A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration

Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a cost model to obtain the cost of that plan, and s...

Full description

Saved in:
Bibliographic Details
Published inData Science and Engineering Vol. 6; no. 1; pp. 86 - 101
Main Authors Lan, Hai, Bao, Zhifeng, Peng, Yuwei
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.03.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2364-1185
2364-1541
DOI10.1007/s41019-020-00149-7

Cover

Loading…
Abstract Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a cost model to obtain the cost of that plan, and selects the plan with the lowest cost. In the cost model, cardinality, the number of tuples through an operator, plays a crucial role. Due to the inaccuracy in cardinality estimation, errors in cost model, and the huge plan space, the optimizer cannot find the optimal execution plan for a complex query in a reasonable time. In this paper, we first deeply study the causes behind the limitations above. Next, we review the techniques used to improve the quality of the three key components in the cost-based optimizer, cardinality estimation, cost model, and plan enumeration. We also provide our insights on the future directions for each of the above aspects.
AbstractList Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a cost model to obtain the cost of that plan, and selects the plan with the lowest cost. In the cost model, cardinality, the number of tuples through an operator, plays a crucial role. Due to the inaccuracy in cardinality estimation, errors in cost model, and the huge plan space, the optimizer cannot find the optimal execution plan for a complex query in a reasonable time. In this paper, we first deeply study the causes behind the limitations above. Next, we review the techniques used to improve the quality of the three key components in the cost-based optimizer, cardinality estimation, cost model, and plan enumeration. We also provide our insights on the future directions for each of the above aspects.
Audience Academic
Author Peng, Yuwei
Lan, Hai
Bao, Zhifeng
Author_xml – sequence: 1
  givenname: Hai
  surname: Lan
  fullname: Lan, Hai
  organization: RMIT University
– sequence: 2
  givenname: Zhifeng
  surname: Bao
  fullname: Bao, Zhifeng
  organization: RMIT University
– sequence: 3
  givenname: Yuwei
  surname: Peng
  fullname: Peng, Yuwei
  email: ywpeng@whu.edu.cn
  organization: Wuhan University
BookMark eNp9kUtv3CAURlGVSs3rD3SF1FWlOL0YDHZ3k8k0jZQobSd7hA2eEHlgCjjK9NeHjFtF6SJiwUPnwOV-B2jPeWcQ-kjglACIL5ERIE0BJRQAhDWFeIf2S8pZQSpG9v6tSV19QMcx3gNAmXeM8X10N8PLMTyYLfYOz_SDcp11K5zuDD4_u17in6MJW3yzSXZt_5jwFc9V0NapwaYtXsR8rJL17gTPfUz42msznGDlNP4xKIcXblybsCOO0PteDdEc_50P0e23xe38e3F1c3E5n10VHaM8FcpogFZx3fegRSe4rkXbkbKtaUNa3XMqFFN1W1VNCZwIBYYpw3TLBVDG6CH6NF27Cf73aGKS934Mud4oS9YQRgUVz9TpRK3UYKR1vU9BdXlos7Zd7m5v8_mMV2UuSjQ8C59fCZlJ5jGt1BijvFz-es3WE9sFH2Mwvexs2vUgP2IHSUA-xyan2GSOTe5ikyKr5X_qJuQOh-3bEp2kmGG3MuHly29YT2hcqgs
CitedBy_id crossref_primary_10_3390_computers12100210
crossref_primary_10_3390_ijgi10070468
crossref_primary_10_1145_3555811
crossref_primary_10_1109_ACCESS_2025_3547623
crossref_primary_10_1007_s11704_022_1056_2
crossref_primary_10_1145_3654932
crossref_primary_10_4108_eetsis_3822
crossref_primary_10_3390_math11061383
crossref_primary_10_3390_math12193102
crossref_primary_10_1007_s40747_025_01801_3
crossref_primary_10_1016_j_displa_2024_102854
crossref_primary_10_1007_s11280_023_01195_7
crossref_primary_10_1016_j_bdr_2021_100304
crossref_primary_10_1007_s10796_024_10555_1
crossref_primary_10_3390_bdcc8070071
crossref_primary_10_1016_j_knosys_2024_112664
crossref_primary_10_1007_s10515_023_00390_0
crossref_primary_10_1007_s11432_021_3578_6
crossref_primary_10_1109_TKDE_2023_3266893
crossref_primary_10_1016_j_tbench_2022_100031
crossref_primary_10_1109_ACCESS_2022_3190376
crossref_primary_10_1109_TKDE_2023_3237857
crossref_primary_10_1109_TKDE_2021_3062182
crossref_primary_10_14778_3594512_3594528
crossref_primary_10_14778_3554821_3554893
crossref_primary_10_1016_j_is_2024_102402
crossref_primary_10_1186_s40537_024_01025_1
crossref_primary_10_1007_s11042_024_19215_7
crossref_primary_10_1016_j_cola_2022_101173
crossref_primary_10_3390_s23177364
crossref_primary_10_1109_ACCESS_2024_3417352
crossref_primary_10_1109_TKDE_2023_3271664
crossref_primary_10_3390_electronics12061504
crossref_primary_10_1145_3639272
crossref_primary_10_1145_3677134
crossref_primary_10_1016_j_jksuci_2024_102125
crossref_primary_10_1002_cpe_6724
crossref_primary_10_14778_3611540_3611550
crossref_primary_10_1002_cpe_7817
crossref_primary_10_1109_TKDE_2024_3360116
crossref_primary_10_14778_3476249_3476270
Cites_doi 10.1109/ICDE.2012.64
10.1007/s00778-012-0293-7
10.1109/ICDE48307.2020.00035
10.1145/3035918.3064039
10.1145/2213556.2213561
10.1145/352958.352982
10.1145/235968.233317
10.1109/ICDE48307.2020.00132
10.1007/BFb0054528
10.1007/s007780050040
10.1109/ICDE.2009.130
10.1145/2463676.2463701
10.1145/1376616.1376672
10.1109/ICDE.2006.61
10.1145/3183713.3183733
10.1145/235968.233340
10.1145/1093382.1093387
10.1145/333607.333610
10.1007/978-3-030-18576-3_20
10.1145/1321440.1321508
10.1145/3329859.3329875
10.1007/s41019-019-00104-1
10.1109/ICDE.2012.27
10.1145/2668260.2668271
10.14778/3421424.3421432
10.1109/ICDE.2006.84
10.1109/ICDE.2013.6544901
10.1145/2723372.2749438
10.1145/1142473.1142497
10.1007/s41019-020-00117-1
10.1145/235968.233342
10.1145/3299869.3300088
10.1016/B978-012722442-8/50011-2
10.1145/3318464.3389768
10.1145/1645953.1646101
10.1145/376284.375727
10.1145/582095.582099
10.1007/978-3-540-24698-5_7
10.46298/dmtcs.3545
10.1145/1270.1498
10.1109/ICDE.2010.5447916
10.1145/3299869.3320218
10.1145/2505515.2505756
10.1145/3318464.3389741
10.1145/3318464.3389727
10.1145/3186728.3164145
10.1145/2806777.2806944
10.1109/ICDE.1993.344061
10.1109/ICDE.2013.6544899
10.1109/ICDE.2011.5767901
10.14778/3291264.3291267
10.1145/3211954.3211957
10.1109/ICDE48307.2020.00116
10.1007/s00778-003-0090-4
10.1016/B978-155860869-6/50025-1
10.1007/978-3-030-18579-4_1
10.1145/1386118.1386121
10.1145/2745754.2745772
10.1145/1559845.1559889
10.1145/3318464.3380584
10.1145/66926.66961
10.1145/3299869.3319894
10.1145/153850.153875
10.1145/1132863.1132873
10.1145/1247480.1247567
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7SC
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s41019-020-00149-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 2364-1541
EndPage 101
ExternalDocumentID A652436796
10_1007_s41019_020_00149_7
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: Australia Research Council
  grantid: DP200102611, DP180102050
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
IAO
ISR
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
CITATION
PHGZM
PHGZT
ADMLS
ARCSS
7SC
8FD
8FE
8FG
ABJCF
ABUWG
ARAPS
AZQEC
BGLVJ
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PUEGO
ID FETCH-LOGICAL-c436t-aed00ba6dff0d7c76d87bc12b8391bdf637a4a8b55920617a0e4ae4db6703443
IEDL.DBID C24
ISSN 2364-1185
IngestDate Sat Sep 06 07:31:51 EDT 2025
Wed Feb 12 06:39:13 EST 2025
Fri Feb 14 03:06:12 EST 2025
Tue Jul 01 04:35:57 EDT 2025
Thu Apr 24 23:11:48 EDT 2025
Fri Feb 21 02:49:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cardinality estimation
Query optimizer
Cost model
Plan enumeration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-aed00ba6dff0d7c76d87bc12b8391bdf637a4a8b55920617a0e4ae4db6703443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s41019-020-00149-7
PQID 2491437374
PQPubID 4402891
PageCount 16
ParticipantIDs proquest_journals_2491437374
gale_infotracacademiconefile_A652436796
gale_incontextgauss_ISR_A652436796
crossref_citationtrail_10_1007_s41019_020_00149_7
crossref_primary_10_1007_s41019_020_00149_7
springer_journals_10_1007_s41019_020_00149_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Berlin
PublicationTitle Data Science and Engineering
PublicationTitleAbbrev Data Sci. Eng
PublicationYear 2021
Publisher Springer Singapore
Springer
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer
– name: Springer Nature B.V
References Ono K, Lohman GM (1990) Measuring the complexity of join enumeration in query optimization. In: VLDB, pp 314–325
Chen Yu, Yi K (2017) Two-level sampling for join size estimation. In: SIGMOD, pp 759–774
Bruno N, Galindo-Legaria C, Joshi M (2010) Polynomial heuristics for query optimization. In: ICDE, pp 589–600
Hasan S, Thirumuruganathan S, Augustine J, Koudas N, Das G (2020) Deep learning models for selectivity estimation of multi-attribute queries. In: SIGMOD, pp 1035–1050
Ganguly S, Gibbons PB, Matias Y, Silberschatz A (1996) Bifocal sampling for skew-resistant join size estimation. In: SIGMOD, pp 271–281
Estan C, Naughton FJ (2006) End-biased Samples for join cardinality estimation. In: ICDE, p 20
Fender P, Moerkotte G (2013) Top down plan generation: from theory to practice. In: ICDE, pp 1105–1116
Neumann T (2009) Query simplification: graceful degradation for join-order optimization. In: SIGMOD, pp 403–414
Nam Y-M, Han D, Kim M-S (2020) SPRINTER: a fast n-ary join query processing method for complex OLAP queries. In: SIGMOD, pp 2055–2070
ShanbhagASudarshanSOptimizing join enumeration in transformation-based query optimizersVLDB201471212431254
Woltmann L, Hartmann C, Thiele M, Habich D, Lehner W (2019) Cardinality estimation with local deep learning models. In: aiDM@SIGMOD, pp 5:1–5:8
KossmannDIterative dynamic programming: a new class of query optimization algorithmsTODS2000251438210.1145/352958.352982
LiJKönigACNarasayyaVRChaudhuriSRobust estimation of resource consumption for SQL queries using statistical techniquesVLDB201251115551566
SteinbrunnMMoerkotteGKemperAHeuristic and randomized optimization for the join ordering problemVLDB J19976319120810.1007/s007780050040
Halim F, Karras P, Yap RHC (2009) Fast and effective histogram construction. In: CIKM, pp 1167–1176
TzoumasKDeshpandeAJensenCSEfficiently adapting graphical models for selectivity estimationVLDB J201322132710.1007/s00778-012-0293-7
Neumann T, Radke B (2018) Adaptive optimization of very large join queries. In: SIGMOD, pp 677–692
Getoor L, Taskar B, Koller D (2001) Selectivity estimation using probabilistic models. In: SIGMOD, pp 461–472
Akdere M, Çetintemel U, Riondato M, Upfal E, Zdonik SB (2012) Learning-based query performance modeling and prediction. In: ICDE, pp 390–401
Kipf A, Kipf T, Radke B, Leis V, Boncz PA, Alfons K (2019) Learned cardinalities, estimating correlated joins with deep learning. In: CIDR
Halim F, Karras P, Yap RHC (2010) Local search in histogram construction. In: AAAI
Moerkotte G, Neumann T (2006) Analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross products. In: VLDB, pp 930–941
Wu C, Jindal A, Amizadeh S, Patel H, Le W, Qiao S, Rao S (2018) Towards a learning optimizer for shared clouds. VLDB 12(3):210–222
Jagadish HV, Koudas N, Muthukrishnan S, Poosala V, Sevcik KC, Suel T (1998) Optimal histograms with quality guarantees. In: VLDB, pp 275–286
BoulosJViemontYOnoKA neural networks approach for query cost evaluationTrans Inf Process Soc Jpn1997381225662575
Spiegel J, Polyzotis N (2006) Graph-based synopses for relational selectivity estimation. In: SIGMOD, pp 205–216
Yu X, Li G, Chai C, Tang N (2020) Reinforcement learning with tree-LSTM for join order selection. In: ICDE, pp 1297–1308
Heimel M, Kiefer M, Markl V (2015) Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. In: SIGMOD, pp 1477–1492
HarmouchHNaumannFCardinality estimation: an experimental surveyProc VLDB Endow201711449951210.1145/3186728.3164145
Graefe G, McKenna WJ (1993) The volcano optimizer generator: extensibility and efficient search. In: Proceedings of the ninth international conference on data engineering, April 19–23, 1993, Vienna, Austria. IEEE Computer Society, pp 209–218
To H, Chiang K, Shahabi C (2013) Entropy-based histograms for selectivity estimation. In: CIKM, pp 1939–1948
Malik T, Burns RC, Chawla NV (2007) A black-box approach to query cardinality estimation. In: CIDR, pp 56–67
Liu F, Blanas S (2015) Forecasting the cost of processing multi-join queries via hashing for main-memory databases. In: Socc, pp 153–166
Heitz J, Stockinger K (2019) Join query optimization with deep reinforcement learning algorithms. CoRR. arXiv:abs/1911.11689
VengerovDMenckACZaïtMChakkappenSJoin size estimation subject to filter conditionsVLDB201581215301541
Marcus R, Papaemmanouil O (2018) Deep reinforcement learning for join order enumeration. In: aiDM@SIGMOD, pp 3:1–3:4
KaushikRSuciuDConsistent histograms in the presence of distinct value countsVLDB200921850861
Haas PJ, Naughton JF, Seshadri S, Swami AN (1993) Fixed-precision estimation of join selectivity. In: PODS, pp 190–201
Wang TN, Chan C-Y (2020) Improved correlated sampling for join size estimation. In: ICDE, pp 325–336
DuttAWangCNaziAKandulaSNarasayyaVRChaudhuriSSelectivity estimation for range predicates using lightweight modelsVLDB201912910441057
Cormode G, Muthukrishnan S (2004) An improved data stream summary: the count-min sketch and its applications. In: LATIN 2004: theoretical informatics, 6th Latin American symposium, Buenos Aires, Argentina, April 5–8, 2004, Proceedings, pp 29–38
SunJLiGAn end-to-end learning-based cost estimatorVLDB2020133307319
Lim L, Wang M, Vitter JS (2003) SASH: a self-adaptive histogram set for dynamically changing workloads. In: VLDB, pp 369–380
Siddiqui T, Jindal A, Qiao S, Patel H, Le W (2020) Cost models for big data query processing: learning, retrofitting, and our findings. In: SIGMOD, pp 99–113
MarcusRCNegiPMaoHZhangCAlizadehMKraskaTPapaemmanouilOTatbulNNeo: a learned query optimizerVLDB2019121117051718
Ganguly S, Garofalakis MN, Rastogi R (2004) EDB Processing data-stream join aggregates using skimmed sketches. In: EDBT, pp 569–586
HilprechtBSchmidtAKulessaMMolinaAKerstingKBinnigCDeepDB: learn from data, not from queries!VLDB20201379921005
Swami AN (1989) Optimization of large join queries: combining heuristic and combinatorial techniques. In: SIGMOD, pp 367–376
KieferMHeimelMBreßSMarklVEstimating join selectivities using bandwidth-optimized kernel density modelsVLDB2017101320852096
Wentao W, Chi Y, Zhu S, Tatemura J, Hacigümüs H, Naughton JF (2013) Predicting query execution time: are optimizer cost models really unusable?. In: ICDE, pp 1081–1092
MarcusRCPapaemmanouilOPlan-structured deep neural network models for query performance predictionVLDB2019121117331746
Yang Y, Zhang W, Zhang Y, Lin X, Wang L (2019) Selectivity estimation on set containment search. In: DASFAA, Part I, pp 330–349
TianSMoSWangLPengZDeep reinforcement learning-based approach to tackle topic-aware influence maximizationData Sci Eng20205111110.1007/s41019-020-00117-1
Lakshmi SM, Zhou S (1998) Selectivity estimation in extensible databases—a neural network approach. In: VLDB, pp 623–627
RusuFDobraASketches for size of join estimationACM Trans Database Syst200833315:115:4610.1145/1386118.1386121
Moerkotte G, Neumann T (2008) Dynamic programming strikes back. In: SIGMOD, pp 539–552
Liu H, Mingbin X, Ziting Yu, Corvinelli V, Zuzarte C (2015) Cardinality estimation using neural networks. In: CASCON, pp 53–59
Wentao W, Naughton JF, Singh H (2016) Sampling-based query re-optimization. In: SGMOD, pp 1721–1736
TzoumasKDeshpandeAJensenCSLightweight graphical models for selectivity estimation without independence assumptionsVLDB2011411852863
Ganapathi A, Kuno HA, Dayal U, Wiener JL, Fox A, Jordan MI, Patterson DA (2009) Predicting multiple metrics for queries: better decisions enabled by machine learning. In: ICDE, pp 592–603
YangZLiangEKamsettyAChenggangWDuanYChenPAbbeelPHellersteinJMKrishnanSStoicaIDeep unsupervised cardinality estimationVLDB2019133279292
Eavis T, Lopez A (2007) Rk-hist: an r-tree based histogram for multi-dimensional selectivity estimation. In: CIKM, pp 475–484
Zhou X, Chai C, Li G, SUN J (2020) Database meets artificial intelligence a: survey. In: TKDE, pp 1–1
Poosala V, Ioannidis YE, Haas PJ, Shekita EJ (1996) Improved histograms for selectivity estimation of range predicates. In: SIGMOD, pp 294–305
Yang Z, Kamsetty A, Luan S, Liang E, Duan Y, Chen X, Stoica I (2020) NeuroCard: one cardinality estimator for all tables. CoRR. arXiv:abs/2006.08109
Woltmann L, Hartmann C, Habich D, Lehner W (2020) Machine learning-based cardinality estimation in DBMS on pre-aggregated data. CoRR. arXiv:abs/2005.09367
Trummer I, Koch C (2017) Solving the join ordering problem via mixed integer linear programming. In: SIGMOD, pp 1025–1040
Park Y, Zhong S, Mozafari B (2020) QuickSel: quick selectivity learning with mixture models. In: SIGMOD, pp 1017–1033
Flajolet P, Fusy E, Gandouet O, Meunier F (2007) HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. In: Discrete mathematics and theoretical computer science, pp 137–156
Srivastava U, Haas PJ, Markl V, Kutsch M, Tran TM (2006) ISOMER: consistent histogram construction using query feedback. In: ICDE, p 39
Trummer I, Wang J, Maram D, Moseley S, Jo S, Antonakakis J (2019) SkinnerDB: regret-bounded query evaluation via reinforcement learning. In: SIGMOD, pp 1153–1170
Kaoudi Z, Quiané-Ruiz J-A, Contreras-Rojas B, Pardo-Meza R, Troudi A, Chawla S (2020) ML-based cross-platform query optimization. In: ICDE, pp 1489–1500
LeisVGubichevAMirchevABonczPAKemperANeumannTHow good are query optimizers, really?VLDB201593204215
Cai W, Balazinska M, Suciu D (2019) Pessimistic cardinality estimation: tighter upper bounds for intermediate join cardinalities. In: SIGMOD, pp 18–35
Fender P, Moerkotte G, Neumann T, Leis V (2012) Effective and robust pruning for top-down join enumeration algorithms. In: ICDE, pp 414–425
Vance B, Maier D (1996) Rapid bushy join-order optimization with Cartesian products. In: SIGMOD, pp 35–46
Fegaras L (1998) A new heuristic for optimizing large queries. In: DEXA, pp 726–735
Lohman G (2014) Is query optimization a “solved” problem?. http://wp.sigmod.org/?p=1075 Accessed 10 June 2020
HeZLeeBSSnappRRSelf-tuning UDF cost modeling using the memory-limited quadtreeEDBT200429925
149_CR59
149_CR57
149_CR52
Z He (149_CR36) 2004; 2992
149_CR53
149_CR50
149_CR103
149_CR105
149_CR106
J Boulos (149_CR3) 1999; 28
Z Yang (149_CR104) 2019; 13
149_CR100
149_CR102
149_CR49
149_CR44
149_CR45
149_CR46
J Sun (149_CR85) 2020; 13
149_CR42
149_CR43
149_CR107
S Chaudhuri (149_CR8) 1998
G Cormode (149_CR10) 2012; 4
P Fender (149_CR18) 2013; 6
D Kossmann (149_CR51) 2000; 25
S Tian (149_CR87) 2020; 5
149_CR5
149_CR38
149_CR6
149_CR39
149_CR33
149_CR1
149_CR2
149_CR35
149_CR30
149_CR31
149_CR32
G Graefe (149_CR26) 1995; 18
A Shanbhag (149_CR80) 2014; 7
M Steinbrunn (149_CR84) 1997; 6
S Guha (149_CR28) 2006; 31
A Dutt (149_CR13) 2019; 12
X Zhou (149_CR108) 2020; 13
149_CR27
149_CR22
149_CR23
149_CR24
149_CR25
149_CR20
149_CR21
F Rusu (149_CR78) 2008; 33
J Leeka (149_CR54) 2019; 13
RC Marcus (149_CR67) 2019; 12
X Lin (149_CR58) 2015; 31
149_CR19
149_CR9
149_CR15
M Kiefer (149_CR48) 2017; 10
149_CR16
149_CR17
H Harmouch (149_CR34) 2017; 11
149_CR11
149_CR99
149_CR12
149_CR14
149_CR95
149_CR96
R Kaushik (149_CR47) 2009; 2
149_CR97
149_CR98
V Leis (149_CR55) 2015; 9
149_CR93
D Gunopulos (149_CR29) 2005; 14
149_CR90
D Vengerov (149_CR94) 2015; 8
149_CR88
149_CR89
149_CR86
149_CR81
149_CR82
149_CR83
Y Yang (149_CR101) 2019; 4
K Tzoumas (149_CR92) 2013; 22
B Hilprecht (149_CR40) 2020; 13
K Tzoumas (149_CR91) 2011; 4
R Chaiken (149_CR7) 2008; 1
149_CR77
149_CR79
149_CR73
149_CR74
149_CR75
149_CR76
149_CR70
149_CR71
149_CR72
T Ibaraki (149_CR41) 1984; 9
RC Marcus (149_CR66) 2019; 12
149_CR68
149_CR69
149_CR62
J Boulos (149_CR4) 1997; 38
149_CR63
149_CR64
149_CR65
J Li (149_CR56) 2012; 5
149_CR60
149_CR61
Z He (149_CR37) 2005; 30
References_xml – reference: Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG (1979) Access path selection in a relational database management system. In: SIGMOD, pp 23–34
– reference: TzoumasKDeshpandeAJensenCSEfficiently adapting graphical models for selectivity estimationVLDB J201322132710.1007/s00778-012-0293-7
– reference: Wentao W, Chi Y, Zhu S, Tatemura J, Hacigümüs H, Naughton JF (2013) Predicting query execution time: are optimizer cost models really unusable?. In: ICDE, pp 1081–1092
– reference: Chen Yu, Yi K (2017) Two-level sampling for join size estimation. In: SIGMOD, pp 759–774
– reference: KossmannDIterative dynamic programming: a new class of query optimization algorithmsTODS2000251438210.1145/352958.352982
– reference: Wang TN, Chan C-Y (2020) Improved correlated sampling for join size estimation. In: ICDE, pp 325–336
– reference: YangYZhangWZhangYLinXWangLSelectivity estimation on set containment searchData Sci Eng20194325426810.1007/s41019-019-00104-1
– reference: Ganguly S, Garofalakis MN, Rastogi R (2004) EDB Processing data-stream join aggregates using skimmed sketches. In: EDBT, pp 569–586
– reference: Marcus R, Papaemmanouil O (2018) Deep reinforcement learning for join order enumeration. In: aiDM@SIGMOD, pp 3:1–3:4
– reference: Haas PJ, Naughton JF, Seshadri S, Swami AN (1993) Fixed-precision estimation of join selectivity. In: PODS, pp 190–201
– reference: LeekaJRajanKIncorporating super-operators in big-data query optimizersVLDB2019133348361
– reference: BoulosJViemontYOnoKA neural networks approach for query cost evaluationTrans Inf Process Soc Jpn1997381225662575
– reference: CormodeGGarofalakisMNHaasPJJermaineCSynopses for massive data: samples, histograms, wavelets, sketchesFound Trends Databases201241–312941257.68062
– reference: Hasan S, Thirumuruganathan S, Augustine J, Koudas N, Das G (2020) Deep learning models for selectivity estimation of multi-attribute queries. In: SIGMOD, pp 1035–1050
– reference: LinXZengXXiaoweiPSunYA cardinality estimation approach based on two level histogramsJ Inf Sci Eng201531517331756
– reference: Swami AN (1989) Optimization of large join queries: combining heuristic and combinatorial techniques. In: SIGMOD, pp 367–376
– reference: ShanbhagASudarshanSOptimizing join enumeration in transformation-based query optimizersVLDB201471212431254
– reference: Indyk P, Levi R, Rubinfeld R (2012) Approximating and testing k-histogram distributions in sub-linear time. In: PODS, pp 15–22
– reference: Yu F, Hou W-C, Luo C, Che D, Zhu M (2013) CS2: a new database synopsis for query estimation. In: SIGMOD, pp 469–480
– reference: Ganapathi A, Kuno HA, Dayal U, Wiener JL, Fox A, Jordan MI, Patterson DA (2009) Predicting multiple metrics for queries: better decisions enabled by machine learning. In: ICDE, pp 592–603
– reference: Trummer I, Koch C (2017) Solving the join ordering problem via mixed integer linear programming. In: SIGMOD, pp 1025–1040
– reference: Ortiz J, Balazinska M, Gehrke J, Keerthi SS (2019) An empirical analysis of deep learning for cardinality estimation. CoRR. arXiv:abs/1905.06425
– reference: LeisVGubichevAMirchevABonczPAKemperANeumannTHow good are query optimizers, really?VLDB201593204215
– reference: Poosala V, Ioannidis YE, Haas PJ, Shekita EJ (1996) Improved histograms for selectivity estimation of range predicates. In: SIGMOD, pp 294–305
– reference: Heitz J, Stockinger K (2019) Join query optimization with deep reinforcement learning algorithms. CoRR. arXiv:abs/1911.11689
– reference: Woltmann L, Hartmann C, Thiele M, Habich D, Lehner W (2019) Cardinality estimation with local deep learning models. In: aiDM@SIGMOD, pp 5:1–5:8
– reference: SteinbrunnMMoerkotteGKemperAHeuristic and randomized optimization for the join ordering problemVLDB J19976319120810.1007/s007780050040
– reference: Spiegel J, Polyzotis N (2006) Graph-based synopses for relational selectivity estimation. In: SIGMOD, pp 205–216
– reference: Akdere M, Çetintemel U, Riondato M, Upfal E, Zdonik SB (2012) Learning-based query performance modeling and prediction. In: ICDE, pp 390–401
– reference: Cormode G, Muthukrishnan S (2004) An improved data stream summary: the count-min sketch and its applications. In: LATIN 2004: theoretical informatics, 6th Latin American symposium, Buenos Aires, Argentina, April 5–8, 2004, Proceedings, pp 29–38
– reference: LiJKönigACNarasayyaVRChaudhuriSRobust estimation of resource consumption for SQL queries using statistical techniquesVLDB201251115551566
– reference: HilprechtBSchmidtAKulessaMMolinaAKerstingKBinnigCDeepDB: learn from data, not from queries!VLDB20201379921005
– reference: YangZLiangEKamsettyAChenggangWDuanYChenPAbbeelPHellersteinJMKrishnanSStoicaIDeep unsupervised cardinality estimationVLDB2019133279292
– reference: Estan C, Naughton FJ (2006) End-biased Samples for join cardinality estimation. In: ICDE, p 20
– reference: PostgreSQL Database (2020) howpublished. http://www.postgresql.org/
– reference: SunJLiGAn end-to-end learning-based cost estimatorVLDB2020133307319
– reference: Cai W, Balazinska M, Suciu D (2019) Pessimistic cardinality estimation: tighter upper bounds for intermediate join cardinalities. In: SIGMOD, pp 18–35
– reference: Fegaras L (1998) A new heuristic for optimizing large queries. In: DEXA, pp 726–735
– reference: Manegold S, Boncz PA, Kersten ML (2002) Generic database cost models for hierarchical memory systems. In: VLDB, pp 191–202
– reference: Fender P, Moerkotte G (2011) A new, highly efficient, and easy to implement top-down join enumeration algorithm. In: ICDE, pp 864–875
– reference: Halim F, Karras P, Yap RHC (2010) Local search in histogram construction. In: AAAI
– reference: MarcusRCNegiPMaoHZhangCAlizadehMKraskaTPapaemmanouilOTatbulNNeo: a learned query optimizerVLDB2019121117051718
– reference: Liu F, Blanas S (2015) Forecasting the cost of processing multi-join queries via hashing for main-memory databases. In: Socc, pp 153–166
– reference: Park Y, Zhong S, Mozafari B (2020) QuickSel: quick selectivity learning with mixture models. In: SIGMOD, pp 1017–1033
– reference: KaushikRSuciuDConsistent histograms in the presence of distinct value countsVLDB200921850861
– reference: Zhou X, Chai C, Li G, SUN J (2020) Database meets artificial intelligence a: survey. In: TKDE, pp 1–1
– reference: Fender P, Moerkotte G (2013) Top down plan generation: from theory to practice. In: ICDE, pp 1105–1116
– reference: Fender P, Moerkotte G, Neumann T, Leis V (2012) Effective and robust pruning for top-down join enumeration algorithms. In: ICDE, pp 414–425
– reference: DuttAWangCNaziAKandulaSNarasayyaVRChaudhuriSSelectivity estimation for range predicates using lightweight modelsVLDB201912910441057
– reference: TzoumasKDeshpandeAJensenCSLightweight graphical models for selectivity estimation without independence assumptionsVLDB2011411852863
– reference: VengerovDMenckACZaïtMChakkappenSJoin size estimation subject to filter conditionsVLDB201581215301541
– reference: Graefe G, McKenna WJ (1993) The volcano optimizer generator: extensibility and efficient search. In: Proceedings of the ninth international conference on data engineering, April 19–23, 1993, Vienna, Austria. IEEE Computer Society, pp 209–218
– reference: Heimel M, Kiefer M, Markl V (2015) Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. In: SIGMOD, pp 1477–1492
– reference: Acharya J, Diakonikolas I, Hegde C, Li JZ, Schmidt L (2015) Fast and near-optimal algorithms for approximating distributions by histograms. In: PODS, pp 249–263
– reference: Lim L, Wang M, Vitter JS (2003) SASH: a self-adaptive histogram set for dynamically changing workloads. In: VLDB, pp 369–380
– reference: Eavis T, Lopez A (2007) Rk-hist: an r-tree based histogram for multi-dimensional selectivity estimation. In: CIKM, pp 475–484
– reference: Halford M, Saint-Pierre P, Morvan F (2019) An approach based on Bayesian networks for query selectivity estimation. In: DASFAA, pp 3–19
– reference: Neumann T (2009) Query simplification: graceful degradation for join-order optimization. In: SIGMOD, pp 403–414
– reference: To H, Chiang K, Shahabi C (2013) Entropy-based histograms for selectivity estimation. In: CIKM, pp 1939–1948
– reference: MarcusRCPapaemmanouilOPlan-structured deep neural network models for query performance predictionVLDB2019121117331746
– reference: Ioannidis YE (2003) The history of histograms (abridged). In: VLDB. Morgan Kaufmann, Los Altos, pp 19–30
– reference: Flajolet P, Fusy E, Gandouet O, Meunier F (2007) HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. In: Discrete mathematics and theoretical computer science, pp 137–156
– reference: Kipf A, Vorona D, Müller J, Kipf T, Radke B, Leis V, Boncz P, Neumann T, Kemper A (2019) Estimating cardinalities with deep sketches. J CoRR. arXiv:abs/1904.08223
– reference: HeZLeeBSSnappRRSelf-tuning cost modeling of user-defined functions in an object-relational DBMSTODS200530381285310.1145/1093382.1093387
– reference: FenderPMoerkotteGCounter strike: generic top-down join enumeration for hypergraphsVLDB201361418221833
– reference: Kipf A, Kipf T, Radke B, Leis V, Boncz PA, Alfons K (2019) Learned cardinalities, estimating correlated joins with deep learning. In: CIDR
– reference: BoulosJOnoKCost estimation of user-defined methods in object-relational database systemsSIGMOD Rec1999283222810.1145/333607.333610
– reference: Malik T, Burns RC, Chawla NV (2007) A black-box approach to query cardinality estimation. In: CIDR, pp 56–67
– reference: Karampaglis Z, Gounaris A, Manolopoulos Y (2014) A bi-objective cost model for database queries in a multi-cloud environment. In: MEDES, pp 109–116
– reference: TianSMoSWangLPengZDeep reinforcement learning-based approach to tackle topic-aware influence maximizationData Sci Eng20205111110.1007/s41019-020-00117-1
– reference: Yu X, Li G, Chai C, Tang N (2020) Reinforcement learning with tree-LSTM for join order selection. In: ICDE, pp 1297–1308
– reference: Trummer I, Wang J, Maram D, Moseley S, Jo S, Antonakakis J (2019) SkinnerDB: regret-bounded query evaluation via reinforcement learning. In: SIGMOD, pp 1153–1170
– reference: GuhaSKoudasNShimKApproximation and streaming algorithms for histogram construction problemsACM Trans. Database Syst.200631139643810.1145/1132863.1132873
– reference: Yang Z, Kamsetty A, Luan S, Liang E, Duan Y, Chen X, Stoica I (2020) NeuroCard: one cardinality estimator for all tables. CoRR. arXiv:abs/2006.08109
– reference: Neumann T, Radke B (2018) Adaptive optimization of very large join queries. In: SIGMOD, pp 677–692
– reference: ZhouXSunJLiGFengJQuery performance prediction for concurrent queries using graph embeddingVLDB202013914161428
– reference: Ono K, Lohman GM (1990) Measuring the complexity of join enumeration in query optimization. In: VLDB, pp 314–325
– reference: GraefeGThe cascades framework for query optimizationIEEE Data Eng. Bull.19951831929
– reference: Moerkotte G, Neumann T (2008) Dynamic programming strikes back. In: SIGMOD, pp 539–552
– reference: Getoor L, Taskar B, Koller D (2001) Selectivity estimation using probabilistic models. In: SIGMOD, pp 461–472
– reference: RusuFDobraASketches for size of join estimationACM Trans Database Syst200833315:115:4610.1145/1386118.1386121
– reference: Woltmann L, Hartmann C, Habich D, Lehner W (2020) Machine learning-based cardinality estimation in DBMS on pre-aggregated data. CoRR. arXiv:abs/2005.09367
– reference: Jagadish HV, Koudas N, Muthukrishnan S, Poosala V, Sevcik KC, Suel T (1998) Optimal histograms with quality guarantees. In: VLDB, pp 275–286
– reference: ChaikenRJenkinsBLarsonPÅRamseyBShakibDWeaverSZhouJSCOPE: easy and efficient parallel processing of massive data setsVLDB20081212651276
– reference: Lohman G (2014) Is query optimization a “solved” problem?. http://wp.sigmod.org/?p=1075 Accessed 10 June 2020
– reference: KieferMHeimelMBreßSMarklVEstimating join selectivities using bandwidth-optimized kernel density modelsVLDB2017101320852096
– reference: Krishnan S, Yang Z, Goldberg K, Hellerstein JM, Stoica I (2018) Learning to optimize join queries with deep reinforcement learning. CoRR. arXiv:abs/1808.03196
– reference: Lakshmi SM, Zhou S (1998) Selectivity estimation in extensible databases—a neural network approach. In: VLDB, pp 623–627
– reference: DeHaan D, Tompa FW (2007) Optimal top-down join enumeration. In: SIGMOD, pp 785–796
– reference: Srivastava U, Haas PJ, Markl V, Kutsch M, Tran TM (2006) ISOMER: consistent histogram construction using query feedback. In: ICDE, p 39
– reference: Kaoudi Z, Quiané-Ruiz J-A, Contreras-Rojas B, Pardo-Meza R, Troudi A, Chawla S (2020) ML-based cross-platform query optimization. In: ICDE, pp 1489–1500
– reference: Siddiqui T, Jindal A, Qiao S, Patel H, Le W (2020) Cost models for big data query processing: learning, retrofitting, and our findings. In: SIGMOD, pp 99–113
– reference: Liu H, Mingbin X, Ziting Yu, Corvinelli V, Zuzarte C (2015) Cardinality estimation using neural networks. In: CASCON, pp 53–59
– reference: Wu C, Jindal A, Amizadeh S, Patel H, Le W, Qiao S, Rao S (2018) Towards a learning optimizer for shared clouds. VLDB 12(3):210–222
– reference: Bruno N, Galindo-Legaria C, Joshi M (2010) Polynomial heuristics for query optimization. In: ICDE, pp 589–600
– reference: Ma L, Ding B, Das S, Swaminathan A (2020) Active learning for ML enhanced database systems. In: SIGMOD, pp 175–191
– reference: Wentao W, Naughton JF, Singh H (2016) Sampling-based query re-optimization. In: SGMOD, pp 1721–1736
– reference: GunopulosDKolliosGTsotrasVJDomeniconiCSelectivity estimators for multidimensional range queries over real attributesVLDB J.200514213715410.1007/s00778-003-0090-4
– reference: Moerkotte G, Neumann T (2006) Analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross products. In: VLDB, pp 930–941
– reference: Yang Y, Zhang W, Zhang Y, Lin X, Wang L (2019) Selectivity estimation on set containment search. In: DASFAA, Part I, pp 330–349
– reference: Ganguly S, Gibbons PB, Matias Y, Silberschatz A (1996) Bifocal sampling for skew-resistant join size estimation. In: SIGMOD, pp 271–281
– reference: HarmouchHNaumannFCardinality estimation: an experimental surveyProc VLDB Endow201711449951210.1145/3186728.3164145
– reference: ChaudhuriSAn overview of query optimization in relational systems1998New YorkACM Press3443
– reference: Nam Y-M, Han D, Kim M-S (2020) SPRINTER: a fast n-ary join query processing method for complex OLAP queries. In: SIGMOD, pp 2055–2070
– reference: IbarakiTKamedaTOn the optimal nesting order for computing N-relational joinsACM Trans Database Syst19849348250279454810.1145/1270.1498
– reference: HeZLeeBSSnappRRSelf-tuning UDF cost modeling using the memory-limited quadtreeEDBT20042992513531
– reference: Halim F, Karras P, Yap RHC (2009) Fast and effective histogram construction. In: CIKM, pp 1167–1176
– reference: Vance B, Maier D (1996) Rapid bushy join-order optimization with Cartesian products. In: SIGMOD, pp 35–46
– ident: 149_CR2
  doi: 10.1109/ICDE.2012.64
– volume: 22
  start-page: 3
  issue: 1
  year: 2013
  ident: 149_CR92
  publication-title: VLDB J
  doi: 10.1007/s00778-012-0293-7
– ident: 149_CR57
– volume: 12
  start-page: 1705
  issue: 11
  year: 2019
  ident: 149_CR67
  publication-title: VLDB
– volume: 4
  start-page: 852
  issue: 11
  year: 2011
  ident: 149_CR91
  publication-title: VLDB
– ident: 149_CR95
  doi: 10.1109/ICDE48307.2020.00035
– ident: 149_CR89
  doi: 10.1145/3035918.3064039
– ident: 149_CR9
– ident: 149_CR42
  doi: 10.1145/2213556.2213561
– volume: 8
  start-page: 1530
  issue: 12
  year: 2015
  ident: 149_CR94
  publication-title: VLDB
– volume: 25
  start-page: 43
  issue: 1
  year: 2000
  ident: 149_CR51
  publication-title: TODS
  doi: 10.1145/352958.352982
– ident: 149_CR93
  doi: 10.1145/235968.233317
– ident: 149_CR45
  doi: 10.1109/ICDE48307.2020.00132
– ident: 149_CR16
  doi: 10.1007/BFb0054528
– volume: 6
  start-page: 191
  issue: 3
  year: 1997
  ident: 149_CR84
  publication-title: VLDB J
  doi: 10.1007/s007780050040
– ident: 149_CR22
  doi: 10.1109/ICDE.2009.130
– volume: 2992
  start-page: 513
  year: 2004
  ident: 149_CR36
  publication-title: EDBT
– ident: 149_CR105
  doi: 10.1145/2463676.2463701
– ident: 149_CR69
  doi: 10.1145/1376616.1376672
– ident: 149_CR15
  doi: 10.1109/ICDE.2006.61
– ident: 149_CR61
– volume: 1
  start-page: 1265
  issue: 2
  year: 2008
  ident: 149_CR7
  publication-title: VLDB
– ident: 149_CR72
  doi: 10.1145/3183713.3183733
– ident: 149_CR23
  doi: 10.1145/235968.233340
– ident: 149_CR70
– start-page: 34
  volume-title: An overview of query optimization in relational systems
  year: 1998
  ident: 149_CR8
– volume: 9
  start-page: 204
  issue: 3
  year: 2015
  ident: 149_CR55
  publication-title: VLDB
– volume: 30
  start-page: 812
  issue: 3
  year: 2005
  ident: 149_CR37
  publication-title: TODS
  doi: 10.1145/1093382.1093387
– ident: 149_CR39
– volume: 28
  start-page: 22
  issue: 3
  year: 1999
  ident: 149_CR3
  publication-title: SIGMOD Rec
  doi: 10.1145/333607.333610
– volume: 13
  start-page: 307
  issue: 3
  year: 2020
  ident: 149_CR85
  publication-title: VLDB
– ident: 149_CR102
  doi: 10.1007/978-3-030-18576-3_20
– ident: 149_CR14
  doi: 10.1145/1321440.1321508
– volume: 13
  start-page: 1416
  issue: 9
  year: 2020
  ident: 149_CR108
  publication-title: VLDB
– ident: 149_CR96
  doi: 10.1145/3329859.3329875
– volume: 4
  start-page: 254
  issue: 3
  year: 2019
  ident: 149_CR101
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-019-00104-1
– volume: 13
  start-page: 279
  issue: 3
  year: 2019
  ident: 149_CR104
  publication-title: VLDB
– ident: 149_CR20
  doi: 10.1109/ICDE.2012.27
– ident: 149_CR46
  doi: 10.1145/2668260.2668271
– ident: 149_CR103
  doi: 10.14778/3421424.3421432
– ident: 149_CR83
  doi: 10.1109/ICDE.2006.84
– ident: 149_CR19
  doi: 10.1109/ICDE.2013.6544901
– ident: 149_CR38
  doi: 10.1145/2723372.2749438
– ident: 149_CR82
  doi: 10.1145/1142473.1142497
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: 149_CR87
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-020-00117-1
– ident: 149_CR73
– ident: 149_CR76
  doi: 10.1145/235968.233342
– ident: 149_CR90
  doi: 10.1145/3299869.3300088
– ident: 149_CR43
  doi: 10.1016/B978-012722442-8/50011-2
– ident: 149_CR62
  doi: 10.1145/3318464.3389768
– ident: 149_CR33
  doi: 10.1145/1645953.1646101
– ident: 149_CR99
– volume: 12
  start-page: 1733
  issue: 11
  year: 2019
  ident: 149_CR66
  publication-title: VLDB
– ident: 149_CR25
  doi: 10.1145/376284.375727
– volume: 13
  start-page: 992
  issue: 7
  year: 2020
  ident: 149_CR40
  publication-title: VLDB
– ident: 149_CR53
– ident: 149_CR79
  doi: 10.1145/582095.582099
– ident: 149_CR11
  doi: 10.1007/978-3-540-24698-5_7
– volume: 5
  start-page: 1555
  issue: 11
  year: 2012
  ident: 149_CR56
  publication-title: VLDB
– ident: 149_CR107
– volume: 6
  start-page: 1822
  issue: 14
  year: 2013
  ident: 149_CR18
  publication-title: VLDB
– ident: 149_CR24
– volume: 2
  start-page: 850
  issue: 1
  year: 2009
  ident: 149_CR47
  publication-title: VLDB
– volume: 31
  start-page: 1733
  issue: 5
  year: 2015
  ident: 149_CR58
  publication-title: J Inf Sci Eng
– ident: 149_CR21
  doi: 10.46298/dmtcs.3545
– volume: 9
  start-page: 482
  issue: 3
  year: 1984
  ident: 149_CR41
  publication-title: ACM Trans Database Syst
  doi: 10.1145/1270.1498
– ident: 149_CR5
  doi: 10.1109/ICDE.2010.5447916
– ident: 149_CR50
  doi: 10.1145/3299869.3320218
– ident: 149_CR88
  doi: 10.1145/2505515.2505756
– ident: 149_CR35
  doi: 10.1145/3318464.3389741
– ident: 149_CR75
  doi: 10.1145/3318464.3389727
– volume: 11
  start-page: 499
  issue: 4
  year: 2017
  ident: 149_CR34
  publication-title: Proc VLDB Endow
  doi: 10.1145/3186728.3164145
– ident: 149_CR59
  doi: 10.1145/2806777.2806944
– ident: 149_CR27
  doi: 10.1109/ICDE.1993.344061
– ident: 149_CR32
  doi: 10.1145/1645953.1646101
– ident: 149_CR98
  doi: 10.1109/ICDE.2013.6544899
– volume: 38
  start-page: 2566
  issue: 12
  year: 1997
  ident: 149_CR4
  publication-title: Trans Inf Process Soc Jpn
– ident: 149_CR44
– volume: 10
  start-page: 2085
  issue: 13
  year: 2017
  ident: 149_CR48
  publication-title: VLDB
– ident: 149_CR17
  doi: 10.1109/ICDE.2011.5767901
– ident: 149_CR100
  doi: 10.14778/3291264.3291267
– ident: 149_CR65
  doi: 10.1145/3211954.3211957
– ident: 149_CR97
– ident: 149_CR106
  doi: 10.1109/ICDE48307.2020.00116
– ident: 149_CR74
– volume: 14
  start-page: 137
  issue: 2
  year: 2005
  ident: 149_CR29
  publication-title: VLDB J.
  doi: 10.1007/s00778-003-0090-4
– ident: 149_CR64
  doi: 10.1016/B978-155860869-6/50025-1
– ident: 149_CR68
– volume: 4
  start-page: 1
  issue: 1–3
  year: 2012
  ident: 149_CR10
  publication-title: Found Trends Databases
– ident: 149_CR31
  doi: 10.1007/978-3-030-18579-4_1
– ident: 149_CR60
– ident: 149_CR49
– volume: 7
  start-page: 1243
  issue: 12
  year: 2014
  ident: 149_CR80
  publication-title: VLDB
– ident: 149_CR52
– ident: 149_CR77
– volume: 33
  start-page: 15:1
  issue: 3
  year: 2008
  ident: 149_CR78
  publication-title: ACM Trans Database Syst
  doi: 10.1145/1386118.1386121
– ident: 149_CR1
  doi: 10.1145/2745754.2745772
– ident: 149_CR71
  doi: 10.1145/1559845.1559889
– volume: 13
  start-page: 348
  issue: 3
  year: 2019
  ident: 149_CR54
  publication-title: VLDB
– ident: 149_CR81
  doi: 10.1145/3318464.3380584
– ident: 149_CR86
  doi: 10.1145/66926.66961
– ident: 149_CR6
  doi: 10.1145/3299869.3319894
– volume: 18
  start-page: 19
  issue: 3
  year: 1995
  ident: 149_CR26
  publication-title: IEEE Data Eng. Bull.
– ident: 149_CR30
  doi: 10.1145/153850.153875
– volume: 12
  start-page: 1044
  issue: 9
  year: 2019
  ident: 149_CR13
  publication-title: VLDB
– volume: 31
  start-page: 396
  issue: 1
  year: 2006
  ident: 149_CR28
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/1132863.1132873
– ident: 149_CR12
  doi: 10.1145/1247480.1247567
– ident: 149_CR63
SSID ssj0002118446
ssib044734210
ssib048876940
Score 2.3951359
Snippet Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all current database systems. A...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 86
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Database Management
Economic aspects
Enumeration
Physics
Queries
Statistics for Engineering
Surveys
Systems and Data Security
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege-EFMT5Ex0AWQgJELZLWsRNeUFc6DaQNWIe0N-v8EUAayWhapPHXc-e6nQZiz7k48d35fGff_Y6xZxYsGn4gjH3nhARVCVtmTlRQFTJHB7oCChQPj9TBF_nhtDhNB25dSqtc28RoqH3r6Iz8NYYJOcHwaPn2_KegrlF0u5paaNxkW2iCy6LHtvamR5-ON6csGN6UGPCkaplYMydRCStBUVMMD4S-siP9bZf_uSCN-87-HXY7OYx8vJLwNrsRmrtsOy3Jjr9IuNEv77FvYz5bzn-FC942PHZLdjgiRw-Pv9s7nPHPyzC_4B_RRvz4_jvM3_AJacfKEedTXOqrKsYBn7TdglOTtLMBh8ZzamzEpw1VakaK--xkf3oyORCpkYJwcqQWAoLPMgvK13XmtdPKl9q6fGjRO8qtr9VIg4TSYnQxJJcGsiAhSG-VJkTA0QPWa9omPGRc117pACEDT3fJsqpzB8EpW-S11FXZZ_mal8YlkHHqdXFmNvDIkf8G-W8i_43us1ebd85XEBvXUj8lERnCrmgoOeYrLLvOvJ8dm7EqhjhfXak-e56I6hY_7yDVGuAkCO7qCuXuWtQmrd7OXOpanw3W4r98_P-f27l-tEfs1pBSYmIK2y7rLebL8Bh9moV9khT3D_5a8X4
  priority: 102
  providerName: ProQuest
Title A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration
URI https://link.springer.com/article/10.1007/s41019-020-00149-7
https://www.proquest.com/docview/2491437374
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xTUi8ACugFUZlISRANFKSOnbCWxdSBlIHrEPaW2Q7DiCNFDUt0njgb-fOdVqNXxIvkZJc5Dg-n7-L774DeKyVRsOviGPfmIArkQU6DU2QqSzhEQLoTJGjOD0Rxx_4m_Pk3CeFtV20e7cl6Sz1JtmNo_ZkAbk7DtcHcgf2EvTdiTE_33KOcy5HPN4uaqihUnQkcWSf0eVJOV9XnRM8wLPEZ9P8uZkrK9avdvu3DVS3Lk1uw00PKNl4rQH7cM02PbjVFWtgfu724LqL9TRtD_b9tZY99aTTz-7ApzGbrRbf7CWbN8yVWjbYHEN4yF4eTWfs_couLtlbNDBfPn-3ixcsJ9Vao3hWoJ1Yp0AOWT5vl4wqrF0MmWoqRlWRWNFQmqeTuAtnk-IsPw58FYbA8JFYBspWYaiVqOo6rKSRokqlNlGsEVpFuqrFSCquUo2uSUx4SIWWK8srLSTRCY7uwW4zb-wBMFlXQlplQ1XRRjTP6sgoa4ROoprLLO1D1H3o0niGciqUcVFuuJXd4JQ4OKUbnFL24fnmma9rfo5_Sj-i8SuJ-KKhyJqPatW25evZaTkWSYz9lZnowxMvVM-xeaN8ogJ2griyrkgednpQ-qnflujPRsQXJXkfhp1ubG___eXu_5_4A7gRU3yNi4c7hN3lYmUfIkBa6gHspJNXA9g7Kk7enQ7c7KCjyAfulwMepz-Kn1igBJQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9gAviPEhCgMsBAJEI5LUtRMkhLquU8vWAmuR9mb5K4A0ktG0oPI_8T9ylzidBmJve87Fie_O92H7fkfIE600GH6FGPvGBEzxNNBJaIJUpV0WQQCdKkwUxxM-_MTeHXePN8jvphYGr1U2NrEy1LYwuEf-CtKECGF4BHt7-j3ArlF4utq00KjV4sCtfkLKVr4Z7YF8n8bx_mDWHwa-q0BgWIcvAuVsGGrFbZaFVhjBbSK0iWINoUKkbcY7QjGVaAi1Y_TvKnRMOWY1FwiP14Fhr5AtiDJSWERbu4PJh6P1pg5kUwnkV744pyrRY6DzaYBJWpWNBOKcA_zbDfxzHlu5uf0b5LqPT2mvVqhtsuHym2TbW4CSPvcw1S9ukS89Ol3Of7gVLXJaNWc2MCKFgJLu7Y6n9OPSzVf0PZikb19_uflr2kdlrON-OgDLUhdNtmm_KBcUe7KdtKnKLcU-SnSQY2FoRXGbzC6Dw3fIZl7k7i6hIrNcOOVCZfHomqVZZJQzXHejjIk0aZGo4aU0HtMcW2ucyDUac8V_CfyXFf-laJGX63dOa0SPC6kfo4gkQmXkeBfns1qWpRxNj2SPd2OYr0h5izzzRFkBnzfKlzbAJBBd6xzlTiNq6Y1FKc9Uu0XajfjPHv__5-5dPNojcnU4Gx_Kw9Hk4D65FuNtnOr23A7ZXMyX7gGEUwv90CsxJfKSl80f46Iueg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEIgXYAVEYYCFkADRaEnq2AlvJWu1ARsfHdLeLH8FkEY6NSnS-OvxOU7H-JJ4THKR49z5_Dv57ncAj5VUzvFL5NjXOqKSFZHKYx0Vssho4gB0ITFQ3D9gux_pq6Ps6Kcqfp_t3h9JdjUNyNJUt9snptpeF75RZ0lFhKGPx_gRvwiXXKSSIHt-ycreoijlY5qebXDOWjnrCePQV7vwJ6e060DHaOSuslBZ8-dhzu1ev_rw3w5T_R41uwHXArgkk84aNuGCrQdwvW_cQMI6HsBln_epmwFshnsNeRoIqJ_dhM8TMl8tv9lTsqiJb7us3XDEQUWy83J_Tt6v7PKUvHXO5uuX73b5gpRoZh2iJ1PnM7pyyBEpF01LsNva8YjI2hDskESmNZZ8eolbcDibHpa7UejIEGk6Zm0krYljJZmpqthwzZnJudJJqhzMSpSp2JhLKnPlwpQUsZGMLZWWGsU4UguOb8NGvajtHSC8MoxbaWNp8FCaFlWipdVMZUlFeZEPIel_tNCBrRybZhyLNc-yV45wyhFeOYIP4fn6nZOOq-Of0o9QfwJJMGrMsvkkV00j9uYfxIRlqZsvL9gQngShauGG1zIULbhJIG_WOcmt3g5EcAONcLFtgtxRnA5h1NvG2eO_f9zd_xN_CFfe7czEm72D1_fgaoppNz5Nbgs22uXK3ne4qVUP_NL4Abi4Bmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Advancing+the+DBMS+Query+Optimizer%3A+Cardinality+Estimation%2C+Cost+Model%2C+and+Plan+Enumeration&rft.jtitle=Data+science+and+engineering&rft.au=Lan%2C+Hai&rft.au=Bao%2C+Zhifeng&rft.au=Peng%2C+Yuwei&rft.date=2021-03-01&rft.pub=Springer+Singapore&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=6&rft.issue=1&rft.spage=86&rft.epage=101&rft_id=info:doi/10.1007%2Fs41019-020-00149-7&rft.externalDocID=10_1007_s41019_020_00149_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon