Side dominance and eye patches obscuring half of the visual field do not affect walking kinematics

Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 6189 - 12
Main Authors Négyesi, János, Kovács, Bálint, Petró, Bálint, Salman, Diane Nabil, Khandoker, Ahsan, Katona, Péter, Moussa, Mostafa Mohamed, Hortobágyi, Tibor, Rácz, Kristóf, Pálya, Zsófia, Grand, László, Kiss, Rita Mária, Nagatomi, Ryoichi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.02.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-90936-x

Cover

Loading…
Abstract Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- ( n  = 15, age = 28.2 ± 5.5 years) and left-side ( n  = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait.
AbstractList Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- (n = 15, age = 28.2 ± 5.5 years) and left-side (n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait.
Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals' gait kinematics and accompanying leg muscle activation differently. Healthy right- (n = 15, age = 28.2 ± 5.5 years) and left-side (n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants' dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait.Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals' gait kinematics and accompanying leg muscle activation differently. Healthy right- (n = 15, age = 28.2 ± 5.5 years) and left-side (n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants' dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait.
Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- ( n = 15, age = 28.2 ± 5.5 years) and left-side ( n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait.
Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- ( n  = 15, age = 28.2 ± 5.5 years) and left-side ( n  = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait.
Abstract Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor control, the present study aimed to determine if patches obscuring half of the visual field affect left- and right-side dominant individuals’ gait kinematics and accompanying leg muscle activation differently. Healthy right- (n = 15, age = 28.2 ± 5.5 years) and left-side (n = 9, age = 27.9 ± 5.8 years) dominant participants performed 10 min of walking trials on a treadmill at a self-selected speed with 5 min of rest between three randomized trials, i.e., wearing clear glasses or glasses with left-or right half-field eye patching. In addition to a set of spatiotemporal and kinematic gait parameters, the average activity during the separated gait cycle phases, and the start and end of muscle activation in % of the gait cycle were calculated from five muscles in three muscle groups. Our results indicate that gait kinematics of left- and right-side dominant participants were similar both in their dominant and non-dominant legs, regardless of half-field eye patching condition. On the other hand, inter-group differences were found in selected kinematic variables. For instance, in addition to larger but less variable step width, our results suggest larger ankle and knee ROM in right- vs. left-sided participants. Furthermore, medial gastrocnemius and biceps femoris muscle activation showed selected differences at certain phases of the gait cycle between participants’ dominant and non-dominant legs. However, it was also unaffected by the half-field eye patching condition. Moreover, the endpoint of medial gastrocnemius activation was affected by side-dominance, i.e., its activation ended earlier in the non-dominant leg of right- as compared to left-side dominant participants. Our results suggest no major differences in walking gait kinematics and accompanying muscle activation between half-field eye patching conditions in healthy adults; nevertheless, side-dominance may affect biomechanical and neuromuscular control strategies during walking gait.
ArticleNumber 6189
Author Hortobágyi, Tibor
Nagatomi, Ryoichi
Grand, László
Khandoker, Ahsan
Rácz, Kristóf
Pálya, Zsófia
Petró, Bálint
Katona, Péter
Kovács, Bálint
Négyesi, János
Moussa, Mostafa Mohamed
Salman, Diane Nabil
Kiss, Rita Mária
Author_xml – sequence: 1
  givenname: János
  orcidid: 0000-0001-5055-3242
  surname: Négyesi
  fullname: Négyesi, János
  email: negyesi.janos@tf.hu
  organization: Department of Kinesiology, Hungarian University of Sports Science, Neurocognitive Research Center, Nyírő Gyula National Institute of Psychiatry, and Addictology, CRU Hungary Kft
– sequence: 2
  givenname: Bálint
  orcidid: 0000-0002-8704-3622
  surname: Kovács
  fullname: Kovács, Bálint
  organization: Department of Kinesiology, Hungarian University of Sports Science, Faculty of Sport Science, Ningbo University
– sequence: 3
  givenname: Bálint
  orcidid: 0000-0003-3920-5161
  surname: Petró
  fullname: Petró, Bálint
  organization: Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics
– sequence: 4
  givenname: Diane Nabil
  surname: Salman
  fullname: Salman, Diane Nabil
  organization: Biomedical Engineering Department, Khalifa University
– sequence: 5
  givenname: Ahsan
  orcidid: 0000-0002-0636-1646
  surname: Khandoker
  fullname: Khandoker, Ahsan
  organization: Biomedical Engineering Department, Khalifa University
– sequence: 6
  givenname: Péter
  orcidid: 0009-0008-7075-4728
  surname: Katona
  fullname: Katona, Péter
  organization: Department of Kinesiology, Hungarian University of Sports Science
– sequence: 7
  givenname: Mostafa Mohamed
  orcidid: 0000-0003-4977-355X
  surname: Moussa
  fullname: Moussa, Mostafa Mohamed
  organization: Biomedical Engineering Department, Khalifa University
– sequence: 8
  givenname: Tibor
  orcidid: 0000-0001-5732-7942
  surname: Hortobágyi
  fullname: Hortobágyi, Tibor
  organization: Department of Kinesiology, Hungarian University of Sports Science, Department of Neurology, Somogy County Kaposi Mór Teaching Hospital, Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen
– sequence: 9
  givenname: Kristóf
  surname: Rácz
  fullname: Rácz, Kristóf
  organization: Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics
– sequence: 10
  givenname: Zsófia
  orcidid: 0000-0002-6295-3160
  surname: Pálya
  fullname: Pálya, Zsófia
  organization: Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics
– sequence: 11
  givenname: László
  orcidid: 0000-0001-5391-3266
  surname: Grand
  fullname: Grand, László
  organization: Faculty of Information Technology, Pázmány Péter Catholic University
– sequence: 12
  givenname: Rita Mária
  orcidid: 0000-0003-3607-8435
  surname: Kiss
  fullname: Kiss, Rita Mária
  organization: Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics
– sequence: 13
  givenname: Ryoichi
  orcidid: 0000-0003-3038-7202
  surname: Nagatomi
  fullname: Nagatomi, Ryoichi
  organization: Designing Future Health Initiative (DFHI), Promotion Office of Strategic Innovation, Tohoku University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39979477$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAUhC1URB_0D7BAltiwCfgRJ_YSVdBWqsQCWFsn9nFvbpP4YifQ_nt8mz4QC7ywLeub8RzNMTmY4oSEvOHsA2dSf8w1V0ZXTKjKMCOb6vYFORKsVpWQQhz8dT8kpzlvWVlKmJqbV-RQGtOaum2PSPet90h9HPsJJocUJk_xDukOZrfBTGOX3ZL66ZpuYAg0BjpvkP7q8wIDDT0OvojpFGcKIaCb6W8YbvZ42XCEuXf5NXkZYMh4-nCekB9fPn8_u6iuvp5fnn26qlwtm7kqkUDyIEUdWJnQeESBWnDmJHivUIE2LnTBtw2qhtcOlTOdccbL1nmt5Am5XH19hK3dpX6EdGcj9Pb-IaZrC6kEGtDypuVMdQ03nauFcx2EVndMSy3ACJTF6_3qtUvx54J5tmOfHQ4DTBiXbCVvDG-15HVB3_2DbuOSpjLpntJGqNawQr19oJZuRP8U77GJAogVcCnmnDA8IZzZfeN2bdyWxu194_a2iOQqyrt9R5ie__6P6g9WTq0h
Cites_doi 10.1016/j.jelekin.2011.07.011
10.1016/j.clinbiomech.2005.08.003
10.1016/0166-4328(88)90149-0
10.1016/j.neuropsychologia.2009.07.019
10.1007/s00221-016-4666-9
10.1002/mus.20330
10.1017/CBO9780511576744.004
10.3389/fpsyg.2014.00261
10.3389/fphys.2022.965702
10.1186/s12984-019-0506-z
10.1089/brain.2013.0211
10.1016/j.gaitpost.2010.07.018
10.1016/S0959-4388(05)80044-3
10.1016/0013-4694(87)90003-4
10.1016/j.neuropsychologia.2010.06.001
10.1016/S0966-6362(98)00027-7
10.1007/s00221-005-0345-y
10.1016/S0003-9993(99)90310-6
10.1016/j.gaitpost.2017.03.001
10.3109/09638289709166526
10.1016/j.neuropsychologia.2008.11.022
10.1016/0028-3932(71)90067-4
10.1016/j.bspc.2021.102974
10.1007/s00221-012-3325-z
10.1007/s00221-003-1812-y
10.1111/j.1469-7793.2001.0167m.x
10.1016/j.gaitpost.2005.08.003
10.1016/j.neurobiolaging.2016.04.005
10.1126/science.335510
10.1007/s00221-013-3437-0
10.1016/S0268-0033(98)00012-6
10.1080/026404100419865
10.3758/BF03193146
10.1016/S0924-980X(97)00066-0
10.1098/rsbl.2003.0092
10.1038/s41597-019-0323-z
10.1006/brcg.1994.1028
10.1167/18.9.11
10.1016/j.humov.2017.09.015
10.1007/s00221-021-06035-6
10.1016/j.jbiomech.2017.05.006
10.1152/physrev.1978.58.4.763
10.1109/tnsre.2008.925071
10.1109/tbme.2007.901024
10.1016/j.clinbiomech.2011.09.009
10.1016/j.neulet.2011.10.057
10.1080/13554794.2014.894531
10.3390/biomechanics1020016
10.1007/s00702-008-0058-z
10.2466/06.25.26.Pms.111.5.475-484
10.3389/fbioe.2022.888691
10.1016/j.gaitpost.2021.11.009
10.1302/0301-620X.73B1.1991775
10.1155/2015/716042
10.1016/j.gaitpost.2007.07.007
10.1016/0014-4886(65)90026-9
10.1016/S0966-6362(96)01109-5
10.1152/jn.00967.2010
10.1371/journal.pcbi.1006223
10.1080/713755508
10.1017/S1355617710000597
10.1016/j.gaitpost.2010.06.004
10.1002/9781444300499
10.1016/j.apergo.2021.103635
10.1002/hbm.23972
10.1007/s00221-014-4145-0
10.1016/j.jht.2023.09.015
10.1016/j.brainresrev.2007.07.017
10.1007/978-1-4615-0713-0_8
10.1002/jor.20813
10.1186/1743-0003-7-18
10.1002/mds.21720
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-90936-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_167105b619bc42ccbaf78b08382a92e3
39979477
10_1038_s41598_025_90936_x
Genre Journal Article
GrantInformation_xml – fundername: Hungarian University of Sports Science
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c436t-997a31f324f01039dee2e8210c3add5e5a89cfbfd76e5614ce5c9b9c9d37cd853
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:50 EDT 2025
Sun Aug 24 04:07:14 EDT 2025
Wed Aug 13 05:07:25 EDT 2025
Sat May 10 01:40:22 EDT 2025
Sun Jul 06 05:04:28 EDT 2025
Fri Feb 21 04:10:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electromyography
Motion capture
Gait
Vision
laterality
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-997a31f324f01039dee2e8210c3add5e5a89cfbfd76e5614ce5c9b9c9d37cd853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0636-1646
0000-0001-5732-7942
0000-0001-5055-3242
0000-0002-8704-3622
0009-0008-7075-4728
0000-0003-4977-355X
0000-0003-3920-5161
0000-0003-3038-7202
0000-0002-6295-3160
0000-0003-3607-8435
0000-0001-5391-3266
OpenAccessLink https://www.proquest.com/docview/3168925790?pq-origsite=%requestingapplication%
PMID 39979477
PQID 3168925790
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_167105b619bc42ccbaf78b08382a92e3
proquest_miscellaneous_3169178314
proquest_journals_3168925790
pubmed_primary_39979477
crossref_primary_10_1038_s41598_025_90936_x
springer_journals_10_1038_s41598_025_90936_x
PublicationCentury 2000
PublicationDate 2025-02-20
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JK Peat (90936_CR69) 2008
DI McCloskey (90936_CR22) 1978; 58
90936_CR36
JA Zeni Jr (90936_CR56) 2008; 27
T Ogourtsova (90936_CR14) 2010; 48
90936_CR79
V Krishnamoorthy (90936_CR30) 2004; 157
T Drew (90936_CR20) 1991; 1
90936_CR33
A Hallemans (90936_CR2) 2010; 32
L Konradsen (90936_CR26) 2002; 37
M Jung (90936_CR71) 2022; 10
S Rietdyk (90936_CR35) 2006; 169
90936_CR73
MA Goodale (90936_CR5) 1988; 30
F Alton (90936_CR52) 1998; 13
X Qu (90936_CR29) 2022; 99
J Négyesi (90936_CR11) 2022; 13
AM Aurand (90936_CR54) 2017; 58
SL Delp (90936_CR62) 2007; 54
K Rácz (90936_CR55) 2021; 70
J Han (90936_CR44) 2013; 226
DP Ferris (90936_CR77) 2001; 530
R Iandolo (90936_CR46) 2018; 39
A Danna-Dos-Santos (90936_CR48) 2015; 233
AH Khandoker (90936_CR57) 2010; 7
K Valdes (90936_CR27) 2023
F Faul (90936_CR49) 2007; 39
JM Sprague (90936_CR15) 1965; 11
90936_CR67
90936_CR66
AH Khandoker (90936_CR59) 2008; 16
T Nakamura (90936_CR4) 1997; 19
RM Kiss (90936_CR53) 2011; 21
M Symes (90936_CR45) 2010; 111
U Proske (90936_CR23) 2005; 31
CA Fernandes (90936_CR37) 2018; 57
KE Luh (90936_CR42) 1994; 25
DA Winter (90936_CR75) 1987; 67
T Lencioni (90936_CR31) 2019; 6
IC McManus (90936_CR9) 2009
H Shiraishi (90936_CR18) 2015; 21
C Wang (90936_CR38) 2008; 115
P Cinthuja (90936_CR32) 2021; 1
VJ Verlinden (90936_CR39) 2016; 43
KD Stone (90936_CR7) 2013; 224
90936_CR10
JK Leader Iii (90936_CR68) 1998; 109
90936_CR51
J Chapman (90936_CR24) 2009; 27
DS Barrett (90936_CR25) 1991; 73-B
JHJ Allum (90936_CR28) 1998; 8
A Uematsu (90936_CR70) 2011; 505
JS Choi (90936_CR58) 2014; 16
T Drew (90936_CR19) 2008; 57
S Coren (90936_CR8) 1977; 198
KM Goedert (90936_CR13) 2010; 16
A Seth (90936_CR63) 2018; 14
JL Wilson (90936_CR78) 2012; 27
P Chen (90936_CR12) 2009; 47
JF Alingh (90936_CR65) 2019; 16
R Walker (90936_CR17) 1996; 6
MB Semaan (90936_CR72) 2022; 92
F Saucedo (90936_CR34) 2017; 54
RC Oldfield (90936_CR50) 1971; 9
90936_CR41
S Gazzellini (90936_CR3) 2016; 234
JB Dingwell (90936_CR61) 2010; 32
AE Patla (90936_CR1) 1997; 5
SC Gandevia (90936_CR21) 2002; 508
J Romkes (90936_CR64) 2006; 21
M Li (90936_CR43) 2014; 4
D Büchel (90936_CR47) 2021; 239
JM Beis (90936_CR16) 1999; 80
NJ Cronin (90936_CR76) 2011; 105
K Jordan (90936_CR60) 2006; 24
G Yogev-Seligmann (90936_CR40) 2008; 23
CL Gonzalez (90936_CR6) 2009; 47
F Danion (90936_CR74) 2000; 18
References_xml – volume: 21
  start-page: 695
  year: 2011
  ident: 90936_CR53
  publication-title: J. Electromyogr. Kines
  doi: 10.1016/j.jelekin.2011.07.011
– volume: 21
  start-page: 75
  year: 2006
  ident: 90936_CR64
  publication-title: Clin. Biomech. (Bristol Avon)
  doi: 10.1016/j.clinbiomech.2005.08.003
– volume: 30
  start-page: 203
  year: 1988
  ident: 90936_CR5
  publication-title: Behav. Brain Res.
  doi: 10.1016/0166-4328(88)90149-0
– volume: 47
  start-page: 3182
  year: 2009
  ident: 90936_CR6
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2009.07.019
– ident: 90936_CR67
– volume: 234
  start-page: 2619
  year: 2016
  ident: 90936_CR3
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-016-4666-9
– volume: 31
  start-page: 780
  year: 2005
  ident: 90936_CR23
  publication-title: Muscle Nerve
  doi: 10.1002/mus.20330
– start-page: 37
  volume-title: in Language Lateralization and Psychosis
  year: 2009
  ident: 90936_CR9
  doi: 10.1017/CBO9780511576744.004
– ident: 90936_CR41
  doi: 10.3389/fpsyg.2014.00261
– volume: 16
  start-page: 3
  year: 2014
  ident: 90936_CR58
  publication-title: Acta Bioeng. Biomech.
– volume: 13
  start-page: 965702
  year: 2022
  ident: 90936_CR11
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2022.965702
– volume: 16
  start-page: 40
  year: 2019
  ident: 90936_CR65
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-019-0506-z
– volume: 4
  start-page: 145
  year: 2014
  ident: 90936_CR43
  publication-title: Brain Connect.
  doi: 10.1089/brain.2013.0211
– volume: 32
  start-page: 547
  year: 2010
  ident: 90936_CR2
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.07.018
– volume: 1
  start-page: 652
  year: 1991
  ident: 90936_CR20
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(05)80044-3
– volume: 67
  start-page: 402
  year: 1987
  ident: 90936_CR75
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90003-4
– volume: 48
  start-page: 2407
  year: 2010
  ident: 90936_CR14
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2010.06.001
– volume: 8
  start-page: 214
  year: 1998
  ident: 90936_CR28
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(98)00027-7
– volume: 169
  start-page: 272
  year: 2006
  ident: 90936_CR35
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-005-0345-y
– volume: 80
  start-page: 71
  year: 1999
  ident: 90936_CR16
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/S0003-9993(99)90310-6
– volume: 54
  start-page: 106
  year: 2017
  ident: 90936_CR34
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.03.001
– volume: 19
  start-page: 194
  year: 1997
  ident: 90936_CR4
  publication-title: Disabil. Rehabil
  doi: 10.3109/09638289709166526
– volume: 47
  start-page: 711
  year: 2009
  ident: 90936_CR12
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.11.022
– volume: 9
  start-page: 97
  year: 1971
  ident: 90936_CR50
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 70
  start-page: 102974
  year: 2021
  ident: 90936_CR55
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102974
– volume: 224
  start-page: 455
  year: 2013
  ident: 90936_CR7
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3325-z
– volume: 157
  start-page: 18
  year: 2004
  ident: 90936_CR30
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-003-1812-y
– volume: 530
  start-page: 167
  year: 2001
  ident: 90936_CR77
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2001.0167m.x
– volume: 24
  start-page: 120
  year: 2006
  ident: 90936_CR60
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.08.003
– volume: 43
  start-page: 164
  year: 2016
  ident: 90936_CR39
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.04.005
– volume: 198
  start-page: 631
  year: 1977
  ident: 90936_CR8
  publication-title: Science
  doi: 10.1126/science.335510
– volume: 226
  start-page: 313
  year: 2013
  ident: 90936_CR44
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-013-3437-0
– volume: 13
  start-page: 434
  year: 1998
  ident: 90936_CR52
  publication-title: Clin. Biomech. Elsevier Ltd
  doi: 10.1016/S0268-0033(98)00012-6
– volume: 18
  start-page: 809
  year: 2000
  ident: 90936_CR74
  publication-title: J. Sports Sci.
  doi: 10.1080/026404100419865
– volume: 39
  start-page: 175
  year: 2007
  ident: 90936_CR49
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03193146
– volume: 109
  start-page: 119
  year: 1998
  ident: 90936_CR68
  publication-title: Electroencephalogr. Clin. Neurophysiology/Electromyography Motor Control
  doi: 10.1016/S0924-980X(97)00066-0
– ident: 90936_CR10
  doi: 10.1098/rsbl.2003.0092
– volume: 6
  start-page: 309
  year: 2019
  ident: 90936_CR31
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0323-z
– volume: 25
  start-page: 141
  year: 1994
  ident: 90936_CR42
  publication-title: Brain Cogn.
  doi: 10.1006/brcg.1994.1028
– ident: 90936_CR73
  doi: 10.1167/18.9.11
– volume: 57
  start-page: 374
  year: 2018
  ident: 90936_CR37
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2017.09.015
– volume: 37
  start-page: 381
  year: 2002
  ident: 90936_CR26
  publication-title: J. Athl Train.
– volume: 239
  start-page: 1193
  year: 2021
  ident: 90936_CR47
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-021-06035-6
– volume: 58
  start-page: 237
  year: 2017
  ident: 90936_CR54
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.05.006
– volume: 58
  start-page: 763
  year: 1978
  ident: 90936_CR22
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1978.58.4.763
– volume: 16
  start-page: 380
  year: 2008
  ident: 90936_CR59
  publication-title: IEEE Trans. Neural Syst. Rehabil Eng.
  doi: 10.1109/tnsre.2008.925071
– volume: 54
  start-page: 1940
  year: 2007
  ident: 90936_CR62
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2007.901024
– volume: 27
  start-page: 210
  year: 2012
  ident: 90936_CR78
  publication-title: Clin. Biomech. Elsevier Ltd
  doi: 10.1016/j.clinbiomech.2011.09.009
– volume: 505
  start-page: 291
  year: 2011
  ident: 90936_CR70
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.10.057
– volume: 21
  start-page: 358
  year: 2015
  ident: 90936_CR18
  publication-title: Neurocase
  doi: 10.1080/13554794.2014.894531
– volume: 1
  start-page: 190
  year: 2021
  ident: 90936_CR32
  publication-title: Biomechanics
  doi: 10.3390/biomechanics1020016
– volume: 115
  start-page: 1149
  year: 2008
  ident: 90936_CR38
  publication-title: J. Neural Transm (Vienna)
  doi: 10.1007/s00702-008-0058-z
– volume: 111
  start-page: 475
  year: 2010
  ident: 90936_CR45
  publication-title: Percept. Mot Skills
  doi: 10.2466/06.25.26.Pms.111.5.475-484
– volume: 10
  start-page: 888691
  year: 2022
  ident: 90936_CR71
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.888691
– volume: 92
  start-page: 249
  year: 2022
  ident: 90936_CR72
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2021.11.009
– ident: 90936_CR79
– volume: 73-B
  start-page: 53
  year: 1991
  ident: 90936_CR25
  publication-title: J. Bone Joint Surg. Br.
  doi: 10.1302/0301-620X.73B1.1991775
– ident: 90936_CR36
  doi: 10.1155/2015/716042
– volume: 27
  start-page: 710
  year: 2008
  ident: 90936_CR56
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.07.007
– volume: 11
  start-page: 115
  year: 1965
  ident: 90936_CR15
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(65)90026-9
– ident: 90936_CR33
– volume: 5
  start-page: 54
  year: 1997
  ident: 90936_CR1
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(96)01109-5
– ident: 90936_CR66
– volume: 105
  start-page: 548
  year: 2011
  ident: 90936_CR76
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00967.2010
– volume: 14
  start-page: e1006223
  year: 2018
  ident: 90936_CR63
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006223
– volume: 6
  start-page: 219
  year: 1996
  ident: 90936_CR17
  publication-title: Neuropsychological Rehabilitation
  doi: 10.1080/713755508
– volume: 16
  start-page: 795
  year: 2010
  ident: 90936_CR13
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/S1355617710000597
– volume: 32
  start-page: 348
  year: 2010
  ident: 90936_CR61
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.06.004
– volume-title: Statistics workbook for evidence-based healthcare
  year: 2008
  ident: 90936_CR69
  doi: 10.1002/9781444300499
– volume: 99
  start-page: 103635
  year: 2022
  ident: 90936_CR29
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2021.103635
– volume: 39
  start-page: 1929
  year: 2018
  ident: 90936_CR46
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23972
– volume: 233
  start-page: 657
  year: 2015
  ident: 90936_CR48
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-014-4145-0
– year: 2023
  ident: 90936_CR27
  publication-title: J. Hand Ther.
  doi: 10.1016/j.jht.2023.09.015
– volume: 57
  start-page: 199
  year: 2008
  ident: 90936_CR19
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2007.07.017
– volume: 508
  start-page: 61
  year: 2002
  ident: 90936_CR21
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4615-0713-0_8
– volume: 27
  start-page: 885
  year: 2009
  ident: 90936_CR24
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20813
– volume: 7
  start-page: 18
  year: 2010
  ident: 90936_CR57
  publication-title: J. Neuroeng. Rehabil
  doi: 10.1186/1743-0003-7-18
– volume: 23
  start-page: 329
  year: 2008
  ident: 90936_CR40
  publication-title: Mov. Disord
  doi: 10.1002/mds.21720
– ident: 90936_CR51
SSID ssj0000529419
Score 2.4463005
Snippet Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences in motor...
Abstract Vision plays a fundamental role in the control of human locomotion, including walking gait. Given that side-dominance is associated with differences...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 6189
SubjectTerms 631/378/2632
639/166/985
Adult
Ankle
Biomechanical Phenomena
Dominance
Electromyography
Eye
Female
Functional Laterality - physiology
Gait
Gait - physiology
Hand eye coordination
Humanities and Social Sciences
Humans
Kinematics
laterality
Leg
Locomotion
Male
Motion capture
Motor task performance
multidisciplinary
Muscle contraction
Muscle, Skeletal - physiology
Muscles
Neuromuscular system
Patching
Science
Science (multidisciplinary)
Sensorimotor integration
Vision
Visual field
Visual Fields - physiology
Walking
Walking - physiology
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA8iCF5KP2y7rZUUvLXB3Wx2kxxbUaTQXlTwFvIxoYLsivteq_99J8m-p9KWXnrZw242bGaSzG82M78hZJ8HqSByxcD2jgkbPHMuWAYicOGg87pOyclfv_Un5-LLRXfxoNRXigkr9MBFcAdNjzawc4jznRfce2ejVA6Bg-JWc8g8n2jzHjhThdWba9HoOUumbtXBhJYqZZPxjmn04nt2-8gSZcL-P6HM305Is-E5fkqezIiRfipf-oxswPCcbJUakncviDu9DEDDmENaPFA7BAp3QK9t0sdER9wYcioi_W6vIh0jRchHf1xOS-w0x6_hy3QYF9Tm0A76016l3-cUL4XPddoh58dHZ4cnbC6cwLxo-wXTWtq2iYiVYirjoAMAB4XOnW9xO-ugs0r76GKQPSQmUJ904rTXoZU-oAF_STaHcYDXhEqIvkWIKK30Qsbedjz6xjtctqHW3Ffkw0qI5rrwY5h8rt0qU0RuUOQmi9zcVuRzkvO6ZeK2zjdQ42bWuPmXxiuyu9KSmRfcZFL9LY3bj64r8n79GJdKOv-wA4zL3AadU9U2oiKvinbXX4I4DXcmKSvycaXu-87_PqA3_2NAb8k2T_MyJcrXu2RzcbOEdwh1Fm4vz-pfM9X6BQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-lRfAirZ_bVongTYO7SXaTHOvDUgS9aKG3kI-JFspu6b6n9r93kt19ItaDlz3sJiE7k8z8JvMRQl7xqDQkrhm4zjPpYmDeR8dARi49tMHUOTn546fu7Fx-uGgvdghfcmFK0H4paVnE9BId9nZERZOTwXjLDBrhHUPcuJdLt-dVvepW23OV7LmSjZnzY2qh7-j6hw4qpfrvwpd_-UaLyjndJw9mrEhPptkdkB3oH5J70-2Rt4-I_3wZgcahBLMEoK6PFG6BXrvMiZEOKBJKEiL95q4SHRJFsEe_X44bHLRErmFn2g9r6kpQB_3hrvLBOcXHVMl1fEzOT99_WZ2x-coEFqTo1swY5USTECWlfIGDiQAcNJp1QaAga6F12oTkU1Qd5BqgIXPDm2CiUCGi6n5Cdvuhh2eEKkhBIDhUTgWpUudankITPG7YWBseKvJ6IaK9nipj2OLRFtpOJLdIcltIbn9W5F2m87ZlrmpdXgw3X-3MZdt0iHdajzadD5KH4F1S2iNI1NwZDqIixwuX7LzVRptv3jIoeExdkZfbz7hJsufD9TBsShs0S7VoZEWeTtzdzgQRGsokpSryZmH378H__UOH_9f8iNzneQXmZPj6mOyubzbwHOHM2r8o6_cX33nwSg
  priority: 102
  providerName: Springer Nature
Title Side dominance and eye patches obscuring half of the visual field do not affect walking kinematics
URI https://link.springer.com/article/10.1038/s41598-025-90936-x
https://www.ncbi.nlm.nih.gov/pubmed/39979477
https://www.proquest.com/docview/3168925790
https://www.proquest.com/docview/3169178314
https://doaj.org/article/167105b619bc42ccbaf78b08382a92e3
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0nedposKvbUitixb1qlsloSw0FCaBvYm9GwDwd7Gu2ny7zsjezeUPi42yLKRZ6TRp3kS8o572YTIGxZMbZkw3jFrvWFBeC5sqJzKMTj502l9ci7mi2oxKtz60a1yIxOToPadQx35ARZYUjC_VP5x-YNh1Si0ro4lNO6TXUxdhi5dciG3Oha0YolCjbEyedkc9LBfYUwZr5iCs3zNbn7bj1La_r9hzT_spGn7OX5MHo24kU4HRj8h90L7lDwYKknePiP27MIH6rvk2OICNa2n4TbQpUGu9LQD8ZACEul3cxlpFykAP3p90a_ho8mLDV6mbbeiJjl40J_mEpXoFC5DVtf-OTk_Pvo6O2Fj-QTmRFmvmFLSlEUExBSxmIPyIfDQwBHPlSDUqlCZRrloo5d1wHygDjljlVO-lM7DNv6C7LRdG14RKkN0JQBFaaQTMtam4tEVzsLi9bniLiPvN0TUyyFLhk7W7bLRA8k1kFwnkuubjBwinbc9McN1auiuvulxweiiBuxTWTjfWSe4c9ZE2VgAjA03iocyI_sbLulx2fX6bpJk5O32MSwYtIKYNnTr1AeOqE1ZiIy8HLi7HQmgNZBPUmbkw4bddx__9w_t_X8sr8lDjjMOA-HzfbKzulqHNwBlVnaS5uuE7E6n87M53A-PTj9_gdZZPZsk9cAv_PL26A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqVgguiJ1AASPBCaxm7CS2DwhRaDWl7QhBK_XmeoVKVTI0M7Tzp_iNPDvJVIjl1ksOWSznbf7styH0gjoufKCCeF0ZUmhniTFOE184WhhfWpnH5OT9STU-LD4elUcr6OeQCxPDKgebmAy1a2w8I9-IDZYkyJfM306_k9g1KnpXhxYanVjs-sU5bNnaNzsfgL8vKd3eOng_Jn1XAWILVs2IlFyzUQAgEWKPA-m8p17Azscy0PXSl1pIG0xwvPKxTKaNEzbSSse4dSJ2iQCTvwZj5WAI1ja3Jp8-L091ot-sGMk-OydnYqOFFTJmsdGSyFyyilz8tgKmRgF_Q7d_eGbTgrd9C93skSp-14nWbbTi6zvoWte7cnEXmS8nzmPXpFAa67GuHfYLj6c6ykGLGzBIKQUSf9OnATcBA9TEP07aOQya4ubgY1w3M6xTSAk-16fx2B7Dpasj295Dh1dC2vtotW5q_xBh7oNlAE255rbgodIlDXZkDZgLl0tqM_RqIKKadnU5VPKnM6E6kisguUokVxcZ2ox0Xr4Za2qnG83ZV9WrqBpVgLZKAztKYwtqrdGBCwMQVVAtqWcZWh-4pHpFb9WlWGbo-fIxqGj0u-jaN_P0DmyKBRsVGXrQcXc5E8CHYBE5z9Drgd2Xg__7hx79fy7P0PXxwf6e2tuZ7D5GN2iUvpiGn6-j1dnZ3D8BIDUzT3vpxej4qhXmF3NUMU4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxLuBAkaCE1ib2ElsHxACyqqlUCFBpb0ZP6FSlSzNLu3-NX4dYyfZCvG49ZJD4kTOeGb8jeeF0BPquPCBCuJ1bUipnSXGOE186WhpfGVlHpOTPxzUu4flu1k120A_x1yYGFY56sSkqF1r4xn5JDZYksBfMp-EISzi48705fw7iR2koqd1bKfRs8i-X52C-da92NuBtX5K6fTt5ze7ZOgwQGzJ6gWRkmtWBAAVIfY7kM576gVYQZaB3Fe-0kLaYILjtY8lM22cvJFWOsatE7FjBKj_S5xVRZQxPuPr853oQSsLOeTp5ExMOtgrYz4brYjMJavJ2W97YWoZ8Dec-4ePNm190-vo2oBZ8aueyW6gDd_cRJf7LparW8h8OnIeuzYF1ViPdeOwX3k815EjOtyCakrJkPibPg64DRhAJ_5x1C3hoymCDl7GTbvAOgWX4FN9HA_wMVz6irLdbXR4IYS9gzabtvFbCHMfLAOQyjW3JQ-1rmiwhTWgOFwuqc3Qs5GIat5X6FDJs86E6kmugOQqkVydZeh1pPN6ZKyunW60J1_VIKyqqAF3VQZsS2NLaq3RgQsDYFVQLalnGdoeV0kNIt-pcwbN0OP1YxDW6IHRjW-XaQyYx4IVZYbu9qu7ngkgRdCNnGfo-bjc5x__9w_d-_9cHqErICbq_d7B_n10lUbmi_n4-TbaXJws_QNAVAvzMLEuRl8uWlZ-AVa8NB4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Side+dominance+and+eye+patches+obscuring+half+of+the+visual+field+do+not+affect+walking+kinematics&rft.jtitle=Scientific+reports&rft.au=N%C3%A9gyesi%2C+J%C3%A1nos&rft.au=Kov%C3%A1cs%2C+B%C3%A1lint&rft.au=Petr%C3%B3%2C+B%C3%A1lint&rft.au=Salman%2C+Diane+Nabil&rft.date=2025-02-20&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=6189&rft_id=info:doi/10.1038%2Fs41598-025-90936-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon