Deep learning-based clustering approaches for bioinformatics
Abstract Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at analyzing unstructured and high-dimensional data in the form of sequences, expressions, texts and images. Further, clustering is used to gain insi...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 1; pp. 393 - 415 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.01.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at analyzing unstructured and high-dimensional data in the form of sequences, expressions, texts and images. Further, clustering is used to gain insights into biological processes in the genomics level, e.g. clustering of gene expressions provides insights on the natural structure inherent in the data, understanding gene functions, cellular processes, subtypes of cells and understanding gene regulations. Subsequently, clustering approaches, including hierarchical, centroid-based, distribution-based, density-based and self-organizing maps, have long been studied and used in classical machine learning settings. In contrast, deep learning (DL)-based representation and feature learning for clustering have not been reviewed and employed extensively. Since the quality of clustering is not only dependent on the distribution of data points but also on the learned representation, deep neural networks can be effective means to transform mappings from a high-dimensional data space into a lower-dimensional feature space, leading to improved clustering results. In this paper, we review state-of-the-art DL-based approaches for cluster analysis that are based on representation learning, which we hope to be useful, particularly for bioinformatics research. Further, we explore in detail the training procedures of DL-based clustering algorithms, point out different clustering quality metrics and evaluate several DL-based approaches on three bioinformatics use cases, including bioimaging, cancer genomics and biomedical text mining. We believe this review and the evaluation results will provide valuable insights and serve a starting point for researchers wanting to apply DL-based unsupervised methods to solve emerging bioinformatics research problems. |
---|---|
AbstractList | Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at analyzing unstructured and high-dimensional data in the form of sequences, expressions, texts and images. Further, clustering is used to gain insights into biological processes in the genomics level, e.g. clustering of gene expressions provides insights on the natural structure inherent in the data, understanding gene functions, cellular processes, subtypes of cells and understanding gene regulations. Subsequently, clustering approaches, including hierarchical, centroid-based, distribution-based, density-based and self-organizing maps, have long been studied and used in classical machine learning settings. In contrast, deep learning (DL)-based representation and feature learning for clustering have not been reviewed and employed extensively. Since the quality of clustering is not only dependent on the distribution of data points but also on the learned representation, deep neural networks can be effective means to transform mappings from a high-dimensional data space into a lower-dimensional feature space, leading to improved clustering results. In this paper, we review state-of-the-art DL-based approaches for cluster analysis that are based on representation learning, which we hope to be useful, particularly for bioinformatics research. Further, we explore in detail the training procedures of DL-based clustering algorithms, point out different clustering quality metrics and evaluate several DL-based approaches on three bioinformatics use cases, including bioimaging, cancer genomics and biomedical text mining. We believe this review and the evaluation results will provide valuable insights and serve a starting point for researchers wanting to apply DL-based unsupervised methods to solve emerging bioinformatics research problems. Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at analyzing unstructured and high-dimensional data in the form of sequences, expressions, texts and images. Further, clustering is used to gain insights into biological processes in the genomics level, e.g. clustering of gene expressions provides insights on the natural structure inherent in the data, understanding gene functions, cellular processes, subtypes of cells and understanding gene regulations. Subsequently, clustering approaches, including hierarchical, centroid-based, distribution-based, density-based and self-organizing maps, have long been studied and used in classical machine learning settings. In contrast, deep learning (DL)-based representation and feature learning for clustering have not been reviewed and employed extensively. Since the quality of clustering is not only dependent on the distribution of data points but also on the learned representation, deep neural networks can be effective means to transform mappings from a high-dimensional data space into a lower-dimensional feature space, leading to improved clustering results. In this paper, we review state-of-the-art DL-based approaches for cluster analysis that are based on representation learning, which we hope to be useful, particularly for bioinformatics research. Further, we explore in detail the training procedures of DL-based clustering algorithms, point out different clustering quality metrics and evaluate several DL-based approaches on three bioinformatics use cases, including bioimaging, cancer genomics and biomedical text mining. We believe this review and the evaluation results will provide valuable insights and serve a starting point for researchers wanting to apply DL-based unsupervised methods to solve emerging bioinformatics research problems.Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at analyzing unstructured and high-dimensional data in the form of sequences, expressions, texts and images. Further, clustering is used to gain insights into biological processes in the genomics level, e.g. clustering of gene expressions provides insights on the natural structure inherent in the data, understanding gene functions, cellular processes, subtypes of cells and understanding gene regulations. Subsequently, clustering approaches, including hierarchical, centroid-based, distribution-based, density-based and self-organizing maps, have long been studied and used in classical machine learning settings. In contrast, deep learning (DL)-based representation and feature learning for clustering have not been reviewed and employed extensively. Since the quality of clustering is not only dependent on the distribution of data points but also on the learned representation, deep neural networks can be effective means to transform mappings from a high-dimensional data space into a lower-dimensional feature space, leading to improved clustering results. In this paper, we review state-of-the-art DL-based approaches for cluster analysis that are based on representation learning, which we hope to be useful, particularly for bioinformatics research. Further, we explore in detail the training procedures of DL-based clustering algorithms, point out different clustering quality metrics and evaluate several DL-based approaches on three bioinformatics use cases, including bioimaging, cancer genomics and biomedical text mining. We believe this review and the evaluation results will provide valuable insights and serve a starting point for researchers wanting to apply DL-based unsupervised methods to solve emerging bioinformatics research problems. Abstract Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at analyzing unstructured and high-dimensional data in the form of sequences, expressions, texts and images. Further, clustering is used to gain insights into biological processes in the genomics level, e.g. clustering of gene expressions provides insights on the natural structure inherent in the data, understanding gene functions, cellular processes, subtypes of cells and understanding gene regulations. Subsequently, clustering approaches, including hierarchical, centroid-based, distribution-based, density-based and self-organizing maps, have long been studied and used in classical machine learning settings. In contrast, deep learning (DL)-based representation and feature learning for clustering have not been reviewed and employed extensively. Since the quality of clustering is not only dependent on the distribution of data points but also on the learned representation, deep neural networks can be effective means to transform mappings from a high-dimensional data space into a lower-dimensional feature space, leading to improved clustering results. In this paper, we review state-of-the-art DL-based approaches for cluster analysis that are based on representation learning, which we hope to be useful, particularly for bioinformatics research. Further, we explore in detail the training procedures of DL-based clustering algorithms, point out different clustering quality metrics and evaluate several DL-based approaches on three bioinformatics use cases, including bioimaging, cancer genomics and biomedical text mining. We believe this review and the evaluation results will provide valuable insights and serve a starting point for researchers wanting to apply DL-based unsupervised methods to solve emerging bioinformatics research problems. |
Author | Rebholz-Schuhmann, Dietrich Zappa, Achille Costa, Ivan G Beyan, Oya Cochez, Michael Karim, Md Rezaul Decker, Stefan |
AuthorAffiliation | 4 Institute for Computational Genomics , RWTH Aachen University Medical School, Aachen, Germany 5 German National Library of Medicine , University of Cologne, Germany 2 Information Systems and Databases , RWTH Aachen University, Aachen, Germany 6 Department of Computer Science , Vrije Univeriteit Amsterdam, The Netherlands 1 Fraunhofer Institute for Applied Information Technology FIT , Schloss Birlinghoven, Sankt Augustin, Germany 3 Insight Centre for Data Analytics , National University of Ireland Galway, Ireland |
AuthorAffiliation_xml | – name: 4 Institute for Computational Genomics , RWTH Aachen University Medical School, Aachen, Germany – name: 6 Department of Computer Science , Vrije Univeriteit Amsterdam, The Netherlands – name: 3 Insight Centre for Data Analytics , National University of Ireland Galway, Ireland – name: 1 Fraunhofer Institute for Applied Information Technology FIT , Schloss Birlinghoven, Sankt Augustin, Germany – name: 5 German National Library of Medicine , University of Cologne, Germany – name: 2 Information Systems and Databases , RWTH Aachen University, Aachen, Germany |
Author_xml | – sequence: 1 givenname: Md Rezaul surname: Karim fullname: Karim, Md Rezaul email: rezaul.karim@fit.fraunhofer.de organization: Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven, Sankt Augustin, Germany – sequence: 2 givenname: Oya surname: Beyan fullname: Beyan, Oya organization: Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven, Sankt Augustin, Germany – sequence: 3 givenname: Achille surname: Zappa fullname: Zappa, Achille organization: Insight Centre for Data Analytics, National University of Ireland Galway, Ireland – sequence: 4 givenname: Ivan G surname: Costa fullname: Costa, Ivan G organization: Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany – sequence: 5 givenname: Dietrich surname: Rebholz-Schuhmann fullname: Rebholz-Schuhmann, Dietrich organization: German National Library of Medicine, University of Cologne, Germany – sequence: 6 givenname: Michael surname: Cochez fullname: Cochez, Michael organization: Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven, Sankt Augustin, Germany – sequence: 7 givenname: Stefan surname: Decker fullname: Decker, Stefan organization: Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven, Sankt Augustin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32008043$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtr3DAQhUVJaG596Q8ohlIIAWdHknUxhELJHRby0j4LSZYTBa_kSHag_fXVskloQigINEjfHGbO2UNbIQaH0GcMxxhaujDeLIz5gwV8QLu4EaJugDVb65qLmjWc7qC9nO8BCAiJP6IdSgAkNHQXnZw5N1aD0yn4cFsbnV1X2WHOk0vlodLjmKK2dy5XfUyV8dGHUqz05G0-QNu9HrL79HTvo18X5z9Pr-rlzeX16Y9lbRvKp9owSTvBOg2W91ZrSVvbASZMYA7cCCswbblmpeo7TGRvmeGto005lmtC99H3je44m5XrrAtT0oMak1_p9FtF7dXrn-Dv1G18VEISkJIVgcMngRQfZpcntfLZumHQwcU5K0IZ0GIcX6Nf36D3cU6hrKcII23LZUuaQn35d6KXUZ6NLcDRBrAp5pxc_4JgUOvUVElNbVIrMLyBrZ-Kw3G9jR_eb_m2aYnz-D_pvzHEqEk |
CitedBy_id | crossref_primary_10_3389_fmars_2024_1416247 crossref_primary_10_1016_j_patcog_2023_110136 crossref_primary_10_3389_fimmu_2022_1096587 crossref_primary_10_1007_s11517_023_02985_x crossref_primary_10_1016_j_artmed_2023_102758 crossref_primary_10_1371_journal_pcbi_1011073 crossref_primary_10_1016_j_ijrobp_2024_02_065 crossref_primary_10_3233_JIFS_231747 crossref_primary_10_1103_PhysRevA_105_052424 crossref_primary_10_3390_ijerph19105893 crossref_primary_10_1016_j_irbm_2022_100748 crossref_primary_10_1016_j_ins_2021_12_045 crossref_primary_10_1007_s11042_025_20603_w crossref_primary_10_1016_j_neunet_2024_106773 crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_1109_ACCESS_2022_3175816 crossref_primary_10_1016_j_knosys_2024_112609 crossref_primary_10_1002_cpe_8387 crossref_primary_10_3390_brainsci14010040 crossref_primary_10_7717_peerj_14779 crossref_primary_10_1111_cgf_15275 crossref_primary_10_1142_S0219877024500238 crossref_primary_10_1142_S0218126623500731 crossref_primary_10_3390_cancers13215546 crossref_primary_10_1016_j_cmpb_2022_107017 crossref_primary_10_1016_j_bcp_2024_116091 crossref_primary_10_3390_rs16244639 crossref_primary_10_1007_s42835_023_01432_z crossref_primary_10_1109_OAJPE_2025_3535709 crossref_primary_10_1186_s40462_024_00507_4 crossref_primary_10_4236_cn_2024_164007 crossref_primary_10_3390_bioengineering9070316 crossref_primary_10_3389_fgene_2024_1255455 crossref_primary_10_1016_j_cmpb_2023_107808 crossref_primary_10_1016_j_heliyon_2025_e41953 crossref_primary_10_1142_S0219622023300045 crossref_primary_10_3390_math9172121 crossref_primary_10_1007_s44163_024_00102_x crossref_primary_10_1142_S0219265921410127 crossref_primary_10_1186_s13059_024_03386_5 crossref_primary_10_1016_j_yamp_2021_07_005 crossref_primary_10_1109_TCBB_2020_2994649 crossref_primary_10_1016_j_psychres_2023_115265 crossref_primary_10_1002_advs_202408069 crossref_primary_10_1038_s41746_024_01247_w crossref_primary_10_3390_math10152559 crossref_primary_10_1123_ijspp_2024_0247 crossref_primary_10_3389_fcomp_2021_672867 crossref_primary_10_1109_ACCESS_2024_3437371 crossref_primary_10_58496_MJCSC_2023_013 crossref_primary_10_61969_jai_1469589 crossref_primary_10_1186_s12987_022_00311_5 crossref_primary_10_1093_bib_bbac072 crossref_primary_10_1109_ACCESS_2023_3244620 crossref_primary_10_1016_j_knosys_2023_111315 crossref_primary_10_3390_genes13010065 crossref_primary_10_3390_ijgi10060391 crossref_primary_10_1016_j_bspc_2022_104182 crossref_primary_10_1038_s43588_022_00234_z crossref_primary_10_1002_jcc_27470 crossref_primary_10_1007_s11307_023_01828_3 crossref_primary_10_1016_j_future_2022_05_024 crossref_primary_10_1007_s13042_022_01518_6 crossref_primary_10_1016_j_modpat_2023_100381 crossref_primary_10_3389_fneph_2025_1548776 crossref_primary_10_1039_D1CB00069A crossref_primary_10_1016_j_neucom_2024_127761 crossref_primary_10_1038_s41598_024_63695_4 crossref_primary_10_3390_molecules29163902 crossref_primary_10_1089_dcbr_2023_0018 crossref_primary_10_1093_bib_bbad236 crossref_primary_10_3390_biom14111447 crossref_primary_10_1111_exsy_70011 crossref_primary_10_3389_fmed_2022_950327 crossref_primary_10_1109_TCSS_2023_3327810 crossref_primary_10_3390_bioengineering9040136 crossref_primary_10_3389_fmed_2023_1132676 crossref_primary_10_1177_1934578X231180458 crossref_primary_10_1038_s41598_021_98126_1 crossref_primary_10_1016_j_simpa_2024_100678 crossref_primary_10_1093_bib_bbac018 crossref_primary_10_1093_cvr_cvad106 crossref_primary_10_1371_journal_pone_0261531 crossref_primary_10_3390_bioengineering10020173 crossref_primary_10_56294_mw202468 crossref_primary_10_1016_j_mtcomm_2024_109982 crossref_primary_10_7717_peerj_cs_390 crossref_primary_10_1016_j_trac_2024_118023 crossref_primary_10_1093_nar_gkac351 crossref_primary_10_3390_cancers13194837 crossref_primary_10_1016_j_engappai_2023_106214 crossref_primary_10_12677_PM_2023_1312353 crossref_primary_10_1371_journal_pone_0298039 crossref_primary_10_3390_biom13030498 crossref_primary_10_1186_s44147_022_00125_0 crossref_primary_10_3390_app14209305 crossref_primary_10_1093_bib_bbab285 crossref_primary_10_1007_s11356_023_30931_9 crossref_primary_10_1186_s12859_022_04667_1 crossref_primary_10_1016_j_csbj_2023_10_033 crossref_primary_10_1016_j_est_2024_113458 crossref_primary_10_3389_frqst_2024_1462004 crossref_primary_10_1016_j_compbiomed_2023_107414 crossref_primary_10_1063_5_0157933 crossref_primary_10_3390_logistics8030073 crossref_primary_10_1016_j_bspc_2023_105703 crossref_primary_10_1016_j_asoc_2025_112789 crossref_primary_10_1051_bioconf_202411101019 crossref_primary_10_1007_s00521_023_09366_3 crossref_primary_10_3390_molecules29194600 crossref_primary_10_1371_journal_pdig_0000422 crossref_primary_10_1109_TPDS_2024_3425931 crossref_primary_10_1038_s41551_024_01268_6 crossref_primary_10_1093_bib_bbab071 crossref_primary_10_1016_j_eswa_2024_125454 crossref_primary_10_1016_j_iswa_2024_200387 crossref_primary_10_1155_2021_9982305 crossref_primary_10_3390_math10132231 crossref_primary_10_3390_ijms241914645 crossref_primary_10_1007_s12539_025_00699_2 crossref_primary_10_1016_j_heliyon_2024_e29225 crossref_primary_10_1007_s00521_024_10497_4 crossref_primary_10_3390_pr9081466 crossref_primary_10_2174_0115672050325388240823092338 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1093_bioadv_vbad141 crossref_primary_10_1002_jssc_202200222 crossref_primary_10_3389_fmed_2022_1070385 crossref_primary_10_3390_nano11092385 crossref_primary_10_3389_fimmu_2021_673723 crossref_primary_10_1080_10106049_2024_2326008 crossref_primary_10_1016_j_oret_2020_08_009 crossref_primary_10_1080_10255842_2023_2217978 crossref_primary_10_2174_1574893618666221130094050 crossref_primary_10_3389_fenvs_2022_946729 crossref_primary_10_1038_s42003_021_02610_3 crossref_primary_10_1002_wcms_1597 crossref_primary_10_1089_dcbr_2024_0018 crossref_primary_10_1038_s41598_022_09180_2 crossref_primary_10_3390_pharmaceutics15071916 crossref_primary_10_2139_ssrn_4779486 crossref_primary_10_1016_j_eswa_2024_125286 crossref_primary_10_1016_j_crphys_2022_02_003 |
Cites_doi | 10.1137/1.9780898718348 10.1111/ger.12218 10.1109/ACCESS.2019.2941796 10.1145/1390156.1390294 10.1016/j.protcy.2012.10.058 10.1007/978-3-319-70096-0_39 10.1016/j.media.2019.05.010 10.1145/568574.568575 10.1145/3194658.3194677 10.1073/pnas.95.25.14863 10.1109/ICCV.2017.612 10.1109/LRA.2018.2801475 10.4258/hir.2017.23.3.141 10.1109/TMM.2017.2745702 10.1007/BF01908075 10.1111/1467-9868.00293 10.1016/0169-7439(87)80084-9 10.1109/TCBB.2013.9 10.1038/s41467-018-07931-2 10.1145/1066157.1066236 10.1109/ACCESS.2018.2855437 10.1016/j.ymeth.2017.07.023 10.1080/01621459.1971.10482356 10.1002/nav.3800020109 10.1109/ACII.2017.8273601 10.1038/s41598-019-39459-w 10.5815/ijmecs.2015.01.06 10.1145/3307339.3342161 10.1016/S0925-2312(98)00030-7 10.1186/1471-2105-9-497 10.2174/156652412798376134 10.1038/srep46450 10.1109/ICASSP.2011.5947700 10.1073/pnas.191367098 10.1073/pnas.1700770114 10.1590/S1415-47572004000400025 10.1093/bioinformatics/17.10.977 10.1109/BIBE.2019.00081 10.4137/BBI.S38316 10.1093/bioinformatics/btl406 10.1002/9780470316801.ch2 10.1109/TKDE.2004.68 10.1016/j.patcog.2018.05.019 10.1038/ng.2764 10.1214/009053607000000677 10.1093/bioinformatics/17.9.763 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. 2021 The Author(s) 2020. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2021 – notice: The Author(s) 2020. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbz170 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 415 |
ExternalDocumentID | PMC7820885 32008043 10_1093_bib_bbz170 10.1093/bib/bbz170 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABPQP ABXZS ACUXJ AHGBF ALXQX ANAKG CITATION JXSIZ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c436t-b583d75da0c6fcaa839cd012571606b7c71396a5b7cfd128fc5b69e34e34c6a23 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 14:11:48 EDT 2025 Thu Jul 10 18:52:27 EDT 2025 Mon Jun 30 08:59:08 EDT 2025 Mon Jul 21 05:40:22 EDT 2025 Tue Jul 01 03:39:29 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Thu Feb 27 05:38:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2020. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-b583d75da0c6fcaa839cd012571606b7c71396a5b7cfd128fc5b69e34e34c6a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbz170 |
PMID | 32008043 |
PQID | 2529968924 |
PQPubID | 26846 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820885 proquest_miscellaneous_2350347765 proquest_journals_2529968924 pubmed_primary_32008043 crossref_primary_10_1093_bib_bbz170 crossref_citationtrail_10_1093_bib_bbz170 oup_primary_10_1093_bib_bbz170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan-18 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Huang (2021012203310032000_ref43) 2014 Devlin (2021012203310032000_ref95) 2018 Davidson (2021012203310032000_ref19) 2005 Yang (2021012203310032000_ref41) 2016 Aresta (2021012203310032000_ref84) 2019; 56 Kilinc (2021012203310032000_ref50) 2018 Makhzani (2021012203310032000_ref39) 2015 McDaid (2021012203310032000_ref70) 2011 Bertucci (2021012203310032000_ref86) 2012; 12 Goodfellow (2021012203310032000_ref38) 2016 Mostavi (2021012203310032000_ref56) 2019 Chen (2021012203310032000_ref69) 2016 Srivastava (2021012203310032000_ref72) 1929–1958; 15 Chiu (2021012203310032000_ref59) 2017; 34 Zhao (2021012203310032000_ref8) 2005 Jaitly (2021012203310032000_ref60) 2011 Tibshirani (2021012203310032000_ref74) 2001; 63 Kohonen (2021012203310032000_ref17) 1998; 21 Hofmann (2021012203310032000_ref25) 2008 Zheng (2021012203310032000_ref53) 2016 Min (2021012203310032000_ref28) 2017; 18 Park (2021012203310032000_ref63) 2018; 3 Jiang (2021012203310032000_ref6) 2004 Rosenberg (2021012203310032000_ref81) 2007 Gan (2021012203310032000_ref3) 2007 Hubert (2021012203310032000_ref76) 1985; 2 Ronneberger (2021012203310032000_ref91) 2015 Karmakar (2021012203310032000_ref37) 2019; 9 Vincent (2021012203310032000_ref92) 2008 Jaskowiak (2021012203310032000_ref11) 2018; 132 Lukic (2021012203310032000_ref45) 13–16 . 2016 Srivastava (2021012203310032000_ref67) 2015 Hsu (2021012203310032000_ref42) 2015 Rhee (2021012203310032000_ref85) 2017 Gräßber (2021012203310032000_ref88) 2018 Vincent (2021012203310032000_ref71) 2008 Karim (2021012203310032000_ref65) 2019; 2 Joyce (2021012203310032000_ref54) 2011 van der Maaten (2021012203310032000_ref73) 2008; 9 Costa (2021012203310032000_ref5) 2004; 27 Rajanna (2021012203310032000_ref83) 2016 Shah (2021012203310032000_ref49) 2018 Kuhn (2021012203310032000_ref80) 1955; 2 Søorlie (2021012203310032000_ref15) 2001; 98 MacQueen (2021012203310032000_ref16) 1967 Zhao (2021012203310032000_ref57) 2007; 5 Min (2021012203310032000_ref2) 2018; 6 Weinstein (2021012203310032000_ref89) 2013; 45 Edla (2021012203310032000_ref35) 2012; 6 Guo (2021012203310032000_ref29) 2017 Kaufman (2021012203310032000_ref20) 1990 Santos (2021012203310032000_ref79) 2009 Renganathan (2021012203310032000_ref87) 2017; 23 Masood (2021012203310032000_ref7) 2015; 1 Karim (2021012203310032000_ref66) 2019 Hsu (2021012203310032000_ref51) 2018; 20 Rand (2021012203310032000_ref78) 1971; 66 (2021012203310032000_ref23) 2018 Dizaji (2021012203310032000_ref46) 2017 Thalamuthu (2021012203310032000_ref13) 2006; 22 Chen (2021012203310032000_ref32) 2011 Shah (2021012203310032000_ref52) 2017; 114 Xie (2021012203310032000_ref93) 2019 Jaskowiak (2021012203310032000_ref9) 2013; 10 De Souto (2021012203310032000_ref10) 2008; 9 Vinh (2021012203310032000_ref77) 2010 Zhu (2021012203310032000_ref68) 2018 Ka (2021012203310032000_ref27) 2001; 17 Md (2021012203310032000_ref30) 2018 Estivill-Castro (2021012203310032000_ref18) 2002; 4 Kaminski (2021012203310032000_ref96) 2019; 34 Oyelade (2021012203310032000_ref1) 2016 Alirezaie (2021012203310032000_ref62) 2019 Zivkovic (2021012203310032000_ref22) 2004 Choi (2021012203310032000_ref97) 2016 Chang (2021012203310032000_ref48) 2017 Brulé (2021012203310032000_ref33) 2015; 1 Chowdary (2021012203310032000_ref14) 2014; 3 Strehl (2021012203310032000_ref75) 2002; 3 Bandyopadhyay (2021012203310032000_ref34) 2013; 1 Yeung (2021012203310032000_ref36) 2001; 17 An (2021012203310032000_ref64) 2015 Eraslan (2021012203310032000_ref12) 2019; 10 Li (2021012203310032000_ref58) 2018 Li (2021012203310032000_ref47) 2018; 83 Eisen (2021012203310032000_ref4) 1998; 95 Ng (2021012203310032000_ref26) 2002 Chen (2021012203310032000_ref44) 2015 Wold (2021012203310032000_ref24) 1987; 2 Shahapurkar (2021012203310032000_ref21) 2004 Cruz-Roa (2021012203310032000_ref82) 2017; 7 Jaques (2021012203310032000_ref31) 2017 Lintas (2021012203310032000_ref61) 11–14, 2017 Huang (2021012203310032000_ref94) 2017 Karim (2021012203310032000_ref55) 2019; 7 Xie (2021012203310032000_ref40) 2016 Karim (2021012203310032000_ref90) 2019 |
References_xml | – start-page: 175 volume-title: International Conference on Artificial Neural Networks year: 2009 ident: 2021012203310032000_ref79 article-title: On the use of the adjusted rand index as a metric for evaluating supervised classification – volume-title: Data clustering: theory, algorithms, and applications year: 2007 ident: 2021012203310032000_ref3 doi: 10.1137/1.9780898718348 – year: 2011 ident: 2021012203310032000_ref70 – volume: 34 start-page: 57 issue: 1 year: 2017 ident: 2021012203310032000_ref59 article-title: Dental health status of community-dwelling older singaporeans: findings from a nationally representative survey publication-title: Gerodontology doi: 10.1111/ger.12218 – volume: 7 start-page: 133850 year: 2019 ident: 2021012203310032000_ref55 article-title: Prognostically relevant subtypes and survival prediction for breast cancer based on multimodal genomics data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941796 – volume: 1 start-page: 48 issue: 1 year: 2015 ident: 2021012203310032000_ref33 article-title: PSCAN: parallel, density based clustering of protein sequences publication-title: Intell Data Anal – start-page: 1221 volume-title: 2004 IEEE International Joint Conference on Neural Networks year: 2004 ident: 2021012203310032000_ref21 article-title: Comparison of self-organizing map with k-means hierarchical clustering for bioinformatics applications – start-page: 5879 year: 2017 ident: 2021012203310032000_ref48 article-title: Deep adaptive image clustering publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 79 volume-title: International Encyclopedia of Statistical Science. Annals of Mathematical Statistics year: 2011 ident: 2021012203310032000_ref54 article-title: Kullback-Leibler divergence – year: 11–14, 2017 ident: 2021012203310032000_ref61 article-title: Artificial Neural Networks and Machine Learning–ICANN 2017: 26th International Conference on Artificial Neural Networks – start-page: 1096 volume-title: Proceedings of the 25th International Conference on Machine Learning year: 2008 ident: 2021012203310032000_ref71 article-title: Extracting and composing robust features with denoising autoencoders doi: 10.1145/1390156.1390294 – start-page: 843 year: 2015 ident: 2021012203310032000_ref67 article-title: Unsupervised learning of video representations using lstms publication-title: In: International Conference on Machine Learning – year: 2018 ident: 2021012203310032000_ref49 publication-title: Deep continuous clustering. arXiv preprint, arXiv – volume: 6 start-page: 485 year: 2012 ident: 2021012203310032000_ref35 article-title: A prototype-based modified DBSCAN for gene clustering publication-title: Procedia Technology doi: 10.1016/j.protcy.2012.10.058 – start-page: 373 volume-title: International Conference on Neural Information Processing year: 2017 ident: 2021012203310032000_ref29 article-title: Deep clustering with convolutional autoencoders doi: 10.1007/978-3-319-70096-0_39 – volume: 56 start-page: 122 year: 2019 ident: 2021012203310032000_ref84 article-title: BACH: grand challenge on breast cancer histology images publication-title: Med Image Anal doi: 10.1016/j.media.2019.05.010 – volume-title: 26th IEEE International Workshop on Machine Learning for Signal Processing (MLSP) year: 13–16 . 2016 ident: 2021012203310032000_ref45 article-title: Speaker identification and clustering using convolutional neural networks – start-page: 281 volume-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics & Probability year: 1967 ident: 2021012203310032000_ref16 article-title: Some methods for classification and analysis of multivariate observations – volume: 4 start-page: 65 issue: 1 year: 2002 ident: 2021012203310032000_ref18 article-title: Why so many clustering algorithms: a position paper publication-title: SIGKDD Explorations doi: 10.1145/568574.568575 – year: 2015 ident: 2021012203310032000_ref91 – volume: 18 start-page: 851 issue: 5 year: 2017 ident: 2021012203310032000_ref28 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – volume: 15 start-page: 2014 issue: 1 year: 1929–1958 ident: 2021012203310032000_ref72 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – year: 2018 ident: 2021012203310032000_ref30 article-title: Recurrent deep embedding networks for genotype clustering and ethnicity prediction – start-page: 121 year: 2018 ident: 2021012203310032000_ref88 article-title: Aspect-based sentiment analysis of drug reviews applying cross-domain and cross-data learning publication-title: Proceedings of the 2018 International Conference on Digital Health. doi: 10.1145/3194658.3194677 – volume: 95 start-page: 14863 issue: 25 year: 1998 ident: 2021012203310032000_ref4 article-title: Cluster analysis and display of genome-wide expression patterns publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.95.25.14863 – start-page: 5747 volume-title: 2017 IEEE International Conference on Computer Vision (ICCV) year: 2017 ident: 2021012203310032000_ref46 article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization doi: 10.1109/ICCV.2017.612 – start-page: 3504 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2021012203310032000_ref97 article-title: Retain: an interpretable predictive model for healthcare using reverse time attention mechanism – volume: 3 start-page: 1544 issue: 3 year: 2018 ident: 2021012203310032000_ref63 article-title: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2018.2801475 – start-page: 1096 volume-title: Proceedings of the 25th International Conference on Machine Learning year: 2008 ident: 2021012203310032000_ref92 article-title: Extracting and composing robust features with denoising autoencoders doi: 10.1145/1390156.1390294 – year: 2019 ident: 2021012203310032000_ref62 article-title: Sioutis M, and Loutfi A – volume: 34 start-page: 189 year: 2019 ident: 2021012203310032000_ref96 article-title: The right to explanation, explained publication-title: Berkeley Technol Law J – volume: 23 start-page: 141 issue: 3 year: 2017 ident: 2021012203310032000_ref87 article-title: Text mining in biomedical domain with emphasis on document clustering publication-title: Healthcare Inform Res doi: 10.4258/hir.2017.23.3.141 – volume: 20 start-page: 421 issue: 2 year: 2018 ident: 2021012203310032000_ref51 article-title: CNN-based joint clustering and representation learning with feature drift compensation for large-scale image data publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2745702 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 2021012203310032000_ref76 article-title: Comparing partitions publication-title: J Classification doi: 10.1007/BF01908075 – volume: 2 start-page: 21 year: 2019 ident: 2021012203310032000_ref65 article-title: A snapshot neural ensemble method for cancer type prediction based on copy number variations publication-title: Neural Comput Appl – start-page: 5147 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: 2021012203310032000_ref41 article-title: Joint unsupervised learning of deep representations and image clusters – volume: 5 start-page: 187 issue: 2 year: 2007 ident: 2021012203310032000_ref57 article-title: Medical x-ray image enhancement based on kramer’s pde model publication-title: J Electron Sci Technol – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 2021012203310032000_ref74 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J R Stat Soc Ser B (Statistical Methodology) doi: 10.1111/1467-9868.00293 – year: 2019 ident: 2021012203310032000_ref93 article-title: Unsupervised data augmentation for consistency training – volume: 2 start-page: 37 issue: 1–3 year: 1987 ident: 2021012203310032000_ref24 article-title: Principal component analysis publication-title: Chemom Intell Lab Syst doi: 10.1016/0169-7439(87)80084-9 – volume: 10 start-page: 845 issue: 4 year: 2013 ident: 2021012203310032000_ref9 article-title: Proximity measures for clustering gene expression microarray data: a validation methodology and a comparative analysis publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2013.9 – year: 2017 ident: 2021012203310032000_ref94 – volume: 10 start-page: 390 issue: 1 year: 2019 ident: 2021012203310032000_ref12 article-title: Single-cell RNA-seq denoising using a deep count autoencoder publication-title: Nat Commun doi: 10.1038/s41467-018-07931-2 – volume: 1 start-page: 48 issue: 1 year: 2013 ident: 2021012203310032000_ref34 article-title: Segmentation of brain tumour from MRI image analysis of k-means and dbscan clustering publication-title: Int J Res Eng Sci – start-page: 478 volume-title: International Conference on Machine Learning year: 2016 ident: 2021012203310032000_ref40 article-title: Unsupervised deep embedding for clustering analysis – year: 2016 ident: 2021012203310032000_ref38 – start-page: 2016 issue: 15 year: 2016 ident: 2021012203310032000_ref83 article-title: Prostate cancer detection using photoacoustic imaging and deep learning publication-title: Electron Imaging – year: 2018 ident: 2021012203310032000_ref23 article-title: Clustering with deep learning: taxonomy and new methods – start-page: 694 volume-title: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data year: 2005 ident: 2021012203310032000_ref8 article-title: Tricluster: an effective algorithm for mining coherent clusters in 3D microarray data doi: 10.1145/1066157.1066236 – volume-title: Special Lecture on IE year: 2015 ident: 2021012203310032000_ref64 article-title: Variational autoencoder based anomaly detection using reconstruction probability – start-page: 657 volume-title: Proceedings of the European Conference on Computer Vision (ECCV) year: 2018 ident: 2021012203310032000_ref68 article-title: Hidden: hiding data with deep networks – volume: 6 start-page: 39501 year: 2018 ident: 2021012203310032000_ref2 article-title: A survey of clustering with deep learning: from the perspective of network architecture publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2855437 – volume: 132 start-page: 42 year: 2018 ident: 2021012203310032000_ref11 article-title: Clustering of rna-seq samples: comparison study on cancer data publication-title: Methods doi: 10.1016/j.ymeth.2017.07.023 – year: 2017 ident: 2021012203310032000_ref85 – volume: 66 start-page: 846 issue: 336 year: 1971 ident: 2021012203310032000_ref78 article-title: Objective criteria for the evaluation of clustering methods publication-title: J Amer Statist Assoc doi: 10.1080/01621459.1971.10482356 – year: 2018 ident: 2021012203310032000_ref50 publication-title: Learning latent representations in neural networks for clustering through pseudo supervision and graph-based activity regularization. arXiv preprint, arXiv – volume: 2 start-page: 83 issue: 1-2 year: 1955 ident: 2021012203310032000_ref80 article-title: The hungarian method for the assignment problem publication-title: Naval Res Logist Quart doi: 10.1002/nav.3800020109 – start-page: 202 volume-title: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII) year: 2017 ident: 2021012203310032000_ref31 article-title: Multimodal autoencoder: a deep learning approach to filling in missing sensor data and enabling better mood prediction doi: 10.1109/ACII.2017.8273601 – volume: 3 start-page: 583 issue: Dec year: 2002 ident: 2021012203310032000_ref75 article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions publication-title: J Mach Learn Res – year: 2018 ident: 2021012203310032000_ref58 publication-title: Learning mixtures of linear regressions with nearly optimal complexity. arXiv preprint, arXiv – volume: 9 start-page: 3053 issue: 1 year: 2019 ident: 2021012203310032000_ref37 article-title: Tight clustering for large datasets with an application to gene expression data publication-title: Sci Rep doi: 10.1038/s41598-019-39459-w – start-page: 1532 volume-title: 22nd International Conference on Pattern Recognition year: 2014 ident: 2021012203310032000_ref43 article-title: Deep embedding network for clustering – start-page: 410 volume-title: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) year: 2007 ident: 2021012203310032000_ref81 article-title: V-measure: a conditional entropy-based external cluster evaluation measure – year: 2019 ident: 2021012203310032000_ref56 article-title: Convolutional neural network models for cancer type prediction based on gene expression – start-page: 2172 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2021012203310032000_ref69 article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets – volume: 1 start-page: 38 year: 2015 ident: 2021012203310032000_ref7 article-title: Clustering techniques in bioinformatics publication-title: Int J Modern Educ Comput Sci doi: 10.5815/ijmecs.2015.01.06 – start-page: 113 volume-title: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics year: 2019 ident: 2021012203310032000_ref66 article-title: Drug–drug interaction prediction based on knowledge graph embeddings and convolutional-lstm network doi: 10.1145/3307339.3342161 – volume: 21 start-page: 1 issue: 1–3 year: 1998 ident: 2021012203310032000_ref17 article-title: The self-organizing map publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00030-7 – year: 2015 ident: 2021012203310032000_ref44 – volume: 9 start-page: 497 issue: 1 year: 2008 ident: 2021012203310032000_ref10 article-title: Clustering cancer gene expression data: a comparative study publication-title: BMC Bioinform doi: 10.1186/1471-2105-9-497 – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 2021012203310032000_ref73 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – start-page: 849 volume-title: Advances in Neural Information Processing Systems year: 2002 ident: 2021012203310032000_ref26 article-title: On spectral clustering: analysis and an algorithm – start-page: 1 year: 2011 ident: 2021012203310032000_ref32 article-title: Constructing super rule tree (SRT) for protein motif clusters using dbscan publication-title: Proceedings of the International Conference on Bioinformatics & Computational Biology (BIOCOMP) – volume: 12 start-page: 96 issue: 1 year: 2012 ident: 2021012203310032000_ref86 article-title: Basal breast cancer: a complex and deadly molecular subtype publication-title: Curr Mol Med doi: 10.2174/156652412798376134 – volume: 7 start-page: 46450 year: 2017 ident: 2021012203310032000_ref82 article-title: Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent publication-title: Sci Rep doi: 10.1038/srep46450 – start-page: 5884 volume-title: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2011 ident: 2021012203310032000_ref60 article-title: Learning a better representation of speech soundwaves using restricted boltzmann machines doi: 10.1109/ICASSP.2011.5947700 – volume: 98 start-page: 10869 issue: 19 year: 2001 ident: 2021012203310032000_ref15 article-title: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.191367098 – volume: 3 start-page: 86 year: 2014 ident: 2021012203310032000_ref14 article-title: Evaluating and analyzing clusters in data mining using different algorithms publication-title: Int J Comput Sci Mob Comput – volume: 114 start-page: 9814 issue: 37 year: 2017 ident: 2021012203310032000_ref52 article-title: Robust continuous clustering publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1700770114 – volume: 27 start-page: 623 issue: 4 year: 2004 ident: 2021012203310032000_ref5 article-title: Comparative analysis of clustering methods for gene expression time course data publication-title: Genet Mol Biol doi: 10.1590/S1415-47572004000400025 – start-page: 59 volume-title: European Conference on Principles of Data Mining and Knowledge Discovery year: 2005 ident: 2021012203310032000_ref19 article-title: Agglomerative hierarchical clustering with constraints: theoretical and empirical results – volume: 17 start-page: 977 issue: 10 year: 2001 ident: 2021012203310032000_ref36 article-title: Model-based clustering and data transformations for gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.10.977 – year: 2019 ident: 2021012203310032000_ref90 article-title: OncoNetExplainer: explainable predictions of cancer types based on gene expression data doi: 10.1109/BIBE.2019.00081 – year: 2016 ident: 2021012203310032000_ref1 article-title: Clustering algorithms: their application to gene expression data publication-title: Bioinform Biol Insights doi: 10.4137/BBI.S38316 – year: 2015 ident: 2021012203310032000_ref39 article-title: Adversarial autoencoders – start-page: 2837 year: 2010 ident: 2021012203310032000_ref77 article-title: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance publication-title: J Mach Learn Res – volume: 22 start-page: 2405 issue: 19 year: 2006 ident: 2021012203310032000_ref13 article-title: Evaluation and comparison of gene clustering methods in microarray analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl406 – start-page: 68 year: 1990 ident: 2021012203310032000_ref20 article-title: Partitioning around medoids (program pam) publication-title: Finding Groups in Data: An Introduction to Cluster Analysis. doi: 10.1002/9780470316801.ch2 – year: 2018 ident: 2021012203310032000_ref95 article-title: Bert: pre-training of deep bidirectional transformers for language understanding – start-page: 1370 issue: 11 year: 2004 ident: 2021012203310032000_ref6 article-title: Cluster analysis for gene expression data: a survey publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.68 – volume: 83 start-page: 161 year: 2018 ident: 2021012203310032000_ref47 article-title: Discriminatively boosted image clustering with fully convolutional auto-encoders publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.05.019 – start-page: 06321 year: 2015 ident: 2021012203310032000_ref42 article-title: Neural network-based clustering using pairwise constraints – volume: 45 start-page: 1113 issue: 10 year: 2013 ident: 2021012203310032000_ref89 article-title: Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project publication-title: Nat Genet doi: 10.1038/ng.2764 – start-page: 5 year: 2016 ident: 2021012203310032000_ref53 article-title: Variational deep embedding: a generative approach to clustering – start-page: 28 volume-title: Proceedings of the 17th International Conference on Pattern Recognition year: 2004 ident: 2021012203310032000_ref22 article-title: Improved adaptive gaussian mixture model for background subtraction – start-page: 1171 year: 2008 ident: 2021012203310032000_ref25 article-title: Kernel methods in machine learning publication-title: Annals of Stat doi: 10.1214/009053607000000677 – volume: 17 start-page: 763 issue: 9 year: 2001 ident: 2021012203310032000_ref27 article-title: An empirical study on principal component analysis for clustering gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.9.763 |
SSID | ssj0020781 |
Score | 2.6442626 |
SecondaryResourceType | review_article |
Snippet | Abstract
Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at... Clustering is central to many data-driven bioinformatics research and serves a powerful computational method. In particular, clustering helps at analyzing... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 393 |
SubjectTerms | Algorithms Artificial neural networks Bioinformatics Biological activity Cellular structure Centroids Cluster analysis Clustering Computer applications Data mining Data points Deep learning Gene mapping Genomics Learning algorithms Machine learning Medical imaging Neural networks Representations Self organizing maps State-of-the-art reviews Unstructured data |
Title | Deep learning-based clustering approaches for bioinformatics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32008043 https://www.proquest.com/docview/2529968924 https://www.proquest.com/docview/2350347765 https://pubmed.ncbi.nlm.nih.gov/PMC7820885 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5EELyIb6O1RPTiYWnSfQa8iFqKoF5a6C3sK1ooabHtQX-9s82DRopCDiE7IcvMhu8bdvYbhG4EsPKIEoUlcGVMqTVYRc5ixXVmFElIbPzh5JdX3h_S5xEblUU08w1b-Anp6LHuaP0dC5-ZA_p6hfzB26hOq7xcTXGGSGAv7l6JkDZebcBO4yjbGqP8XRi5hjS9fbRXUsTwvojpAdpy-SHaKZpGfh2hu0fnZmHZ7eEdexiyoZksveIBPAgrlXA3D4GQhno8LcVRvSDzMRr2ngYPfVz2QMCGEr7AmkliBbMqMhycp4DPGAugwiDPibgWBpLMhCsGd5kFrMkM0zxxhMJluOqSE7SdT3N3hkIAq9jFJpGZV6RRMUQvowYAm1olu0IG6LZyUWpKgXDfp2KSFhvVJAV3poU7A3Rd284KWYyNVm3w9J8GrSoIafnvzNMuA4jkEhLDAF3Vw7Dq_VaGyt10CTaERYQKwVmATouY1Z8hvqQD1l-ARCOatYFX1G6O5OOPlbK2Fw-Ukp3_N-8LtNv1tS1RjGPZQtuLz6W7BHKy0O3V2vwBoTDjWw |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+clustering+approaches+for+bioinformatics&rft.jtitle=Briefings+in+bioinformatics&rft.au=Karim%2C+Md+Rezaul&rft.au=Beyan%2C+Oya&rft.au=Zappa%2C+Achille&rft.au=Costa%2C+Ivan+G&rft.date=2021-01-18&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=393&rft_id=info:doi/10.1093%2Fbib%2Fbbz170&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |