Side dominance and eye patches obscuring half of the visual field do not affect walking kinematics
Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 6189 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.02.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-025-90936-x |
Cover
Loading…
Abstract | Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- (
n
= 15, age = 28.2 ± 5.5 years) and left-side (
n
= 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait. |
---|---|
AbstractList | Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- (n = 15, age = 28.2 ± 5.5 years) and left-side (n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait. Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals' gait kinematics and accompanying leg muscle activation differently. Healthy right- (n = 15, age = 28.2 ± 5.5 years) and left-side (n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants' dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait.Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals' gait kinematics and accompanying leg muscle activation differently. Healthy right- (n = 15, age = 28.2 ± 5.5 years) and left-side (n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants' dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait. Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- ( n = 15, age = 28.2 ± 5.5 years) and left-side ( n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait. Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- ( n = 15, age = 28.2 ± 5.5 years) and left-side ( n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait. Abstract Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- (n = 15, age = 28.2 ± 5.5 years) and left-side (n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait. |
ArticleNumber | 6189 |
Author | Hortobágyi, Tibor Nagatomi, Ryoichi Grand, László Khandoker, Ahsan Rácz, Kristóf Pálya, Zsófia Petró, Bálint Katona, Péter Kovács, Bálint Négyesi, János Moussa, Mostafa Mohamed Salman, Diane Nabil Kiss, Rita Mária |
Author_xml | – sequence: 1 givenname: János orcidid: 0000-0001-5055-3242 surname: Négyesi fullname: Négyesi, János email: negyesi.janos@tf.hu organization: Department of Kinesiology, Hungarian University of Sports Science, Neurocognitive Research Center, Nyírő Gyula National Institute of Psychiatry, and Addictology, CRU Hungary Kft – sequence: 2 givenname: Bálint orcidid: 0000-0002-8704-3622 surname: Kovács fullname: Kovács, Bálint organization: Department of Kinesiology, Hungarian University of Sports Science, Faculty of Sport Science, Ningbo University – sequence: 3 givenname: Bálint orcidid: 0000-0003-3920-5161 surname: Petró fullname: Petró, Bálint organization: Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics – sequence: 4 givenname: Diane Nabil surname: Salman fullname: Salman, Diane Nabil organization: Biomedical Engineering Department, Khalifa University – sequence: 5 givenname: Ahsan orcidid: 0000-0002-0636-1646 surname: Khandoker fullname: Khandoker, Ahsan organization: Biomedical Engineering Department, Khalifa University – sequence: 6 givenname: Péter orcidid: 0009-0008-7075-4728 surname: Katona fullname: Katona, Péter organization: Department of Kinesiology, Hungarian University of Sports Science – sequence: 7 givenname: Mostafa Mohamed orcidid: 0000-0003-4977-355X surname: Moussa fullname: Moussa, Mostafa Mohamed organization: Biomedical Engineering Department, Khalifa University – sequence: 8 givenname: Tibor orcidid: 0000-0001-5732-7942 surname: Hortobágyi fullname: Hortobágyi, Tibor organization: Department of Kinesiology, Hungarian University of Sports Science, Department of Neurology, Somogy County Kaposi Mór Teaching Hospital, Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen – sequence: 9 givenname: Kristóf surname: Rácz fullname: Rácz, Kristóf organization: Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics – sequence: 10 givenname: Zsófia orcidid: 0000-0002-6295-3160 surname: Pálya fullname: Pálya, Zsófia organization: Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics – sequence: 11 givenname: László orcidid: 0000-0001-5391-3266 surname: Grand fullname: Grand, László organization: Faculty of Information Technology, Pázmány Péter Catholic University – sequence: 12 givenname: Rita Mária orcidid: 0000-0003-3607-8435 surname: Kiss fullname: Kiss, Rita Mária organization: Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics – sequence: 13 givenname: Ryoichi orcidid: 0000-0003-3038-7202 surname: Nagatomi fullname: Nagatomi, Ryoichi organization: Designing Future Health Initiative (DFHI), Promotion Office of Strategic Innovation, Tohoku University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39979477$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAUhC1URB_0D7BAltiwCfgRJ_YSVdBWqsQCWFsn9nFvbpP4YifQ_nt8mz4QC7ywLeub8RzNMTmY4oSEvOHsA2dSf8w1V0ZXTKjKMCOb6vYFORKsVpWQQhz8dT8kpzlvWVlKmJqbV-RQGtOaum2PSPet90h9HPsJJocUJk_xDukOZrfBTGOX3ZL66ZpuYAg0BjpvkP7q8wIDDT0OvojpFGcKIaCb6W8YbvZ42XCEuXf5NXkZYMh4-nCekB9fPn8_u6iuvp5fnn26qlwtm7kqkUDyIEUdWJnQeESBWnDmJHivUIE2LnTBtw2qhtcOlTOdccbL1nmt5Am5XH19hK3dpX6EdGcj9Pb-IaZrC6kEGtDypuVMdQ03nauFcx2EVndMSy3ACJTF6_3qtUvx54J5tmOfHQ4DTBiXbCVvDG-15HVB3_2DbuOSpjLpntJGqNawQr19oJZuRP8U77GJAogVcCnmnDA8IZzZfeN2bdyWxu194_a2iOQqyrt9R5ie__6P6g9WTq0h |
Cites_doi | 10.1016/j.jelekin.2011.07.011 10.1016/j.clinbiomech.2005.08.003 10.1016/0166-4328(88)90149-0 10.1016/j.neuropsychologia.2009.07.019 10.1007/s00221-016-4666-9 10.1002/mus.20330 10.1017/CBO9780511576744.004 10.3389/fpsyg.2014.00261 10.3389/fphys.2022.965702 10.1186/s12984-019-0506-z 10.1089/brain.2013.0211 10.1016/j.gaitpost.2010.07.018 10.1016/S0959-4388(05)80044-3 10.1016/0013-4694(87)90003-4 10.1016/j.neuropsychologia.2010.06.001 10.1016/S0966-6362(98)00027-7 10.1007/s00221-005-0345-y 10.1016/S0003-9993(99)90310-6 10.1016/j.gaitpost.2017.03.001 10.3109/09638289709166526 10.1016/j.neuropsychologia.2008.11.022 10.1016/0028-3932(71)90067-4 10.1016/j.bspc.2021.102974 10.1007/s00221-012-3325-z 10.1007/s00221-003-1812-y 10.1111/j.1469-7793.2001.0167m.x 10.1016/j.gaitpost.2005.08.003 10.1016/j.neurobiolaging.2016.04.005 10.1126/science.335510 10.1007/s00221-013-3437-0 10.1016/S0268-0033(98)00012-6 10.1080/026404100419865 10.3758/BF03193146 10.1016/S0924-980X(97)00066-0 10.1098/rsbl.2003.0092 10.1038/s41597-019-0323-z 10.1006/brcg.1994.1028 10.1167/18.9.11 10.1016/j.humov.2017.09.015 10.1007/s00221-021-06035-6 10.1016/j.jbiomech.2017.05.006 10.1152/physrev.1978.58.4.763 10.1109/tnsre.2008.925071 10.1109/tbme.2007.901024 10.1016/j.clinbiomech.2011.09.009 10.1016/j.neulet.2011.10.057 10.1080/13554794.2014.894531 10.3390/biomechanics1020016 10.1007/s00702-008-0058-z 10.2466/06.25.26.Pms.111.5.475-484 10.3389/fbioe.2022.888691 10.1016/j.gaitpost.2021.11.009 10.1302/0301-620X.73B1.1991775 10.1155/2015/716042 10.1016/j.gaitpost.2007.07.007 10.1016/0014-4886(65)90026-9 10.1016/S0966-6362(96)01109-5 10.1152/jn.00967.2010 10.1371/journal.pcbi.1006223 10.1080/713755508 10.1017/S1355617710000597 10.1016/j.gaitpost.2010.06.004 10.1002/9781444300499 10.1016/j.apergo.2021.103635 10.1002/hbm.23972 10.1007/s00221-014-4145-0 10.1016/j.jht.2023.09.015 10.1016/j.brainresrev.2007.07.017 10.1007/978-1-4615-0713-0_8 10.1002/jor.20813 10.1186/1743-0003-7-18 10.1002/mds.21720 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-025-90936-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_167105b619bc42ccbaf78b08382a92e3 39979477 10_1038_s41598_025_90936_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: Hungarian University of Sports Science |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. M48 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c436t-997a31f324f01039dee2e8210c3add5e5a89cfbfd76e5614ce5c9b9c9d37cd853 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Sun Aug 24 04:07:14 EDT 2025 Wed Aug 13 05:07:25 EDT 2025 Sat May 10 01:40:22 EDT 2025 Sun Jul 06 05:04:28 EDT 2025 Fri Feb 21 04:10:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Electromyography Motion capture Gait Vision laterality |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-997a31f324f01039dee2e8210c3add5e5a89cfbfd76e5614ce5c9b9c9d37cd853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0636-1646 0000-0001-5732-7942 0000-0001-5055-3242 0000-0002-8704-3622 0009-0008-7075-4728 0000-0003-4977-355X 0000-0003-3920-5161 0000-0003-3038-7202 0000-0002-6295-3160 0000-0003-3607-8435 0000-0001-5391-3266 |
OpenAccessLink | https://www.proquest.com/docview/3168925790?pq-origsite=%requestingapplication% |
PMID | 39979477 |
PQID | 3168925790 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_167105b619bc42ccbaf78b08382a92e3 proquest_miscellaneous_3169178314 proquest_journals_3168925790 pubmed_primary_39979477 crossref_primary_10_1038_s41598_025_90936_x springer_journals_10_1038_s41598_025_90936_x |
PublicationCentury | 2000 |
PublicationDate | 2025-02-20 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JK Peat (90936_CR69) 2008 DI McCloskey (90936_CR22) 1978; 58 90936_CR36 JA Zeni Jr (90936_CR56) 2008; 27 T Ogourtsova (90936_CR14) 2010; 48 90936_CR79 V Krishnamoorthy (90936_CR30) 2004; 157 T Drew (90936_CR20) 1991; 1 90936_CR33 A Hallemans (90936_CR2) 2010; 32 L Konradsen (90936_CR26) 2002; 37 M Jung (90936_CR71) 2022; 10 S Rietdyk (90936_CR35) 2006; 169 90936_CR73 MA Goodale (90936_CR5) 1988; 30 F Alton (90936_CR52) 1998; 13 X Qu (90936_CR29) 2022; 99 J Négyesi (90936_CR11) 2022; 13 AM Aurand (90936_CR54) 2017; 58 SL Delp (90936_CR62) 2007; 54 K Rácz (90936_CR55) 2021; 70 J Han (90936_CR44) 2013; 226 DP Ferris (90936_CR77) 2001; 530 R Iandolo (90936_CR46) 2018; 39 A Danna-Dos-Santos (90936_CR48) 2015; 233 AH Khandoker (90936_CR57) 2010; 7 K Valdes (90936_CR27) 2023 F Faul (90936_CR49) 2007; 39 JM Sprague (90936_CR15) 1965; 11 90936_CR67 90936_CR66 AH Khandoker (90936_CR59) 2008; 16 T Nakamura (90936_CR4) 1997; 19 RM Kiss (90936_CR53) 2011; 21 M Symes (90936_CR45) 2010; 111 U Proske (90936_CR23) 2005; 31 CA Fernandes (90936_CR37) 2018; 57 KE Luh (90936_CR42) 1994; 25 DA Winter (90936_CR75) 1987; 67 T Lencioni (90936_CR31) 2019; 6 IC McManus (90936_CR9) 2009 H Shiraishi (90936_CR18) 2015; 21 C Wang (90936_CR38) 2008; 115 P Cinthuja (90936_CR32) 2021; 1 VJ Verlinden (90936_CR39) 2016; 43 KD Stone (90936_CR7) 2013; 224 90936_CR10 JK Leader Iii (90936_CR68) 1998; 109 90936_CR51 J Chapman (90936_CR24) 2009; 27 DS Barrett (90936_CR25) 1991; 73-B JHJ Allum (90936_CR28) 1998; 8 A Uematsu (90936_CR70) 2011; 505 JS Choi (90936_CR58) 2014; 16 T Drew (90936_CR19) 2008; 57 S Coren (90936_CR8) 1977; 198 KM Goedert (90936_CR13) 2010; 16 A Seth (90936_CR63) 2018; 14 JL Wilson (90936_CR78) 2012; 27 P Chen (90936_CR12) 2009; 47 JF Alingh (90936_CR65) 2019; 16 R Walker (90936_CR17) 1996; 6 MB Semaan (90936_CR72) 2022; 92 F Saucedo (90936_CR34) 2017; 54 RC Oldfield (90936_CR50) 1971; 9 90936_CR41 S Gazzellini (90936_CR3) 2016; 234 JB Dingwell (90936_CR61) 2010; 32 AE Patla (90936_CR1) 1997; 5 SC Gandevia (90936_CR21) 2002; 508 J Romkes (90936_CR64) 2006; 21 M Li (90936_CR43) 2014; 4 D Büchel (90936_CR47) 2021; 239 JM Beis (90936_CR16) 1999; 80 NJ Cronin (90936_CR76) 2011; 105 K Jordan (90936_CR60) 2006; 24 G Yogev-Seligmann (90936_CR40) 2008; 23 CL Gonzalez (90936_CR6) 2009; 47 F Danion (90936_CR74) 2000; 18 |
References_xml | – volume: 21 start-page: 695 year: 2011 ident: 90936_CR53 publication-title: J. Electromyogr. Kines doi: 10.1016/j.jelekin.2011.07.011 – volume: 21 start-page: 75 year: 2006 ident: 90936_CR64 publication-title: Clin. Biomech. (Bristol Avon) doi: 10.1016/j.clinbiomech.2005.08.003 – volume: 30 start-page: 203 year: 1988 ident: 90936_CR5 publication-title: Behav. Brain Res. doi: 10.1016/0166-4328(88)90149-0 – volume: 47 start-page: 3182 year: 2009 ident: 90936_CR6 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2009.07.019 – ident: 90936_CR67 – volume: 234 start-page: 2619 year: 2016 ident: 90936_CR3 publication-title: Exp. Brain Res. doi: 10.1007/s00221-016-4666-9 – volume: 31 start-page: 780 year: 2005 ident: 90936_CR23 publication-title: Muscle Nerve doi: 10.1002/mus.20330 – start-page: 37 volume-title: in Language Lateralization and Psychosis year: 2009 ident: 90936_CR9 doi: 10.1017/CBO9780511576744.004 – ident: 90936_CR41 doi: 10.3389/fpsyg.2014.00261 – volume: 16 start-page: 3 year: 2014 ident: 90936_CR58 publication-title: Acta Bioeng. Biomech. – volume: 13 start-page: 965702 year: 2022 ident: 90936_CR11 publication-title: Front. Physiol. doi: 10.3389/fphys.2022.965702 – volume: 16 start-page: 40 year: 2019 ident: 90936_CR65 publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-019-0506-z – volume: 4 start-page: 145 year: 2014 ident: 90936_CR43 publication-title: Brain Connect. doi: 10.1089/brain.2013.0211 – volume: 32 start-page: 547 year: 2010 ident: 90936_CR2 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.07.018 – volume: 1 start-page: 652 year: 1991 ident: 90936_CR20 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(05)80044-3 – volume: 67 start-page: 402 year: 1987 ident: 90936_CR75 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(87)90003-4 – volume: 48 start-page: 2407 year: 2010 ident: 90936_CR14 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2010.06.001 – volume: 8 start-page: 214 year: 1998 ident: 90936_CR28 publication-title: Gait Posture doi: 10.1016/S0966-6362(98)00027-7 – volume: 169 start-page: 272 year: 2006 ident: 90936_CR35 publication-title: Exp. Brain Res. doi: 10.1007/s00221-005-0345-y – volume: 80 start-page: 71 year: 1999 ident: 90936_CR16 publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/S0003-9993(99)90310-6 – volume: 54 start-page: 106 year: 2017 ident: 90936_CR34 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.03.001 – volume: 19 start-page: 194 year: 1997 ident: 90936_CR4 publication-title: Disabil. Rehabil doi: 10.3109/09638289709166526 – volume: 47 start-page: 711 year: 2009 ident: 90936_CR12 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.11.022 – volume: 9 start-page: 97 year: 1971 ident: 90936_CR50 publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 70 start-page: 102974 year: 2021 ident: 90936_CR55 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102974 – volume: 224 start-page: 455 year: 2013 ident: 90936_CR7 publication-title: Exp. Brain Res. doi: 10.1007/s00221-012-3325-z – volume: 157 start-page: 18 year: 2004 ident: 90936_CR30 publication-title: Exp. Brain Res. doi: 10.1007/s00221-003-1812-y – volume: 530 start-page: 167 year: 2001 ident: 90936_CR77 publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2001.0167m.x – volume: 24 start-page: 120 year: 2006 ident: 90936_CR60 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.08.003 – volume: 43 start-page: 164 year: 2016 ident: 90936_CR39 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2016.04.005 – volume: 198 start-page: 631 year: 1977 ident: 90936_CR8 publication-title: Science doi: 10.1126/science.335510 – volume: 226 start-page: 313 year: 2013 ident: 90936_CR44 publication-title: Exp. Brain Res. doi: 10.1007/s00221-013-3437-0 – volume: 13 start-page: 434 year: 1998 ident: 90936_CR52 publication-title: Clin. Biomech. Elsevier Ltd doi: 10.1016/S0268-0033(98)00012-6 – volume: 18 start-page: 809 year: 2000 ident: 90936_CR74 publication-title: J. Sports Sci. doi: 10.1080/026404100419865 – volume: 39 start-page: 175 year: 2007 ident: 90936_CR49 publication-title: Behav. Res. Methods doi: 10.3758/BF03193146 – volume: 109 start-page: 119 year: 1998 ident: 90936_CR68 publication-title: Electroencephalogr. Clin. Neurophysiology/Electromyography Motor Control doi: 10.1016/S0924-980X(97)00066-0 – ident: 90936_CR10 doi: 10.1098/rsbl.2003.0092 – volume: 6 start-page: 309 year: 2019 ident: 90936_CR31 publication-title: Sci. Data doi: 10.1038/s41597-019-0323-z – volume: 25 start-page: 141 year: 1994 ident: 90936_CR42 publication-title: Brain Cogn. doi: 10.1006/brcg.1994.1028 – ident: 90936_CR73 doi: 10.1167/18.9.11 – volume: 57 start-page: 374 year: 2018 ident: 90936_CR37 publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2017.09.015 – volume: 37 start-page: 381 year: 2002 ident: 90936_CR26 publication-title: J. Athl Train. – volume: 239 start-page: 1193 year: 2021 ident: 90936_CR47 publication-title: Exp. Brain Res. doi: 10.1007/s00221-021-06035-6 – volume: 58 start-page: 237 year: 2017 ident: 90936_CR54 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.05.006 – volume: 58 start-page: 763 year: 1978 ident: 90936_CR22 publication-title: Physiol. Rev. doi: 10.1152/physrev.1978.58.4.763 – volume: 16 start-page: 380 year: 2008 ident: 90936_CR59 publication-title: IEEE Trans. Neural Syst. Rehabil Eng. doi: 10.1109/tnsre.2008.925071 – volume: 54 start-page: 1940 year: 2007 ident: 90936_CR62 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/tbme.2007.901024 – volume: 27 start-page: 210 year: 2012 ident: 90936_CR78 publication-title: Clin. Biomech. Elsevier Ltd doi: 10.1016/j.clinbiomech.2011.09.009 – volume: 505 start-page: 291 year: 2011 ident: 90936_CR70 publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.10.057 – volume: 21 start-page: 358 year: 2015 ident: 90936_CR18 publication-title: Neurocase doi: 10.1080/13554794.2014.894531 – volume: 1 start-page: 190 year: 2021 ident: 90936_CR32 publication-title: Biomechanics doi: 10.3390/biomechanics1020016 – volume: 115 start-page: 1149 year: 2008 ident: 90936_CR38 publication-title: J. Neural Transm (Vienna) doi: 10.1007/s00702-008-0058-z – volume: 111 start-page: 475 year: 2010 ident: 90936_CR45 publication-title: Percept. Mot Skills doi: 10.2466/06.25.26.Pms.111.5.475-484 – volume: 10 start-page: 888691 year: 2022 ident: 90936_CR71 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.888691 – volume: 92 start-page: 249 year: 2022 ident: 90936_CR72 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.11.009 – ident: 90936_CR79 – volume: 73-B start-page: 53 year: 1991 ident: 90936_CR25 publication-title: J. Bone Joint Surg. Br. doi: 10.1302/0301-620X.73B1.1991775 – ident: 90936_CR36 doi: 10.1155/2015/716042 – volume: 27 start-page: 710 year: 2008 ident: 90936_CR56 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.07.007 – volume: 11 start-page: 115 year: 1965 ident: 90936_CR15 publication-title: Exp. Neurol. doi: 10.1016/0014-4886(65)90026-9 – ident: 90936_CR33 – volume: 5 start-page: 54 year: 1997 ident: 90936_CR1 publication-title: Gait Posture doi: 10.1016/S0966-6362(96)01109-5 – ident: 90936_CR66 – volume: 105 start-page: 548 year: 2011 ident: 90936_CR76 publication-title: J. Neurophysiol. doi: 10.1152/jn.00967.2010 – volume: 14 start-page: e1006223 year: 2018 ident: 90936_CR63 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006223 – volume: 6 start-page: 219 year: 1996 ident: 90936_CR17 publication-title: Neuropsychological Rehabilitation doi: 10.1080/713755508 – volume: 16 start-page: 795 year: 2010 ident: 90936_CR13 publication-title: J. Int. Neuropsychol. Soc. doi: 10.1017/S1355617710000597 – volume: 32 start-page: 348 year: 2010 ident: 90936_CR61 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.06.004 – volume-title: Statistics workbook for evidence-based healthcare year: 2008 ident: 90936_CR69 doi: 10.1002/9781444300499 – volume: 99 start-page: 103635 year: 2022 ident: 90936_CR29 publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2021.103635 – volume: 39 start-page: 1929 year: 2018 ident: 90936_CR46 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23972 – volume: 233 start-page: 657 year: 2015 ident: 90936_CR48 publication-title: Exp. Brain Res. doi: 10.1007/s00221-014-4145-0 – year: 2023 ident: 90936_CR27 publication-title: J. Hand Ther. doi: 10.1016/j.jht.2023.09.015 – volume: 57 start-page: 199 year: 2008 ident: 90936_CR19 publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2007.07.017 – volume: 508 start-page: 61 year: 2002 ident: 90936_CR21 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4615-0713-0_8 – volume: 27 start-page: 885 year: 2009 ident: 90936_CR24 publication-title: J. Orthop. Res. doi: 10.1002/jor.20813 – volume: 7 start-page: 18 year: 2010 ident: 90936_CR57 publication-title: J. Neuroeng. Rehabil doi: 10.1186/1743-0003-7-18 – volume: 23 start-page: 329 year: 2008 ident: 90936_CR40 publication-title: Mov. Disord doi: 10.1002/mds.21720 – ident: 90936_CR51 |
SSID | ssj0000529419 |
Score | 2.4463005 |
Snippet | Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor... Abstract Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 6189 |
SubjectTerms | 631/378/2632 639/166/985 Adult Ankle Biomechanical Phenomena Dominance Electromyography Eye Female Functional Laterality - physiology Gait Gait - physiology Hand eye coordination Humanities and Social Sciences Humans Kinematics laterality Leg Locomotion Male Motion capture Motor task performance multidisciplinary Muscle contraction Muscle, Skeletal - physiology Muscles Neuromuscular system Patching Science Science (multidisciplinary) Sensorimotor integration Vision Visual field Visual Fields - physiology Walking Walking - physiology Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA8iCF5KP2y7rZUUvLXB3Wx2kxxbUaTQXlTwFvIxoYLsivteq_99J8m-p9KWXnrZw242bGaSzG82M78hZJ8HqSByxcD2jgkbPHMuWAYicOGg87pOyclfv_Un5-LLRXfxoNRXigkr9MBFcAdNjzawc4jznRfce2ejVA6Bg-JWc8g8n2jzHjhThdWba9HoOUumbtXBhJYqZZPxjmn04nt2-8gSZcL-P6HM305Is-E5fkqezIiRfipf-oxswPCcbJUakncviDu9DEDDmENaPFA7BAp3QK9t0sdER9wYcioi_W6vIh0jRchHf1xOS-w0x6_hy3QYF9Tm0A76016l3-cUL4XPddoh58dHZ4cnbC6cwLxo-wXTWtq2iYiVYirjoAMAB4XOnW9xO-ugs0r76GKQPSQmUJ904rTXoZU-oAF_STaHcYDXhEqIvkWIKK30Qsbedjz6xjtctqHW3Ffkw0qI5rrwY5h8rt0qU0RuUOQmi9zcVuRzkvO6ZeK2zjdQ42bWuPmXxiuyu9KSmRfcZFL9LY3bj64r8n79GJdKOv-wA4zL3AadU9U2oiKvinbXX4I4DXcmKSvycaXu-87_PqA3_2NAb8k2T_MyJcrXu2RzcbOEdwh1Fm4vz-pfM9X6BQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-lRfAirZ_bVongTYO7SXaTHOvDUgS9aKG3kI-JFspu6b6n9r93kt19ItaDlz3sJiE7k8z8JvMRQl7xqDQkrhm4zjPpYmDeR8dARi49tMHUOTn546fu7Fx-uGgvdghfcmFK0H4paVnE9BId9nZERZOTwXjLDBrhHUPcuJdLt-dVvepW23OV7LmSjZnzY2qh7-j6hw4qpfrvwpd_-UaLyjndJw9mrEhPptkdkB3oH5J70-2Rt4-I_3wZgcahBLMEoK6PFG6BXrvMiZEOKBJKEiL95q4SHRJFsEe_X44bHLRErmFn2g9r6kpQB_3hrvLBOcXHVMl1fEzOT99_WZ2x-coEFqTo1swY5USTECWlfIGDiQAcNJp1QaAga6F12oTkU1Qd5BqgIXPDm2CiUCGi6n5Cdvuhh2eEKkhBIDhUTgWpUudankITPG7YWBseKvJ6IaK9nipj2OLRFtpOJLdIcltIbn9W5F2m87ZlrmpdXgw3X-3MZdt0iHdajzadD5KH4F1S2iNI1NwZDqIixwuX7LzVRptv3jIoeExdkZfbz7hJsufD9TBsShs0S7VoZEWeTtzdzgQRGsokpSryZmH378H__UOH_9f8iNzneQXmZPj6mOyubzbwHOHM2r8o6_cX33nwSg priority: 102 providerName: Springer Nature |
Title | Side dominance and eye patches obscuring half of the visual field do not affect walking kinematics |
URI | https://link.springer.com/article/10.1038/s41598-025-90936-x https://www.ncbi.nlm.nih.gov/pubmed/39979477 https://www.proquest.com/docview/3168925790 https://www.proquest.com/docview/3169178314 https://doaj.org/article/167105b619bc42ccbaf78b08382a92e3 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0nedposKvbUitixb1qlsloSw0FCaBvYm9GwDwd7Gu2ny7zsjezeUPi42yLKRZ6TRp3kS8o572YTIGxZMbZkw3jFrvWFBeC5sqJzKMTj502l9ci7mi2oxKtz60a1yIxOToPadQx35ARZYUjC_VP5x-YNh1Si0ro4lNO6TXUxdhi5dciG3Oha0YolCjbEyedkc9LBfYUwZr5iCs3zNbn7bj1La_r9hzT_spGn7OX5MHo24kU4HRj8h90L7lDwYKknePiP27MIH6rvk2OICNa2n4TbQpUGu9LQD8ZACEul3cxlpFykAP3p90a_ho8mLDV6mbbeiJjl40J_mEpXoFC5DVtf-OTk_Pvo6O2Fj-QTmRFmvmFLSlEUExBSxmIPyIfDQwBHPlSDUqlCZRrloo5d1wHygDjljlVO-lM7DNv6C7LRdG14RKkN0JQBFaaQTMtam4tEVzsLi9bniLiPvN0TUyyFLhk7W7bLRA8k1kFwnkuubjBwinbc9McN1auiuvulxweiiBuxTWTjfWSe4c9ZE2VgAjA03iocyI_sbLulx2fX6bpJk5O32MSwYtIKYNnTr1AeOqE1ZiIy8HLi7HQmgNZBPUmbkw4bddx__9w_t_X8sr8lDjjMOA-HzfbKzulqHNwBlVnaS5uuE7E6n87M53A-PTj9_gdZZPZsk9cAv_PL26A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqVgguiJ1AASPBCaxm7CS2DwhRaDWl7QhBK_XmeoVKVTI0M7Tzp_iNPDvJVIjl1ksOWSznbf7styH0gjoufKCCeF0ZUmhniTFOE184WhhfWpnH5OT9STU-LD4elUcr6OeQCxPDKgebmAy1a2w8I9-IDZYkyJfM306_k9g1KnpXhxYanVjs-sU5bNnaNzsfgL8vKd3eOng_Jn1XAWILVs2IlFyzUQAgEWKPA-m8p17Azscy0PXSl1pIG0xwvPKxTKaNEzbSSse4dSJ2iQCTvwZj5WAI1ja3Jp8-L091ot-sGMk-OydnYqOFFTJmsdGSyFyyilz8tgKmRgF_Q7d_eGbTgrd9C93skSp-14nWbbTi6zvoWte7cnEXmS8nzmPXpFAa67GuHfYLj6c6ykGLGzBIKQUSf9OnATcBA9TEP07aOQya4ubgY1w3M6xTSAk-16fx2B7Dpasj295Dh1dC2vtotW5q_xBh7oNlAE255rbgodIlDXZkDZgLl0tqM_RqIKKadnU5VPKnM6E6kisguUokVxcZ2ox0Xr4Za2qnG83ZV9WrqBpVgLZKAztKYwtqrdGBCwMQVVAtqWcZWh-4pHpFb9WlWGbo-fIxqGj0u-jaN_P0DmyKBRsVGXrQcXc5E8CHYBE5z9Drgd2Xg__7hx79fy7P0PXxwf6e2tuZ7D5GN2iUvpiGn6-j1dnZ3D8BIDUzT3vpxej4qhXmF3NUMU4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxLuBAkaCE1ib2ElsHxACyqqlUCFBpb0ZP6FSlSzNLu3-NX4dYyfZCvG49ZJD4kTOeGb8jeeF0BPquPCBCuJ1bUipnSXGOE186WhpfGVlHpOTPxzUu4flu1k120A_x1yYGFY56sSkqF1r4xn5JDZYksBfMp-EISzi48705fw7iR2koqd1bKfRs8i-X52C-da92NuBtX5K6fTt5ze7ZOgwQGzJ6gWRkmtWBAAVIfY7kM576gVYQZaB3Fe-0kLaYILjtY8lM22cvJFWOsatE7FjBKj_S5xVRZQxPuPr853oQSsLOeTp5ExMOtgrYz4brYjMJavJ2W97YWoZ8Dec-4ePNm190-vo2oBZ8aueyW6gDd_cRJf7LparW8h8OnIeuzYF1ViPdeOwX3k815EjOtyCakrJkPibPg64DRhAJ_5x1C3hoymCDl7GTbvAOgWX4FN9HA_wMVz6irLdbXR4IYS9gzabtvFbCHMfLAOQyjW3JQ-1rmiwhTWgOFwuqc3Qs5GIat5X6FDJs86E6kmugOQqkVydZeh1pPN6ZKyunW60J1_VIKyqqAF3VQZsS2NLaq3RgQsDYFVQLalnGdoeV0kNIt-pcwbN0OP1YxDW6IHRjW-XaQyYx4IVZYbu9qu7ngkgRdCNnGfo-bjc5x__9w_d-_9cHqErICbq_d7B_n10lUbmi_n4-TbaXJws_QNAVAvzMLEuRl8uWlZ-AVa8NB4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Side+dominance+and+eye+patches+obscuring+half+of+the+visual+field+do+not+affect+walking+kinematics&rft.jtitle=Scientific+reports&rft.au=N%C3%A9gyesi%2C+J%C3%A1nos&rft.au=Kov%C3%A1cs%2C+B%C3%A1lint&rft.au=Petr%C3%B3%2C+B%C3%A1lint&rft.au=Salman%2C+Diane+Nabil&rft.date=2025-02-20&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=6189&rft_id=info:doi/10.1038%2Fs41598-025-90936-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |