A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration
Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a cost model to obtain the cost of that plan, and s...
Saved in:
Published in | Data Science and Engineering Vol. 6; no. 1; pp. 86 - 101 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.03.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2364-1185 2364-1541 |
DOI | 10.1007/s41019-020-00149-7 |
Cover
Loading…
Abstract | Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a cost model to obtain the cost of that plan, and selects the plan with the lowest cost. In the cost model, cardinality, the number of tuples through an operator, plays a crucial role. Due to the inaccuracy in cardinality estimation, errors in cost model, and the huge plan space, the optimizer cannot find the optimal execution plan for a complex query in a reasonable time. In this paper, we first deeply study the causes behind the limitations above. Next, we review the techniques used to improve the quality of the three key components in the cost-based optimizer, cardinality estimation, cost model, and plan enumeration. We also provide our insights on the future directions for each of the above aspects. |
---|---|
AbstractList | Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a cost model to obtain the cost of that plan, and selects the plan with the lowest cost. In the cost model, cardinality, the number of tuples through an operator, plays a crucial role. Due to the inaccuracy in cardinality estimation, errors in cost model, and the huge plan space, the optimizer cannot find the optimal execution plan for a complex query in a reasonable time. In this paper, we first deeply study the causes behind the limitations above. Next, we review the techniques used to improve the quality of the three key components in the cost-based optimizer, cardinality estimation, cost model, and plan enumeration. We also provide our insights on the future directions for each of the above aspects. |
Audience | Academic |
Author | Peng, Yuwei Lan, Hai Bao, Zhifeng |
Author_xml | – sequence: 1 givenname: Hai surname: Lan fullname: Lan, Hai organization: RMIT University – sequence: 2 givenname: Zhifeng surname: Bao fullname: Bao, Zhifeng organization: RMIT University – sequence: 3 givenname: Yuwei surname: Peng fullname: Peng, Yuwei email: ywpeng@whu.edu.cn organization: Wuhan University |
BookMark | eNp9kUtv3CAURlGVSs3rD3SF1FWlOL0YDHZ3k8k0jZQobSd7hA2eEHlgCjjK9NeHjFtF6SJiwUPnwOV-B2jPeWcQ-kjglACIL5ERIE0BJRQAhDWFeIf2S8pZQSpG9v6tSV19QMcx3gNAmXeM8X10N8PLMTyYLfYOz_SDcp11K5zuDD4_u17in6MJW3yzSXZt_5jwFc9V0NapwaYtXsR8rJL17gTPfUz42msznGDlNP4xKIcXblybsCOO0PteDdEc_50P0e23xe38e3F1c3E5n10VHaM8FcpogFZx3fegRSe4rkXbkbKtaUNa3XMqFFN1W1VNCZwIBYYpw3TLBVDG6CH6NF27Cf73aGKS934Mud4oS9YQRgUVz9TpRK3UYKR1vU9BdXlos7Zd7m5v8_mMV2UuSjQ8C59fCZlJ5jGt1BijvFz-es3WE9sFH2Mwvexs2vUgP2IHSUA-xyan2GSOTe5ikyKr5X_qJuQOh-3bEp2kmGG3MuHly29YT2hcqgs |
CitedBy_id | crossref_primary_10_3390_computers12100210 crossref_primary_10_3390_ijgi10070468 crossref_primary_10_1145_3555811 crossref_primary_10_1109_ACCESS_2025_3547623 crossref_primary_10_1007_s11704_022_1056_2 crossref_primary_10_1145_3654932 crossref_primary_10_4108_eetsis_3822 crossref_primary_10_3390_math11061383 crossref_primary_10_3390_math12193102 crossref_primary_10_1007_s40747_025_01801_3 crossref_primary_10_1016_j_displa_2024_102854 crossref_primary_10_1007_s11280_023_01195_7 crossref_primary_10_1016_j_bdr_2021_100304 crossref_primary_10_1007_s10796_024_10555_1 crossref_primary_10_3390_bdcc8070071 crossref_primary_10_1016_j_knosys_2024_112664 crossref_primary_10_1007_s10515_023_00390_0 crossref_primary_10_1007_s11432_021_3578_6 crossref_primary_10_1109_TKDE_2023_3266893 crossref_primary_10_1016_j_tbench_2022_100031 crossref_primary_10_1109_ACCESS_2022_3190376 crossref_primary_10_1109_TKDE_2023_3237857 crossref_primary_10_1109_TKDE_2021_3062182 crossref_primary_10_14778_3594512_3594528 crossref_primary_10_14778_3554821_3554893 crossref_primary_10_1016_j_is_2024_102402 crossref_primary_10_1186_s40537_024_01025_1 crossref_primary_10_1007_s11042_024_19215_7 crossref_primary_10_1016_j_cola_2022_101173 crossref_primary_10_3390_s23177364 crossref_primary_10_1109_ACCESS_2024_3417352 crossref_primary_10_1109_TKDE_2023_3271664 crossref_primary_10_3390_electronics12061504 crossref_primary_10_1145_3639272 crossref_primary_10_1145_3677134 crossref_primary_10_1016_j_jksuci_2024_102125 crossref_primary_10_1002_cpe_6724 crossref_primary_10_14778_3611540_3611550 crossref_primary_10_1002_cpe_7817 crossref_primary_10_1109_TKDE_2024_3360116 crossref_primary_10_14778_3476249_3476270 |
Cites_doi | 10.1109/ICDE.2012.64 10.1007/s00778-012-0293-7 10.1109/ICDE48307.2020.00035 10.1145/3035918.3064039 10.1145/2213556.2213561 10.1145/352958.352982 10.1145/235968.233317 10.1109/ICDE48307.2020.00132 10.1007/BFb0054528 10.1007/s007780050040 10.1109/ICDE.2009.130 10.1145/2463676.2463701 10.1145/1376616.1376672 10.1109/ICDE.2006.61 10.1145/3183713.3183733 10.1145/235968.233340 10.1145/1093382.1093387 10.1145/333607.333610 10.1007/978-3-030-18576-3_20 10.1145/1321440.1321508 10.1145/3329859.3329875 10.1007/s41019-019-00104-1 10.1109/ICDE.2012.27 10.1145/2668260.2668271 10.14778/3421424.3421432 10.1109/ICDE.2006.84 10.1109/ICDE.2013.6544901 10.1145/2723372.2749438 10.1145/1142473.1142497 10.1007/s41019-020-00117-1 10.1145/235968.233342 10.1145/3299869.3300088 10.1016/B978-012722442-8/50011-2 10.1145/3318464.3389768 10.1145/1645953.1646101 10.1145/376284.375727 10.1145/582095.582099 10.1007/978-3-540-24698-5_7 10.46298/dmtcs.3545 10.1145/1270.1498 10.1109/ICDE.2010.5447916 10.1145/3299869.3320218 10.1145/2505515.2505756 10.1145/3318464.3389741 10.1145/3318464.3389727 10.1145/3186728.3164145 10.1145/2806777.2806944 10.1109/ICDE.1993.344061 10.1109/ICDE.2013.6544899 10.1109/ICDE.2011.5767901 10.14778/3291264.3291267 10.1145/3211954.3211957 10.1109/ICDE48307.2020.00116 10.1007/s00778-003-0090-4 10.1016/B978-155860869-6/50025-1 10.1007/978-3-030-18579-4_1 10.1145/1386118.1386121 10.1145/2745754.2745772 10.1145/1559845.1559889 10.1145/3318464.3380584 10.1145/66926.66961 10.1145/3299869.3319894 10.1145/153850.153875 10.1145/1132863.1132873 10.1145/1247480.1247567 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 COPYRIGHT 2021 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7SC 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s41019-020-00149-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Computer Science |
EISSN | 2364-1541 |
EndPage | 101 |
ExternalDocumentID | A652436796 10_1007_s41019_020_00149_7 |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: Australia Research Council grantid: DP200102611, DP180102050 |
GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX CITATION PHGZM PHGZT ADMLS ARCSS 7SC 8FD 8FE 8FG ABJCF ABUWG ARAPS AZQEC BGLVJ DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PUEGO |
ID | FETCH-LOGICAL-c436t-aed00ba6dff0d7c76d87bc12b8391bdf637a4a8b55920617a0e4ae4db6703443 |
IEDL.DBID | C24 |
ISSN | 2364-1185 |
IngestDate | Sat Sep 06 07:31:51 EDT 2025 Wed Feb 12 06:39:13 EST 2025 Fri Feb 14 03:06:12 EST 2025 Tue Jul 01 04:35:57 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 Fri Feb 21 02:49:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cardinality estimation Query optimizer Cost model Plan enumeration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-aed00ba6dff0d7c76d87bc12b8391bdf637a4a8b55920617a0e4ae4db6703443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s41019-020-00149-7 |
PQID | 2491437374 |
PQPubID | 4402891 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2491437374 gale_infotracacademiconefile_A652436796 gale_incontextgauss_ISR_A652436796 crossref_citationtrail_10_1007_s41019_020_00149_7 crossref_primary_10_1007_s41019_020_00149_7 springer_journals_10_1007_s41019_020_00149_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210300 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Berlin |
PublicationTitle | Data Science and Engineering |
PublicationTitleAbbrev | Data Sci. Eng |
PublicationYear | 2021 |
Publisher | Springer Singapore Springer Springer Nature B.V |
Publisher_xml | – name: Springer Singapore – name: Springer – name: Springer Nature B.V |
References | Ono K, Lohman GM (1990) Measuring the complexity of join enumeration in query optimization. In: VLDB, pp 314–325 Chen Yu, Yi K (2017) Two-level sampling for join size estimation. In: SIGMOD, pp 759–774 Bruno N, Galindo-Legaria C, Joshi M (2010) Polynomial heuristics for query optimization. In: ICDE, pp 589–600 Hasan S, Thirumuruganathan S, Augustine J, Koudas N, Das G (2020) Deep learning models for selectivity estimation of multi-attribute queries. In: SIGMOD, pp 1035–1050 Ganguly S, Gibbons PB, Matias Y, Silberschatz A (1996) Bifocal sampling for skew-resistant join size estimation. In: SIGMOD, pp 271–281 Estan C, Naughton FJ (2006) End-biased Samples for join cardinality estimation. In: ICDE, p 20 Fender P, Moerkotte G (2013) Top down plan generation: from theory to practice. In: ICDE, pp 1105–1116 Neumann T (2009) Query simplification: graceful degradation for join-order optimization. In: SIGMOD, pp 403–414 Nam Y-M, Han D, Kim M-S (2020) SPRINTER: a fast n-ary join query processing method for complex OLAP queries. In: SIGMOD, pp 2055–2070 ShanbhagASudarshanSOptimizing join enumeration in transformation-based query optimizersVLDB201471212431254 Woltmann L, Hartmann C, Thiele M, Habich D, Lehner W (2019) Cardinality estimation with local deep learning models. In: aiDM@SIGMOD, pp 5:1–5:8 KossmannDIterative dynamic programming: a new class of query optimization algorithmsTODS2000251438210.1145/352958.352982 LiJKönigACNarasayyaVRChaudhuriSRobust estimation of resource consumption for SQL queries using statistical techniquesVLDB201251115551566 SteinbrunnMMoerkotteGKemperAHeuristic and randomized optimization for the join ordering problemVLDB J19976319120810.1007/s007780050040 Halim F, Karras P, Yap RHC (2009) Fast and effective histogram construction. In: CIKM, pp 1167–1176 TzoumasKDeshpandeAJensenCSEfficiently adapting graphical models for selectivity estimationVLDB J201322132710.1007/s00778-012-0293-7 Neumann T, Radke B (2018) Adaptive optimization of very large join queries. In: SIGMOD, pp 677–692 Getoor L, Taskar B, Koller D (2001) Selectivity estimation using probabilistic models. In: SIGMOD, pp 461–472 Akdere M, Çetintemel U, Riondato M, Upfal E, Zdonik SB (2012) Learning-based query performance modeling and prediction. In: ICDE, pp 390–401 Kipf A, Kipf T, Radke B, Leis V, Boncz PA, Alfons K (2019) Learned cardinalities, estimating correlated joins with deep learning. In: CIDR Halim F, Karras P, Yap RHC (2010) Local search in histogram construction. In: AAAI Moerkotte G, Neumann T (2006) Analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross products. In: VLDB, pp 930–941 Wu C, Jindal A, Amizadeh S, Patel H, Le W, Qiao S, Rao S (2018) Towards a learning optimizer for shared clouds. VLDB 12(3):210–222 Jagadish HV, Koudas N, Muthukrishnan S, Poosala V, Sevcik KC, Suel T (1998) Optimal histograms with quality guarantees. In: VLDB, pp 275–286 BoulosJViemontYOnoKA neural networks approach for query cost evaluationTrans Inf Process Soc Jpn1997381225662575 Spiegel J, Polyzotis N (2006) Graph-based synopses for relational selectivity estimation. In: SIGMOD, pp 205–216 Yu X, Li G, Chai C, Tang N (2020) Reinforcement learning with tree-LSTM for join order selection. In: ICDE, pp 1297–1308 Heimel M, Kiefer M, Markl V (2015) Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. In: SIGMOD, pp 1477–1492 HarmouchHNaumannFCardinality estimation: an experimental surveyProc VLDB Endow201711449951210.1145/3186728.3164145 Graefe G, McKenna WJ (1993) The volcano optimizer generator: extensibility and efficient search. In: Proceedings of the ninth international conference on data engineering, April 19–23, 1993, Vienna, Austria. IEEE Computer Society, pp 209–218 To H, Chiang K, Shahabi C (2013) Entropy-based histograms for selectivity estimation. In: CIKM, pp 1939–1948 Malik T, Burns RC, Chawla NV (2007) A black-box approach to query cardinality estimation. In: CIDR, pp 56–67 Liu F, Blanas S (2015) Forecasting the cost of processing multi-join queries via hashing for main-memory databases. In: Socc, pp 153–166 Heitz J, Stockinger K (2019) Join query optimization with deep reinforcement learning algorithms. CoRR. arXiv:abs/1911.11689 VengerovDMenckACZaïtMChakkappenSJoin size estimation subject to filter conditionsVLDB201581215301541 Marcus R, Papaemmanouil O (2018) Deep reinforcement learning for join order enumeration. In: aiDM@SIGMOD, pp 3:1–3:4 KaushikRSuciuDConsistent histograms in the presence of distinct value countsVLDB200921850861 Haas PJ, Naughton JF, Seshadri S, Swami AN (1993) Fixed-precision estimation of join selectivity. In: PODS, pp 190–201 Wang TN, Chan C-Y (2020) Improved correlated sampling for join size estimation. In: ICDE, pp 325–336 DuttAWangCNaziAKandulaSNarasayyaVRChaudhuriSSelectivity estimation for range predicates using lightweight modelsVLDB201912910441057 Cormode G, Muthukrishnan S (2004) An improved data stream summary: the count-min sketch and its applications. In: LATIN 2004: theoretical informatics, 6th Latin American symposium, Buenos Aires, Argentina, April 5–8, 2004, Proceedings, pp 29–38 SunJLiGAn end-to-end learning-based cost estimatorVLDB2020133307319 Lim L, Wang M, Vitter JS (2003) SASH: a self-adaptive histogram set for dynamically changing workloads. In: VLDB, pp 369–380 Siddiqui T, Jindal A, Qiao S, Patel H, Le W (2020) Cost models for big data query processing: learning, retrofitting, and our findings. In: SIGMOD, pp 99–113 MarcusRCNegiPMaoHZhangCAlizadehMKraskaTPapaemmanouilOTatbulNNeo: a learned query optimizerVLDB2019121117051718 Ganguly S, Garofalakis MN, Rastogi R (2004) EDB Processing data-stream join aggregates using skimmed sketches. In: EDBT, pp 569–586 HilprechtBSchmidtAKulessaMMolinaAKerstingKBinnigCDeepDB: learn from data, not from queries!VLDB20201379921005 Swami AN (1989) Optimization of large join queries: combining heuristic and combinatorial techniques. In: SIGMOD, pp 367–376 KieferMHeimelMBreßSMarklVEstimating join selectivities using bandwidth-optimized kernel density modelsVLDB2017101320852096 Wentao W, Chi Y, Zhu S, Tatemura J, Hacigümüs H, Naughton JF (2013) Predicting query execution time: are optimizer cost models really unusable?. In: ICDE, pp 1081–1092 MarcusRCPapaemmanouilOPlan-structured deep neural network models for query performance predictionVLDB2019121117331746 Yang Y, Zhang W, Zhang Y, Lin X, Wang L (2019) Selectivity estimation on set containment search. In: DASFAA, Part I, pp 330–349 TianSMoSWangLPengZDeep reinforcement learning-based approach to tackle topic-aware influence maximizationData Sci Eng20205111110.1007/s41019-020-00117-1 Lakshmi SM, Zhou S (1998) Selectivity estimation in extensible databases—a neural network approach. In: VLDB, pp 623–627 RusuFDobraASketches for size of join estimationACM Trans Database Syst200833315:115:4610.1145/1386118.1386121 Moerkotte G, Neumann T (2008) Dynamic programming strikes back. In: SIGMOD, pp 539–552 Liu H, Mingbin X, Ziting Yu, Corvinelli V, Zuzarte C (2015) Cardinality estimation using neural networks. In: CASCON, pp 53–59 Wentao W, Naughton JF, Singh H (2016) Sampling-based query re-optimization. In: SGMOD, pp 1721–1736 TzoumasKDeshpandeAJensenCSLightweight graphical models for selectivity estimation without independence assumptionsVLDB2011411852863 Ganapathi A, Kuno HA, Dayal U, Wiener JL, Fox A, Jordan MI, Patterson DA (2009) Predicting multiple metrics for queries: better decisions enabled by machine learning. In: ICDE, pp 592–603 YangZLiangEKamsettyAChenggangWDuanYChenPAbbeelPHellersteinJMKrishnanSStoicaIDeep unsupervised cardinality estimationVLDB2019133279292 Eavis T, Lopez A (2007) Rk-hist: an r-tree based histogram for multi-dimensional selectivity estimation. In: CIKM, pp 475–484 Zhou X, Chai C, Li G, SUN J (2020) Database meets artificial intelligence a: survey. In: TKDE, pp 1–1 Poosala V, Ioannidis YE, Haas PJ, Shekita EJ (1996) Improved histograms for selectivity estimation of range predicates. In: SIGMOD, pp 294–305 Yang Z, Kamsetty A, Luan S, Liang E, Duan Y, Chen X, Stoica I (2020) NeuroCard: one cardinality estimator for all tables. CoRR. arXiv:abs/2006.08109 Woltmann L, Hartmann C, Habich D, Lehner W (2020) Machine learning-based cardinality estimation in DBMS on pre-aggregated data. CoRR. arXiv:abs/2005.09367 Trummer I, Koch C (2017) Solving the join ordering problem via mixed integer linear programming. In: SIGMOD, pp 1025–1040 Park Y, Zhong S, Mozafari B (2020) QuickSel: quick selectivity learning with mixture models. In: SIGMOD, pp 1017–1033 Flajolet P, Fusy E, Gandouet O, Meunier F (2007) HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. In: Discrete mathematics and theoretical computer science, pp 137–156 Srivastava U, Haas PJ, Markl V, Kutsch M, Tran TM (2006) ISOMER: consistent histogram construction using query feedback. In: ICDE, p 39 Trummer I, Wang J, Maram D, Moseley S, Jo S, Antonakakis J (2019) SkinnerDB: regret-bounded query evaluation via reinforcement learning. In: SIGMOD, pp 1153–1170 Kaoudi Z, Quiané-Ruiz J-A, Contreras-Rojas B, Pardo-Meza R, Troudi A, Chawla S (2020) ML-based cross-platform query optimization. In: ICDE, pp 1489–1500 LeisVGubichevAMirchevABonczPAKemperANeumannTHow good are query optimizers, really?VLDB201593204215 Cai W, Balazinska M, Suciu D (2019) Pessimistic cardinality estimation: tighter upper bounds for intermediate join cardinalities. In: SIGMOD, pp 18–35 Fender P, Moerkotte G, Neumann T, Leis V (2012) Effective and robust pruning for top-down join enumeration algorithms. In: ICDE, pp 414–425 Vance B, Maier D (1996) Rapid bushy join-order optimization with Cartesian products. In: SIGMOD, pp 35–46 Fegaras L (1998) A new heuristic for optimizing large queries. In: DEXA, pp 726–735 Lohman G (2014) Is query optimization a “solved” problem?. http://wp.sigmod.org/?p=1075 Accessed 10 June 2020 HeZLeeBSSnappRRSelf-tuning UDF cost modeling using the memory-limited quadtreeEDBT200429925 149_CR59 149_CR57 149_CR52 Z He (149_CR36) 2004; 2992 149_CR53 149_CR50 149_CR103 149_CR105 149_CR106 J Boulos (149_CR3) 1999; 28 Z Yang (149_CR104) 2019; 13 149_CR100 149_CR102 149_CR49 149_CR44 149_CR45 149_CR46 J Sun (149_CR85) 2020; 13 149_CR42 149_CR43 149_CR107 S Chaudhuri (149_CR8) 1998 G Cormode (149_CR10) 2012; 4 P Fender (149_CR18) 2013; 6 D Kossmann (149_CR51) 2000; 25 S Tian (149_CR87) 2020; 5 149_CR5 149_CR38 149_CR6 149_CR39 149_CR33 149_CR1 149_CR2 149_CR35 149_CR30 149_CR31 149_CR32 G Graefe (149_CR26) 1995; 18 A Shanbhag (149_CR80) 2014; 7 M Steinbrunn (149_CR84) 1997; 6 S Guha (149_CR28) 2006; 31 A Dutt (149_CR13) 2019; 12 X Zhou (149_CR108) 2020; 13 149_CR27 149_CR22 149_CR23 149_CR24 149_CR25 149_CR20 149_CR21 F Rusu (149_CR78) 2008; 33 J Leeka (149_CR54) 2019; 13 RC Marcus (149_CR67) 2019; 12 X Lin (149_CR58) 2015; 31 149_CR19 149_CR9 149_CR15 M Kiefer (149_CR48) 2017; 10 149_CR16 149_CR17 H Harmouch (149_CR34) 2017; 11 149_CR11 149_CR99 149_CR12 149_CR14 149_CR95 149_CR96 R Kaushik (149_CR47) 2009; 2 149_CR97 149_CR98 V Leis (149_CR55) 2015; 9 149_CR93 D Gunopulos (149_CR29) 2005; 14 149_CR90 D Vengerov (149_CR94) 2015; 8 149_CR88 149_CR89 149_CR86 149_CR81 149_CR82 149_CR83 Y Yang (149_CR101) 2019; 4 K Tzoumas (149_CR92) 2013; 22 B Hilprecht (149_CR40) 2020; 13 K Tzoumas (149_CR91) 2011; 4 R Chaiken (149_CR7) 2008; 1 149_CR77 149_CR79 149_CR73 149_CR74 149_CR75 149_CR76 149_CR70 149_CR71 149_CR72 T Ibaraki (149_CR41) 1984; 9 RC Marcus (149_CR66) 2019; 12 149_CR68 149_CR69 149_CR62 J Boulos (149_CR4) 1997; 38 149_CR63 149_CR64 149_CR65 J Li (149_CR56) 2012; 5 149_CR60 149_CR61 Z He (149_CR37) 2005; 30 |
References_xml | – reference: Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG (1979) Access path selection in a relational database management system. In: SIGMOD, pp 23–34 – reference: TzoumasKDeshpandeAJensenCSEfficiently adapting graphical models for selectivity estimationVLDB J201322132710.1007/s00778-012-0293-7 – reference: Wentao W, Chi Y, Zhu S, Tatemura J, Hacigümüs H, Naughton JF (2013) Predicting query execution time: are optimizer cost models really unusable?. In: ICDE, pp 1081–1092 – reference: Chen Yu, Yi K (2017) Two-level sampling for join size estimation. In: SIGMOD, pp 759–774 – reference: KossmannDIterative dynamic programming: a new class of query optimization algorithmsTODS2000251438210.1145/352958.352982 – reference: Wang TN, Chan C-Y (2020) Improved correlated sampling for join size estimation. In: ICDE, pp 325–336 – reference: YangYZhangWZhangYLinXWangLSelectivity estimation on set containment searchData Sci Eng20194325426810.1007/s41019-019-00104-1 – reference: Ganguly S, Garofalakis MN, Rastogi R (2004) EDB Processing data-stream join aggregates using skimmed sketches. In: EDBT, pp 569–586 – reference: Marcus R, Papaemmanouil O (2018) Deep reinforcement learning for join order enumeration. In: aiDM@SIGMOD, pp 3:1–3:4 – reference: Haas PJ, Naughton JF, Seshadri S, Swami AN (1993) Fixed-precision estimation of join selectivity. In: PODS, pp 190–201 – reference: LeekaJRajanKIncorporating super-operators in big-data query optimizersVLDB2019133348361 – reference: BoulosJViemontYOnoKA neural networks approach for query cost evaluationTrans Inf Process Soc Jpn1997381225662575 – reference: CormodeGGarofalakisMNHaasPJJermaineCSynopses for massive data: samples, histograms, wavelets, sketchesFound Trends Databases201241–312941257.68062 – reference: Hasan S, Thirumuruganathan S, Augustine J, Koudas N, Das G (2020) Deep learning models for selectivity estimation of multi-attribute queries. In: SIGMOD, pp 1035–1050 – reference: LinXZengXXiaoweiPSunYA cardinality estimation approach based on two level histogramsJ Inf Sci Eng201531517331756 – reference: Swami AN (1989) Optimization of large join queries: combining heuristic and combinatorial techniques. In: SIGMOD, pp 367–376 – reference: ShanbhagASudarshanSOptimizing join enumeration in transformation-based query optimizersVLDB201471212431254 – reference: Indyk P, Levi R, Rubinfeld R (2012) Approximating and testing k-histogram distributions in sub-linear time. In: PODS, pp 15–22 – reference: Yu F, Hou W-C, Luo C, Che D, Zhu M (2013) CS2: a new database synopsis for query estimation. In: SIGMOD, pp 469–480 – reference: Ganapathi A, Kuno HA, Dayal U, Wiener JL, Fox A, Jordan MI, Patterson DA (2009) Predicting multiple metrics for queries: better decisions enabled by machine learning. In: ICDE, pp 592–603 – reference: Trummer I, Koch C (2017) Solving the join ordering problem via mixed integer linear programming. In: SIGMOD, pp 1025–1040 – reference: Ortiz J, Balazinska M, Gehrke J, Keerthi SS (2019) An empirical analysis of deep learning for cardinality estimation. CoRR. arXiv:abs/1905.06425 – reference: LeisVGubichevAMirchevABonczPAKemperANeumannTHow good are query optimizers, really?VLDB201593204215 – reference: Poosala V, Ioannidis YE, Haas PJ, Shekita EJ (1996) Improved histograms for selectivity estimation of range predicates. In: SIGMOD, pp 294–305 – reference: Heitz J, Stockinger K (2019) Join query optimization with deep reinforcement learning algorithms. CoRR. arXiv:abs/1911.11689 – reference: Woltmann L, Hartmann C, Thiele M, Habich D, Lehner W (2019) Cardinality estimation with local deep learning models. In: aiDM@SIGMOD, pp 5:1–5:8 – reference: SteinbrunnMMoerkotteGKemperAHeuristic and randomized optimization for the join ordering problemVLDB J19976319120810.1007/s007780050040 – reference: Spiegel J, Polyzotis N (2006) Graph-based synopses for relational selectivity estimation. In: SIGMOD, pp 205–216 – reference: Akdere M, Çetintemel U, Riondato M, Upfal E, Zdonik SB (2012) Learning-based query performance modeling and prediction. In: ICDE, pp 390–401 – reference: Cormode G, Muthukrishnan S (2004) An improved data stream summary: the count-min sketch and its applications. In: LATIN 2004: theoretical informatics, 6th Latin American symposium, Buenos Aires, Argentina, April 5–8, 2004, Proceedings, pp 29–38 – reference: LiJKönigACNarasayyaVRChaudhuriSRobust estimation of resource consumption for SQL queries using statistical techniquesVLDB201251115551566 – reference: HilprechtBSchmidtAKulessaMMolinaAKerstingKBinnigCDeepDB: learn from data, not from queries!VLDB20201379921005 – reference: YangZLiangEKamsettyAChenggangWDuanYChenPAbbeelPHellersteinJMKrishnanSStoicaIDeep unsupervised cardinality estimationVLDB2019133279292 – reference: Estan C, Naughton FJ (2006) End-biased Samples for join cardinality estimation. In: ICDE, p 20 – reference: PostgreSQL Database (2020) howpublished. http://www.postgresql.org/ – reference: SunJLiGAn end-to-end learning-based cost estimatorVLDB2020133307319 – reference: Cai W, Balazinska M, Suciu D (2019) Pessimistic cardinality estimation: tighter upper bounds for intermediate join cardinalities. In: SIGMOD, pp 18–35 – reference: Fegaras L (1998) A new heuristic for optimizing large queries. In: DEXA, pp 726–735 – reference: Manegold S, Boncz PA, Kersten ML (2002) Generic database cost models for hierarchical memory systems. In: VLDB, pp 191–202 – reference: Fender P, Moerkotte G (2011) A new, highly efficient, and easy to implement top-down join enumeration algorithm. In: ICDE, pp 864–875 – reference: Halim F, Karras P, Yap RHC (2010) Local search in histogram construction. In: AAAI – reference: MarcusRCNegiPMaoHZhangCAlizadehMKraskaTPapaemmanouilOTatbulNNeo: a learned query optimizerVLDB2019121117051718 – reference: Liu F, Blanas S (2015) Forecasting the cost of processing multi-join queries via hashing for main-memory databases. In: Socc, pp 153–166 – reference: Park Y, Zhong S, Mozafari B (2020) QuickSel: quick selectivity learning with mixture models. In: SIGMOD, pp 1017–1033 – reference: KaushikRSuciuDConsistent histograms in the presence of distinct value countsVLDB200921850861 – reference: Zhou X, Chai C, Li G, SUN J (2020) Database meets artificial intelligence a: survey. In: TKDE, pp 1–1 – reference: Fender P, Moerkotte G (2013) Top down plan generation: from theory to practice. In: ICDE, pp 1105–1116 – reference: Fender P, Moerkotte G, Neumann T, Leis V (2012) Effective and robust pruning for top-down join enumeration algorithms. In: ICDE, pp 414–425 – reference: DuttAWangCNaziAKandulaSNarasayyaVRChaudhuriSSelectivity estimation for range predicates using lightweight modelsVLDB201912910441057 – reference: TzoumasKDeshpandeAJensenCSLightweight graphical models for selectivity estimation without independence assumptionsVLDB2011411852863 – reference: VengerovDMenckACZaïtMChakkappenSJoin size estimation subject to filter conditionsVLDB201581215301541 – reference: Graefe G, McKenna WJ (1993) The volcano optimizer generator: extensibility and efficient search. In: Proceedings of the ninth international conference on data engineering, April 19–23, 1993, Vienna, Austria. IEEE Computer Society, pp 209–218 – reference: Heimel M, Kiefer M, Markl V (2015) Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. In: SIGMOD, pp 1477–1492 – reference: Acharya J, Diakonikolas I, Hegde C, Li JZ, Schmidt L (2015) Fast and near-optimal algorithms for approximating distributions by histograms. In: PODS, pp 249–263 – reference: Lim L, Wang M, Vitter JS (2003) SASH: a self-adaptive histogram set for dynamically changing workloads. In: VLDB, pp 369–380 – reference: Eavis T, Lopez A (2007) Rk-hist: an r-tree based histogram for multi-dimensional selectivity estimation. In: CIKM, pp 475–484 – reference: Halford M, Saint-Pierre P, Morvan F (2019) An approach based on Bayesian networks for query selectivity estimation. In: DASFAA, pp 3–19 – reference: Neumann T (2009) Query simplification: graceful degradation for join-order optimization. In: SIGMOD, pp 403–414 – reference: To H, Chiang K, Shahabi C (2013) Entropy-based histograms for selectivity estimation. In: CIKM, pp 1939–1948 – reference: MarcusRCPapaemmanouilOPlan-structured deep neural network models for query performance predictionVLDB2019121117331746 – reference: Ioannidis YE (2003) The history of histograms (abridged). In: VLDB. Morgan Kaufmann, Los Altos, pp 19–30 – reference: Flajolet P, Fusy E, Gandouet O, Meunier F (2007) HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. In: Discrete mathematics and theoretical computer science, pp 137–156 – reference: Kipf A, Vorona D, Müller J, Kipf T, Radke B, Leis V, Boncz P, Neumann T, Kemper A (2019) Estimating cardinalities with deep sketches. J CoRR. arXiv:abs/1904.08223 – reference: HeZLeeBSSnappRRSelf-tuning cost modeling of user-defined functions in an object-relational DBMSTODS200530381285310.1145/1093382.1093387 – reference: FenderPMoerkotteGCounter strike: generic top-down join enumeration for hypergraphsVLDB201361418221833 – reference: Kipf A, Kipf T, Radke B, Leis V, Boncz PA, Alfons K (2019) Learned cardinalities, estimating correlated joins with deep learning. In: CIDR – reference: BoulosJOnoKCost estimation of user-defined methods in object-relational database systemsSIGMOD Rec1999283222810.1145/333607.333610 – reference: Malik T, Burns RC, Chawla NV (2007) A black-box approach to query cardinality estimation. In: CIDR, pp 56–67 – reference: Karampaglis Z, Gounaris A, Manolopoulos Y (2014) A bi-objective cost model for database queries in a multi-cloud environment. In: MEDES, pp 109–116 – reference: TianSMoSWangLPengZDeep reinforcement learning-based approach to tackle topic-aware influence maximizationData Sci Eng20205111110.1007/s41019-020-00117-1 – reference: Yu X, Li G, Chai C, Tang N (2020) Reinforcement learning with tree-LSTM for join order selection. In: ICDE, pp 1297–1308 – reference: Trummer I, Wang J, Maram D, Moseley S, Jo S, Antonakakis J (2019) SkinnerDB: regret-bounded query evaluation via reinforcement learning. In: SIGMOD, pp 1153–1170 – reference: GuhaSKoudasNShimKApproximation and streaming algorithms for histogram construction problemsACM Trans. Database Syst.200631139643810.1145/1132863.1132873 – reference: Yang Z, Kamsetty A, Luan S, Liang E, Duan Y, Chen X, Stoica I (2020) NeuroCard: one cardinality estimator for all tables. CoRR. arXiv:abs/2006.08109 – reference: Neumann T, Radke B (2018) Adaptive optimization of very large join queries. In: SIGMOD, pp 677–692 – reference: ZhouXSunJLiGFengJQuery performance prediction for concurrent queries using graph embeddingVLDB202013914161428 – reference: Ono K, Lohman GM (1990) Measuring the complexity of join enumeration in query optimization. In: VLDB, pp 314–325 – reference: GraefeGThe cascades framework for query optimizationIEEE Data Eng. Bull.19951831929 – reference: Moerkotte G, Neumann T (2008) Dynamic programming strikes back. In: SIGMOD, pp 539–552 – reference: Getoor L, Taskar B, Koller D (2001) Selectivity estimation using probabilistic models. In: SIGMOD, pp 461–472 – reference: RusuFDobraASketches for size of join estimationACM Trans Database Syst200833315:115:4610.1145/1386118.1386121 – reference: Woltmann L, Hartmann C, Habich D, Lehner W (2020) Machine learning-based cardinality estimation in DBMS on pre-aggregated data. CoRR. arXiv:abs/2005.09367 – reference: Jagadish HV, Koudas N, Muthukrishnan S, Poosala V, Sevcik KC, Suel T (1998) Optimal histograms with quality guarantees. In: VLDB, pp 275–286 – reference: ChaikenRJenkinsBLarsonPÅRamseyBShakibDWeaverSZhouJSCOPE: easy and efficient parallel processing of massive data setsVLDB20081212651276 – reference: Lohman G (2014) Is query optimization a “solved” problem?. http://wp.sigmod.org/?p=1075 Accessed 10 June 2020 – reference: KieferMHeimelMBreßSMarklVEstimating join selectivities using bandwidth-optimized kernel density modelsVLDB2017101320852096 – reference: Krishnan S, Yang Z, Goldberg K, Hellerstein JM, Stoica I (2018) Learning to optimize join queries with deep reinforcement learning. CoRR. arXiv:abs/1808.03196 – reference: Lakshmi SM, Zhou S (1998) Selectivity estimation in extensible databases—a neural network approach. In: VLDB, pp 623–627 – reference: DeHaan D, Tompa FW (2007) Optimal top-down join enumeration. In: SIGMOD, pp 785–796 – reference: Srivastava U, Haas PJ, Markl V, Kutsch M, Tran TM (2006) ISOMER: consistent histogram construction using query feedback. In: ICDE, p 39 – reference: Kaoudi Z, Quiané-Ruiz J-A, Contreras-Rojas B, Pardo-Meza R, Troudi A, Chawla S (2020) ML-based cross-platform query optimization. In: ICDE, pp 1489–1500 – reference: Siddiqui T, Jindal A, Qiao S, Patel H, Le W (2020) Cost models for big data query processing: learning, retrofitting, and our findings. In: SIGMOD, pp 99–113 – reference: Liu H, Mingbin X, Ziting Yu, Corvinelli V, Zuzarte C (2015) Cardinality estimation using neural networks. In: CASCON, pp 53–59 – reference: Wu C, Jindal A, Amizadeh S, Patel H, Le W, Qiao S, Rao S (2018) Towards a learning optimizer for shared clouds. VLDB 12(3):210–222 – reference: Bruno N, Galindo-Legaria C, Joshi M (2010) Polynomial heuristics for query optimization. In: ICDE, pp 589–600 – reference: Ma L, Ding B, Das S, Swaminathan A (2020) Active learning for ML enhanced database systems. In: SIGMOD, pp 175–191 – reference: Wentao W, Naughton JF, Singh H (2016) Sampling-based query re-optimization. In: SGMOD, pp 1721–1736 – reference: GunopulosDKolliosGTsotrasVJDomeniconiCSelectivity estimators for multidimensional range queries over real attributesVLDB J.200514213715410.1007/s00778-003-0090-4 – reference: Moerkotte G, Neumann T (2006) Analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross products. In: VLDB, pp 930–941 – reference: Yang Y, Zhang W, Zhang Y, Lin X, Wang L (2019) Selectivity estimation on set containment search. In: DASFAA, Part I, pp 330–349 – reference: Ganguly S, Gibbons PB, Matias Y, Silberschatz A (1996) Bifocal sampling for skew-resistant join size estimation. In: SIGMOD, pp 271–281 – reference: HarmouchHNaumannFCardinality estimation: an experimental surveyProc VLDB Endow201711449951210.1145/3186728.3164145 – reference: ChaudhuriSAn overview of query optimization in relational systems1998New YorkACM Press3443 – reference: Nam Y-M, Han D, Kim M-S (2020) SPRINTER: a fast n-ary join query processing method for complex OLAP queries. In: SIGMOD, pp 2055–2070 – reference: IbarakiTKamedaTOn the optimal nesting order for computing N-relational joinsACM Trans Database Syst19849348250279454810.1145/1270.1498 – reference: HeZLeeBSSnappRRSelf-tuning UDF cost modeling using the memory-limited quadtreeEDBT20042992513531 – reference: Halim F, Karras P, Yap RHC (2009) Fast and effective histogram construction. In: CIKM, pp 1167–1176 – reference: Vance B, Maier D (1996) Rapid bushy join-order optimization with Cartesian products. In: SIGMOD, pp 35–46 – ident: 149_CR2 doi: 10.1109/ICDE.2012.64 – volume: 22 start-page: 3 issue: 1 year: 2013 ident: 149_CR92 publication-title: VLDB J doi: 10.1007/s00778-012-0293-7 – ident: 149_CR57 – volume: 12 start-page: 1705 issue: 11 year: 2019 ident: 149_CR67 publication-title: VLDB – volume: 4 start-page: 852 issue: 11 year: 2011 ident: 149_CR91 publication-title: VLDB – ident: 149_CR95 doi: 10.1109/ICDE48307.2020.00035 – ident: 149_CR89 doi: 10.1145/3035918.3064039 – ident: 149_CR9 – ident: 149_CR42 doi: 10.1145/2213556.2213561 – volume: 8 start-page: 1530 issue: 12 year: 2015 ident: 149_CR94 publication-title: VLDB – volume: 25 start-page: 43 issue: 1 year: 2000 ident: 149_CR51 publication-title: TODS doi: 10.1145/352958.352982 – ident: 149_CR93 doi: 10.1145/235968.233317 – ident: 149_CR45 doi: 10.1109/ICDE48307.2020.00132 – ident: 149_CR16 doi: 10.1007/BFb0054528 – volume: 6 start-page: 191 issue: 3 year: 1997 ident: 149_CR84 publication-title: VLDB J doi: 10.1007/s007780050040 – ident: 149_CR22 doi: 10.1109/ICDE.2009.130 – volume: 2992 start-page: 513 year: 2004 ident: 149_CR36 publication-title: EDBT – ident: 149_CR105 doi: 10.1145/2463676.2463701 – ident: 149_CR69 doi: 10.1145/1376616.1376672 – ident: 149_CR15 doi: 10.1109/ICDE.2006.61 – ident: 149_CR61 – volume: 1 start-page: 1265 issue: 2 year: 2008 ident: 149_CR7 publication-title: VLDB – ident: 149_CR72 doi: 10.1145/3183713.3183733 – ident: 149_CR23 doi: 10.1145/235968.233340 – ident: 149_CR70 – start-page: 34 volume-title: An overview of query optimization in relational systems year: 1998 ident: 149_CR8 – volume: 9 start-page: 204 issue: 3 year: 2015 ident: 149_CR55 publication-title: VLDB – volume: 30 start-page: 812 issue: 3 year: 2005 ident: 149_CR37 publication-title: TODS doi: 10.1145/1093382.1093387 – ident: 149_CR39 – volume: 28 start-page: 22 issue: 3 year: 1999 ident: 149_CR3 publication-title: SIGMOD Rec doi: 10.1145/333607.333610 – volume: 13 start-page: 307 issue: 3 year: 2020 ident: 149_CR85 publication-title: VLDB – ident: 149_CR102 doi: 10.1007/978-3-030-18576-3_20 – ident: 149_CR14 doi: 10.1145/1321440.1321508 – volume: 13 start-page: 1416 issue: 9 year: 2020 ident: 149_CR108 publication-title: VLDB – ident: 149_CR96 doi: 10.1145/3329859.3329875 – volume: 4 start-page: 254 issue: 3 year: 2019 ident: 149_CR101 publication-title: Data Sci Eng doi: 10.1007/s41019-019-00104-1 – volume: 13 start-page: 279 issue: 3 year: 2019 ident: 149_CR104 publication-title: VLDB – ident: 149_CR20 doi: 10.1109/ICDE.2012.27 – ident: 149_CR46 doi: 10.1145/2668260.2668271 – ident: 149_CR103 doi: 10.14778/3421424.3421432 – ident: 149_CR83 doi: 10.1109/ICDE.2006.84 – ident: 149_CR19 doi: 10.1109/ICDE.2013.6544901 – ident: 149_CR38 doi: 10.1145/2723372.2749438 – ident: 149_CR82 doi: 10.1145/1142473.1142497 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: 149_CR87 publication-title: Data Sci Eng doi: 10.1007/s41019-020-00117-1 – ident: 149_CR73 – ident: 149_CR76 doi: 10.1145/235968.233342 – ident: 149_CR90 doi: 10.1145/3299869.3300088 – ident: 149_CR43 doi: 10.1016/B978-012722442-8/50011-2 – ident: 149_CR62 doi: 10.1145/3318464.3389768 – ident: 149_CR33 doi: 10.1145/1645953.1646101 – ident: 149_CR99 – volume: 12 start-page: 1733 issue: 11 year: 2019 ident: 149_CR66 publication-title: VLDB – ident: 149_CR25 doi: 10.1145/376284.375727 – volume: 13 start-page: 992 issue: 7 year: 2020 ident: 149_CR40 publication-title: VLDB – ident: 149_CR53 – ident: 149_CR79 doi: 10.1145/582095.582099 – ident: 149_CR11 doi: 10.1007/978-3-540-24698-5_7 – volume: 5 start-page: 1555 issue: 11 year: 2012 ident: 149_CR56 publication-title: VLDB – ident: 149_CR107 – volume: 6 start-page: 1822 issue: 14 year: 2013 ident: 149_CR18 publication-title: VLDB – ident: 149_CR24 – volume: 2 start-page: 850 issue: 1 year: 2009 ident: 149_CR47 publication-title: VLDB – volume: 31 start-page: 1733 issue: 5 year: 2015 ident: 149_CR58 publication-title: J Inf Sci Eng – ident: 149_CR21 doi: 10.46298/dmtcs.3545 – volume: 9 start-page: 482 issue: 3 year: 1984 ident: 149_CR41 publication-title: ACM Trans Database Syst doi: 10.1145/1270.1498 – ident: 149_CR5 doi: 10.1109/ICDE.2010.5447916 – ident: 149_CR50 doi: 10.1145/3299869.3320218 – ident: 149_CR88 doi: 10.1145/2505515.2505756 – ident: 149_CR35 doi: 10.1145/3318464.3389741 – ident: 149_CR75 doi: 10.1145/3318464.3389727 – volume: 11 start-page: 499 issue: 4 year: 2017 ident: 149_CR34 publication-title: Proc VLDB Endow doi: 10.1145/3186728.3164145 – ident: 149_CR59 doi: 10.1145/2806777.2806944 – ident: 149_CR27 doi: 10.1109/ICDE.1993.344061 – ident: 149_CR32 doi: 10.1145/1645953.1646101 – ident: 149_CR98 doi: 10.1109/ICDE.2013.6544899 – volume: 38 start-page: 2566 issue: 12 year: 1997 ident: 149_CR4 publication-title: Trans Inf Process Soc Jpn – ident: 149_CR44 – volume: 10 start-page: 2085 issue: 13 year: 2017 ident: 149_CR48 publication-title: VLDB – ident: 149_CR17 doi: 10.1109/ICDE.2011.5767901 – ident: 149_CR100 doi: 10.14778/3291264.3291267 – ident: 149_CR65 doi: 10.1145/3211954.3211957 – ident: 149_CR97 – ident: 149_CR106 doi: 10.1109/ICDE48307.2020.00116 – ident: 149_CR74 – volume: 14 start-page: 137 issue: 2 year: 2005 ident: 149_CR29 publication-title: VLDB J. doi: 10.1007/s00778-003-0090-4 – ident: 149_CR64 doi: 10.1016/B978-155860869-6/50025-1 – ident: 149_CR68 – volume: 4 start-page: 1 issue: 1–3 year: 2012 ident: 149_CR10 publication-title: Found Trends Databases – ident: 149_CR31 doi: 10.1007/978-3-030-18579-4_1 – ident: 149_CR60 – ident: 149_CR49 – volume: 7 start-page: 1243 issue: 12 year: 2014 ident: 149_CR80 publication-title: VLDB – ident: 149_CR52 – ident: 149_CR77 – volume: 33 start-page: 15:1 issue: 3 year: 2008 ident: 149_CR78 publication-title: ACM Trans Database Syst doi: 10.1145/1386118.1386121 – ident: 149_CR1 doi: 10.1145/2745754.2745772 – ident: 149_CR71 doi: 10.1145/1559845.1559889 – volume: 13 start-page: 348 issue: 3 year: 2019 ident: 149_CR54 publication-title: VLDB – ident: 149_CR81 doi: 10.1145/3318464.3380584 – ident: 149_CR86 doi: 10.1145/66926.66961 – ident: 149_CR6 doi: 10.1145/3299869.3319894 – volume: 18 start-page: 19 issue: 3 year: 1995 ident: 149_CR26 publication-title: IEEE Data Eng. Bull. – ident: 149_CR30 doi: 10.1145/153850.153875 – volume: 12 start-page: 1044 issue: 9 year: 2019 ident: 149_CR13 publication-title: VLDB – volume: 31 start-page: 396 issue: 1 year: 2006 ident: 149_CR28 publication-title: ACM Trans. Database Syst. doi: 10.1145/1132863.1132873 – ident: 149_CR12 doi: 10.1145/1247480.1247567 – ident: 149_CR63 |
SSID | ssj0002118446 ssib044734210 ssib048876940 |
Score | 2.3951359 |
Snippet | Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 86 |
SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Database Management Economic aspects Enumeration Physics Queries Statistics for Engineering Surveys Systems and Data Security |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege-EFMT5Ex0AWQgJELZLWsRNeUFc6DaQNWIe0N-v8EUAayWhapPHXc-e6nQZiz7k48d35fGff_Y6xZxYsGn4gjH3nhARVCVtmTlRQFTJHB7oCChQPj9TBF_nhtDhNB25dSqtc28RoqH3r6Iz8NYYJOcHwaPn2_KegrlF0u5paaNxkW2iCy6LHtvamR5-ON6csGN6UGPCkaplYMydRCStBUVMMD4S-siP9bZf_uSCN-87-HXY7OYx8vJLwNrsRmrtsOy3Jjr9IuNEv77FvYz5bzn-FC942PHZLdjgiRw-Pv9s7nPHPyzC_4B_RRvz4_jvM3_AJacfKEedTXOqrKsYBn7TdglOTtLMBh8ZzamzEpw1VakaK--xkf3oyORCpkYJwcqQWAoLPMgvK13XmtdPKl9q6fGjRO8qtr9VIg4TSYnQxJJcGsiAhSG-VJkTA0QPWa9omPGRc117pACEDT3fJsqpzB8EpW-S11FXZZ_mal8YlkHHqdXFmNvDIkf8G-W8i_43us1ebd85XEBvXUj8lERnCrmgoOeYrLLvOvJ8dm7EqhjhfXak-e56I6hY_7yDVGuAkCO7qCuXuWtQmrd7OXOpanw3W4r98_P-f27l-tEfs1pBSYmIK2y7rLebL8Bh9moV9khT3D_5a8X4 priority: 102 providerName: ProQuest |
Title | A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration |
URI | https://link.springer.com/article/10.1007/s41019-020-00149-7 https://www.proquest.com/docview/2491437374 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xTUi8ACugFUZlISRANFKSOnbCWxdSBlIHrEPaW2Q7DiCNFDUt0njgb-fOdVqNXxIvkZJc5Dg-n7-L774DeKyVRsOviGPfmIArkQU6DU2QqSzhEQLoTJGjOD0Rxx_4m_Pk3CeFtV20e7cl6Sz1JtmNo_ZkAbk7DtcHcgf2EvTdiTE_33KOcy5HPN4uaqihUnQkcWSf0eVJOV9XnRM8wLPEZ9P8uZkrK9avdvu3DVS3Lk1uw00PKNl4rQH7cM02PbjVFWtgfu724LqL9TRtD_b9tZY99aTTz-7ApzGbrRbf7CWbN8yVWjbYHEN4yF4eTWfs_couLtlbNDBfPn-3ixcsJ9Vao3hWoJ1Yp0AOWT5vl4wqrF0MmWoqRlWRWNFQmqeTuAtnk-IsPw58FYbA8JFYBspWYaiVqOo6rKSRokqlNlGsEVpFuqrFSCquUo2uSUx4SIWWK8srLSTRCY7uwW4zb-wBMFlXQlplQ1XRRjTP6sgoa4ROoprLLO1D1H3o0niGciqUcVFuuJXd4JQ4OKUbnFL24fnmma9rfo5_Sj-i8SuJ-KKhyJqPatW25evZaTkWSYz9lZnowxMvVM-xeaN8ogJ2griyrkgednpQ-qnflujPRsQXJXkfhp1ubG___eXu_5_4A7gRU3yNi4c7hN3lYmUfIkBa6gHspJNXA9g7Kk7enQ7c7KCjyAfulwMepz-Kn1igBJQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9gAviPEhCgMsBAJEI5LUtRMkhLquU8vWAmuR9mb5K4A0ktG0oPI_8T9ylzidBmJve87Fie_O92H7fkfIE600GH6FGPvGBEzxNNBJaIJUpV0WQQCdKkwUxxM-_MTeHXePN8jvphYGr1U2NrEy1LYwuEf-CtKECGF4BHt7-j3ArlF4utq00KjV4sCtfkLKVr4Z7YF8n8bx_mDWHwa-q0BgWIcvAuVsGGrFbZaFVhjBbSK0iWINoUKkbcY7QjGVaAi1Y_TvKnRMOWY1FwiP14Fhr5AtiDJSWERbu4PJh6P1pg5kUwnkV744pyrRY6DzaYBJWpWNBOKcA_zbDfxzHlu5uf0b5LqPT2mvVqhtsuHym2TbW4CSPvcw1S9ukS89Ol3Of7gVLXJaNWc2MCKFgJLu7Y6n9OPSzVf0PZikb19_uflr2kdlrON-OgDLUhdNtmm_KBcUe7KdtKnKLcU-SnSQY2FoRXGbzC6Dw3fIZl7k7i6hIrNcOOVCZfHomqVZZJQzXHejjIk0aZGo4aU0HtMcW2ucyDUac8V_CfyXFf-laJGX63dOa0SPC6kfo4gkQmXkeBfns1qWpRxNj2SPd2OYr0h5izzzRFkBnzfKlzbAJBBd6xzlTiNq6Y1FKc9Uu0XajfjPHv__5-5dPNojcnU4Gx_Kw9Hk4D65FuNtnOr23A7ZXMyX7gGEUwv90CsxJfKSl80f46Iueg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEIgXYAVEYYCFkADRaEnq2AlvJWu1ARsfHdLeLH8FkEY6NSnS-OvxOU7H-JJ4THKR49z5_Dv57ncAj5VUzvFL5NjXOqKSFZHKYx0Vssho4gB0ITFQ3D9gux_pq6Ps6Kcqfp_t3h9JdjUNyNJUt9snptpeF75RZ0lFhKGPx_gRvwiXXKSSIHt-ycreoijlY5qebXDOWjnrCePQV7vwJ6e060DHaOSuslBZ8-dhzu1ev_rw3w5T_R41uwHXArgkk84aNuGCrQdwvW_cQMI6HsBln_epmwFshnsNeRoIqJ_dhM8TMl8tv9lTsqiJb7us3XDEQUWy83J_Tt6v7PKUvHXO5uuX73b5gpRoZh2iJ1PnM7pyyBEpF01LsNva8YjI2hDskESmNZZ8eolbcDibHpa7UejIEGk6Zm0krYljJZmpqthwzZnJudJJqhzMSpSp2JhLKnPlwpQUsZGMLZWWGsU4UguOb8NGvajtHSC8MoxbaWNp8FCaFlWipdVMZUlFeZEPIel_tNCBrRybZhyLNc-yV45wyhFeOYIP4fn6nZOOq-Of0o9QfwJJMGrMsvkkV00j9uYfxIRlqZsvL9gQngShauGG1zIULbhJIG_WOcmt3g5EcAONcLFtgtxRnA5h1NvG2eO_f9zd_xN_CFfe7czEm72D1_fgaoppNz5Nbgs22uXK3ne4qVUP_NL4Abi4Bmk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Advancing+the+DBMS+Query+Optimizer%3A+Cardinality+Estimation%2C+Cost+Model%2C+and+Plan+Enumeration&rft.jtitle=Data+science+and+engineering&rft.au=Lan%2C+Hai&rft.au=Bao%2C+Zhifeng&rft.au=Peng%2C+Yuwei&rft.date=2021-03-01&rft.pub=Springer+Singapore&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=6&rft.issue=1&rft.spage=86&rft.epage=101&rft_id=info:doi/10.1007%2Fs41019-020-00149-7&rft.externalDocID=10_1007_s41019_020_00149_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |