Artificial Intelligence Tools for Refining Lung Cancer Screening

Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for ear...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical medicine Vol. 9; no. 12; p. 3860
Main Authors Espinoza, J. Luis, Dong, Le Thanh
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.11.2020
MDPI
Subjects
Online AccessGet full text
ISSN2077-0383
2077-0383
DOI10.3390/jcm9123860

Cover

Loading…
Abstract Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening.
AbstractList Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening.
Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening.Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening.
Author Dong, Le Thanh
Espinoza, J. Luis
AuthorAffiliation 1 Global Health Unit, Faculty of Health Sciences, Kanazawa University, Kanazawa 920-0942, Ishikawa, Japan
2 Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan
3 Center for Gene and Protein Research, Faculty of Medical Technology, Hanoi Medical University, Hanoi 100000, Vietnam; dongle.freelancer@gmail.com
AuthorAffiliation_xml – name: 1 Global Health Unit, Faculty of Health Sciences, Kanazawa University, Kanazawa 920-0942, Ishikawa, Japan
– name: 3 Center for Gene and Protein Research, Faculty of Medical Technology, Hanoi Medical University, Hanoi 100000, Vietnam; dongle.freelancer@gmail.com
– name: 2 Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan
Author_xml – sequence: 1
  givenname: J. Luis
  orcidid: 0000-0002-1794-6666
  surname: Espinoza
  fullname: Espinoza, J. Luis
– sequence: 2
  givenname: Le Thanh
  orcidid: 0000-0002-3066-9392
  surname: Dong
  fullname: Dong, Le Thanh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33261057$$D View this record in MEDLINE/PubMed
BookMark eNptkU1rGzEQhkVwSFw3l_6AspBLCDjVx66kvYQEkzYBQ6FNzkIrzboyaymVdgP599Fi1_mgOkhi5plX82o-oYkPHhD6QvAFYzX-tjabmlAmOT5AU4qFmGMm2eTN_RidpLTGeUlZUiKO0DFjlBNciSm6uo69a51xuivufA9d51bgDRT3IXSpaEMsfkHrvPOrYjnkbaFzNha_TQQYo5_RYau7BCe7c4Yevt_cL27ny58_7hbXy7kpGe_nsmmBcFbR0rRSUGurRlRjCLiuQDS2tkQ0hEmJTYutJIJY3FiQ0uKy0pjN0OVW93FoNmAN-D7qTj1Gt9HxWQXt1PuMd3_UKjwpITgmlcgCZzuBGP4OkHq1cclkw9pDGJKiJee0LkU9vnX6AV2HIfpsT1FeEswFYVWmvr7taN_Kv8_NwPkWMDGkFKHdIwSrcXjqdXgZxh9g43rduzC6cd3_Sl4AlrObUw
CitedBy_id crossref_primary_10_3389_fonc_2022_853801
crossref_primary_10_3390_diagnostics13040648
crossref_primary_10_3390_diagnostics13101748
crossref_primary_10_1016_j_semcancer_2023_01_006
crossref_primary_10_1038_s41598_022_08796_8
crossref_primary_10_1016_j_heliyon_2024_e26218
crossref_primary_10_1097_CCO_0000000000000801
crossref_primary_10_1515_ntrev_2022_0032
crossref_primary_10_1080_13696998_2024_2444781
crossref_primary_10_1140_epjp_s13360_023_03745_4
crossref_primary_10_34197_ats_scholar_2021_0032RE
crossref_primary_10_1016_j_rmr_2023_12_001
crossref_primary_10_3390_cancers16030674
crossref_primary_10_3390_bdcc7010010
crossref_primary_10_1016_j_lungcan_2022_12_002
crossref_primary_10_1155_2024_3790617
crossref_primary_10_1186_s12880_024_01288_3
crossref_primary_10_1002_cam4_5886
crossref_primary_10_1016_j_glmedi_2024_100108
crossref_primary_10_1007_s11042_024_18441_3
crossref_primary_10_1186_s12885_024_13268_5
crossref_primary_10_7759_cureus_72646
crossref_primary_10_1148_ryai_230079
crossref_primary_10_1186_s40537_023_00762_z
crossref_primary_10_2217_nnm_2021_0427
crossref_primary_10_3390_cancers17050882
crossref_primary_10_56712_latam_v6i1_3309
Cites_doi 10.1148/radiology.201.3.8939234
10.1016/j.jacr.2014.08.004
10.1080/14737140.2018.1412260
10.1016/j.ejrad.2016.09.016
10.1007/s00259-019-04382-9
10.1164/rccm.201408-1475OC
10.3390/cancers11020212
10.1056/NEJMoa1911793
10.1136/thx.23.4.414
10.1378/chest.86.1.44
10.1001/jama.2011.1591
10.1016/j.lungcan.2018.11.001
10.1101/756288
10.1038/nrclinonc.2016.50
10.1111/joim.12746
10.1016/j.cllc.2019.07.014
10.3892/ol.2016.5518
10.7554/eLife.23421
10.1118/1.3528204
10.1097/MD.0000000000019114
10.1093/jnci/djq126
10.1007/978-3-319-28549-8_9
10.1186/s13244-019-0795-6
10.1007/s12094-018-02011-9
10.1016/j.ejrad.2019.108774
10.1007/s00330-015-4030-7
10.1007/s00330-019-06453-9
10.3390/cancers11020204
10.1001/jama.2014.11488
10.1093/ije/dyu140
10.3348/kjr.2012.13.5.564
10.1097/JTO.0b013e3181d89b48
10.4103/2153-3539.186902
10.3322/caac.21552
10.1371/journal.pmed.1002686
10.1097/RTI.0000000000000388
10.1098/rsob.170070
10.18632/oncotarget.19333
10.1038/srep46479
10.3109/09553002.2015.1047985
10.1016/S1470-2045(16)30159-0
10.1016/j.media.2020.101796
10.1007/s11864-018-0568-3
10.1148/radiol.2351041662
10.1001/jamaoncol.2020.0001
10.1088/1361-6560/aaafab
10.21037/jtd.2018.11.72
10.1056/NEJMoa1102873
10.3390/jcm8020235
10.1109/ACCESS.2019.2935763
10.1056/NEJMoa060476
10.1002/1097-0142(20001201)89:11+<2474::AID-CNCR26>3.0.CO;2-2
10.1136/thoraxjnl-2011-200736
10.3390/jcm8081241
10.3389/fonc.2019.01393
10.5152/dir.2019.19321
10.1007/s00330-015-3814-0
10.1148/radiol.14131315
10.1038/s41598-020-66333-x
10.1136/thoraxjnl-2016-209825
10.1016/j.artmed.2016.07.001
10.1586/era.13.47
10.1016/j.ejca.2019.06.009
10.1148/radiol.2018180237
10.1038/s41591-019-0447-x
10.1016/j.lungcan.2016.06.003
10.1177/1758834013492001
10.1016/S0140-6736(97)08229-9
10.5334/aogh.2419
10.3389/fonc.2020.01186
10.1016/j.cyto.2019.154868
10.3322/caac.21551
10.1634/theoncologist.2018-0908
10.1258/jms.2012.012010
10.1016/j.clim.2019.108262
10.1038/s41598-020-70629-3
10.21873/cgp.20128
10.1007/s00330-018-5607-8
10.1016/S2213-2600(20)30081-3
10.3390/jcm8040462
10.1097/RTI.0b013e3181f240bc
10.1016/j.lungcan.2020.05.028
10.21037/tlcr.2018.05.06
10.1016/j.jtho.2016.07.002
10.7326/M14-2086
10.1016/S2589-7500(19)30159-1
10.1136/tobaccocontrol-2011-050338
10.1007/s00330-020-07331-5
10.1155/2018/3820956
10.1056/NEJMoa1214726
10.1093/toxsci/64.1.4
10.1097/MD.0000000000004611
10.1088/1361-6528/ab9da9
10.1007/s00330-020-06768-y
10.21037/atm.2018.03.31
10.1097/MD.0000000000005539
10.3389/fonc.2020.01030
10.3390/jcm9051362
10.1002/ijc.32486
10.1038/s41467-018-07619-7
10.1093/annonc/mdz117
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jcm9123860
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X7
  name: ProQuest Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2077-0383
ExternalDocumentID PMC7760157
33261057
10_3390_jcm9123860
Genre Journal Article
Review
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
HMCUK
HYE
IAO
IHR
ITC
KQ8
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
GROUPED_DOAJ
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c436t-8bfe163524cf872dd5b75fe16e6a5e7bd9d17b13880cf0d8171d0bde88d045a03
IEDL.DBID 7X7
ISSN 2077-0383
IngestDate Thu Aug 21 14:12:35 EDT 2025
Fri Jul 11 07:45:29 EDT 2025
Sun Jun 29 14:24:24 EDT 2025
Thu Jan 02 22:58:40 EST 2025
Tue Jul 01 04:34:21 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords lung cancer imaging
computers assisted diagnosis
lung cancer screening
early cancer diagnosis
artificial intelligence and lung cancer
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-8bfe163524cf872dd5b75fe16e6a5e7bd9d17b13880cf0d8171d0bde88d045a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3066-9392
0000-0002-1794-6666
OpenAccessLink https://www.proquest.com/docview/2641067135?pq-origsite=%requestingapplication%
PMID 33261057
PQID 2641067135
PQPubID 5046890
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7760157
proquest_miscellaneous_2466294790
proquest_journals_2641067135
pubmed_primary_33261057
crossref_primary_10_3390_jcm9123860
crossref_citationtrail_10_3390_jcm9123860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201127
PublicationDateYYYYMMDD 2020-11-27
PublicationDate_xml – month: 11
  year: 2020
  text: 20201127
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of clinical medicine
PublicationTitleAlternate J Clin Med
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References (ref_23) 2015; 91
Tu (ref_76) 2018; 63
Melamed (ref_39) 1984; 86
ref_14
ref_13
ref_12
ref_11
Lee (ref_82) 2012; 13
ref_10
Price (ref_73) 2020; 146
Pastorino (ref_51) 2019; 118
Deppen (ref_86) 2014; 312
ref_17
ref_16
ref_15
Kanavati (ref_94) 2020; 10
Reinke (ref_62) 2020; 66
Aasi (ref_99) 2020; 31
ref_21
Aberle (ref_46) 2011; 365
Zhao (ref_35) 2018; 2018
Farhat (ref_29) 2013; 5
Chassagnon (ref_18) 2020; 123
Scholten (ref_53) 2020; 382
Durmaz (ref_74) 2019; 25
Henschke (ref_44) 2006; 355
Biederer (ref_88) 2017; 86
Ardila (ref_71) 2019; 25
McWilliams (ref_63) 2013; 369
Henschke (ref_43) 2000; 89
ref_79
ref_78
Cha (ref_84) 2019; 34
Pinsky (ref_64) 2015; 162
Wu (ref_6) 2018; 7
Cui (ref_72) 2020; 10
Huang (ref_70) 2019; 1
Petousis (ref_67) 2016; 72
Wang (ref_96) 2020; 210
Infante (ref_48) 2015; 191
Armato (ref_59) 2011; 38
Homsi (ref_90) 2019; 29
Guo (ref_85) 2020; 21
Witschi (ref_2) 2001; 64
Janowczyk (ref_92) 2016; 7
Brett (ref_38) 1968; 23
Jacobs (ref_58) 2016; 26
Zhang (ref_68) 2019; 24
Fehlmann (ref_97) 2020; 6
Delzell (ref_77) 2019; 9
Meziane (ref_80) 2012; 27
Paci (ref_49) 2017; 72
Wang (ref_33) 2016; 95
Eisenmann (ref_61) 2018; 9
Schwyzer (ref_87) 2018; 126
Lukas (ref_24) 2017; 8
McKee (ref_65) 2015; 12
Kaneko (ref_41) 1996; 201
Yang (ref_19) 2020; 99
Wang (ref_91) 2020; 30
Rizzo (ref_105) 2016; 26
Nam (ref_83) 2019; 290
Sharma (ref_9) 2015; 11
Nicora (ref_101) 2020; 10
Siegel (ref_5) 2019; 69
Forde (ref_28) 2013; 13
Saghir (ref_47) 2012; 67
Saquib (ref_36) 2015; 44
Li (ref_31) 2016; 17
Shieh (ref_37) 2016; 13
Sgambato (ref_27) 2018; 18
Becker (ref_50) 2020; 146
ref_60
Kanwal (ref_22) 2017; 13
Sone (ref_42) 1998; 351
Petousis (ref_69) 2019; 7
Pinsky (ref_56) 2012; 19
Daimiel (ref_103) 2020; 11
Cai (ref_98) 2020; 126
Gadgeel (ref_26) 2018; 19
Robles (ref_100) 2017; 107
Holzinger (ref_102) 2019; 46
Pastorino (ref_52) 2019; 30
Oken (ref_55) 2011; 306
Proctor (ref_3) 2012; 21
ref_30
Swensen (ref_45) 2005; 235
Ciompi (ref_66) 2017; 7
Blanchard (ref_20) 2010; 5
Zhou (ref_34) 2016; 95
ref_104
Allen (ref_89) 2020; 30
Hocking (ref_40) 2010; 102
Moyer (ref_54) 2014; 160
Ding (ref_93) 2020; 10
Tsoukalas (ref_25) 2018; 6
Schalekamp (ref_81) 2014; 272
Marquette (ref_95) 2020; 8
ref_1
Kozubek (ref_57) 2016; 219
Hawkins (ref_75) 2016; 11
ref_8
ref_4
Shen (ref_32) 2018; 10
Goebel (ref_7) 2019; 16
References_xml – volume: 201
  start-page: 798
  year: 1996
  ident: ref_41
  article-title: Peripheral lung cancer: Screening and detection with low-dose spiral CT versus radiography
  publication-title: Radiology
  doi: 10.1148/radiology.201.3.8939234
– volume: 12
  start-page: 273
  year: 2015
  ident: ref_65
  article-title: Performance of ACR Lung-RADS in a clinical CT lung screening program
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2014.08.004
– volume: 18
  start-page: 71
  year: 2018
  ident: ref_27
  article-title: Targeted therapies in non-small cell lung cancer: A focus on ALK/ROS1 tyrosine kinase inhibitors
  publication-title: Expert Rev. Anticancer Ther.
  doi: 10.1080/14737140.2018.1412260
– volume: 86
  start-page: 353
  year: 2017
  ident: ref_88
  article-title: Screening for lung cancer: Does MRI have a role?
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2016.09.016
– volume: 46
  start-page: 2722
  year: 2019
  ident: ref_102
  article-title: Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-019-04382-9
– volume: 191
  start-page: 1166
  year: 2015
  ident: ref_48
  article-title: Long-Term Follow-up Results of the DANTE Trial, a Randomized Study of Lung Cancer Screening with Spiral Computed Tomography
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201408-1475OC
– ident: ref_10
  doi: 10.3390/cancers11020212
– volume: 382
  start-page: 503
  year: 2020
  ident: ref_53
  article-title: Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1911793
– volume: 23
  start-page: 414
  year: 1968
  ident: ref_38
  article-title: The value of lung cancer detection by six-monthly chest radiographs
  publication-title: Thorax
  doi: 10.1136/thx.23.4.414
– ident: ref_1
– volume: 86
  start-page: 44
  year: 1984
  ident: ref_39
  article-title: Screening for early lung cancer. Results of the Memorial Sloan-Kettering study in New York
  publication-title: Chest
  doi: 10.1378/chest.86.1.44
– volume: 306
  start-page: 1865
  year: 2011
  ident: ref_55
  article-title: Screening by chest radiograph and lung cancer mortality: The Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial
  publication-title: JAMA
  doi: 10.1001/jama.2011.1591
– volume: 126
  start-page: 170
  year: 2018
  ident: ref_87
  article-title: Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks—Initial results
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2018.11.001
– ident: ref_16
  doi: 10.1101/756288
– volume: 13
  start-page: 550
  year: 2016
  ident: ref_37
  article-title: Population-based screening for cancer: Hope and hype
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.50
– ident: ref_14
  doi: 10.1111/joim.12746
– volume: 21
  start-page: 47
  year: 2020
  ident: ref_85
  article-title: Development and Validation of a
  publication-title: Clin. Lung Cancer
  doi: 10.1016/j.cllc.2019.07.014
– volume: 13
  start-page: 535
  year: 2017
  ident: ref_22
  article-title: Familial risk for lung cancer
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2016.5518
– ident: ref_78
  doi: 10.7554/eLife.23421
– volume: 38
  start-page: 915
  year: 2011
  ident: ref_59
  article-title: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– volume: 99
  start-page: e19114
  year: 2020
  ident: ref_19
  article-title: The diagnostic accuracy of artificial intelligence in thoracic diseases: A protocol for systematic review and meta-analysis
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000019114
– volume: 102
  start-page: 722
  year: 2010
  ident: ref_40
  article-title: Lung cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djq126
– volume: 219
  start-page: 231
  year: 2016
  ident: ref_57
  article-title: Challenges and Benchmarks in Bioimage Analysis
  publication-title: Adv. Anat. Embryol. Cell Biol.
  doi: 10.1007/978-3-319-28549-8_9
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_103
  article-title: Combining molecular and imaging metrics in cancer: Radiogenomics
  publication-title: Insights Imaging
  doi: 10.1186/s13244-019-0795-6
– ident: ref_30
  doi: 10.1007/s12094-018-02011-9
– volume: 123
  start-page: 108774
  year: 2020
  ident: ref_18
  article-title: Artificial intelligence applications for thoracic imaging
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2019.108774
– volume: 26
  start-page: 2139
  year: 2016
  ident: ref_58
  article-title: Computer-aided detection of pulmonary nodules: A comparative study using the public LIDC/IDRI database
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-015-4030-7
– volume: 30
  start-page: 1738
  year: 2020
  ident: ref_89
  article-title: Cost-effectiveness of lung MRI in lung cancer screening
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06453-9
– ident: ref_21
  doi: 10.3390/cancers11020204
– volume: 160
  start-page: 330
  year: 2014
  ident: ref_54
  article-title: Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement
  publication-title: Ann. Intern. Med.
– volume: 312
  start-page: 1227
  year: 2014
  ident: ref_86
  article-title: Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: A meta-analysis
  publication-title: JAMA
  doi: 10.1001/jama.2014.11488
– volume: 44
  start-page: 264
  year: 2015
  ident: ref_36
  article-title: Does screening for disease save lives in asymptomatic adults? Systematic review of meta-analyses and randomized trials
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyu140
– volume: 13
  start-page: 564
  year: 2012
  ident: ref_82
  article-title: Computer-aided detection of malignant lung nodules on chest radiographs: Effect on observers’ performance
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2012.13.5.564
– volume: 5
  start-page: 909
  year: 2010
  ident: ref_20
  article-title: Lung cancer in octogenarians
  publication-title: J. Thorac. Oncol.
  doi: 10.1097/JTO.0b013e3181d89b48
– volume: 7
  start-page: 29
  year: 2016
  ident: ref_92
  article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.186902
– ident: ref_17
  doi: 10.3322/caac.21552
– ident: ref_79
  doi: 10.1371/journal.pmed.1002686
– volume: 34
  start-page: 86
  year: 2019
  ident: ref_84
  article-title: Performance of Deep Learning Model in Detecting Operable Lung Cancer with Chest Radiographs
  publication-title: J. Thorac. Imaging
  doi: 10.1097/RTI.0000000000000388
– ident: ref_8
  doi: 10.1098/rsob.170070
– volume: 8
  start-page: 71223
  year: 2017
  ident: ref_24
  article-title: State-of-the-art considerations in small cell lung cancer brain metastases
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19333
– volume: 7
  start-page: 46479
  year: 2017
  ident: ref_66
  article-title: Towards automatic pulmonary nodule management in lung cancer screening with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/srep46479
– volume: 91
  start-page: 605
  year: 2015
  ident: ref_23
  article-title: Residential radon and lung cancer characteristics in never smokers
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2015.1047985
– volume: 17
  start-page: 846
  year: 2016
  ident: ref_31
  article-title: Immunotherapy for small-cell lung cancer
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30159-0
– volume: 66
  start-page: 101796
  year: 2020
  ident: ref_62
  article-title: BIAS: Transparent reporting of biomedical image analysis challenges
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101796
– volume: 19
  start-page: 53
  year: 2018
  ident: ref_26
  article-title: Targeted Therapy and Immune Therapy for Small Cell Lung Cancer
  publication-title: Curr. Treat. Options Oncol.
  doi: 10.1007/s11864-018-0568-3
– volume: 235
  start-page: 259
  year: 2005
  ident: ref_45
  article-title: CT screening for lung cancer: Five-year prospective experience
  publication-title: Radiology
  doi: 10.1148/radiol.2351041662
– volume: 6
  start-page: 714
  year: 2020
  ident: ref_97
  article-title: Evaluating the Use of Circulating MicroRNA Profiles for Lung Cancer Detection in Symptomatic Patients
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.0001
– volume: 63
  start-page: 065005
  year: 2018
  ident: ref_76
  article-title: Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aaafab
– volume: 10
  start-page: 6636
  year: 2018
  ident: ref_32
  article-title: Effectiveness and safety of PD-1/PD-L1 or CTLA4 inhibitors combined with chemotherapy as a first-line treatment for lung cancer: A meta-analysis
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2018.11.72
– volume: 365
  start-page: 395
  year: 2011
  ident: ref_46
  article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1102873
– ident: ref_11
  doi: 10.3390/jcm8020235
– volume: 7
  start-page: 119403
  year: 2019
  ident: ref_69
  article-title: Using Sequential Decision Making to Improve Lung Cancer Screening Performance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935763
– volume: 355
  start-page: 1763
  year: 2006
  ident: ref_44
  article-title: Survival of patients with stage I lung cancer detected on CT screening
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa060476
– volume: 89
  start-page: 2474
  year: 2000
  ident: ref_43
  article-title: Early lung cancer action project: Overall design and findings from baseline screening
  publication-title: Cancer
  doi: 10.1002/1097-0142(20001201)89:11+<2474::AID-CNCR26>3.0.CO;2-2
– volume: 67
  start-page: 296
  year: 2012
  ident: ref_47
  article-title: CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer Screening Trial: Status after five annual screening rounds with low-dose CT
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2011-200736
– ident: ref_15
  doi: 10.3390/jcm8081241
– volume: 9
  start-page: 1393
  year: 2019
  ident: ref_77
  article-title: Machine Learning and Feature Selection Methods for Disease Classification with Application to Lung Cancer Screening Image Data
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01393
– volume: 25
  start-page: 485
  year: 2019
  ident: ref_74
  article-title: Radiomics with artificial intelligence: A practical guide for beginners
  publication-title: Diagn. Interv. Radiol.
  doi: 10.5152/dir.2019.19321
– volume: 26
  start-page: 32
  year: 2016
  ident: ref_105
  article-title: CT Radiogenomic Characterization of EGFR, K-RAS, and ALK Mutations in Non-Small Cell Lung Cancer
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-015-3814-0
– volume: 272
  start-page: 252
  year: 2014
  ident: ref_81
  article-title: Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images
  publication-title: Radiology
  doi: 10.1148/radiol.14131315
– volume: 10
  start-page: 9297
  year: 2020
  ident: ref_94
  article-title: Weakly-supervised learning for lung carcinoma classification using deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66333-x
– volume: 72
  start-page: 825
  year: 2017
  ident: ref_49
  article-title: Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2016-209825
– volume: 72
  start-page: 42
  year: 2016
  ident: ref_67
  article-title: Prediction of lung cancer incidence on the low-dose computed tomography arm of the National Lung Screening Trial: A dynamic Bayesian network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2016.07.001
– volume: 13
  start-page: 745
  year: 2013
  ident: ref_28
  article-title: Targeted therapy for non-small-cell lung cancer: Past, present and future
  publication-title: Expert Rev. Anticancer Ther.
  doi: 10.1586/era.13.47
– volume: 118
  start-page: 142
  year: 2019
  ident: ref_51
  article-title: Ten-year results of the Multicentric Italian Lung Detection trial demonstrate the safety and efficacy of biennial lung cancer screening
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2019.06.009
– volume: 290
  start-page: 218
  year: 2019
  ident: ref_83
  article-title: Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs
  publication-title: Radiology
  doi: 10.1148/radiol.2018180237
– volume: 25
  start-page: 954
  year: 2019
  ident: ref_71
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0447-x
– volume: 107
  start-page: 50
  year: 2017
  ident: ref_100
  article-title: Integration of multiple “OMIC” biomarkers: A precision medicine strategy for lung cancer
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2016.06.003
– volume: 5
  start-page: 249
  year: 2013
  ident: ref_29
  article-title: Targeted therapies in non-small cell lung carcinoma: What have we achieved so far?
  publication-title: Ther. Adv. Med. Oncol.
  doi: 10.1177/1758834013492001
– volume: 351
  start-page: 1242
  year: 1998
  ident: ref_42
  article-title: Mass screening for lung cancer with mobile spiral computed tomography scanner
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)08229-9
– ident: ref_4
  doi: 10.5334/aogh.2419
– volume: 10
  start-page: 1186
  year: 2020
  ident: ref_93
  article-title: CT-Based Deep Learning Model for Invasiveness Classification and Micropapillary Pattern Prediction within Lung Adenocarcinoma
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.01186
– volume: 126
  start-page: 154868
  year: 2020
  ident: ref_98
  article-title: Extensive serum biomarker analysis in patients with non-small-cell lung carcinoma
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2019.154868
– volume: 69
  start-page: 7
  year: 2019
  ident: ref_5
  article-title: Cancer statistics, 2019
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21551
– volume: 24
  start-page: 1159
  year: 2019
  ident: ref_68
  article-title: Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2018-0908
– volume: 19
  start-page: 154
  year: 2012
  ident: ref_56
  article-title: Applying the National Lung Screening Trial eligibility criteria to the US population: What percent of the population and of incident lung cancers would be covered?
  publication-title: J. Med. Screen
  doi: 10.1258/jms.2012.012010
– volume: 210
  start-page: 108262
  year: 2020
  ident: ref_96
  article-title: Screening of tumor-associated antigens based on Oncomine database and evaluation of diagnostic value of autoantibodies in lung cancer
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2019.108262
– volume: 10
  start-page: 13657
  year: 2020
  ident: ref_72
  article-title: Development and clinical application of deep learning model for lung nodules screening on CT images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70629-3
– volume: 16
  start-page: 229
  year: 2019
  ident: ref_7
  article-title: Diagnosis of Non-small Cell Lung Cancer for Early Stage Asymptomatic Patients
  publication-title: Cancer Genom. Proteom.
  doi: 10.21873/cgp.20128
– volume: 11
  start-page: 1033
  year: 2015
  ident: ref_9
  article-title: Lung cancer screening: History, current perspectives, and future directions
  publication-title: Arch. Med. Sci.
– volume: 29
  start-page: 898
  year: 2019
  ident: ref_90
  article-title: Lung cancer screening with MRI: Evaluation of MRI for lung cancer screening by comparison of LDCT- and MRI-derived Lung-RADS categories in the first two screening rounds
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5607-8
– volume: 8
  start-page: 709
  year: 2020
  ident: ref_95
  article-title: Circulating tumour cells as a potential biomarker for lung cancer screening: A prospective cohort study
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30081-3
– ident: ref_13
  doi: 10.3390/jcm8040462
– volume: 27
  start-page: 58
  year: 2012
  ident: ref_80
  article-title: A comparison of four versions of a computer-aided detection system for pulmonary nodules on chest radiographs
  publication-title: J. Thorac. Imaging
  doi: 10.1097/RTI.0b013e3181f240bc
– volume: 146
  start-page: 197
  year: 2020
  ident: ref_73
  article-title: Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2020.05.028
– volume: 7
  start-page: 220
  year: 2018
  ident: ref_6
  article-title: The epidemiology of lung cancer
  publication-title: Transl. Lung Cancer Res.
  doi: 10.21037/tlcr.2018.05.06
– volume: 11
  start-page: 2120
  year: 2016
  ident: ref_75
  article-title: Predicting Malignant Nodules from Screening CT Scans
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2016.07.002
– volume: 162
  start-page: 485
  year: 2015
  ident: ref_64
  article-title: Performance of Lung-RADS in the National Lung Screening Trial: A retrospective assessment
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M14-2086
– volume: 1
  start-page: e353
  year: 2019
  ident: ref_70
  article-title: Prediction of lung cancer risk at follow-up screening with low-dose CT: A training and validation study of a deep learning method
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(19)30159-1
– volume: 21
  start-page: 87
  year: 2012
  ident: ref_3
  article-title: The history of the discovery of the cigarette-lung cancer link: Evidentiary traditions, corporate denial, global toll
  publication-title: Tob. Control
  doi: 10.1136/tobaccocontrol-2011-050338
– ident: ref_104
  doi: 10.1007/s00330-020-07331-5
– volume: 2018
  start-page: 3820956
  year: 2018
  ident: ref_35
  article-title: Anti-PD-1/PD-L1 Antibody Therapy for Pretreated Advanced or Metastatic Nonsmall Cell Lung Carcinomas and the Correlation between PD-L1 Expression and Treatment Effectiveness: An Update Meta-Analysis of Randomized Clinical Trials
  publication-title: BioMed Res. Int.
  doi: 10.1155/2018/3820956
– volume: 369
  start-page: 910
  year: 2013
  ident: ref_63
  article-title: Probability of cancer in pulmonary nodules detected on first screening CT
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1214726
– volume: 64
  start-page: 4
  year: 2001
  ident: ref_2
  article-title: A short history of lung cancer
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/64.1.4
– volume: 95
  start-page: e4611
  year: 2016
  ident: ref_34
  article-title: Anti-PD-1/PD-L1 antibody therapy for pretreated advanced nonsmall-cell lung cancer: A meta-analysis of randomized clinical trials
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000004611
– volume: 31
  start-page: 415707
  year: 2020
  ident: ref_99
  article-title: A density functional theory study on the interaction of toluene with transition metal decorated carbon nanotubes: A promising platform for early detection of lung cancer from human breath
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab9da9
– volume: 30
  start-page: 4595
  year: 2020
  ident: ref_91
  article-title: Classification of pulmonary lesion based on multiparametric MRI: Utility of radiomics and comparison of machine learning methods
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06768-y
– volume: 6
  start-page: 145
  year: 2018
  ident: ref_25
  article-title: Advanced small cell lung cancer (SCLC): New challenges and new expectations
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2018.03.31
– volume: 95
  start-page: e5539
  year: 2016
  ident: ref_33
  article-title: A meta-analysis of efficacy and safety of antibodies targeting PD-1/PD-L1 in treatment of advanced nonsmall cell lung cancer
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000005539
– volume: 10
  start-page: 1030
  year: 2020
  ident: ref_101
  article-title: Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.01030
– ident: ref_12
  doi: 10.3390/jcm9051362
– volume: 146
  start-page: 1503
  year: 2020
  ident: ref_50
  article-title: Lung cancer mortality reduction by LDCT screening-Results from the randomized German LUSI trial
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32486
– volume: 9
  start-page: 5217
  year: 2018
  ident: ref_61
  article-title: Why rankings of biomedical image analysis competitions should be interpreted with care
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07619-7
– ident: ref_60
– volume: 30
  start-page: 1162
  year: 2019
  ident: ref_52
  article-title: Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: New confirmation of lung cancer screening efficacy
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdz117
SSID ssj0000884217
Score 2.3509133
SecondaryResourceType review_article
Snippet Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3860
SubjectTerms Algorithms
Artificial intelligence
Asymptomatic
Biomarkers
Cellular biology
Chemotherapy
Clinical medicine
Clinical outcomes
Clinical trials
Disease
Lung cancer
Mammography
Medical diagnosis
Medical screening
Metastasis
Mortality
Mutation
Review
Smoking
Tobacco
Tomography
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF6KgngR31arrOjFQzSPfWQPoiKKivWgLfQWso-gUlOtFfTfO5Okta3idWeSDTM7u99kh28I2RcFEA-YF3GdekxkoQcog3silD5jilml8ddA805ctdlNh3dqZNi_szLg-5-pHfaTave7h59vXycQ8MeYcULKfvRsXhRswLGA1H0WTiSJAdqsYH6xI8cxA-hdspNOPTJ5Hv0CmdO1kmOHz-UiWahQIz0r3bxEai5fJnPN6l58hZyipOSCoNdjJJu01et13ykAU3rvsqIXBL2F8Kbn6Ow-fTBYdgOjq6R9edE6v_Kq3gieYZEYeLHOHEApHjKTxTK0lmvJcciJlDuprbKB1AFSvZjMtzEYxfrauji2AOJSP1ojM3kvdxuEGsCMxijNUqdYFFqtfJUyybJACyk0r5ODoYUSUxGHY_-KbgIJBFoz-bFmneyNdF9Luow_tRpDQydDjyeAzJDOLohgwt2RGBY73mCkuet9gA4TIlRMKnjFeumX0TQRAFFsWlwncsJjIwUk0p6U5E-PBaG2xMIgLjf__6wtMh9ish0EXigbZGbQ_3DbgEgGeqdYbt_Ott_k
  priority: 102
  providerName: Scholars Portal
Title Artificial Intelligence Tools for Refining Lung Cancer Screening
URI https://www.ncbi.nlm.nih.gov/pubmed/33261057
https://www.proquest.com/docview/2641067135
https://www.proquest.com/docview/2466294790
https://pubmed.ncbi.nlm.nih.gov/PMC7760157
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61IFW9IPpeoMhVufRgESd-xCdeAtGqixAFaW9R_IgoggTY5f8zk2TD0lY9xh4l0Yw983k8-gZgS7dAXEieKVdyqauUI8pQXKcmkdLKYB2lBsYn-vhC_pioSZ9wm_ZllXOf2Drq0HjKkW9j4Ca2M5Gpnds7Tl2j6Ha1b6HxEpaJuoxKuszEDDkW3EESIXfHSprh6X77yt9Y9NV5y0i5EIf-Apd_1kguBJ2jVVjp0SLb68z7Bl7E-i28Gvf34e9gl2Y6Dgj2fYFck503zfWUISBlZ7Fqe0Cwn7it2QEZ-Z798lRug6Pv4eLo8PzgmPc9EbiXmZ7x3FURIZRKpa9yk4agnFE0FHWponHBBmGcIIoXXyUhF0aExIWY5wHBW5lkH2Cpbur4CZhHrOi9dbKMVmZpcDaxpTSyEk4b7dQIvs01VPieMJz6VlwXeHAgbRZP2hzB10H2tqPJ-KfUxlzRRb9VpsWTYUfwZZjGRU43F2UdmweUkVqnVhqLr_jY2WX4TIYAlJoVj8A8s9ggQATaz2fq35ctkbahgiBl1v7_W-vwOqVDthA8NRuwNLt_iJ8RiczcZrvcNmF5__Dk9AyfxjJ_BJUw4FM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoJeKt7dUsAIOHCIGjt-xAfEo7TapbsrVLZSbyF-RIBKUrpbIf4Uv5FxXt0C4tarPXKi8Xjmsz3-BuCZrIE45VEiTB5xWbAIUYaIJFMx55o7bcLRwGQqh0f8_bE4XoFf3VuYkFbZ-cTaUbvKhjPyHQzcge2MJuLV6fcoVI0Kt6tdCY3GLA78zx-4ZZu_HL3D-X3O2P7ebHcYtVUFIssTuYhSU3gEIYJxW6SKOSeMEqHJy1x4ZZx2VBkaSFJsEbuUKupi43yaOoQ_eZzguNdgDceK0RGsvd2bfjjsT3VwzXIE-Q0PapLoeOer_aYxOqQ1B-ZS5PsLzv6ZlbkU5vZvwkaLT8mbxqBuwYovb8P1SXsDfwdeh56GdYKMlug8yayqTuYEITA59EVddYKM0ZGQ3WBWZ-SjDQk-2HoXjq5EX_dgtaxKvwnEIjq1Vhuee80T5oyOdc4VL6iRShoxgBedhjLbUpSHShknGW5VgjazC20O4Gkve9oQc_xTartTdNYuznl2YUoDeNJ347IKdyV56atzlOFSMs2VxiHuN_PSfyZByBvKIw9AXZqxXiBQdl_uKb98rqm7VUhBEmrr_7_1GG4MZ5NxNh5NDx7AOgtbfEojprZhdXF27h8iDlqYR63xEfh01fb-G33DHL8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgBBw7Rxu_4gAC1rLr0IQSttLc0fkRQtUnpboX4a_w6xnl1C4hbr_bIicYzns_2-BuAl6oB4lQkXNoiEapkCaIMmSimUyGM8MbGo4HdPbV1ID7O5GwFfvVvYWJaZb8mNgu1r108Ix9j4I5sZ5TLcdmlRXzanLw9_Z7EClLxprUvp9GayHb4-QO3b_M3002c61eMTT7sb2wlXYWBxAmuFklmy4CARDLhykwz76XVMjYFVcigrTeeaksjYYorU59RTX1qfcgyj1CoSDmOew2uay5p9DE908P5DnqvQLjfMqJybtLxkTsxGCeyhg1zKQb-BWz_zM9cCniTW3CzQ6rkfWtat2ElVHdgbbe7i78L72JPyz9BpkvEnmS_ro_nBMEw-RzKpv4E2cElhWxEAzsjX1xM9cHWe3BwJdq6D6tVXYWHQBziVOeMFUUwgjNvTWoKoUVJrdLKyhG87jWUu46sPNbMOM5x0xK1mV9ocwQvBtnTlqLjn1LrvaLzzk3n-YVRjeD50I0OFm9NiirU5ygjlGJGaINDPGjnZfgMR_AbCyWPQF-asUEgkndf7qm-fW1IvHVMRpL60f9_6xmsoZXnO9O97cdwg8W9PqUJ0-uwujg7D08QEC3s08byCBxetan_BoiZH48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Tools+for+Refining+Lung+Cancer+Screening&rft.jtitle=Journal+of+clinical+medicine&rft.au=Espinoza%2C+J+Luis&rft.au=Le+Thanh+Dong&rft.date=2020-11-27&rft.pub=MDPI+AG&rft.eissn=2077-0383&rft.volume=9&rft.issue=12&rft.spage=3860&rft_id=info:doi/10.3390%2Fjcm9123860&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon