A novel method based on realistic head model for EEG denoising
It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 83; no. 2; pp. 104 - 110 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.08.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 |
DOI | 10.1016/j.cmpb.2006.06.002 |
Cover
Loading…
Abstract | It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which is an iterative procedure combining the subject's physiology of EEG generation into the denoising procedure. In this algorithm, the lead field overcomplete dictionary is numerically calculated according to the realistic head model firstly, and then the instantaneous EEG spatial potential is decomposed into one sparse combination of atoms in the lead field matrix by matching pursuit, and the sparse combination of atoms is to be regarded as the denoised EEG signal. The realistic head based sparse decomposition was tested by the simulated noisy potential and a real EEG recording collected in an oddball stimulus experiment, the results consistently confirmed the new method removed the uncorrelated noise in EEG effectively. |
---|---|
AbstractList | It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which is an iterative procedure combining the subject's physiology of EEG generation into the denoising procedure. In this algorithm, the lead field overcomplete dictionary is numerically calculated according to the realistic head model firstly, and then the instantaneous EEG spatial potential is decomposed into one sparse combination of atoms in the lead field matrix by matching pursuit, and the sparse combination of atoms is to be regarded as the denoised EEG signal. The realistic head based sparse decomposition was tested by the simulated noisy potential and a real EEG recording collected in an oddball stimulus experiment, the results consistently confirmed the new method removed the uncorrelated noise in EEG effectively. It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which is an iterative procedure combining the subject's physiology of EEG generation into the denoising procedure. In this algorithm, the lead field overcomplete dictionary is numerically calculated according to the realistic head model firstly, and then the instantaneous EEG spatial potential is decomposed into one sparse combination of atoms in the lead field matrix by matching pursuit, and the sparse combination of atoms is to be regarded as the denoised EEG signal. The realistic head based sparse decomposition was tested by the simulated noisy potential and a real EEG recording collected in an oddball stimulus experiment, the results consistently confirmed the new method removed the uncorrelated noise in EEG effectively.It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult to denoise EEG effectively. Proposed in this paper is a novel realistic head model based sparse decomposition algorithm to denoise EEG, which is an iterative procedure combining the subject's physiology of EEG generation into the denoising procedure. In this algorithm, the lead field overcomplete dictionary is numerically calculated according to the realistic head model firstly, and then the instantaneous EEG spatial potential is decomposed into one sparse combination of atoms in the lead field matrix by matching pursuit, and the sparse combination of atoms is to be regarded as the denoised EEG signal. The realistic head based sparse decomposition was tested by the simulated noisy potential and a real EEG recording collected in an oddball stimulus experiment, the results consistently confirmed the new method removed the uncorrelated noise in EEG effectively. |
Author | Xu, Peng Yao, Dezhong |
Author_xml | – sequence: 1 givenname: Peng surname: Xu fullname: Xu, Peng – sequence: 2 givenname: Dezhong surname: Yao fullname: Yao, Dezhong email: dyao@uestc.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16870301$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1r3DAQQEVISTZp_0APRafevNGHJdulFELYJoFAL-1ZyKNxo60tbSVvIP--MpsSyCGBgbm8NzDvjByHGJCQj5ytOeP6YruGadevBWN6vQwTR2TF20ZUjdLqmKwK1FVCs-aUnOW8ZYVQSp-QU67bhknGV-TbJQ3xAUc64XwfHe1tRkdjoAnt6PPsgd6jdXSKrkBDTHSzuaYOQ_TZh9_vybvBjhk_PO1z8uv75ufVTXX34_r26vKuglrqueqGFrkVtYa6rWs5KGB86KB3g5RKYsuwbhutWN8J1UInO-Q9q7ksmgLNQJ6Tz4e7uxT_7jHPZvIZcBxtwLjPpvwjO6WbN0HeMCWU5AX89ATu-wmd2SU_2fRo_qcpgDgAkGLOCYdnhJmlv9mapb9Z-ptlmChS-0ICP9vZxzAn68fX1a8HFUvHB4_JZPAYAJ1PCLNx0b-uf3mhw-iDBzv-wce35H_F5rE4 |
CitedBy_id | crossref_primary_10_1088_1741_2560_12_3_031001 crossref_primary_10_1038_s41598_017_04837_9 crossref_primary_10_1186_1475_925X_12_94 |
Cites_doi | 10.1109/18.382009 10.1109/78.258082 10.1016/S0165-1684(01)00120-7 10.1109/10.277274 10.1109/18.119727 10.1016/S0167-2789(00)00116-0 10.1109/10.918589 10.1016/S0042-6989(97)00169-7 10.1093/biomet/81.3.425 10.1016/j.neucom.2004.02.003 10.1016/S0167-8760(97)00771-X 10.1109/10.704867 10.1016/S0925-2312(02)00515-5 10.1137/S1064827596304010 10.1016/j.clinph.2004.06.001 10.1016/S0925-2312(02)00763-4 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Ireland Ltd |
Copyright_xml | – notice: 2006 Elsevier Ireland Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 |
DOI | 10.1016/j.cmpb.2006.06.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 110 |
ExternalDocumentID | 16870301 10_1016_j_cmpb_2006_06_002 S0169260706001258 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c436t-9f8e1a246c48443f5c01f9cbdf3353e80e487650b9258c939e1b0413f8e5c60c3 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 |
IngestDate | Thu Sep 04 18:44:42 EDT 2025 Fri Sep 05 14:14:38 EDT 2025 Wed Feb 19 01:51:59 EST 2025 Tue Jul 01 02:40:27 EDT 2025 Thu Apr 24 23:00:17 EDT 2025 Fri Feb 23 02:37:29 EST 2024 Tue Aug 26 19:12:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | EEG denoising Overcomplete dictionary EEG inverse problem Sparse decomposition Matching pursuit |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-9f8e1a246c48443f5c01f9cbdf3353e80e487650b9258c939e1b0413f8e5c60c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 16870301 |
PQID | 17052531 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_68739567 proquest_miscellaneous_17052531 pubmed_primary_16870301 crossref_primary_10_1016_j_cmpb_2006_06_002 crossref_citationtrail_10_1016_j_cmpb_2006_06_002 elsevier_sciencedirect_doi_10_1016_j_cmpb_2006_06_002 elsevier_clinicalkey_doi_10_1016_j_cmpb_2006_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-08-01 |
PublicationDateYYYYMMDD | 2006-08-01 |
PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2006 |
Publisher | Elsevier Ireland Ltd |
Publisher_xml | – name: Elsevier Ireland Ltd |
References | Fuchs, Drenckhahn (bib15) 1998; 45 Chen, Donoho, Saunders (bib13) 1999; 20 Olshausen, Field (bib14) 1997; 37 Bertrand, Bohorquez, Pernier (bib6) 1994; 41 Mallat, Zhang (bib12) 1993; 41 Donoho, Johnstone (bib17) 1994; 81 Brandt (bib16) 1997; 26 . Donoho (bib3) 1995; 41 Quian Quiroga (bib5) 2000; 145 Michel, Murray (bib1) 2004; 115 Mallat, Hwang (bib4) 1992; 38 Folkers, Mosch, Malina (bib7) 2003; 52 Gharieb, Cichocki (bib8) 2001; 48 Bofill, Zibulevsky (bib9) 2001; 81 X.M. Huo, Sparse image representation via combined transforms. PHD Paper of Stanford Univ., 1999. Lotric (bib2) 2004; 62 Zibulevsky, Zeevi (bib10) 2002; 49 Gharieb (10.1016/j.cmpb.2006.06.002_bib8) 2001; 48 Quian Quiroga (10.1016/j.cmpb.2006.06.002_bib5) 2000; 145 10.1016/j.cmpb.2006.06.002_bib11 Folkers (10.1016/j.cmpb.2006.06.002_bib7) 2003; 52 Fuchs (10.1016/j.cmpb.2006.06.002_bib15) 1998; 45 Donoho (10.1016/j.cmpb.2006.06.002_bib17) 1994; 81 Lotric (10.1016/j.cmpb.2006.06.002_bib2) 2004; 62 Chen (10.1016/j.cmpb.2006.06.002_bib13) 1999; 20 Donoho (10.1016/j.cmpb.2006.06.002_bib3) 1995; 41 Olshausen (10.1016/j.cmpb.2006.06.002_bib14) 1997; 37 Mallat (10.1016/j.cmpb.2006.06.002_bib4) 1992; 38 Bofill (10.1016/j.cmpb.2006.06.002_bib9) 2001; 81 Mallat (10.1016/j.cmpb.2006.06.002_bib12) 1993; 41 Brandt (10.1016/j.cmpb.2006.06.002_bib16) 1997; 26 Bertrand (10.1016/j.cmpb.2006.06.002_bib6) 1994; 41 Michel (10.1016/j.cmpb.2006.06.002_bib1) 2004; 115 Zibulevsky (10.1016/j.cmpb.2006.06.002_bib10) 2002; 49 |
References_xml | – volume: 41 start-page: 77 year: 1994 end-page: 88 ident: bib6 article-title: Time–frequency digital filtering based on an invertible wavelet transform: an application to evoked potentials publication-title: IEEE Trans. Biomed. Eng. – volume: 26 start-page: 285 year: 1997 end-page: 298 ident: bib16 article-title: Visual and auditory evoked phase resetting of the alpha EEG publication-title: Int. J. Psychophysiol. – volume: 81 start-page: 425 year: 1994 end-page: 455 ident: bib17 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika – volume: 48 start-page: 501 year: 2001 end-page: 512 ident: bib8 article-title: Noise reduction in brain evoked potentials based on third-order correlations publication-title: IEEE Transactions on Biomedical Engineering – volume: 62 start-page: 179 year: 2004 end-page: 196 ident: bib2 article-title: Wavelet based denoising integrated into multilayered perceptron publication-title: Neurocomputing – volume: 52 start-page: 247 year: 2003 end-page: 254 ident: bib7 article-title: Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation publication-title: Neurocomputing – reference: X.M. Huo, Sparse image representation via combined transforms. PHD Paper of Stanford Univ., 1999. – volume: 37 start-page: 3311 year: 1997 end-page: 3325 ident: bib14 article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1 publication-title: Vision Res. – volume: 20 start-page: 33 year: 1999 end-page: 61 ident: bib13 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J. Sci Comp. – volume: 45 start-page: 980 year: 1998 end-page: 997 ident: bib15 article-title: An improved boundary element method for realistic volume-conductor modeling publication-title: IEEE Trans. Biomed. Eng. – volume: 115 start-page: 2195 year: 2004 end-page: 2222 ident: bib1 article-title: EEG source imaging publication-title: Clin. Neurophysiol. – volume: 145 start-page: 278 year: 2000 end-page: 292 ident: bib5 article-title: Obtaining single stimulus evoked potentials with wavelet denoising publication-title: Phys. D – volume: 41 start-page: 613 year: 1995 end-page: 627 ident: bib3 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inform. Theory – volume: 41 start-page: 3397 year: 1993 end-page: 3415 ident: bib12 article-title: Matching pursuit in a time-frequency dictionary publication-title: IEEE Trans. Signal Process. – volume: 38 start-page: 617 year: 1992 end-page: 643 ident: bib4 article-title: Singularity detection and processing with wavelets publication-title: IEEE Trans Inform. Theory – volume: 49 start-page: 163 year: 2002 end-page: 173 ident: bib10 article-title: Extraction of a source from multichannel data using sparse decomposition publication-title: Neurocomputing – reference: . – volume: 81 start-page: 2353 year: 2001 end-page: 2362 ident: bib9 article-title: Underdetermined blind source separation using sparse representations publication-title: Signal Process. – volume: 41 start-page: 613 issue: 3 year: 1995 ident: 10.1016/j.cmpb.2006.06.002_bib3 article-title: De-noising by soft-thresholding publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.382009 – volume: 41 start-page: 3397 year: 1993 ident: 10.1016/j.cmpb.2006.06.002_bib12 article-title: Matching pursuit in a time-frequency dictionary publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – volume: 81 start-page: 2353 year: 2001 ident: 10.1016/j.cmpb.2006.06.002_bib9 article-title: Underdetermined blind source separation using sparse representations publication-title: Signal Process. doi: 10.1016/S0165-1684(01)00120-7 – volume: 41 start-page: 77 year: 1994 ident: 10.1016/j.cmpb.2006.06.002_bib6 article-title: Time–frequency digital filtering based on an invertible wavelet transform: an application to evoked potentials publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.277274 – volume: 38 start-page: 617 issue: 2 year: 1992 ident: 10.1016/j.cmpb.2006.06.002_bib4 article-title: Singularity detection and processing with wavelets publication-title: IEEE Trans Inform. Theory doi: 10.1109/18.119727 – volume: 145 start-page: 278 year: 2000 ident: 10.1016/j.cmpb.2006.06.002_bib5 article-title: Obtaining single stimulus evoked potentials with wavelet denoising publication-title: Phys. D doi: 10.1016/S0167-2789(00)00116-0 – volume: 48 start-page: 501 year: 2001 ident: 10.1016/j.cmpb.2006.06.002_bib8 article-title: Noise reduction in brain evoked potentials based on third-order correlations publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.918589 – volume: 37 start-page: 3311 year: 1997 ident: 10.1016/j.cmpb.2006.06.002_bib14 article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1 publication-title: Vision Res. doi: 10.1016/S0042-6989(97)00169-7 – volume: 81 start-page: 425 issue: 3 year: 1994 ident: 10.1016/j.cmpb.2006.06.002_bib17 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 62 start-page: 179 year: 2004 ident: 10.1016/j.cmpb.2006.06.002_bib2 article-title: Wavelet based denoising integrated into multilayered perceptron publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.02.003 – volume: 26 start-page: 285 year: 1997 ident: 10.1016/j.cmpb.2006.06.002_bib16 article-title: Visual and auditory evoked phase resetting of the alpha EEG publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(97)00771-X – volume: 45 start-page: 980 issue: 8 year: 1998 ident: 10.1016/j.cmpb.2006.06.002_bib15 article-title: An improved boundary element method for realistic volume-conductor modeling publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.704867 – volume: 49 start-page: 163 year: 2002 ident: 10.1016/j.cmpb.2006.06.002_bib10 article-title: Extraction of a source from multichannel data using sparse decomposition publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00515-5 – ident: 10.1016/j.cmpb.2006.06.002_bib11 – volume: 20 start-page: 33 year: 1999 ident: 10.1016/j.cmpb.2006.06.002_bib13 article-title: Atomic decomposition by basis pursuit publication-title: SIAM J. Sci Comp. doi: 10.1137/S1064827596304010 – volume: 115 start-page: 2195 year: 2004 ident: 10.1016/j.cmpb.2006.06.002_bib1 article-title: EEG source imaging publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.06.001 – volume: 52 start-page: 247 issue: 54 year: 2003 ident: 10.1016/j.cmpb.2006.06.002_bib7 article-title: Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00763-4 |
SSID | ssj0002556 |
Score | 1.7711177 |
Snippet | It is necessary to remove the noise in EEG before further EEG analysis and processing. For EEG is deeply masked in the noise background, it is very difficult... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104 |
SubjectTerms | Algorithms Brain - physiology Computer Simulation EEG denoising EEG inverse problem Electroencephalography - methods Head - physiology Humans Matching pursuit Models, Biological Overcomplete dictionary Sparse decomposition |
Title | A novel method based on realistic head model for EEG denoising |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260706001258 https://dx.doi.org/10.1016/j.cmpb.2006.06.002 https://www.ncbi.nlm.nih.gov/pubmed/16870301 https://www.proquest.com/docview/17052531 https://www.proquest.com/docview/68739567 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KBfEifls_6h68SWyS3WySi1BKa1XaixZ6C8nuBio1Kdp69Lc7k2xaBFvBa7IDm8nm7cvOzBtCrpWnPQk81bKDVFlcK2XFnDErlrEbc19JlWJEdzAU_RF_HHvjGulUtTCYVmmwv8T0Aq3NlZbxZms2mbSeUUcE2DjKvwDKeljwy7mP-vm3X6s0D5TYKvW9QwtHm8KZMsdLvs0SE5AQy6OVXzandeSz2IR6e2TXsEfaLie4T2o6OyDbAxMfPyR3bZrln3pKy8bQFPcoRfOMAjWcFpLMFMBX0aL_DQW-SrvdewrQk0_wzOCIjHrdl07fMh0SLMmZmFthGmgndrmQPOCcpZ60nTSUiUoZ85gObA3_I8DBkhD8I0MWaiexYdsCM08KW7JjUs_yTJ8S6riOTENfAz_kPGExNiHnQttSijBNmGgQp3JNJI18OHaxmEZVnthrhO7EvpYiKpLl3Aa5WdrMSvGMjaNZ5fGoKgsFIIsA2zdaeUurHwvnT7ur6qVG8EVhmCTOdL74iFBgyAVoWj9CBBjeFH6DnJSrYfV0cAt_Ms_-OatzslOe8WCG4QWpz98X-hJYzzxpFsu6SbbaD0_94Tfcyf4R |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xIO1yQbDsQnn6wA1lm8SPJhckhAqFpVwAiZuV2I5UVJIKCkd-OzOJU4TEQ-KaeCRnMvn8xTP-BmDPSicN8tQgTAobCGdtkAnOg8xkcSZ61tiCMrrDCzW4Fmc38mYOjtqzMFRW6bG_wfQarf2VrvdmdzIadS9JRwTZOMm_IMrK5AcsCMl7FNr_nl_rPEhjqxH4TgMa7k_ONEVe5m6S-4yEmu2tvLM6fcQ-61XoeBmWPH1kh80MV2DOlb_h59AnyFfh4JCV1ZMbs6YzNKNFyrKqZMgNx7UmM0P0taxugMOQsLJ-_4Qh9lQj2jT4A9fH_aujQeBbJARGcDUN0iJxURYLZUQiBC-kCaMiNbktOJfcJaHDHxIkYXmKDjIpT12Uh7huoZk0KjT8L8yXVenWgUVxZIq055AgCpHzjLqQC-VCY1Ra5Fx1IGpdo43XD6c2FmPdFordanInNbZUuq6WizuwP7OZNOoZn47mrcd1ey4UkUwjuH9qJWdWbyLnS7vd9qVq_KQoT5KVrnp80KQwFCM2fTxCJZTfVL0OrDXR8Pp0eIv-Mje-Oatd-DW4Gp7r89OL_5uw2Gz4ULnhFsxP7x_dNlKgab5Th_gLuJf_pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+based+on+realistic+head+model+for+EEG+denoising&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Xu%2C+Peng&rft.au=Yao%2C+Dezhong&rft.date=2006-08-01&rft.issn=0169-2607&rft.volume=83&rft.issue=2&rft.spage=104&rft.epage=110&rft_id=info:doi/10.1016%2Fj.cmpb.2006.06.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2006_06_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |