A novel method based on realistic head model for EEG denoising

It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 83; no. 2; pp. 104 - 110
Main Authors Xu, Peng, Yao, Dezhong
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.08.2006
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
DOI10.1016/j.cmpb.2006.06.002

Cover

Loading…
Abstract It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which is an iterative procedure combining the subject's physiology of EEG generation into the denoising procedure. In this algorithm, the lead field overcomplete dictionary is numerically calculated according to the realistic head model firstly, and then the instantaneous EEG spatial potential is decomposed into one sparse combination of atoms in the lead field matrix by matching pursuit, and the sparse combination of atoms is to be regarded as the denoised EEG signal. The realistic head based sparse decomposition was tested by the simulated noisy potential and a real EEG recording collected in an oddball stimulus experiment, the results consistently confirmed the new method removed the uncorrelated noise in EEG effectively.
AbstractList It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which is an iterative procedure combining the subject's physiology of EEG generation into the denoising procedure. In this algorithm, the lead field overcomplete dictionary is numerically calculated according to the realistic head model firstly, and then the instantaneous EEG spatial potential is decomposed into one sparse combination of atoms in the lead field matrix by matching pursuit, and the sparse combination of atoms is to be regarded as the denoised EEG signal. The realistic head based sparse decomposition was tested by the simulated noisy potential and a real EEG recording collected in an oddball stimulus experiment, the results consistently confirmed the new method removed the uncorrelated noise in EEG effectively.
It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which is an iterative procedure combining the subject's physiology of EEG generation into the denoising procedure. In this algorithm, the lead field overcomplete dictionary is numerically calculated according to the realistic head model firstly, and then the instantaneous EEG spatial potential is decomposed into one sparse combination of atoms in the lead field matrix by matching pursuit, and the sparse combination of atoms is to be regarded as the denoised EEG signal. The realistic head based sparse decomposition was tested by the simulated noisy potential and a real EEG recording collected in an oddball stimulus experiment, the results consistently confirmed the new method removed the uncorrelated noise in EEG effectively.It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which is an iterative procedure combining the subject's physiology of EEG generation into the denoising procedure. In this algorithm, the lead field overcomplete dictionary is numerically calculated according to the realistic head model firstly, and then the instantaneous EEG spatial potential is decomposed into one sparse combination of atoms in the lead field matrix by matching pursuit, and the sparse combination of atoms is to be regarded as the denoised EEG signal. The realistic head based sparse decomposition was tested by the simulated noisy potential and a real EEG recording collected in an oddball stimulus experiment, the results consistently confirmed the new method removed the uncorrelated noise in EEG effectively.
Author Xu, Peng
Yao, Dezhong
Author_xml – sequence: 1
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
– sequence: 2
  givenname: Dezhong
  surname: Yao
  fullname: Yao, Dezhong
  email: dyao@uestc.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16870301$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1r3DAQQEVISTZp_0APRafevNGHJdulFELYJoFAL-1ZyKNxo60tbSVvIP--MpsSyCGBgbm8NzDvjByHGJCQj5ytOeP6YruGadevBWN6vQwTR2TF20ZUjdLqmKwK1FVCs-aUnOW8ZYVQSp-QU67bhknGV-TbJQ3xAUc64XwfHe1tRkdjoAnt6PPsgd6jdXSKrkBDTHSzuaYOQ_TZh9_vybvBjhk_PO1z8uv75ufVTXX34_r26vKuglrqueqGFrkVtYa6rWs5KGB86KB3g5RKYsuwbhutWN8J1UInO-Q9q7ksmgLNQJ6Tz4e7uxT_7jHPZvIZcBxtwLjPpvwjO6WbN0HeMCWU5AX89ATu-wmd2SU_2fRo_qcpgDgAkGLOCYdnhJmlv9mapb9Z-ptlmChS-0ICP9vZxzAn68fX1a8HFUvHB4_JZPAYAJ1PCLNx0b-uf3mhw-iDBzv-wce35H_F5rE4
CitedBy_id crossref_primary_10_1088_1741_2560_12_3_031001
crossref_primary_10_1038_s41598_017_04837_9
crossref_primary_10_1186_1475_925X_12_94
Cites_doi 10.1109/18.382009
10.1109/78.258082
10.1016/S0165-1684(01)00120-7
10.1109/10.277274
10.1109/18.119727
10.1016/S0167-2789(00)00116-0
10.1109/10.918589
10.1016/S0042-6989(97)00169-7
10.1093/biomet/81.3.425
10.1016/j.neucom.2004.02.003
10.1016/S0167-8760(97)00771-X
10.1109/10.704867
10.1016/S0925-2312(02)00515-5
10.1137/S1064827596304010
10.1016/j.clinph.2004.06.001
10.1016/S0925-2312(02)00763-4
ContentType Journal Article
Copyright 2006 Elsevier Ireland Ltd
Copyright_xml – notice: 2006 Elsevier Ireland Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1016/j.cmpb.2006.06.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 110
ExternalDocumentID 16870301
10_1016_j_cmpb_2006_06_002
S0169260706001258
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c436t-9f8e1a246c48443f5c01f9cbdf3353e80e487650b9258c939e1b0413f8e5c60c3
IEDL.DBID .~1
ISSN 0169-2607
IngestDate Thu Sep 04 18:44:42 EDT 2025
Fri Sep 05 14:14:38 EDT 2025
Wed Feb 19 01:51:59 EST 2025
Tue Jul 01 02:40:27 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Fri Feb 23 02:37:29 EST 2024
Tue Aug 26 19:12:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords EEG denoising
Overcomplete dictionary
EEG inverse problem
Sparse decomposition
Matching pursuit
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-9f8e1a246c48443f5c01f9cbdf3353e80e487650b9258c939e1b0413f8e5c60c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 16870301
PQID 17052531
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_68739567
proquest_miscellaneous_17052531
pubmed_primary_16870301
crossref_primary_10_1016_j_cmpb_2006_06_002
crossref_citationtrail_10_1016_j_cmpb_2006_06_002
elsevier_sciencedirect_doi_10_1016_j_cmpb_2006_06_002
elsevier_clinicalkey_doi_10_1016_j_cmpb_2006_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2006
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Fuchs, Drenckhahn (bib15) 1998; 45
Chen, Donoho, Saunders (bib13) 1999; 20
Olshausen, Field (bib14) 1997; 37
Bertrand, Bohorquez, Pernier (bib6) 1994; 41
Mallat, Zhang (bib12) 1993; 41
Donoho, Johnstone (bib17) 1994; 81
Brandt (bib16) 1997; 26
.
Donoho (bib3) 1995; 41
Quian Quiroga (bib5) 2000; 145
Michel, Murray (bib1) 2004; 115
Mallat, Hwang (bib4) 1992; 38
Folkers, Mosch, Malina (bib7) 2003; 52
Gharieb, Cichocki (bib8) 2001; 48
Bofill, Zibulevsky (bib9) 2001; 81
X.M. Huo, Sparse image representation via combined transforms. PHD Paper of Stanford Univ., 1999.
Lotric (bib2) 2004; 62
Zibulevsky, Zeevi (bib10) 2002; 49
Gharieb (10.1016/j.cmpb.2006.06.002_bib8) 2001; 48
Quian Quiroga (10.1016/j.cmpb.2006.06.002_bib5) 2000; 145
10.1016/j.cmpb.2006.06.002_bib11
Folkers (10.1016/j.cmpb.2006.06.002_bib7) 2003; 52
Fuchs (10.1016/j.cmpb.2006.06.002_bib15) 1998; 45
Donoho (10.1016/j.cmpb.2006.06.002_bib17) 1994; 81
Lotric (10.1016/j.cmpb.2006.06.002_bib2) 2004; 62
Chen (10.1016/j.cmpb.2006.06.002_bib13) 1999; 20
Donoho (10.1016/j.cmpb.2006.06.002_bib3) 1995; 41
Olshausen (10.1016/j.cmpb.2006.06.002_bib14) 1997; 37
Mallat (10.1016/j.cmpb.2006.06.002_bib4) 1992; 38
Bofill (10.1016/j.cmpb.2006.06.002_bib9) 2001; 81
Mallat (10.1016/j.cmpb.2006.06.002_bib12) 1993; 41
Brandt (10.1016/j.cmpb.2006.06.002_bib16) 1997; 26
Bertrand (10.1016/j.cmpb.2006.06.002_bib6) 1994; 41
Michel (10.1016/j.cmpb.2006.06.002_bib1) 2004; 115
Zibulevsky (10.1016/j.cmpb.2006.06.002_bib10) 2002; 49
References_xml – volume: 41
  start-page: 77
  year: 1994
  end-page: 88
  ident: bib6
  article-title: Time–frequency digital filtering based on an invertible wavelet transform: an application to evoked potentials
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 26
  start-page: 285
  year: 1997
  end-page: 298
  ident: bib16
  article-title: Visual and auditory evoked phase resetting of the alpha EEG
  publication-title: Int. J. Psychophysiol.
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  ident: bib17
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– volume: 48
  start-page: 501
  year: 2001
  end-page: 512
  ident: bib8
  article-title: Noise reduction in brain evoked potentials based on third-order correlations
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 62
  start-page: 179
  year: 2004
  end-page: 196
  ident: bib2
  article-title: Wavelet based denoising integrated into multilayered perceptron
  publication-title: Neurocomputing
– volume: 52
  start-page: 247
  year: 2003
  end-page: 254
  ident: bib7
  article-title: Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation
  publication-title: Neurocomputing
– reference: X.M. Huo, Sparse image representation via combined transforms. PHD Paper of Stanford Univ., 1999.
– volume: 37
  start-page: 3311
  year: 1997
  end-page: 3325
  ident: bib14
  article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1
  publication-title: Vision Res.
– volume: 20
  start-page: 33
  year: 1999
  end-page: 61
  ident: bib13
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci Comp.
– volume: 45
  start-page: 980
  year: 1998
  end-page: 997
  ident: bib15
  article-title: An improved boundary element method for realistic volume-conductor modeling
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 115
  start-page: 2195
  year: 2004
  end-page: 2222
  ident: bib1
  article-title: EEG source imaging
  publication-title: Clin. Neurophysiol.
– volume: 145
  start-page: 278
  year: 2000
  end-page: 292
  ident: bib5
  article-title: Obtaining single stimulus evoked potentials with wavelet denoising
  publication-title: Phys. D
– volume: 41
  start-page: 613
  year: 1995
  end-page: 627
  ident: bib3
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inform. Theory
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: bib12
  article-title: Matching pursuit in a time-frequency dictionary
  publication-title: IEEE Trans. Signal Process.
– volume: 38
  start-page: 617
  year: 1992
  end-page: 643
  ident: bib4
  article-title: Singularity detection and processing with wavelets
  publication-title: IEEE Trans Inform. Theory
– volume: 49
  start-page: 163
  year: 2002
  end-page: 173
  ident: bib10
  article-title: Extraction of a source from multichannel data using sparse decomposition
  publication-title: Neurocomputing
– reference: .
– volume: 81
  start-page: 2353
  year: 2001
  end-page: 2362
  ident: bib9
  article-title: Underdetermined blind source separation using sparse representations
  publication-title: Signal Process.
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  ident: 10.1016/j.cmpb.2006.06.002_bib3
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.382009
– volume: 41
  start-page: 3397
  year: 1993
  ident: 10.1016/j.cmpb.2006.06.002_bib12
  article-title: Matching pursuit in a time-frequency dictionary
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– volume: 81
  start-page: 2353
  year: 2001
  ident: 10.1016/j.cmpb.2006.06.002_bib9
  article-title: Underdetermined blind source separation using sparse representations
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(01)00120-7
– volume: 41
  start-page: 77
  year: 1994
  ident: 10.1016/j.cmpb.2006.06.002_bib6
  article-title: Time–frequency digital filtering based on an invertible wavelet transform: an application to evoked potentials
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.277274
– volume: 38
  start-page: 617
  issue: 2
  year: 1992
  ident: 10.1016/j.cmpb.2006.06.002_bib4
  article-title: Singularity detection and processing with wavelets
  publication-title: IEEE Trans Inform. Theory
  doi: 10.1109/18.119727
– volume: 145
  start-page: 278
  year: 2000
  ident: 10.1016/j.cmpb.2006.06.002_bib5
  article-title: Obtaining single stimulus evoked potentials with wavelet denoising
  publication-title: Phys. D
  doi: 10.1016/S0167-2789(00)00116-0
– volume: 48
  start-page: 501
  year: 2001
  ident: 10.1016/j.cmpb.2006.06.002_bib8
  article-title: Noise reduction in brain evoked potentials based on third-order correlations
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.918589
– volume: 37
  start-page: 3311
  year: 1997
  ident: 10.1016/j.cmpb.2006.06.002_bib14
  article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1
  publication-title: Vision Res.
  doi: 10.1016/S0042-6989(97)00169-7
– volume: 81
  start-page: 425
  issue: 3
  year: 1994
  ident: 10.1016/j.cmpb.2006.06.002_bib17
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 62
  start-page: 179
  year: 2004
  ident: 10.1016/j.cmpb.2006.06.002_bib2
  article-title: Wavelet based denoising integrated into multilayered perceptron
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.02.003
– volume: 26
  start-page: 285
  year: 1997
  ident: 10.1016/j.cmpb.2006.06.002_bib16
  article-title: Visual and auditory evoked phase resetting of the alpha EEG
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(97)00771-X
– volume: 45
  start-page: 980
  issue: 8
  year: 1998
  ident: 10.1016/j.cmpb.2006.06.002_bib15
  article-title: An improved boundary element method for realistic volume-conductor modeling
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.704867
– volume: 49
  start-page: 163
  year: 2002
  ident: 10.1016/j.cmpb.2006.06.002_bib10
  article-title: Extraction of a source from multichannel data using sparse decomposition
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00515-5
– ident: 10.1016/j.cmpb.2006.06.002_bib11
– volume: 20
  start-page: 33
  year: 1999
  ident: 10.1016/j.cmpb.2006.06.002_bib13
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci Comp.
  doi: 10.1137/S1064827596304010
– volume: 115
  start-page: 2195
  year: 2004
  ident: 10.1016/j.cmpb.2006.06.002_bib1
  article-title: EEG source imaging
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.06.001
– volume: 52
  start-page: 247
  issue: 54
  year: 2003
  ident: 10.1016/j.cmpb.2006.06.002_bib7
  article-title: Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00763-4
SSID ssj0002556
Score 1.7711177
Snippet It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Algorithms
Brain - physiology
Computer Simulation
EEG denoising
EEG inverse problem
Electroencephalography - methods
Head - physiology
Humans
Matching pursuit
Models, Biological
Overcomplete dictionary
Sparse decomposition
Title A novel method based on realistic head model for EEG denoising
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260706001258
https://dx.doi.org/10.1016/j.cmpb.2006.06.002
https://www.ncbi.nlm.nih.gov/pubmed/16870301
https://www.proquest.com/docview/17052531
https://www.proquest.com/docview/68739567
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KBfEifls_6h68SWyS3WySi1BKa1XaixZ6C8nuBio1Kdp69Lc7k2xaBFvBa7IDm8nm7cvOzBtCrpWnPQk81bKDVFlcK2XFnDErlrEbc19JlWJEdzAU_RF_HHvjGulUtTCYVmmwv8T0Aq3NlZbxZms2mbSeUUcE2DjKvwDKeljwy7mP-vm3X6s0D5TYKvW9QwtHm8KZMsdLvs0SE5AQy6OVXzandeSz2IR6e2TXsEfaLie4T2o6OyDbAxMfPyR3bZrln3pKy8bQFPcoRfOMAjWcFpLMFMBX0aL_DQW-SrvdewrQk0_wzOCIjHrdl07fMh0SLMmZmFthGmgndrmQPOCcpZ60nTSUiUoZ85gObA3_I8DBkhD8I0MWaiexYdsCM08KW7JjUs_yTJ8S6riOTENfAz_kPGExNiHnQttSijBNmGgQp3JNJI18OHaxmEZVnthrhO7EvpYiKpLl3Aa5WdrMSvGMjaNZ5fGoKgsFIIsA2zdaeUurHwvnT7ur6qVG8EVhmCTOdL74iFBgyAVoWj9CBBjeFH6DnJSrYfV0cAt_Ms_-OatzslOe8WCG4QWpz98X-hJYzzxpFsu6SbbaD0_94Tfcyf4R
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xIO1yQbDsQnn6wA1lm8SPJhckhAqFpVwAiZuV2I5UVJIKCkd-OzOJU4TEQ-KaeCRnMvn8xTP-BmDPSicN8tQgTAobCGdtkAnOg8xkcSZ61tiCMrrDCzW4Fmc38mYOjtqzMFRW6bG_wfQarf2VrvdmdzIadS9JRwTZOMm_IMrK5AcsCMl7FNr_nl_rPEhjqxH4TgMa7k_ONEVe5m6S-4yEmu2tvLM6fcQ-61XoeBmWPH1kh80MV2DOlb_h59AnyFfh4JCV1ZMbs6YzNKNFyrKqZMgNx7UmM0P0taxugMOQsLJ-_4Qh9lQj2jT4A9fH_aujQeBbJARGcDUN0iJxURYLZUQiBC-kCaMiNbktOJfcJaHDHxIkYXmKDjIpT12Uh7huoZk0KjT8L8yXVenWgUVxZIq055AgCpHzjLqQC-VCY1Ra5Fx1IGpdo43XD6c2FmPdFordanInNbZUuq6WizuwP7OZNOoZn47mrcd1ey4UkUwjuH9qJWdWbyLnS7vd9qVq_KQoT5KVrnp80KQwFCM2fTxCJZTfVL0OrDXR8Pp0eIv-Mje-Oatd-DW4Gp7r89OL_5uw2Gz4ULnhFsxP7x_dNlKgab5Th_gLuJf_pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+based+on+realistic+head+model+for+EEG+denoising&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Xu%2C+Peng&rft.au=Yao%2C+Dezhong&rft.date=2006-08-01&rft.issn=0169-2607&rft.volume=83&rft.issue=2&rft.spage=104&rft.epage=110&rft_id=info:doi/10.1016%2Fj.cmpb.2006.06.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2006_06_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon