Artificial Intelligence Tools for Refining Lung Cancer Screening
Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for ear...
Saved in:
Published in | Journal of clinical medicine Vol. 9; no. 12; p. 3860 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.11.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2077-0383 2077-0383 |
DOI | 10.3390/jcm9123860 |
Cover
Loading…
Abstract | Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening. |
---|---|
AbstractList | Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening. Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening.Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The most important determinant of survival in lung cancer is the disease stage at diagnosis, thus developing an effective screening method for early diagnosis has been a long-term goal in lung cancer care. In the last decade, and based on the results of large clinical trials, lung cancer screening programs using low-dose computer tomography (LDCT) in high-risk individuals have been implemented in some clinical settings, however, this method has various limitations, especially a high false-positive rate which eventually results in a number of unnecessary diagnostic and therapeutic interventions among the screened subjects. By using complex algorithms and software, artificial intelligence (AI) is capable to emulate human cognition in the analysis, interpretation, and comprehension of complicated data and currently, it is being successfully applied in various healthcare settings. Taking advantage of the ability of AI to quantify information from images, and its superior capability in recognizing complex patterns in images compared to humans, AI has the potential to aid clinicians in the interpretation of LDCT images obtained in the setting of lung cancer screening. In the last decade, several AI models aimed to improve lung cancer detection have been reported. Some algorithms performed equal or even outperformed experienced radiologists in distinguishing benign from malign lung nodules and some of those models improved diagnostic accuracy and decreased the false-positive rate. Here, we discuss recent publications in which AI algorithms are utilized to assess chest computer tomography (CT) scans imaging obtaining in the setting of lung cancer screening. |
Author | Dong, Le Thanh Espinoza, J. Luis |
AuthorAffiliation | 1 Global Health Unit, Faculty of Health Sciences, Kanazawa University, Kanazawa 920-0942, Ishikawa, Japan 2 Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan 3 Center for Gene and Protein Research, Faculty of Medical Technology, Hanoi Medical University, Hanoi 100000, Vietnam; dongle.freelancer@gmail.com |
AuthorAffiliation_xml | – name: 1 Global Health Unit, Faculty of Health Sciences, Kanazawa University, Kanazawa 920-0942, Ishikawa, Japan – name: 3 Center for Gene and Protein Research, Faculty of Medical Technology, Hanoi Medical University, Hanoi 100000, Vietnam; dongle.freelancer@gmail.com – name: 2 Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan |
Author_xml | – sequence: 1 givenname: J. Luis orcidid: 0000-0002-1794-6666 surname: Espinoza fullname: Espinoza, J. Luis – sequence: 2 givenname: Le Thanh orcidid: 0000-0002-3066-9392 surname: Dong fullname: Dong, Le Thanh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33261057$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1rGzEQhkVwSFw3l_6AspBLCDjVx66kvYQEkzYBQ6FNzkIrzboyaymVdgP599Fi1_mgOkhi5plX82o-oYkPHhD6QvAFYzX-tjabmlAmOT5AU4qFmGMm2eTN_RidpLTGeUlZUiKO0DFjlBNciSm6uo69a51xuivufA9d51bgDRT3IXSpaEMsfkHrvPOrYjnkbaFzNha_TQQYo5_RYau7BCe7c4Yevt_cL27ny58_7hbXy7kpGe_nsmmBcFbR0rRSUGurRlRjCLiuQDS2tkQ0hEmJTYutJIJY3FiQ0uKy0pjN0OVW93FoNmAN-D7qTj1Gt9HxWQXt1PuMd3_UKjwpITgmlcgCZzuBGP4OkHq1cclkw9pDGJKiJee0LkU9vnX6AV2HIfpsT1FeEswFYVWmvr7taN_Kv8_NwPkWMDGkFKHdIwSrcXjqdXgZxh9g43rduzC6cd3_Sl4AlrObUw |
CitedBy_id | crossref_primary_10_3389_fonc_2022_853801 crossref_primary_10_3390_diagnostics13040648 crossref_primary_10_3390_diagnostics13101748 crossref_primary_10_1016_j_semcancer_2023_01_006 crossref_primary_10_1038_s41598_022_08796_8 crossref_primary_10_1016_j_heliyon_2024_e26218 crossref_primary_10_1097_CCO_0000000000000801 crossref_primary_10_1515_ntrev_2022_0032 crossref_primary_10_1080_13696998_2024_2444781 crossref_primary_10_1140_epjp_s13360_023_03745_4 crossref_primary_10_34197_ats_scholar_2021_0032RE crossref_primary_10_1016_j_rmr_2023_12_001 crossref_primary_10_3390_cancers16030674 crossref_primary_10_3390_bdcc7010010 crossref_primary_10_1016_j_lungcan_2022_12_002 crossref_primary_10_1155_2024_3790617 crossref_primary_10_1186_s12880_024_01288_3 crossref_primary_10_1002_cam4_5886 crossref_primary_10_1016_j_glmedi_2024_100108 crossref_primary_10_1007_s11042_024_18441_3 crossref_primary_10_1186_s12885_024_13268_5 crossref_primary_10_7759_cureus_72646 crossref_primary_10_1148_ryai_230079 crossref_primary_10_1186_s40537_023_00762_z crossref_primary_10_2217_nnm_2021_0427 crossref_primary_10_3390_cancers17050882 crossref_primary_10_56712_latam_v6i1_3309 |
Cites_doi | 10.1148/radiology.201.3.8939234 10.1016/j.jacr.2014.08.004 10.1080/14737140.2018.1412260 10.1016/j.ejrad.2016.09.016 10.1007/s00259-019-04382-9 10.1164/rccm.201408-1475OC 10.3390/cancers11020212 10.1056/NEJMoa1911793 10.1136/thx.23.4.414 10.1378/chest.86.1.44 10.1001/jama.2011.1591 10.1016/j.lungcan.2018.11.001 10.1101/756288 10.1038/nrclinonc.2016.50 10.1111/joim.12746 10.1016/j.cllc.2019.07.014 10.3892/ol.2016.5518 10.7554/eLife.23421 10.1118/1.3528204 10.1097/MD.0000000000019114 10.1093/jnci/djq126 10.1007/978-3-319-28549-8_9 10.1186/s13244-019-0795-6 10.1007/s12094-018-02011-9 10.1016/j.ejrad.2019.108774 10.1007/s00330-015-4030-7 10.1007/s00330-019-06453-9 10.3390/cancers11020204 10.1001/jama.2014.11488 10.1093/ije/dyu140 10.3348/kjr.2012.13.5.564 10.1097/JTO.0b013e3181d89b48 10.4103/2153-3539.186902 10.3322/caac.21552 10.1371/journal.pmed.1002686 10.1097/RTI.0000000000000388 10.1098/rsob.170070 10.18632/oncotarget.19333 10.1038/srep46479 10.3109/09553002.2015.1047985 10.1016/S1470-2045(16)30159-0 10.1016/j.media.2020.101796 10.1007/s11864-018-0568-3 10.1148/radiol.2351041662 10.1001/jamaoncol.2020.0001 10.1088/1361-6560/aaafab 10.21037/jtd.2018.11.72 10.1056/NEJMoa1102873 10.3390/jcm8020235 10.1109/ACCESS.2019.2935763 10.1056/NEJMoa060476 10.1002/1097-0142(20001201)89:11+<2474::AID-CNCR26>3.0.CO;2-2 10.1136/thoraxjnl-2011-200736 10.3390/jcm8081241 10.3389/fonc.2019.01393 10.5152/dir.2019.19321 10.1007/s00330-015-3814-0 10.1148/radiol.14131315 10.1038/s41598-020-66333-x 10.1136/thoraxjnl-2016-209825 10.1016/j.artmed.2016.07.001 10.1586/era.13.47 10.1016/j.ejca.2019.06.009 10.1148/radiol.2018180237 10.1038/s41591-019-0447-x 10.1016/j.lungcan.2016.06.003 10.1177/1758834013492001 10.1016/S0140-6736(97)08229-9 10.5334/aogh.2419 10.3389/fonc.2020.01186 10.1016/j.cyto.2019.154868 10.3322/caac.21551 10.1634/theoncologist.2018-0908 10.1258/jms.2012.012010 10.1016/j.clim.2019.108262 10.1038/s41598-020-70629-3 10.21873/cgp.20128 10.1007/s00330-018-5607-8 10.1016/S2213-2600(20)30081-3 10.3390/jcm8040462 10.1097/RTI.0b013e3181f240bc 10.1016/j.lungcan.2020.05.028 10.21037/tlcr.2018.05.06 10.1016/j.jtho.2016.07.002 10.7326/M14-2086 10.1016/S2589-7500(19)30159-1 10.1136/tobaccocontrol-2011-050338 10.1007/s00330-020-07331-5 10.1155/2018/3820956 10.1056/NEJMoa1214726 10.1093/toxsci/64.1.4 10.1097/MD.0000000000004611 10.1088/1361-6528/ab9da9 10.1007/s00330-020-06768-y 10.21037/atm.2018.03.31 10.1097/MD.0000000000005539 10.3389/fonc.2020.01030 10.3390/jcm9051362 10.1002/ijc.32486 10.1038/s41467-018-07619-7 10.1093/annonc/mdz117 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/jcm9123860 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X7 name: ProQuest Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2077-0383 |
ExternalDocumentID | PMC7760157 33261057 10_3390_jcm9123860 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA HMCUK HYE IAO IHR ITC KQ8 M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP GROUPED_DOAJ NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c436t-8bfe163524cf872dd5b75fe16e6a5e7bd9d17b13880cf0d8171d0bde88d045a03 |
IEDL.DBID | 7X7 |
ISSN | 2077-0383 |
IngestDate | Thu Aug 21 14:12:35 EDT 2025 Fri Jul 11 07:45:29 EDT 2025 Sun Jun 29 14:24:24 EDT 2025 Thu Jan 02 22:58:40 EST 2025 Tue Jul 01 04:34:21 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | lung cancer imaging computers assisted diagnosis lung cancer screening early cancer diagnosis artificial intelligence and lung cancer |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-8bfe163524cf872dd5b75fe16e6a5e7bd9d17b13880cf0d8171d0bde88d045a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3066-9392 0000-0002-1794-6666 |
OpenAccessLink | https://www.proquest.com/docview/2641067135?pq-origsite=%requestingapplication% |
PMID | 33261057 |
PQID | 2641067135 |
PQPubID | 5046890 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7760157 proquest_miscellaneous_2466294790 proquest_journals_2641067135 pubmed_primary_33261057 crossref_primary_10_3390_jcm9123860 crossref_citationtrail_10_3390_jcm9123860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201127 |
PublicationDateYYYYMMDD | 2020-11-27 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201127 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of clinical medicine |
PublicationTitleAlternate | J Clin Med |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | (ref_23) 2015; 91 Tu (ref_76) 2018; 63 Melamed (ref_39) 1984; 86 ref_14 ref_13 ref_12 ref_11 Lee (ref_82) 2012; 13 ref_10 Price (ref_73) 2020; 146 Pastorino (ref_51) 2019; 118 Deppen (ref_86) 2014; 312 ref_17 ref_16 ref_15 Kanavati (ref_94) 2020; 10 Reinke (ref_62) 2020; 66 Aasi (ref_99) 2020; 31 ref_21 Aberle (ref_46) 2011; 365 Zhao (ref_35) 2018; 2018 Farhat (ref_29) 2013; 5 Chassagnon (ref_18) 2020; 123 Scholten (ref_53) 2020; 382 Durmaz (ref_74) 2019; 25 Henschke (ref_44) 2006; 355 Biederer (ref_88) 2017; 86 Ardila (ref_71) 2019; 25 McWilliams (ref_63) 2013; 369 Henschke (ref_43) 2000; 89 ref_79 ref_78 Cha (ref_84) 2019; 34 Pinsky (ref_64) 2015; 162 Wu (ref_6) 2018; 7 Cui (ref_72) 2020; 10 Huang (ref_70) 2019; 1 Petousis (ref_67) 2016; 72 Wang (ref_96) 2020; 210 Infante (ref_48) 2015; 191 Armato (ref_59) 2011; 38 Homsi (ref_90) 2019; 29 Guo (ref_85) 2020; 21 Witschi (ref_2) 2001; 64 Janowczyk (ref_92) 2016; 7 Brett (ref_38) 1968; 23 Jacobs (ref_58) 2016; 26 Zhang (ref_68) 2019; 24 Fehlmann (ref_97) 2020; 6 Delzell (ref_77) 2019; 9 Meziane (ref_80) 2012; 27 Paci (ref_49) 2017; 72 Wang (ref_33) 2016; 95 Eisenmann (ref_61) 2018; 9 Schwyzer (ref_87) 2018; 126 Lukas (ref_24) 2017; 8 McKee (ref_65) 2015; 12 Kaneko (ref_41) 1996; 201 Yang (ref_19) 2020; 99 Wang (ref_91) 2020; 30 Rizzo (ref_105) 2016; 26 Nam (ref_83) 2019; 290 Sharma (ref_9) 2015; 11 Nicora (ref_101) 2020; 10 Siegel (ref_5) 2019; 69 Forde (ref_28) 2013; 13 Saghir (ref_47) 2012; 67 Saquib (ref_36) 2015; 44 Li (ref_31) 2016; 17 Shieh (ref_37) 2016; 13 Sgambato (ref_27) 2018; 18 Becker (ref_50) 2020; 146 ref_60 Kanwal (ref_22) 2017; 13 Sone (ref_42) 1998; 351 Petousis (ref_69) 2019; 7 Pinsky (ref_56) 2012; 19 Daimiel (ref_103) 2020; 11 Cai (ref_98) 2020; 126 Gadgeel (ref_26) 2018; 19 Robles (ref_100) 2017; 107 Holzinger (ref_102) 2019; 46 Pastorino (ref_52) 2019; 30 Oken (ref_55) 2011; 306 Proctor (ref_3) 2012; 21 ref_30 Swensen (ref_45) 2005; 235 Ciompi (ref_66) 2017; 7 Blanchard (ref_20) 2010; 5 Zhou (ref_34) 2016; 95 ref_104 Allen (ref_89) 2020; 30 Hocking (ref_40) 2010; 102 Moyer (ref_54) 2014; 160 Ding (ref_93) 2020; 10 Tsoukalas (ref_25) 2018; 6 Schalekamp (ref_81) 2014; 272 Marquette (ref_95) 2020; 8 ref_1 Kozubek (ref_57) 2016; 219 Hawkins (ref_75) 2016; 11 ref_8 ref_4 Shen (ref_32) 2018; 10 Goebel (ref_7) 2019; 16 |
References_xml | – volume: 201 start-page: 798 year: 1996 ident: ref_41 article-title: Peripheral lung cancer: Screening and detection with low-dose spiral CT versus radiography publication-title: Radiology doi: 10.1148/radiology.201.3.8939234 – volume: 12 start-page: 273 year: 2015 ident: ref_65 article-title: Performance of ACR Lung-RADS in a clinical CT lung screening program publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2014.08.004 – volume: 18 start-page: 71 year: 2018 ident: ref_27 article-title: Targeted therapies in non-small cell lung cancer: A focus on ALK/ROS1 tyrosine kinase inhibitors publication-title: Expert Rev. Anticancer Ther. doi: 10.1080/14737140.2018.1412260 – volume: 86 start-page: 353 year: 2017 ident: ref_88 article-title: Screening for lung cancer: Does MRI have a role? publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2016.09.016 – volume: 46 start-page: 2722 year: 2019 ident: ref_102 article-title: Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-019-04382-9 – volume: 191 start-page: 1166 year: 2015 ident: ref_48 article-title: Long-Term Follow-up Results of the DANTE Trial, a Randomized Study of Lung Cancer Screening with Spiral Computed Tomography publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201408-1475OC – ident: ref_10 doi: 10.3390/cancers11020212 – volume: 382 start-page: 503 year: 2020 ident: ref_53 article-title: Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1911793 – volume: 23 start-page: 414 year: 1968 ident: ref_38 article-title: The value of lung cancer detection by six-monthly chest radiographs publication-title: Thorax doi: 10.1136/thx.23.4.414 – ident: ref_1 – volume: 86 start-page: 44 year: 1984 ident: ref_39 article-title: Screening for early lung cancer. Results of the Memorial Sloan-Kettering study in New York publication-title: Chest doi: 10.1378/chest.86.1.44 – volume: 306 start-page: 1865 year: 2011 ident: ref_55 article-title: Screening by chest radiograph and lung cancer mortality: The Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial publication-title: JAMA doi: 10.1001/jama.2011.1591 – volume: 126 start-page: 170 year: 2018 ident: ref_87 article-title: Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks—Initial results publication-title: Lung Cancer doi: 10.1016/j.lungcan.2018.11.001 – ident: ref_16 doi: 10.1101/756288 – volume: 13 start-page: 550 year: 2016 ident: ref_37 article-title: Population-based screening for cancer: Hope and hype publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.50 – ident: ref_14 doi: 10.1111/joim.12746 – volume: 21 start-page: 47 year: 2020 ident: ref_85 article-title: Development and Validation of a publication-title: Clin. Lung Cancer doi: 10.1016/j.cllc.2019.07.014 – volume: 13 start-page: 535 year: 2017 ident: ref_22 article-title: Familial risk for lung cancer publication-title: Oncol. Lett. doi: 10.3892/ol.2016.5518 – ident: ref_78 doi: 10.7554/eLife.23421 – volume: 38 start-page: 915 year: 2011 ident: ref_59 article-title: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans publication-title: Med. Phys. doi: 10.1118/1.3528204 – volume: 99 start-page: e19114 year: 2020 ident: ref_19 article-title: The diagnostic accuracy of artificial intelligence in thoracic diseases: A protocol for systematic review and meta-analysis publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000019114 – volume: 102 start-page: 722 year: 2010 ident: ref_40 article-title: Lung cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djq126 – volume: 219 start-page: 231 year: 2016 ident: ref_57 article-title: Challenges and Benchmarks in Bioimage Analysis publication-title: Adv. Anat. Embryol. Cell Biol. doi: 10.1007/978-3-319-28549-8_9 – volume: 11 start-page: 1 year: 2020 ident: ref_103 article-title: Combining molecular and imaging metrics in cancer: Radiogenomics publication-title: Insights Imaging doi: 10.1186/s13244-019-0795-6 – ident: ref_30 doi: 10.1007/s12094-018-02011-9 – volume: 123 start-page: 108774 year: 2020 ident: ref_18 article-title: Artificial intelligence applications for thoracic imaging publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2019.108774 – volume: 26 start-page: 2139 year: 2016 ident: ref_58 article-title: Computer-aided detection of pulmonary nodules: A comparative study using the public LIDC/IDRI database publication-title: Eur. Radiol. doi: 10.1007/s00330-015-4030-7 – volume: 30 start-page: 1738 year: 2020 ident: ref_89 article-title: Cost-effectiveness of lung MRI in lung cancer screening publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06453-9 – ident: ref_21 doi: 10.3390/cancers11020204 – volume: 160 start-page: 330 year: 2014 ident: ref_54 article-title: Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement publication-title: Ann. Intern. Med. – volume: 312 start-page: 1227 year: 2014 ident: ref_86 article-title: Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: A meta-analysis publication-title: JAMA doi: 10.1001/jama.2014.11488 – volume: 44 start-page: 264 year: 2015 ident: ref_36 article-title: Does screening for disease save lives in asymptomatic adults? Systematic review of meta-analyses and randomized trials publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyu140 – volume: 13 start-page: 564 year: 2012 ident: ref_82 article-title: Computer-aided detection of malignant lung nodules on chest radiographs: Effect on observers’ performance publication-title: Korean J. Radiol. doi: 10.3348/kjr.2012.13.5.564 – volume: 5 start-page: 909 year: 2010 ident: ref_20 article-title: Lung cancer in octogenarians publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e3181d89b48 – volume: 7 start-page: 29 year: 2016 ident: ref_92 article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases publication-title: J. Pathol. Inform. doi: 10.4103/2153-3539.186902 – ident: ref_17 doi: 10.3322/caac.21552 – ident: ref_79 doi: 10.1371/journal.pmed.1002686 – volume: 34 start-page: 86 year: 2019 ident: ref_84 article-title: Performance of Deep Learning Model in Detecting Operable Lung Cancer with Chest Radiographs publication-title: J. Thorac. Imaging doi: 10.1097/RTI.0000000000000388 – ident: ref_8 doi: 10.1098/rsob.170070 – volume: 8 start-page: 71223 year: 2017 ident: ref_24 article-title: State-of-the-art considerations in small cell lung cancer brain metastases publication-title: Oncotarget doi: 10.18632/oncotarget.19333 – volume: 7 start-page: 46479 year: 2017 ident: ref_66 article-title: Towards automatic pulmonary nodule management in lung cancer screening with deep learning publication-title: Sci. Rep. doi: 10.1038/srep46479 – volume: 91 start-page: 605 year: 2015 ident: ref_23 article-title: Residential radon and lung cancer characteristics in never smokers publication-title: Int. J. Radiat. Biol. doi: 10.3109/09553002.2015.1047985 – volume: 17 start-page: 846 year: 2016 ident: ref_31 article-title: Immunotherapy for small-cell lung cancer publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)30159-0 – volume: 66 start-page: 101796 year: 2020 ident: ref_62 article-title: BIAS: Transparent reporting of biomedical image analysis challenges publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101796 – volume: 19 start-page: 53 year: 2018 ident: ref_26 article-title: Targeted Therapy and Immune Therapy for Small Cell Lung Cancer publication-title: Curr. Treat. Options Oncol. doi: 10.1007/s11864-018-0568-3 – volume: 235 start-page: 259 year: 2005 ident: ref_45 article-title: CT screening for lung cancer: Five-year prospective experience publication-title: Radiology doi: 10.1148/radiol.2351041662 – volume: 6 start-page: 714 year: 2020 ident: ref_97 article-title: Evaluating the Use of Circulating MicroRNA Profiles for Lung Cancer Detection in Symptomatic Patients publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2020.0001 – volume: 63 start-page: 065005 year: 2018 ident: ref_76 article-title: Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aaafab – volume: 10 start-page: 6636 year: 2018 ident: ref_32 article-title: Effectiveness and safety of PD-1/PD-L1 or CTLA4 inhibitors combined with chemotherapy as a first-line treatment for lung cancer: A meta-analysis publication-title: J. Thorac. Dis. doi: 10.21037/jtd.2018.11.72 – volume: 365 start-page: 395 year: 2011 ident: ref_46 article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1102873 – ident: ref_11 doi: 10.3390/jcm8020235 – volume: 7 start-page: 119403 year: 2019 ident: ref_69 article-title: Using Sequential Decision Making to Improve Lung Cancer Screening Performance publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935763 – volume: 355 start-page: 1763 year: 2006 ident: ref_44 article-title: Survival of patients with stage I lung cancer detected on CT screening publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa060476 – volume: 89 start-page: 2474 year: 2000 ident: ref_43 article-title: Early lung cancer action project: Overall design and findings from baseline screening publication-title: Cancer doi: 10.1002/1097-0142(20001201)89:11+<2474::AID-CNCR26>3.0.CO;2-2 – volume: 67 start-page: 296 year: 2012 ident: ref_47 article-title: CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer Screening Trial: Status after five annual screening rounds with low-dose CT publication-title: Thorax doi: 10.1136/thoraxjnl-2011-200736 – ident: ref_15 doi: 10.3390/jcm8081241 – volume: 9 start-page: 1393 year: 2019 ident: ref_77 article-title: Machine Learning and Feature Selection Methods for Disease Classification with Application to Lung Cancer Screening Image Data publication-title: Front. Oncol. doi: 10.3389/fonc.2019.01393 – volume: 25 start-page: 485 year: 2019 ident: ref_74 article-title: Radiomics with artificial intelligence: A practical guide for beginners publication-title: Diagn. Interv. Radiol. doi: 10.5152/dir.2019.19321 – volume: 26 start-page: 32 year: 2016 ident: ref_105 article-title: CT Radiogenomic Characterization of EGFR, K-RAS, and ALK Mutations in Non-Small Cell Lung Cancer publication-title: Eur. Radiol. doi: 10.1007/s00330-015-3814-0 – volume: 272 start-page: 252 year: 2014 ident: ref_81 article-title: Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images publication-title: Radiology doi: 10.1148/radiol.14131315 – volume: 10 start-page: 9297 year: 2020 ident: ref_94 article-title: Weakly-supervised learning for lung carcinoma classification using deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-020-66333-x – volume: 72 start-page: 825 year: 2017 ident: ref_49 article-title: Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial publication-title: Thorax doi: 10.1136/thoraxjnl-2016-209825 – volume: 72 start-page: 42 year: 2016 ident: ref_67 article-title: Prediction of lung cancer incidence on the low-dose computed tomography arm of the National Lung Screening Trial: A dynamic Bayesian network publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2016.07.001 – volume: 13 start-page: 745 year: 2013 ident: ref_28 article-title: Targeted therapy for non-small-cell lung cancer: Past, present and future publication-title: Expert Rev. Anticancer Ther. doi: 10.1586/era.13.47 – volume: 118 start-page: 142 year: 2019 ident: ref_51 article-title: Ten-year results of the Multicentric Italian Lung Detection trial demonstrate the safety and efficacy of biennial lung cancer screening publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2019.06.009 – volume: 290 start-page: 218 year: 2019 ident: ref_83 article-title: Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs publication-title: Radiology doi: 10.1148/radiol.2018180237 – volume: 25 start-page: 954 year: 2019 ident: ref_71 article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography publication-title: Nat. Med. doi: 10.1038/s41591-019-0447-x – volume: 107 start-page: 50 year: 2017 ident: ref_100 article-title: Integration of multiple “OMIC” biomarkers: A precision medicine strategy for lung cancer publication-title: Lung Cancer doi: 10.1016/j.lungcan.2016.06.003 – volume: 5 start-page: 249 year: 2013 ident: ref_29 article-title: Targeted therapies in non-small cell lung carcinoma: What have we achieved so far? publication-title: Ther. Adv. Med. Oncol. doi: 10.1177/1758834013492001 – volume: 351 start-page: 1242 year: 1998 ident: ref_42 article-title: Mass screening for lung cancer with mobile spiral computed tomography scanner publication-title: Lancet doi: 10.1016/S0140-6736(97)08229-9 – ident: ref_4 doi: 10.5334/aogh.2419 – volume: 10 start-page: 1186 year: 2020 ident: ref_93 article-title: CT-Based Deep Learning Model for Invasiveness Classification and Micropapillary Pattern Prediction within Lung Adenocarcinoma publication-title: Front. Oncol. doi: 10.3389/fonc.2020.01186 – volume: 126 start-page: 154868 year: 2020 ident: ref_98 article-title: Extensive serum biomarker analysis in patients with non-small-cell lung carcinoma publication-title: Cytokine doi: 10.1016/j.cyto.2019.154868 – volume: 69 start-page: 7 year: 2019 ident: ref_5 article-title: Cancer statistics, 2019 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21551 – volume: 24 start-page: 1159 year: 2019 ident: ref_68 article-title: Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network publication-title: Oncologist doi: 10.1634/theoncologist.2018-0908 – volume: 19 start-page: 154 year: 2012 ident: ref_56 article-title: Applying the National Lung Screening Trial eligibility criteria to the US population: What percent of the population and of incident lung cancers would be covered? publication-title: J. Med. Screen doi: 10.1258/jms.2012.012010 – volume: 210 start-page: 108262 year: 2020 ident: ref_96 article-title: Screening of tumor-associated antigens based on Oncomine database and evaluation of diagnostic value of autoantibodies in lung cancer publication-title: Clin. Immunol. doi: 10.1016/j.clim.2019.108262 – volume: 10 start-page: 13657 year: 2020 ident: ref_72 article-title: Development and clinical application of deep learning model for lung nodules screening on CT images publication-title: Sci. Rep. doi: 10.1038/s41598-020-70629-3 – volume: 16 start-page: 229 year: 2019 ident: ref_7 article-title: Diagnosis of Non-small Cell Lung Cancer for Early Stage Asymptomatic Patients publication-title: Cancer Genom. Proteom. doi: 10.21873/cgp.20128 – volume: 11 start-page: 1033 year: 2015 ident: ref_9 article-title: Lung cancer screening: History, current perspectives, and future directions publication-title: Arch. Med. Sci. – volume: 29 start-page: 898 year: 2019 ident: ref_90 article-title: Lung cancer screening with MRI: Evaluation of MRI for lung cancer screening by comparison of LDCT- and MRI-derived Lung-RADS categories in the first two screening rounds publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5607-8 – volume: 8 start-page: 709 year: 2020 ident: ref_95 article-title: Circulating tumour cells as a potential biomarker for lung cancer screening: A prospective cohort study publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30081-3 – ident: ref_13 doi: 10.3390/jcm8040462 – volume: 27 start-page: 58 year: 2012 ident: ref_80 article-title: A comparison of four versions of a computer-aided detection system for pulmonary nodules on chest radiographs publication-title: J. Thorac. Imaging doi: 10.1097/RTI.0b013e3181f240bc – volume: 146 start-page: 197 year: 2020 ident: ref_73 article-title: Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype publication-title: Lung Cancer doi: 10.1016/j.lungcan.2020.05.028 – volume: 7 start-page: 220 year: 2018 ident: ref_6 article-title: The epidemiology of lung cancer publication-title: Transl. Lung Cancer Res. doi: 10.21037/tlcr.2018.05.06 – volume: 11 start-page: 2120 year: 2016 ident: ref_75 article-title: Predicting Malignant Nodules from Screening CT Scans publication-title: J. Thorac. Oncol. doi: 10.1016/j.jtho.2016.07.002 – volume: 162 start-page: 485 year: 2015 ident: ref_64 article-title: Performance of Lung-RADS in the National Lung Screening Trial: A retrospective assessment publication-title: Ann. Intern. Med. doi: 10.7326/M14-2086 – volume: 1 start-page: e353 year: 2019 ident: ref_70 article-title: Prediction of lung cancer risk at follow-up screening with low-dose CT: A training and validation study of a deep learning method publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(19)30159-1 – volume: 21 start-page: 87 year: 2012 ident: ref_3 article-title: The history of the discovery of the cigarette-lung cancer link: Evidentiary traditions, corporate denial, global toll publication-title: Tob. Control doi: 10.1136/tobaccocontrol-2011-050338 – ident: ref_104 doi: 10.1007/s00330-020-07331-5 – volume: 2018 start-page: 3820956 year: 2018 ident: ref_35 article-title: Anti-PD-1/PD-L1 Antibody Therapy for Pretreated Advanced or Metastatic Nonsmall Cell Lung Carcinomas and the Correlation between PD-L1 Expression and Treatment Effectiveness: An Update Meta-Analysis of Randomized Clinical Trials publication-title: BioMed Res. Int. doi: 10.1155/2018/3820956 – volume: 369 start-page: 910 year: 2013 ident: ref_63 article-title: Probability of cancer in pulmonary nodules detected on first screening CT publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1214726 – volume: 64 start-page: 4 year: 2001 ident: ref_2 article-title: A short history of lung cancer publication-title: Toxicol. Sci. doi: 10.1093/toxsci/64.1.4 – volume: 95 start-page: e4611 year: 2016 ident: ref_34 article-title: Anti-PD-1/PD-L1 antibody therapy for pretreated advanced nonsmall-cell lung cancer: A meta-analysis of randomized clinical trials publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000004611 – volume: 31 start-page: 415707 year: 2020 ident: ref_99 article-title: A density functional theory study on the interaction of toluene with transition metal decorated carbon nanotubes: A promising platform for early detection of lung cancer from human breath publication-title: Nanotechnology doi: 10.1088/1361-6528/ab9da9 – volume: 30 start-page: 4595 year: 2020 ident: ref_91 article-title: Classification of pulmonary lesion based on multiparametric MRI: Utility of radiomics and comparison of machine learning methods publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06768-y – volume: 6 start-page: 145 year: 2018 ident: ref_25 article-title: Advanced small cell lung cancer (SCLC): New challenges and new expectations publication-title: Ann. Transl. Med. doi: 10.21037/atm.2018.03.31 – volume: 95 start-page: e5539 year: 2016 ident: ref_33 article-title: A meta-analysis of efficacy and safety of antibodies targeting PD-1/PD-L1 in treatment of advanced nonsmall cell lung cancer publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000005539 – volume: 10 start-page: 1030 year: 2020 ident: ref_101 article-title: Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools publication-title: Front. Oncol. doi: 10.3389/fonc.2020.01030 – ident: ref_12 doi: 10.3390/jcm9051362 – volume: 146 start-page: 1503 year: 2020 ident: ref_50 article-title: Lung cancer mortality reduction by LDCT screening-Results from the randomized German LUSI trial publication-title: Int. J. Cancer doi: 10.1002/ijc.32486 – volume: 9 start-page: 5217 year: 2018 ident: ref_61 article-title: Why rankings of biomedical image analysis competitions should be interpreted with care publication-title: Nat. Commun. doi: 10.1038/s41467-018-07619-7 – ident: ref_60 – volume: 30 start-page: 1162 year: 2019 ident: ref_52 article-title: Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: New confirmation of lung cancer screening efficacy publication-title: Ann. Oncol. doi: 10.1093/annonc/mdz117 |
SSID | ssj0000884217 |
Score | 2.3509133 |
SecondaryResourceType | review_article |
Snippet | Nearly one-quarter of all cancer deaths worldwide are due to lung cancer, making this disease the leading cause of cancer death among both men and women. The... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3860 |
SubjectTerms | Algorithms Artificial intelligence Asymptomatic Biomarkers Cellular biology Chemotherapy Clinical medicine Clinical outcomes Clinical trials Disease Lung cancer Mammography Medical diagnosis Medical screening Metastasis Mortality Mutation Review Smoking Tobacco Tomography |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF6KgngR31arrOjFQzSPfWQPoiKKivWgLfQWso-gUlOtFfTfO5Okta3idWeSDTM7u99kh28I2RcFEA-YF3GdekxkoQcog3silD5jilml8ddA805ctdlNh3dqZNi_szLg-5-pHfaTave7h59vXycQ8MeYcULKfvRsXhRswLGA1H0WTiSJAdqsYH6xI8cxA-hdspNOPTJ5Hv0CmdO1kmOHz-UiWahQIz0r3bxEai5fJnPN6l58hZyipOSCoNdjJJu01et13ykAU3rvsqIXBL2F8Kbn6Ow-fTBYdgOjq6R9edE6v_Kq3gieYZEYeLHOHEApHjKTxTK0lmvJcciJlDuprbKB1AFSvZjMtzEYxfrauji2AOJSP1ojM3kvdxuEGsCMxijNUqdYFFqtfJUyybJACyk0r5ODoYUSUxGHY_-KbgIJBFoz-bFmneyNdF9Luow_tRpDQydDjyeAzJDOLohgwt2RGBY73mCkuet9gA4TIlRMKnjFeumX0TQRAFFsWlwncsJjIwUk0p6U5E-PBaG2xMIgLjf__6wtMh9ish0EXigbZGbQ_3DbgEgGeqdYbt_Ott_k priority: 102 providerName: Scholars Portal |
Title | Artificial Intelligence Tools for Refining Lung Cancer Screening |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33261057 https://www.proquest.com/docview/2641067135 https://www.proquest.com/docview/2466294790 https://pubmed.ncbi.nlm.nih.gov/PMC7760157 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61IFW9IPpeoMhVufRgESd-xCdeAtGqixAFaW9R_IgoggTY5f8zk2TD0lY9xh4l0Yw983k8-gZgS7dAXEieKVdyqauUI8pQXKcmkdLKYB2lBsYn-vhC_pioSZ9wm_ZllXOf2Drq0HjKkW9j4Ca2M5Gpnds7Tl2j6Ha1b6HxEpaJuoxKuszEDDkW3EESIXfHSprh6X77yt9Y9NV5y0i5EIf-Apd_1kguBJ2jVVjp0SLb68z7Bl7E-i28Gvf34e9gl2Y6Dgj2fYFck503zfWUISBlZ7Fqe0Cwn7it2QEZ-Z798lRug6Pv4eLo8PzgmPc9EbiXmZ7x3FURIZRKpa9yk4agnFE0FHWponHBBmGcIIoXXyUhF0aExIWY5wHBW5lkH2Cpbur4CZhHrOi9dbKMVmZpcDaxpTSyEk4b7dQIvs01VPieMJz6VlwXeHAgbRZP2hzB10H2tqPJ-KfUxlzRRb9VpsWTYUfwZZjGRU43F2UdmweUkVqnVhqLr_jY2WX4TIYAlJoVj8A8s9ggQATaz2fq35ctkbahgiBl1v7_W-vwOqVDthA8NRuwNLt_iJ8RiczcZrvcNmF5__Dk9AyfxjJ_BJUw4FM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoJeKt7dUsAIOHCIGjt-xAfEo7TapbsrVLZSbyF-RIBKUrpbIf4Uv5FxXt0C4tarPXKi8Xjmsz3-BuCZrIE45VEiTB5xWbAIUYaIJFMx55o7bcLRwGQqh0f8_bE4XoFf3VuYkFbZ-cTaUbvKhjPyHQzcge2MJuLV6fcoVI0Kt6tdCY3GLA78zx-4ZZu_HL3D-X3O2P7ebHcYtVUFIssTuYhSU3gEIYJxW6SKOSeMEqHJy1x4ZZx2VBkaSFJsEbuUKupi43yaOoQ_eZzguNdgDceK0RGsvd2bfjjsT3VwzXIE-Q0PapLoeOer_aYxOqQ1B-ZS5PsLzv6ZlbkU5vZvwkaLT8mbxqBuwYovb8P1SXsDfwdeh56GdYKMlug8yayqTuYEITA59EVddYKM0ZGQ3WBWZ-SjDQk-2HoXjq5EX_dgtaxKvwnEIjq1Vhuee80T5oyOdc4VL6iRShoxgBedhjLbUpSHShknGW5VgjazC20O4Gkve9oQc_xTartTdNYuznl2YUoDeNJ347IKdyV56atzlOFSMs2VxiHuN_PSfyZByBvKIw9AXZqxXiBQdl_uKb98rqm7VUhBEmrr_7_1GG4MZ5NxNh5NDx7AOgtbfEojprZhdXF27h8iDlqYR63xEfh01fb-G33DHL8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgBBw7Rxu_4gAC1rLr0IQSttLc0fkRQtUnpboX4a_w6xnl1C4hbr_bIicYzns_2-BuAl6oB4lQkXNoiEapkCaIMmSimUyGM8MbGo4HdPbV1ID7O5GwFfvVvYWJaZb8mNgu1r108Ix9j4I5sZ5TLcdmlRXzanLw9_Z7EClLxprUvp9GayHb4-QO3b_M3002c61eMTT7sb2wlXYWBxAmuFklmy4CARDLhykwz76XVMjYFVcigrTeeaksjYYorU59RTX1qfcgyj1CoSDmOew2uay5p9DE908P5DnqvQLjfMqJybtLxkTsxGCeyhg1zKQb-BWz_zM9cCniTW3CzQ6rkfWtat2ElVHdgbbe7i78L72JPyz9BpkvEnmS_ro_nBMEw-RzKpv4E2cElhWxEAzsjX1xM9cHWe3BwJdq6D6tVXYWHQBziVOeMFUUwgjNvTWoKoUVJrdLKyhG87jWUu46sPNbMOM5x0xK1mV9ocwQvBtnTlqLjn1LrvaLzzk3n-YVRjeD50I0OFm9NiirU5ygjlGJGaINDPGjnZfgMR_AbCyWPQF-asUEgkndf7qm-fW1IvHVMRpL60f9_6xmsoZXnO9O97cdwg8W9PqUJ0-uwujg7D08QEC3s08byCBxetan_BoiZH48 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Tools+for+Refining+Lung+Cancer+Screening&rft.jtitle=Journal+of+clinical+medicine&rft.au=Espinoza%2C+J+Luis&rft.au=Le+Thanh+Dong&rft.date=2020-11-27&rft.pub=MDPI+AG&rft.eissn=2077-0383&rft.volume=9&rft.issue=12&rft.spage=3860&rft_id=info:doi/10.3390%2Fjcm9123860&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon |