.4049/jimmunol.172.12.7335 – volume: 8 start-page: 369 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib158 article-title: TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.10.012 – volume: 7 start-page: 1057 year: 2006 ident: 10.1016/j.immuni.2019.03.024_bib27 article-title: Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1 publication-title: Nat. Immunol. doi: 10.1038/ni1383 – volume: 160 start-page: 233 year: 1998 ident: 10.1016/j.immuni.2019.03.024_bib130 article-title: Identification of distinct regions of 5′ flanking DNA that mediate constitutive, IFN-gamma, STAT1, and TGF-beta-regulated expression of the class II transactivator gene publication-title: J. Immunol. doi: 10.4049/jimmunol.160.1.233 – volume: 21 start-page: 491 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib9 article-title: TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling publication-title: Immunity doi: 10.1016/j.immuni.2004.07.020 – volume: 164 start-page: 1015 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib37 article-title: TGF-β Tumor Suppression through a Lethal EMT publication-title: Cell doi: 10.1016/j.cell.2016.01.009 – volume: 181 start-page: 5194 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib10 article-title: Cutting edge: Autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.181.8.5194 – volume: 18 start-page: 1004 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib55 article-title: Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells publication-title: Nat. Immunol. doi: 10.1038/ni.3800 – volume: 37 start-page: 524 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib165 article-title: Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery publication-title: Hum. Mutat. doi: 10.1002/humu.22977 – volume: 191 start-page: 3232 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib11 article-title: Blockade of TGF-β signaling greatly enhances the efficacy of TCR gene therapy of cancer publication-title: J. Immunol. doi: 10.4049/jimmunol.1301270 – volume: 26 start-page: 579 year: 2007 ident: 10.1016/j.immuni.2019.03.024_bib94 article-title: T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation publication-title: Immunity doi: 10.1016/j.immuni.2007.03.014 – volume: 166 start-page: 21 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib119 article-title: EMT: 2016 publication-title: Cell doi: 10.1016/j.cell.2016.06.028 – volume: 100 start-page: 4120 year: 2003 ident: 10.1016/j.immuni.2019.03.024_bib18 article-title: Transforming growth factor β 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0730640100 – volume: 39 start-page: 467 year: 2007 ident: 10.1016/j.immuni.2019.03.024_bib82 article-title: SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion publication-title: Nat. Genet. doi: 10.1038/ng1997 – volume: 16 start-page: 183 year: 2009 ident: 10.1016/j.immuni.2019.03.024_bib50 article-title: Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.06.017 – volume: 189 start-page: 231 year: 1999 ident: 10.1016/j.immuni.2019.03.024_bib56 article-title: Transforming growth factor beta1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc publication-title: J. Exp. Med. doi: 10.1084/jem.189.2.231 – volume: 3 start-page: 537 year: 2003 ident: 10.1016/j.immuni.2019.03.024_bib77 article-title: A multigenic program mediating breast cancer metastasis to bone publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00132-6 – volume: 139 start-page: 109 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib8 article-title: Interleukin-21 (IL-21) synergizes with IL-2 to enhance T-cell receptor-induced human T-cell proliferation and counteracts IL-2/transforming growth factor-β-induced regulatory T-cell development publication-title: Immunology doi: 10.1111/imm.12061 – volume: 24 start-page: 3036 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib44 article-title: CD103+ Tumor-Resident CD8+ T Cells Are Associated with Improved Survival in Immunotherapy-Naïve Melanoma Patients and Expand Significantly During Anti-PD-1 Treatment publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-2257 – volume: 9 start-page: 741 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib137 article-title: Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy publication-title: Nat. Commun. doi: 10.1038/s41467-017-02696-6 – volume: 19 start-page: 192 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib145 article-title: Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.12.022 – volume: 25 start-page: 455 year: 2006 ident: 10.1016/j.immuni.2019.03.024_bib93 article-title: Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms publication-title: Immunity doi: 10.1016/j.immuni.2006.07.011 – volume: 9 start-page: 4692 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib19 article-title: TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure publication-title: Nat. Commun. doi: 10.1038/s41467-018-06654-8 – volume: 23 start-page: 1129 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib170 article-title: GARP regulates the bioavailability and activation of TGFβ publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-12-1018 – volume: 454 start-page: 56 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib38 article-title: SMAD proteins control DROSHA-mediated microRNA maturation publication-title: Nature doi: 10.1038/nature07086 – volume: 87 start-page: 3758 year: 1990 ident: 10.1016/j.immuni.2019.03.024_bib129 article-title: Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.87.10.3758 – volume: 20 start-page: 70 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib169 article-title: The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.10.002 – volume: 5 start-page: 1720 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib179 article-title: Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201302524 – volume: 32 year: 2014 ident: 10.1016/j.immuni.2019.03.024_bib46 article-title: A phase 2 study of a novel transforming growth factor-beta (TGF-β1) receptor I kinase inhibitor, LY2157299 monohydrate (LY), in patients with advanced hepatocellular carcinoma (HCC) publication-title: J. Clin. Oncol. doi: 10.1200/jco.2014.32.3_suppl.lba173 – volume: 21 start-page: 1350 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib64 article-title: The consensus molecular subtypes of colorectal cancer publication-title: Nat. Med. doi: 10.1038/nm.3967 – volume: 2 start-page: 373 year: 1995 ident: 10.1016/j.immuni.2019.03.024_bib172 article-title: Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand publication-title: Immunity doi: 10.1016/1074-7613(95)90145-0 – volume: 24 start-page: 575 year: 2006 ident: 10.1016/j.immuni.2019.03.024_bib180 article-title: Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells publication-title: Immunity doi: 10.1016/j.immuni.2006.03.016 – volume: 383 start-page: 691 year: 1996 ident: 10.1016/j.immuni.2019.03.024_bib26 article-title: A transcriptional partner for MAD proteins in TGF-beta signalling publication-title: Nature doi: 10.1038/383691a0 – volume: 93 start-page: 1159 year: 1998 ident: 10.1016/j.immuni.2019.03.024_bib33 article-title: Thrombospondin-1 is a major activator of TGF-beta1 in vivo publication-title: Cell doi: 10.1016/S0092-8674(00)81460-9 – volume: 133 start-page: 66 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib122 article-title: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4 publication-title: Cell doi: 10.1016/j.cell.2008.01.046 – volume: 9 start-page: 1831 year: 1995 ident: 10.1016/j.immuni.2019.03.024_bib138 article-title: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta publication-title: Genes Dev. doi: 10.1101/gad.9.15.1831 – volume: 280 start-page: 5491 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib116 article-title: Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.C400503200 – volume: 10 start-page: 554 year: 2010 ident: 10.1016/j.immuni.2019.03.024_bib48 article-title: The polarization of immune cells in the tumour environment by TGFbeta publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2808 – volume: 277 start-page: 24571 year: 2002 ident: 10.1016/j.immuni.2019.03.024_bib75 article-title: Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202561200 – volume: 10 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib15 article-title: Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment publication-title: Sci. Signal. doi: 10.1126/scisignal.aak9702 – volume: 16 start-page: 723 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib21 article-title: Immunoregulation by members of the TGFβ superfamily publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.112 – volume: 39 start-page: 916 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib4 article-title: Induction of heart valve lesions by small-molecule ALK5 inhibitors publication-title: Toxicol. Pathol. doi: 10.1177/0192623311416259 – volume: 6 start-page: 87 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib102 article-title: Resident memory T cells, critical components in tumor immunology publication-title: J. Immunother. Cancer doi: 10.1186/s40425-018-0399-6 – volume: 198 start-page: 1875 year: 2003 ident: 10.1016/j.immuni.2019.03.024_bib25 article-title: Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3 publication-title: J. Exp. Med. doi: 10.1084/jem.20030152 – volume: 16 start-page: 431 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib28 article-title: Neutrophils in cancer: neutral no more publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.52 – volume: 73 start-page: 2435 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib76 article-title: Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3381 – volume: 441 start-page: 1015 year: 2006 ident: 10.1016/j.immuni.2019.03.024_bib80 article-title: Smad4 signalling in T cells is required for suppression of gastrointestinal cancer publication-title: Nature doi: 10.1038/nature04846 – volume: 2 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib51 article-title: Targeting latency-associated peptide promotes antitumor immunity publication-title: Sci. Immunol doi: 10.1126/sciimmunol.aaj1738 – volume: 31 start-page: 918 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib175 article-title: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.09.002 – volume: 118 start-page: 3573 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib113 article-title: Non-Smad TGF-beta signals publication-title: J. Cell Sci. doi: 10.1242/jcs.02554 – volume: 41 start-page: 2000 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib136 article-title: TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function publication-title: Eur. J. Immunol. doi: 10.1002/eji.201041135 – volume: 40 start-page: 595 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib20 article-title: Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.02.017 – volume: 153 start-page: 3514 year: 1994 ident: 10.1016/j.immuni.2019.03.024_bib141 article-title: Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype publication-title: J. Immunol. doi: 10.4049/jimmunol.153.8.3514 – volume: 362 start-page: 952 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib96 article-title: Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells publication-title: Science doi: 10.1126/science.aau2909 – volume: 206 start-page: 51 year: 2009 ident: 10.1016/j.immuni.2019.03.024_bib34 article-title: Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs publication-title: J. Exp. Med. doi: 10.1084/jem.20081242 – volume: 40 start-page: 296 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib99 article-title: Structural determinants of Smad function in TGF-β signaling publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.03.012 – volume: 13 start-page: 616 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib107 article-title: TGFβ signalling in context publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3434 – volume: 147 start-page: 577 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib162 article-title: Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration publication-title: Cell doi: 10.1016/j.cell.2011.09.044 – volume: 44 start-page: 1127 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib29 article-title: Transforming Growth Factor-β Signaling Guides the Differentiation of Innate Lymphoid Cells in Salivary Glands publication-title: Immunity doi: 10.1016/j.immuni.2016.03.007 – volume: 307 start-page: 1603 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib121 article-title: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity publication-title: Science doi: 10.1126/science.1105718 – volume: 103 start-page: 197 year: 1999 ident: 10.1016/j.immuni.2019.03.024_bib178 article-title: TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development publication-title: J. Clin. Invest. doi: 10.1172/JCI3523 – volume: 9 start-page: ra19 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib166 article-title: TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway publication-title: Sci. Signal. doi: 10.1126/scisignal.aad1884 – volume: 13 start-page: 1155 year: 1993 ident: 10.1016/j.immuni.2019.03.024_bib14 article-title: Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site publication-title: Mol. Cell. Biol. – volume: 14 start-page: 162 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib153 article-title: Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells publication-title: Nat. Immunol. doi: 10.1038/ni.2499 – volume: 75 start-page: 2232 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib164 article-title: TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3511 – volume: 182 start-page: 2795 year: 2009 ident: 10.1016/j.immuni.2019.03.024_bib43 article-title: Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.0712671 – volume: 2 start-page: 1174 year: 2001 ident: 10.1016/j.immuni.2019.03.024_bib163 article-title: Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells publication-title: Nat. Immunol. doi: 10.1038/ni730 – volume: 27 start-page: 1218 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib53 article-title: Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis publication-title: Oncogene doi: 10.1038/sj.onc.1210741 – volume: 107 start-page: 13063 year: 2010 ident: 10.1016/j.immuni.2019.03.024_bib83 article-title: Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1002372107 – volume: 8 start-page: a022053 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib68 article-title: Signaling Receptors for TGF-β Family Members publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a022053 – volume: 22 start-page: 571 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib16 article-title: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.08.013 – volume: 171 start-page: 231 year: 1990 ident: 10.1016/j.immuni.2019.03.024_bib3 article-title: Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta publication-title: J. Exp. Med. doi: 10.1084/jem.171.1.231 – volume: 117 start-page: 211 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib144 article-title: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation publication-title: Cell doi: 10.1016/S0092-8674(04)00298-3 – volume: 131 start-page: 2584 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib95 article-title: Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-β in breast cancer progression publication-title: Int. J. Cancer doi: 10.1002/ijc.27572 – volume: 32 start-page: 12 year: 2009 ident: 10.1016/j.immuni.2019.03.024_bib112 article-title: Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer publication-title: J. Immunother. doi: 10.1097/CJI.0b013e318189f13c – volume: 25 start-page: 129 year: 2006 ident: 10.1016/j.immuni.2019.03.024_bib110 article-title: Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation publication-title: Immunity doi: 10.1016/j.immuni.2006.04.015 – volume: 76 start-page: 7106 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib111 article-title: Surface Expression of TGFβ Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1456 – volume: 52 start-page: 777 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib72 article-title: TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota publication-title: J. Gastroenterol. doi: 10.1007/s00535-017-1350-1 – volume: 174 start-page: 156 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib133 article-title: A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System publication-title: Cell doi: 10.1016/j.cell.2018.05.027 – volume: 12 start-page: 313 year: 2007 ident: 10.1016/j.immuni.2019.03.024_bib63 article-title: Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.08.020 – volume: 158 start-page: 1095 year: 1997 ident: 10.1016/j.immuni.2019.03.024_bib118 article-title: TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action publication-title: J. Immunol. doi: 10.4049/jimmunol.158.3.1095 – volume: 119 start-page: 1208 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib109 article-title: Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer publication-title: Br. J. Cancer doi: 10.1038/s41416-018-0246-z – volume: 179 start-page: 1311 year: 2007 ident: 10.1016/j.immuni.2019.03.024_bib173 article-title: Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix publication-title: J. Cell Biol. doi: 10.1083/jcb.200704042 – volume: 114 start-page: E10161 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib152 article-title: Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1710680114 – volume: 554 start-page: 544 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib104 article-title: TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells publication-title: Nature doi: 10.1038/nature25501 – volume: 101 start-page: 15231 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib143 article-title: Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0406771101 – volume: 26 start-page: 3957 year: 2007 ident: 10.1016/j.immuni.2019.03.024_bib89 article-title: TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA publication-title: EMBO J. doi: 10.1038/sj.emboj.7601818 – volume: 90 start-page: 4577 year: 1993 ident: 10.1016/j.immuni.2019.03.024_bib167 article-title: Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.10.4577 – volume: 173 start-page: 3093 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib174 article-title: p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-beta-mediated G1 arrest through modulation of IL-2 responsiveness publication-title: J. Immunol. doi: 10.4049/jimmunol.173.5.3093 – volume: 90 start-page: 770 year: 1993 ident: 10.1016/j.immuni.2019.03.024_bib86 article-title: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.2.770 – volume: 9 start-page: 632 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib98 article-title: A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells publication-title: Nat. Immunol. doi: 10.1038/ni.1607 – volume: 359 start-page: 693 year: 1992 ident: 10.1016/j.immuni.2019.03.024_bib147 article-title: Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease publication-title: Nature doi: 10.1038/359693a0 – volume: 115 start-page: 66 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib149 article-title: Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity publication-title: J. Clin. Invest. doi: 10.1172/JCI200519229 – volume: 5 start-page: 3 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib52 article-title: Myeloid-Derived Suppressor Cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0297 – volume: 215 start-page: 2725 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib79 article-title: Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation publication-title: J. Exp. Med. doi: 10.1084/jem.20171491 – volume: 189 start-page: 3878 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib135 article-title: Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1201029 – volume: 284 start-page: 245 year: 2009 ident: 10.1016/j.immuni.2019.03.024_bib71 article-title: Role of Ras signaling in the induction of snail by transforming growth factor-beta publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804777200 – volume: 98 start-page: 2109 year: 1996 ident: 10.1016/j.immuni.2019.03.024_bib91 article-title: Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression publication-title: J. Clin. Invest. doi: 10.1172/JCI119017 – volume: 78 start-page: 59 year: 1994 ident: 10.1016/j.immuni.2019.03.024_bib131 article-title: Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals publication-title: Cell doi: 10.1016/0092-8674(94)90572-X – volume: 18 start-page: 621 year: 2019 ident: 10.1016/j.immuni.2019.03.024_bib140 article-title: TGFβ Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-18-0558 – volume: 9 start-page: 194 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib159 article-title: Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer publication-title: Nat. Immunol. doi: 10.1038/ni1549 – volume: 11 start-page: e1001674 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib148 article-title: TGF-β signalling is required for CD4+ T cell homeostasis but dispensable for regulatory T cell function publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001674 – volume: 185 start-page: 842 year: 2010 ident: 10.1016/j.immuni.2019.03.024_bib155 article-title: Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development publication-title: J. Immunol. doi: 10.4049/jimmunol.0904100 – volume: 13 start-page: 23 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib176 article-title: Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.12.004 – volume: 49 start-page: 1132 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib117 article-title: Simultaneous Loss of Both Atypical Protein Kinase C Genes in the Intestinal Epithelium Drives Serrated Intestinal Cancer by Impairing Immunosurveillance publication-title: Immunity doi: 10.1016/j.immuni.2018.09.013 – volume: 106 start-page: 14978 year: 2009 ident: 10.1016/j.immuni.2019.03.024_bib132 article-title: Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0809784106 – volume: 197 start-page: 1689 year: 2003 ident: 10.1016/j.immuni.2019.03.024_bib22 article-title: Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation publication-title: J. Exp. Med. doi: 10.1084/jem.20021170 – volume: 12 start-page: 171 year: 2000 ident: 10.1016/j.immuni.2019.03.024_bib60 article-title: Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease publication-title: Immunity doi: 10.1016/S1074-7613(00)80170-3 – volume: 285 start-page: 29039 year: 2010 ident: 10.1016/j.immuni.2019.03.024_bib106 article-title: Smad2 positively regulates the generation of Th17 cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.C110.155820 – volume: 65 start-page: 1761 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib183 article-title: Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-3169 – volume: 371 start-page: 257 year: 1994 ident: 10.1016/j.immuni.2019.03.024_bib67 article-title: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest publication-title: Nature doi: 10.1038/371257a0 – volume: 1 start-page: e85974 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib31 article-title: TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies publication-title: JCI Insight doi: 10.1172/jci.insight.85974 – volume: 165 start-page: 723 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib5 article-title: Integrin alphaVbeta6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200312172 – volume: 16 start-page: 164 year: 2010 ident: 10.1016/j.immuni.2019.03.024_bib168 article-title: Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor beta-insensitive CD8+ T cells publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-09-1758 – volume: 7 start-page: 62 year: 2019 ident: 10.1016/j.immuni.2019.03.024_bib39 article-title: α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas publication-title: J. Immunother. Cancer doi: 10.1186/s40425-018-0493-9 – volume: 10 start-page: a022293 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib81 article-title: TGF-β1 Signaling and Tissue Fibrosis publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a022293 – volume: 13 start-page: 667 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib181 article-title: TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation publication-title: Nat. Immunol. doi: 10.1038/ni.2319 – volume: 12 start-page: 870 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib123 article-title: Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells publication-title: Nat. Immunol. doi: 10.1038/ni.2077 – volume: 47 start-page: 320 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib17 article-title: Stromal gene expression defines poor-prognosis subtypes in colorectal cancer publication-title: Nat. Genet. doi: 10.1038/ng.3225 – volume: 174 start-page: 5950 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib97 article-title: TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet publication-title: J. Immunol. doi: 10.4049/jimmunol.174.10.5950 – volume: 174 start-page: 5215 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib2 article-title: TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.174.9.5215 – volume: 111 start-page: 4203 year: 2014 ident: 10.1016/j.immuni.2019.03.024_bib40 article-title: TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1319269111 – volume: 102 start-page: 419 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib24 article-title: Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0408197102 – volume: 134 start-page: 137 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib78 article-title: Regulation of Innate and Adaptive Immunity by TGFβ publication-title: Adv. Immunol. doi: 10.1016/bs.ai.2017.01.001 – volume: 43 start-page: 1101 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib100 article-title: T-box Transcription Factors Combine with the Cytokines TGF-β and IL-15 to Control Tissue-Resident Memory T Cell Fate publication-title: Immunity doi: 10.1016/j.immuni.2015.11.008 – volume: 172 start-page: 4275 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib108 article-title: Smad3 is essential for TGF-β 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation publication-title: J. Immunol. doi: 10.4049/jimmunol.172.7.4275 – volume: 302 start-page: 1041 year: 2003 ident: 10.1016/j.immuni.2019.03.024_bib127 article-title: Control of effector CD8+ T cell function by the transcription factor Eomesodermin publication-title: Science doi: 10.1126/science.1090148 – volume: 24 start-page: 2493 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib49 article-title: Focal Irradiation and Systemic TGFβ Blockade in Metastatic Breast Cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-3322 – volume: 11 start-page: 751 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib120 article-title: The harmonies played by TGF-β in stem cell biology publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.11.001 – volume: 106 start-page: 13445 year: 2009 ident: 10.1016/j.immuni.2019.03.024_bib160 article-title: GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0901944106 – volume: 195 start-page: 1499 year: 2002 ident: 10.1016/j.immuni.2019.03.024_bib62 article-title: Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation publication-title: J. Exp. Med. doi: 10.1084/jem.20012076 – volume: 106 year: 2014 ident: 10.1016/j.immuni.2019.03.024_bib157 article-title: Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/dju124 – volume: 35 start-page: 946 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib126 article-title: Analysis of transforming growth factor-beta1-induced Ig germ-line gamma2b transcription and its implication for IgA isotype switching publication-title: Eur. J. Immunol. doi: 10.1002/eji.200425848 – volume: 39 start-page: 687 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib182 article-title: Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention publication-title: Immunity doi: 10.1016/j.immuni.2013.08.019 – volume: 6 start-page: 47 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib69 article-title: Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade publication-title: J. Immunother. Cancer doi: 10.1186/s40425-018-0356-4 – volume: 156 start-page: 299 year: 2002 ident: 10.1016/j.immuni.2019.03.024_bib74 article-title: Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways publication-title: J. Cell Biol. doi: 10.1083/jcb.200109037 – volume: 163 start-page: 4013 year: 1999 ident: 10.1016/j.immuni.2019.03.024_bib84 article-title: Beta 2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-beta 1 null mouse publication-title: J. Immunol. doi: 10.4049/jimmunol.163.7.4013 – volume: 313 start-page: 1960 year: 2006 ident: 10.1016/j.immuni.2019.03.024_bib54 article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome publication-title: Science doi: 10.1126/science.1129139 – volume: 9 start-page: a022285 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib128 article-title: TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a022285 – volume: 474 start-page: 343 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib146 article-title: Latent TGF-β structure and activation publication-title: Nature doi: 10.1038/nature10152 – volume: 2 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib134 article-title: Platelets subvert T cell immunity against cancer via GARP-TGFβ axis publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aai7911 – volume: 172 start-page: 5149 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib47 article-title: Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7 publication-title: J. Immunol. doi: 10.4049/jimmunol.172.9.5149 – volume: 9 start-page: a022236 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib142 article-title: Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a022236 – volume: 123 start-page: 3925 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib66 article-title: Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment publication-title: J. Clin. Invest. doi: 10.1172/JCI65745 – volume: 18 start-page: 995 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib30 article-title: SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling publication-title: Nat. Immunol. doi: 10.1038/ni.3809 – volume: 3 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib154 article-title: Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells publication-title: JCI Insight doi: 10.1172/jci.insight.122591 – volume: 19 start-page: 419 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib36 article-title: Contextual determinants of TGFβ action in development, immunity and cancer publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0007-0 – volume: 47 start-page: 312 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib73 article-title: Stromal contribution to the colorectal cancer transcriptome publication-title: Nat. Genet. doi: 10.1038/ng.3224 – volume: 15 start-page: 309 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib85 article-title: Cardiac Safety of TGF-β Receptor I Kinase Inhibitor LY2157299 Monohydrate in Cancer Patients in a First-in-Human Dose Study publication-title: Cardiovasc. Toxicol. doi: 10.1007/s12012-014-9297-4 – volume: 9 start-page: e1003251 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib1 article-title: Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003251 – volume: 9 start-page: a022186 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib114 article-title: TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a022186 – volume: 95 start-page: 222 year: 2019 ident: 10.1016/j.immuni.2019.03.024_bib151 article-title: Preclinical Evaluation of AZ12601011 and AZ12799734, Inhibitors of Transforming Growth Factor β Superfamily Type 1 Receptors publication-title: Mol. Pharmacol. doi: 10.1124/mol.118.112946 – volume: 23 start-page: 1239 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib6 article-title: A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.04.007 – volume: 303 start-page: 848 year: 2004 ident: 10.1016/j.immuni.2019.03.024_bib12 article-title: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia publication-title: Science doi: 10.1126/science.1090922 – volume: 7 start-page: 284ra56 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib35 article-title: Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa1983 – volume: 10 start-page: 1199 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib150 article-title: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner publication-title: Nat. Cell Biol. doi: 10.1038/ncb1780 – volume: 165 start-page: 45 year: 2016 ident: 10.1016/j.immuni.2019.03.024_bib101 article-title: Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT publication-title: Cell doi: 10.1016/j.cell.2016.02.025 – volume: 121 start-page: 4030 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib65 article-title: Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI45114 – volume: 6 start-page: 600 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib87 article-title: Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ publication-title: Nat. Immunol. doi: 10.1038/ni1197 – volume: 201 start-page: 1647 year: 2005 ident: 10.1016/j.immuni.2019.03.024_bib45 article-title: TGF-beta-dependent CD103 expression by CD8(+) T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease publication-title: J. Exp. Med. doi: 10.1084/jem.20041044 – volume: 35 start-page: 123 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib41 article-title: T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-β1 cytokine publication-title: Immunity doi: 10.1016/j.immuni.2011.04.019 – volume: 21 start-page: 938 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib57 article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers publication-title: Nat. Med. doi: 10.1038/nm.3909 – volume: 13 start-page: 843 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib103 article-title: TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy publication-title: Nat. Immunol. doi: 10.1038/ni.2388 – volume: 3 start-page: 936 year: 2013 ident: 10.1016/j.immuni.2019.03.024_bib124 article-title: TGF-β signaling in myeloid cells is required for tumor metastasis publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0527 – volume: 28 start-page: 468 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib92 article-title: Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10 publication-title: Immunity doi: 10.1016/j.immuni.2008.03.003 – volume: 318 start-page: 716 year: 2012 ident: 10.1016/j.immuni.2019.03.024_bib59 article-title: Epithelial cells utilize cortical actin/myosin to activate latent TGF-β through integrin α(v)β(6)-dependent physical force publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2012.01.020 – volume: 32 start-page: 51 year: 2014 ident: 10.1016/j.immuni.2019.03.024_bib161 article-title: TGF-β activation and function in immunity publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120257 – volume: 147 start-page: 565 year: 2011 ident: 10.1016/j.immuni.2019.03.024_bib115 article-title: Master transcription factors determine cell-type-specific responses to TGF-β signaling publication-title: Cell doi: 10.1016/j.cell.2011.08.050 – volume: 453 start-page: 236 year: 2008 ident: 10.1016/j.immuni.2019.03.024_bib184 article-title: TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function publication-title: Nature doi: 10.1038/nature06878 – volume: 554 start-page: 538 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib156 article-title: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis publication-title: Nature doi: 10.1038/nature25492 – volume: 142 start-page: 144 year: 2010 ident: 10.1016/j.immuni.2019.03.024_bib177 article-title: TGF-beta signaling specifies axons during brain development publication-title: Cell doi: 10.1016/j.cell.2010.06.010 – volume: 25 start-page: 441 year: 2006 ident: 10.1016/j.immuni.2019.03.024_bib105 article-title: Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor publication-title: Immunity doi: 10.1016/j.immuni.2006.07.012 – volume: 8 start-page: 14649 year: 2017 ident: 10.1016/j.immuni.2019.03.024_bib42 article-title: Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells publication-title: Nat. Commun. doi: 10.1038/ncomms14649 – volume: 104 start-page: 18169 year: 2007 ident: 10.1016/j.immuni.2019.03.024_bib171 article-title: Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0703642104 – volume: 36 start-page: 1128 year: 2018 ident: 10.1016/j.immuni.2019.03.024_bib13 article-title: Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2017.74.3179 – volume: 12 start-page: 7 year: 2010 ident: 10.1016/j.immuni.2019.03.024_bib32 article-title: TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients publication-title: Neuro-oncol. doi: 10.1093/neuonc/nop009 – volume: 20 start-page: 3130 year: 2006 ident: 10.1016/j.immuni.2019.03.024_bib7 article-title: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer publication-title: Genes Dev. doi: 10.1101/gad.1478706 – volume: 6 start-page: 6840 year: 2015 ident: 10.1016/j.immuni.2019.03.024_bib125 article-title: Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation publication-title: Nat. Commun. doi: 10.1038/ncomms7840 |
SSID | ssj0014590 |
Score | 2.7204313 |
SecondaryResourceType | review_article |
Snippet | Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 924 |
SubjectTerms | Adaptive Immunity Animals Antigens Apoptosis Breast cancer Cancer Cancer immunotherapy Colorectal cancer Cytokines Dendritic Cells - immunology Disease Progression Epithelial-Mesenchymal Transition Fibroblasts - immunology Gastric cancer Growth factors Homeostasis Humans Immune system Immunity Immunity, Innate Immunoglobulins Immunological tolerance Immunotherapy Inflammation Inflammatory diseases Kidney cancer Kinases Laboratories Ligands Macrophages - immunology Medical research Melanoma Metastasis Mice, Knockout Mutation Neoplasms - immunology Neutrophils - immunology Pancreatic cancer Prostate cancer Proteins Radiation therapy Receptors, Transforming Growth Factor beta - physiology Signal transduction Signal Transduction - immunology Signaling T-Lymphocyte Subsets - immunology Transforming Growth Factor beta - immunology Transforming Growth Factor beta - physiology Transforming growth factor-b Tumor Escape Tumor Microenvironment Tumors |
Title | Transforming Growth Factor-β Signaling in Immunity and Cancer |
URI | https://dx.doi.org/10.1016/j.immuni.2019.03.024 https://www.ncbi.nlm.nih.gov/pubmed/30995507 https://www.proquest.com/docview/2210385408 https://www.proquest.com/docview/2211327489 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kongR39YXEbyGdrObTXoRtFirUg-2xd6W3WSjEUlF00P_lj_E3-Ts5gEeSsEcAtndwDA7u_MN8wK4oAE-qEfc2KfcZVpyV8lEu0mE-l2qmGnbeW7wyPtjdj_xJyvQrXJhTFhlefcXd7q9rcuRVsnN1keatoYmlBCNcJQhYxbYZtaUhTaJb3JdexKY32nXcYe4ukqfszFeqc3BMAFeRalTjy1ST4vgp1VDvS3YLPGjc1WQuA0rOtuBtaKj5HwH1gelr3wXLkcVJkXt5NyiuZ2_Oj3bXsf9-XaG6YvB4DiVZs6dpTCfOzKLna4RhM89GPduRt2-W3ZLcCNGeY7vJMADGvJAM9aOJO0kKlSR8lTCFJpJOuj4HtM84JoQLqWOFY7Ljs8kkTGjdB8a2TTTh-BQhihR42iCyotEKpQkiUOipQoSIglpAq2YJKKylLjpaPEuqpixN1GwVhjWijYVyNomuPVfH0UpjSXrg4r_4o9ICLztl_x5Um2XKI_kl_A8UwseAWrYhPN6Gg-T8ZDITE9ndg1a56YgTxMOim2uSaWIpU3xt6N_k3UMG-bL-KIIP4FG_jnTpwhpcnUGq1cPT88PZ1Z2fwEDIvUp |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwEB0hEJRLVaCFbYEaCY7RrmPHyR5AaoHtLrBcWKS9uXbitKmqgCAI7W_R_-CbOnacSBwQEhI55GA70mg8nnmTGc8A7LIYH7QjQRYxEXCjRKBVboI8RfuudMaN6zw3PhfDS34yjaZz8K-5C2PTKr3ur3W609Z-pOu52b0uiu6FTSVEJxxlyLoFlPvMylMzu0e_7XZ_dISbvBeGg-PJ4TDwrQWClDNR4TuPUZoTERvOe6li_VwnOtWhzrlGn8LE_SjkRsTCUCqUMpnGcdWPuKIq4_YvKOr9BUQfsdUGo-n3NnTBo36vTXRE8pr7ei6prHCXPmxGWV1bNeTP2cPn8K6ze4MP8N4DVvKt5skKzJlyFRbrFpazVVga--D8GhxMGhCM5pD8QP---k0Grp9P8PhALopfFvTjVFGSkaOwmhFVZuTQSt7NR7h8Ex5-gvnyqjQbQBhHWGpwNEdrSVOdKJpnCTVKxzlVlHaANUySqa9dblto_JVNktofWbNWWtbKHpPI2g4E7VfXde2OF9bHDf_lExmUaF5e-HKz2S7pdcCtDENbfB4RcdKBnXYaT68NyajSXN25NZSFtgJQB9brbW5JZQjebbW5z68m6yu8G07GZ_JsdH76BZbtjA2EUbEJ89XNndlCPFXpbSe_BH6-9YH5D67IMVU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transforming+Growth+Factor-%CE%B2+Signaling+in+Immunity+and+Cancer&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Batlle%2C+Eduard&rft.au=Massagu%C3%A9%2C+Joan&rft.date=2019-04-16&rft.issn=1097-4180&rft.eissn=1097-4180&rft.volume=50&rft.issue=4&rft.spage=924&rft_id=info:doi/10.1016%2Fj.immuni.2019.03.024&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |