Detecting cognitive traits and occupational proficiency using EEG and statistical inference
Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remai...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 5605 - 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84–0.89, 0.85–0.88, and 0.86–0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG. |
---|---|
AbstractList | Abstract Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84–0.89, 0.85–0.88, and 0.86–0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG. Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84-0.89, 0.85-0.88, and 0.86-0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG.Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84-0.89, 0.85-0.88, and 0.86-0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG. Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84–0.89, 0.85–0.88, and 0.86–0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG. |
ArticleNumber | 5605 |
Author | Steiner, Helen Martynova, Olga Mikheev, Ilya |
Author_xml | – sequence: 1 givenname: Ilya surname: Mikheev fullname: Mikheev, Ilya email: imikheev@hse.ru organization: Department of Psychology, HSE University – sequence: 2 givenname: Helen surname: Steiner fullname: Steiner, Helen organization: Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences – sequence: 3 givenname: Olga surname: Martynova fullname: Martynova, Olga organization: Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Centre for Cognition and Decision Making, HSE University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38453969$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1vFCEYB3Biamyt_QIezCRevEzlfeBo2rU2aeJFTx4Iyzxs2OzCCoxNv73MTq3GQ7lAyO95ePm_RicxRUDoLcGXBDP1sXAitOox5b0QRLL-_gU6o5iLnjJKT_5Zn6KLUra4DUE1J_oVOmWKC6alPkM_rqGCqyFuOpc2MdTwC7qabails3HsknPTwdaQot11h5x8cAGie-imMtesVjdHVmozpQbXVIgecjPwBr30dlfg4nE-R98_r75dfenvvt7cXn266x1nsvZKi5EKO1CwwDCTgggAzvnoCZOSOk8xAzlqvPaYs2YxWSuth0GSkfHBsXN0u_Qdk92aQw57mx9MssEcN1LeGJvb3XZg1IgVkVZ6v5acMqkHha11RCk1-JHR1uvD0qu99ecEpZp9KA52OxshTcVQLfgwEMJn-v4_uk1Tbv80q_bPg9R4Vu8e1bTew_h0vT8RNEAX4HIqJYN_IgSbOWqzRG1a1OYYtblvRWwpKg3HDeS_Zz9T9RtfCqmd |
Cites_doi | 10.1007/s11571-015-9345-1 10.1038/srep24194 10.1016/j.chb.2009.10.014 10.3390/app13116606 10.17323/1813-8918-2018-2-268-278 10.5405/jmbe.926 10.1155/2018/4638903 10.1007/s00429-018-1618-0 10.3233/JAD-200171 10.1016/0167-8760(96)00031-1 10.1111/psyp.13335 10.1016/j.neuroimage.2014.12.040 10.1016/j.future.2021.06.046 10.1162/neco_a_01394 10.1088/1741-2552/aaf12e 10.1016/j.ijpsycho.2004.11.003 10.1016/j.jneumeth.2007.03.024 10.1109/MMSP.2010.5662067 10.3390/s21072369 10.1038/s41598-023-35032-8 10.3389/fnins.2014.00385 10.1016/j.neuroimage.2020.116893 10.3389/fnins.2013.00267 10.1111/ejn.14363 10.1371/journal.pone.0053699 10.1142/S0219635213500088 10.3934/mbe.2022325 10.1186/s11689-021-09392-z 10.1049/htl.2016.0073 10.1371/journal.pone.0251490 10.1016/j.neuroimage.2013.10.067 10.1016/j.neuroimage.2022.119351 10.1016/j.ijpsycho.2016.05.006 10.1109/86.847810 10.1142/S0129065715500045 10.3389/fnbot.2022.958052 10.3389/fnbeh.2015.00269 10.1016/j.neuroimage.2007.02.026 10.1080/21622965.2020.1830403 10.1073/pnas.1603205113 10.1016/j.nlm.2020.107228 10.1504/IJAACS.2013.050694 10.3389/fpsyg.2012.00428 10.1016/j.neuron.2010.08.040 10.1109/TNSRE.2004.838443 10.1016/j.conb.2014.08.010 10.33549/physiolres.931629 10.1017/CBO9780511622762 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-024-55163-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Education Mathematics |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_8d0816a6ffb642369780aac18887fd32 38453969 10_1038_s41598_024_55163_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research University Higher School of Economics grantid: Basic Research Program funderid: http://dx.doi.org/10.13039/501100007251 – fundername: National Research University Higher School of Economics grantid: Basic Research Program |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c436t-895d25a72eae3036515ee444df13662cf203e6d90bf0435d201b8997761d347c3 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:09:51 EDT 2025 Fri Jul 11 08:53:56 EDT 2025 Wed Aug 13 04:54:21 EDT 2025 Mon Jul 21 06:05:43 EDT 2025 Tue Jul 01 00:51:33 EDT 2025 Fri Feb 21 02:40:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | EEG Cognitive traits Machine learning |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-895d25a72eae3036515ee444df13662cf203e6d90bf0435d201b8997761d347c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2941976902?pq-origsite=%requestingapplication% |
PMID | 38453969 |
PQID | 2941976902 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8d0816a6ffb642369780aac18887fd32 proquest_miscellaneous_2954771142 proquest_journals_2941976902 pubmed_primary_38453969 crossref_primary_10_1038_s41598_024_55163_w springer_journals_10_1038_s41598_024_55163_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-07 |
PublicationDateYYYYMMDD | 2024-03-07 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Dehaene, Cohen (CR48) 1995; 1 Dong, Mills, Knight, Kam (CR16) 2021; 16 Sabbagh, Ablin, Varoquaux, Gramfort, Engemann (CR18) 2020; 222 Ke (CR31) 2017; 30 Hinault, Lemaire (CR2) 2016; 106 Gerjets, Walter, Rosenstiel, Bogdan, Zander (CR8) 2014; 8 Vecchio (CR38) 2020; 75 Ou, Sun, Gan, Zhou, Yang (CR15) 2022; 19 CR32 Steiner, Martynova, Mikheev (CR7) 2023; 13 Fairclough, Venables, Tattersall (CR10) 2005; 56 Bosch, Herrera, López, Maldonado (CR24) 2018 Artemenko, Soltanlou, Dresler, Ehlis, Nuerk (CR20) 2018; 223 Poikonen, Zaluska, Wang, Magno, Kapur (CR27) 2023; 13 Mussigmann, Bardel, Lefaucheur (CR39) 2022; 258 Babiloni (CR14) 2000; 8 Xiang, Jiang, Chao, Wu, Mo (CR3) 2016; 6 Grabner, De Smedt (CR1) 2012; 3 Benevides, Bastos, Sarcinelli-Filho (CR12) 2012; 32 CR46 Saha, Ahmed, Mostafa, Khandoker, Hadjileontiadis (CR26) 2016; 4 Aydarkin, Fomina (CR5) 2013; 12 Saha, Ahmed, Mostafa, Khandoker, Hadjileontiadis (CR33) 2016; 4 Chen, Yu, Yang (CR37) 2022; 16 Alotaibi, Maharatna (CR40) 2021; 33 Proverbio, Carminati (CR21) 2019; 50 Friedrich, Friederici (CR47) 2013; 8 Anzalone, Luedke, Green, Decker (CR19) 2020; 11 Gysels, Millan, Chiappa, Celka (CR13) 2022; 12 Abiri, Borhani, Sellers, Jiang, Zhao (CR36) 2018; 16 Lin, Jung, Wu, She, Jung (CR22) 2015; 25 Alexander, O’Boyle, Benbow (CR4) 1996; 23 Amalric, Dehaene (CR23) 2016; 113 CR52 Zhang, Gan, Wang (CR49) 2015; 9 CR51 Chemerisova, Atanov, Mikheev, Martynova (CR6) 2018; 15 Maris, Oostenveld (CR53) 2007; 164 Zeng (CR17) 2021; 21 Ray (CR35) 2015; 9 Engemann, Gramfort (CR28) 2014; 108 Sherfey, Ardid, Mller, Hasselmo, Kopell (CR44) 2020; 173 Gramfort (CR50) 2013 Fairclough, Gilleade, Ewing, Roberts (CR11) 2013; 6 Bressler, Richter (CR43) 2014; 31C Aguilar, Loyola-González, Medina-Pérez, Cañete, Choo (CR42) 2021; 125 Mizuhara, Yamaguchi (CR45) 2007; 36 Antonenko, Niederhauser (CR9) 2010; 26 Giedd, Rapoport (CR34) 2010; 67 Sassenhagen, Draschkow (CR41) 2019; 56 Hamburg, Bush, Strydom, Startin (CR25) 2021; 13 Barachant, Bonnet, Congedo, Jutten (CR29) 2010 Haufe (CR30) 2014; 87 E Gysels (55163_CR13) 2022; 12 H Zeng (55163_CR17) 2021; 21 E Aydarkin (55163_CR5) 2013; 12 P Bosch (55163_CR24) 2018 A Gramfort (55163_CR50) 2013 A Benevides (55163_CR12) 2012; 32 C Artemenko (55163_CR20) 2018; 223 A Proverbio (55163_CR21) 2019; 50 H Poikonen (55163_CR27) 2023; 13 T Hinault (55163_CR2) 2016; 106 P Gerjets (55163_CR8) 2014; 8 J Alexander (55163_CR4) 1996; 23 M Amalric (55163_CR23) 2016; 113 D Aguilar (55163_CR42) 2021; 125 PP Antonenko (55163_CR9) 2010; 26 Y Xiang (55163_CR3) 2016; 6 55163_CR46 R Grabner (55163_CR1) 2012; 3 S Bressler (55163_CR43) 2014; 31C 55163_CR52 L Zhang (55163_CR49) 2015; 9 55163_CR51 J Sassenhagen (55163_CR41) 2019; 56 J Giedd (55163_CR34) 2010; 67 L Chen (55163_CR37) 2022; 16 S Saha (55163_CR33) 2016; 4 F Vecchio (55163_CR38) 2020; 75 S Hamburg (55163_CR25) 2021; 13 J Sherfey (55163_CR44) 2020; 173 S Fairclough (55163_CR11) 2013; 6 S Fairclough (55163_CR10) 2005; 56 A Barachant (55163_CR29) 2010 H Dong (55163_CR16) 2021; 16 C-L Lin (55163_CR22) 2015; 25 R Friedrich (55163_CR47) 2013; 8 S Saha (55163_CR26) 2016; 4 E Maris (55163_CR53) 2007; 164 C Anzalone (55163_CR19) 2020; 11 D Engemann (55163_CR28) 2014; 108 S Dehaene (55163_CR48) 1995; 1 A Ray (55163_CR35) 2015; 9 F Babiloni (55163_CR14) 2000; 8 R Abiri (55163_CR36) 2018; 16 S Haufe (55163_CR30) 2014; 87 EV Chemerisova (55163_CR6) 2018; 15 T Mussigmann (55163_CR39) 2022; 258 G Ke (55163_CR31) 2017; 30 N Alotaibi (55163_CR40) 2021; 33 D Sabbagh (55163_CR18) 2020; 222 H Steiner (55163_CR7) 2023; 13 55163_CR32 H Mizuhara (55163_CR45) 2007; 36 Y Ou (55163_CR15) 2022; 19 |
References_xml | – volume: 9 start-page: 495 year: 2015 end-page: 508 ident: CR49 article-title: Localization of neural efficiency of the mathematically gifted brain through a feature subset selection method publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-015-9345-1 – volume: 6 start-page: 24194 year: 2016 ident: CR3 article-title: Brain-mechanistic responses to varying difficulty levels of approximate solutions to arithmetic problems publication-title: Sci. Rep. doi: 10.1038/srep24194 – volume: 26 start-page: 140 year: 2010 end-page: 150 ident: CR9 article-title: The influence of leads on cognitive load and learning in a hypertext environment publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2009.10.014 – volume: 13 start-page: 6606 year: 2023 ident: CR7 article-title: Cross-subject classification of effectiveness in performing cognitive tasks using resting-state eeg publication-title: MDPI doi: 10.3390/app13116606 – volume: 15 start-page: 268 year: 2018 end-page: 278 ident: CR6 article-title: Classification of verbal and mathematical mental operations based on the power spectral density of eeg publication-title: Psychology doi: 10.17323/1813-8918-2018-2-268-278 – volume: 32 start-page: 411 year: 2012 end-page: 416 ident: CR12 article-title: Pseudo-online classification of mental tasks using Kullback–Leibler symmetric divergence publication-title: J. Med. Biol. Eng. doi: 10.5405/jmbe.926 – year: 2018 ident: CR24 article-title: Mining eeg with svm for understanding cognitive underpinnings of math problem solving strategies publication-title: Behav. Neurol. doi: 10.1155/2018/4638903 – ident: CR51 – volume: 223 start-page: 1618 year: 2018 ident: CR20 article-title: The neural correlates of arithmetic difficulty depend on mathematical ability: evidence from combined fnirs and erp publication-title: Brain Struct. Funct. doi: 10.1007/s00429-018-1618-0 – volume: 75 start-page: 1 year: 2020 end-page: 9 ident: CR38 article-title: Classification of Alzheimer’s disease with respect to physiological aging with innovative eeg biomarkers in a machine learning implementation publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-200171 – volume: 23 start-page: 25 year: 1996 end-page: 31 ident: CR4 article-title: Developmentally advanced eeg alpha power in gifted male and female adolescents publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(96)00031-1 – volume: 56 start-page: 13335 year: 2019 ident: CR41 article-title: Cluster-based permutation tests of meg/eeg data do not establish significance of effect latency or location publication-title: Psychophysiology doi: 10.1111/psyp.13335 – volume: 108 start-page: 328 year: 2014 end-page: 342 ident: CR28 article-title: Automated model selection in covariance estimation and spatial whitening of meg and eeg signals publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.040 – volume: 125 start-page: 71 year: 2021 end-page: 90 ident: CR42 article-title: Pbc4occ: A novel contrast pattern-based classifier for one-class classification publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2021.06.046 – volume: 33 start-page: 1914 year: 2021 end-page: 1941 ident: CR40 article-title: Classification of autism spectrum disorder from eeg-based functional brain connectivity analysis publication-title: Neural Comput. doi: 10.1162/neco_a_01394 – volume: 16 year: 2018 ident: CR36 article-title: A comprehensive review of eeg-based brain-computer interface paradigms publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – volume: 56 start-page: 171 year: 2005 end-page: 84 ident: CR10 article-title: The influence of task demand and learning on the psychophysiological response publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2004.11.003 – ident: CR46 – volume: 164 start-page: 177 year: 2007 end-page: 90 ident: CR53 article-title: Nonparametric statistical testing of eeg- and meg-data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.024 – year: 2010 ident: CR29 article-title: Common spatial pattern revisited by riemannian geometry publication-title: IEEE Explor. doi: 10.1109/MMSP.2010.5662067 – volume: 21 start-page: 2369 year: 2021 ident: CR17 article-title: An eeg-based transfer learning method for cross-subject fatigue mental state prediction publication-title: Sensors doi: 10.3390/s21072369 – volume: 13 start-page: 8012 year: 2023 ident: CR27 article-title: Nonlinear and machine learning analyses on high-density eeg data of math experts and novices publication-title: Sci. Rep. doi: 10.1038/s41598-023-35032-8 – ident: CR32 – volume: 8 start-page: 385 year: 2014 ident: CR8 article-title: Cognitive state monitoring and the design of adaptive instruction in digital environments: Lessons learned from cognitive workload assessment using a passive brain-computer interface approach publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00385 – volume: 1 start-page: 83 year: 1995 end-page: 120 ident: CR48 article-title: Towards an anatomical and functional model of number processing publication-title: Math. Cogn. – volume: 222 year: 2020 ident: CR18 article-title: Predictive regression modeling with meg/eeg: From source power to signals and cognitive states publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116893 – year: 2013 ident: CR50 article-title: Meg and eeg data analysis with mne-python publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00267 – volume: 50 start-page: 14363 year: 2019 ident: CR21 article-title: Electrophysiological markers of poor vs. superior math abilities in healthy individuals publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.14363 – volume: 8 year: 2013 ident: CR47 article-title: Mathematical logic in the human brain: Semantics publication-title: PLoS ONE doi: 10.1371/journal.pone.0053699 – volume: 12 start-page: 73 year: 2013 end-page: 89 ident: CR5 article-title: Neurophysiological mechanisms of complex arithmetic task solving publication-title: J. Integr. Neurosci. doi: 10.1142/S0219635213500088 – volume: 19 start-page: 6907 year: 2022 end-page: 6922 ident: CR15 article-title: An improved self-supervised learning for eeg classification publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2022325 – volume: 13 start-page: 9392 year: 2021 ident: CR25 article-title: Comparison of resting-state eeg between adults with down syndrome and typically developing controls publication-title: J. Neurodev. Disord. doi: 10.1186/s11689-021-09392-z – volume: 4 start-page: 39 year: 2016 end-page: 43 ident: CR33 article-title: Enhanced inter-subject brain computer interface with associative sensorimotor oscillations publication-title: IET Healthc. Technol. Lett. doi: 10.1049/htl.2016.0073 – volume: 16 year: 2021 ident: CR16 article-title: Detection of mind wandering using eeg: Within and across individuals publication-title: PLoS ONE doi: 10.1371/journal.pone.0251490 – volume: 87 start-page: 96 year: 2014 end-page: 110 ident: CR30 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.067 – volume: 258 year: 2022 ident: CR39 article-title: Resting-state electroencephalography (eeg) biomarkers of chronic neuropathic pain: A systematic review publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119351 – volume: 106 start-page: 317 year: 2016 end-page: 330 ident: CR2 article-title: What does eeg tell us about arithmetic strategies? A review publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2016.05.006 – volume: 8 start-page: 186 year: 2000 end-page: 8 ident: CR14 article-title: Linear classification of low-resolution eeg patterns produced by imagined hand movements publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.847810 – volume: 30 start-page: 1 year: 2017 end-page: 19 ident: CR31 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – volume: 25 start-page: 1550004 year: 2015 ident: CR22 article-title: Neural correlates of mathematical problem solving publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065715500045 – volume: 16 year: 2022 ident: CR37 article-title: Spd-cnn: A plain cnn-based model using the symmetric positive definite matrices for cross-subject eeg classification with meta-transfer-learning publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2022.958052 – volume: 9 start-page: 269 year: 2015 ident: CR35 article-title: A subject-independent pattern-based brain-computer interface publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2015.00269 – volume: 36 start-page: 232 year: 2007 end-page: 44 ident: CR45 article-title: Human cortical circuits for central executive function emerge by theta phase synchronization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.026 – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: CR19 article-title: Qeeg coherence patterns related to mathematics ability in children publication-title: Appl. Neuropsychol. doi: 10.1080/21622965.2020.1830403 – ident: CR52 – volume: 113 start-page: 201603205 year: 2016 ident: CR23 article-title: Origins of the brain networks for advanced mathematics in expert mathematicians publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1603205113 – volume: 173 year: 2020 ident: CR44 article-title: Prefrontal oscillations modulate the propagation of neuronal activity required for working memory publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2020.107228 – volume: 6 start-page: 63 year: 2013 end-page: 79 ident: CR11 article-title: Capturing user engagement via psychophysiology: Measures and mechanisms for biocybernetic adaptation publication-title: Int. J. Auton. Adapt. Commun. Syst. doi: 10.1504/IJAACS.2013.050694 – volume: 3 start-page: 428 year: 2012 ident: CR1 article-title: Oscillatory eeg correlates of arithmetic strategies: A training study publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00428 – volume: 67 start-page: 728 year: 2010 end-page: 34 ident: CR34 article-title: Structural mri of pediatric brain development: What have we learned and where are we going? publication-title: Neuron doi: 10.1016/j.neuron.2010.08.040 – volume: 12 start-page: 8443 year: 2022 ident: CR13 article-title: Studying phase synchrony for classification of mental tasks in brain machine interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2004.838443 – volume: 4 start-page: 73 year: 2016 ident: CR26 article-title: Enhanced inter-subject brain computer interface with associative sensorimotor oscillations publication-title: IET Healthc. Technol. Lett. doi: 10.1049/htl.2016.0073 – volume: 31C start-page: 62 year: 2014 end-page: 66 ident: CR43 article-title: Interareal oscillatory synchronization in top-down neocortical processing publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.08.010 – volume: 258 year: 2022 ident: 55163_CR39 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119351 – volume: 50 start-page: 14363 year: 2019 ident: 55163_CR21 publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.14363 – volume: 16 year: 2018 ident: 55163_CR36 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – ident: 55163_CR46 doi: 10.33549/physiolres.931629 – volume: 9 start-page: 269 year: 2015 ident: 55163_CR35 publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2015.00269 – volume: 11 start-page: 1 year: 2020 ident: 55163_CR19 publication-title: Appl. Neuropsychol. doi: 10.1080/21622965.2020.1830403 – volume: 67 start-page: 728 year: 2010 ident: 55163_CR34 publication-title: Neuron doi: 10.1016/j.neuron.2010.08.040 – volume: 23 start-page: 25 year: 1996 ident: 55163_CR4 publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(96)00031-1 – volume: 12 start-page: 73 year: 2013 ident: 55163_CR5 publication-title: J. Integr. Neurosci. doi: 10.1142/S0219635213500088 – ident: 55163_CR52 – volume: 113 start-page: 201603205 year: 2016 ident: 55163_CR23 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1603205113 – volume: 13 start-page: 8012 year: 2023 ident: 55163_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-023-35032-8 – volume: 173 year: 2020 ident: 55163_CR44 publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2020.107228 – volume: 1 start-page: 83 year: 1995 ident: 55163_CR48 publication-title: Math. Cogn. – volume: 164 start-page: 177 year: 2007 ident: 55163_CR53 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.024 – year: 2018 ident: 55163_CR24 publication-title: Behav. Neurol. doi: 10.1155/2018/4638903 – volume: 33 start-page: 1914 year: 2021 ident: 55163_CR40 publication-title: Neural Comput. doi: 10.1162/neco_a_01394 – volume: 106 start-page: 317 year: 2016 ident: 55163_CR2 publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2016.05.006 – volume: 4 start-page: 73 year: 2016 ident: 55163_CR26 publication-title: IET Healthc. Technol. Lett. doi: 10.1049/htl.2016.0073 – volume: 26 start-page: 140 year: 2010 ident: 55163_CR9 publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2009.10.014 – volume: 87 start-page: 96 year: 2014 ident: 55163_CR30 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.067 – volume: 56 start-page: 13335 year: 2019 ident: 55163_CR41 publication-title: Psychophysiology doi: 10.1111/psyp.13335 – volume: 8 year: 2013 ident: 55163_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0053699 – volume: 13 start-page: 6606 year: 2023 ident: 55163_CR7 publication-title: MDPI doi: 10.3390/app13116606 – year: 2010 ident: 55163_CR29 publication-title: IEEE Explor. doi: 10.1109/MMSP.2010.5662067 – volume: 15 start-page: 268 year: 2018 ident: 55163_CR6 publication-title: Psychology doi: 10.17323/1813-8918-2018-2-268-278 – volume: 16 year: 2021 ident: 55163_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0251490 – ident: 55163_CR32 – volume: 75 start-page: 1 year: 2020 ident: 55163_CR38 publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-200171 – volume: 9 start-page: 495 year: 2015 ident: 55163_CR49 publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-015-9345-1 – volume: 125 start-page: 71 year: 2021 ident: 55163_CR42 publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2021.06.046 – year: 2013 ident: 55163_CR50 publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00267 – volume: 12 start-page: 8443 year: 2022 ident: 55163_CR13 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2004.838443 – volume: 19 start-page: 6907 year: 2022 ident: 55163_CR15 publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2022325 – volume: 222 year: 2020 ident: 55163_CR18 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116893 – volume: 21 start-page: 2369 year: 2021 ident: 55163_CR17 publication-title: Sensors doi: 10.3390/s21072369 – volume: 16 year: 2022 ident: 55163_CR37 publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2022.958052 – volume: 56 start-page: 171 year: 2005 ident: 55163_CR10 publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2004.11.003 – volume: 32 start-page: 411 year: 2012 ident: 55163_CR12 publication-title: J. Med. Biol. Eng. doi: 10.5405/jmbe.926 – volume: 223 start-page: 1618 year: 2018 ident: 55163_CR20 publication-title: Brain Struct. Funct. doi: 10.1007/s00429-018-1618-0 – volume: 36 start-page: 232 year: 2007 ident: 55163_CR45 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.026 – volume: 8 start-page: 385 year: 2014 ident: 55163_CR8 publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00385 – ident: 55163_CR51 doi: 10.1017/CBO9780511622762 – volume: 25 start-page: 1550004 year: 2015 ident: 55163_CR22 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065715500045 – volume: 6 start-page: 63 year: 2013 ident: 55163_CR11 publication-title: Int. J. Auton. Adapt. Commun. Syst. doi: 10.1504/IJAACS.2013.050694 – volume: 31C start-page: 62 year: 2014 ident: 55163_CR43 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.08.010 – volume: 13 start-page: 9392 year: 2021 ident: 55163_CR25 publication-title: J. Neurodev. Disord. doi: 10.1186/s11689-021-09392-z – volume: 3 start-page: 428 year: 2012 ident: 55163_CR1 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00428 – volume: 30 start-page: 1 year: 2017 ident: 55163_CR31 publication-title: Adv. Neural Inf. Process. Syst. – volume: 4 start-page: 39 year: 2016 ident: 55163_CR33 publication-title: IET Healthc. Technol. Lett. doi: 10.1049/htl.2016.0073 – volume: 6 start-page: 24194 year: 2016 ident: 55163_CR3 publication-title: Sci. Rep. doi: 10.1038/srep24194 – volume: 8 start-page: 186 year: 2000 ident: 55163_CR14 publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.847810 – volume: 108 start-page: 328 year: 2014 ident: 55163_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.040 |
SSID | ssj0000529419 |
Score | 2.418519 |
Snippet | Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive... Abstract Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 5605 |
SubjectTerms | 631/378/116/1925 631/378/2649/1725 Classification Cognition Cognition & reasoning Cognitive ability Cognitive traits Education EEG Electroencephalography Electroencephalography - methods Humanities and Social Sciences Humans Machine Learning Mathematics multidisciplinary Neurological diseases Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et9VVInjTYpukSXv0sat48KQgeAhJk4iXrri7iP_embS7rqh48dpMSzIz6cwwM98QcpQLb0WlIMiB0AsClIKlxoiQ-rqsnckzY32striV1_fi5qF4mBv1hTVhLTxwy7jT0uFoCCNDsOAqc4mIOcbUOURuKjge_75g8-aCqRbVm1Uir7oumYyXpyOwVNhNxkSKuSGevn2xRBGw_ycv81uGNBqewSpZ6TxGetbudI0s-GadLLUzJN83yOOlxzwAvEpnpUAUBz-MR9Q0jg7nYIRpnNAdb_M7xYr3J9rvX0UybCyKmM1A9TxtAtwk94P-3cV12k1MSGvB5Tgtq8KxwijmjUfbBM6K90IIF3IuJasDy7iXrspsyMBPcmD9LQRcSsnccaFqvkUWm2HjdwgVubWu8sZwwYS0rrSFqYNR1rtgnOQJOZ5yT7-0wBg6JrR5qVtea-C1jrzWbwk5RwbPKBHUOj4AUetO1PovUSekNxWP7m7aSEc5K1A0WD6cLcMdwcSHafxwgjSFUAq7hhOy3Yp1thNeioJXskrIyVTOnx___UC7_3GgPbLMUCGxpE31yOL4deL3wccZ24Oozh8EHfY4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB9qRbAPoudH11aJ4Juu3ibZZPdBxI-rRahPHhR8CMkmKULZq3dX6v33ncl-qHj6usmG3cwMM8PM_H4AzwsZnKw1JjmYemGCUvLcWhnz0FSNt8XUupC6Lb6o47n8fFqe7sBAd9Rf4Gprakd8UvPl-aufPzZv0eDfdCPj1esVOiEaFOMyp7KPyK9uwE30TJoYDU76cL_D-ua1LOp-dmb7q3_4pwTjvy32_KtumtzR0V2408eR7F0n-HuwE9oJ3OqYJTcTImPuGzcmsHcyQrOu7sO3j4HqBngoG1uHGBFFrFfMtp4tfoMdZonRO1n_hlGH_BmbzT6lbTSIlDCecdf3YWjwAcyPZl8_HOc9w0LeSKHWeVWXnpdW82AD-TIMbkKQUvpYCKV4E_lUBOXrqYtTjKs8RgsOEzStVeGF1I14CLvtog37wGThnK-DtUJyqZyvXGmbaLULPlqvRAYvhns1Fx2QhkkFcFGZTgoGpWCSFMxVBu_p6sedBIKdHiyWZ6a3KVN5Yg2xKkaHWZRQBKZkbVNgUq-jFzyDw0FwZlAskzRAo2Li8rNxGW2KCiW2DYtL2lNKrWnKOINHncDHLxGVLEWt6gxeDhrw6_B__9Dj_3_LAdzmpITU3KYPYXe9vAxPMNpZu6dJha8BIX36BQ priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcYaBIXtA22FdiUSbuxam2SJu3xAY-hd9hlQ0LaIUqaBO3SN_EeQvz32OnHQIPDro1TtbZT27X9M8DnUgYnG41BDoZeGKBUPLdWxjy0dettWVgXUrXFd3V-IReX1eUG8LEXJhXtJ0jL9Jkeq8O-rtDQUDMYlzmldkR--wK2CKoddXtrNlv8WEx_Vih3Jctm6JApRP3E5kdWKIH1P-Vh_pMdTUbn7BXsDN4im_XP9xo2QvcGXvbzI-924ddpoBwAbmVTGRCjoQ_rFbOdZ8sHEMIsTedOJ_mOUbX7FZvPvyUyaipKeM1I9XtsANyDi7P5z5PzfJiWkLdSqHVeN5XnldU82EB2CR2VEKSUPpZCKd5GXoigfFO4WKCP5NHyOwy2tFalF1K34i1sdssuvAcmS-d8E6wVkkvlfO0q20arXfDReiUyOBq5Z_70oBgmJbNFbXpeG-S1Sbw2txkcE4MnSgK0TheW11dmELCpPU0AsSpGhxGRUASMZG1bYoCuoxc8g8NRPGY4ZSuT5KxRyXD507SM54OSHrYLyxuiqaTW1DGcwbterNOTiBr1p1FNBl9GOf-9-fMvtP9_5AewzUn1qHBNH8Lm-vomfEBPZu0-Dqp7Dy677fk priority: 102 providerName: Springer Nature |
Title | Detecting cognitive traits and occupational proficiency using EEG and statistical inference |
URI | https://link.springer.com/article/10.1038/s41598-024-55163-w https://www.ncbi.nlm.nih.gov/pubmed/38453969 https://www.proquest.com/docview/2941976902 https://www.proquest.com/docview/2954771142 https://doaj.org/article/8d0816a6ffb642369780aac18887fd32 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcNAWQR9ET63RekTwTUOT3c1u8iTX82o5aBG1cODDspvdFF-S2lwp_ffObD6q-PGSwGYSNjuzO98zAG8y4a0oFSo5qHqhgpKzxBhRJ74qKmey1Fgfoi1O5fGZWG_yzWBw64awyvFMDAe1ayuykR-wUmTIOsuUvb_4kVDXKPKuDi007sIulS4jqlYbNdlYyIuFbw25MikvDjrkV5RTxkRCHiKeXP_Gj0LZ_r_Jmn_4SQP7OXoEDwe5MV70iH4Md3wzg3t9J8mbGTVfHgI1ZvDgZCrF2j2Bbx88-Qnwo_EUKhRTY4htF5vGxe0vZYbj0ME77PabmCLiz-PV6mMAo8SjUNMZob6PSYJP4exo9XV5nAwdFZJKcLlNijJ3LDeKeeOJd6Ew470QwtUZl5JVNUu5l65MbZ2iHOVQOrCokCklM8eFqvgz2Gnaxj-HWGTWutIbwwUT0rrC5qaqjbLe1cZJHsHbcV31RV84QweHNy90jwWNWNABC_o6gkNa-gmSil6HgfbyXA97SBeOuoQYWdcWtSYuqXiSMVWGSryqHWcR7I-I08NO7PQt3UTwenqMe4gcI6bx7RXB5EIpyiqOYK9H-DQTXoicl7KM4N1IAbcf__cPvfj_XF7CfUZESMFsah92tpdX_hVKN1s7DyQ8h93FYv1ljffD1emnzzi6lMt5sBjg9UQUPwEIDvxs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQg4IBiWBgoECU4QNbEdJzkgBHTKlC6nVhqJg2vHTsUlaZupRvOn-I285ywFsdx6TSzL8dvzlg_gdSKcEUWGQQ6GXhigpCzSWlSRK_PS6iTWxvlqi0M5OxZf5-l8DX4MvTBUVjnoRK-obVPSP_ItVogETWcRsw9n5xGhRlF2dYDQ6Nhiz62WGLK173e3kb5vGNuZHn2eRT2qQFQKLhdRXqSWpTpjTjvS32jQnRNC2CrhUrKyYjF30haxqWL0JSxaSINBSYbxvuUiKznuewNuouGNKdjL5tn4T4eyZnjKvjcn5vlWi_aRetiYiCgjxaPlb_bPwwT8zbf9Iy_rzd3OfbjX-6nhx46xHsCaqydwq0OuXE0I7LkvDJnA3YNx9Gv7EL5tO8pL4KbhWJoUEhDFog11bcPml7HGoUcM99plFVIF_mk4nX7xy6jRyc-QxlXfh6bER3B8LXf9GNbrpnYbEIrEGFs4rblgQhqbm1SXlc6Ms5W2kgfwdrhXddYN6lA-wc5z1VFBIRWUp4JaBvCJrn5cSUO2_YPm4lT1MqtyS6gkWlaVwSiNSxrWpHWZ5KiYK8tZAJsD4VQv-a264tMAXo2vUWYpEaNr11zSmlRkGXUxB_CkI_h4Ep6LlBeyCODdwAFXm__7g57-_ywv4fbs6GBf7e8e7j2DO4wYkgrpsk1YX1xcuufoWS3MC8_OIZxct_z8BGuKMWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qU4HggGBYGigQJDhBNIntbAeEKDNDS2FUISpV6sHYsVP1kpRmqtH8NX4d7zlLQSy3XhPLcvz2vOUDeBEJq0WeYpCDoRcGKDELlBJlYIusMCoKlbau2mKR7B6Kj0fx0Qb86HthqKyy14lOUZu6oH_kE5aLCE1nHrJJ2ZVFHEznb8--B4QgRZnWHk6jZZF9u15h-Na82ZsirV8yNp99fb8bdAgDQSF4sgyyPDYsVimzypIuR-NurRDClBFPElaULOQ2MXmoyxD9CoPWUmOAkmLsb7hIC477XoPNlKKiEWzuzBYHX4Y_PJRDwzN3nTohzyYNWkvqaGMioPwUD1a_WUMHGvA3T_ePLK0zfvM7cLvzWv13LZvdhQ1bjeF6i2O5HhP0c1cmMoZbn4dBsM09OJ5aylLgpv5QqOQTLMWy8VVl_PqXIce-ww93umbtUz3-iT-bfXDLqO3JTZTGVad9i-J9OLyS234Ao6qu7Bb4ItLa5FYpLphItMl0rIpSpdqaUpmEe_Cqv1d51o7tkC7dzjPZUkEiFaSjglx5sENXP6ykkdvuQX1-IjsJlpkhjBKVlKXGmI0nNLpJqSLKUE2XhjMPtnvCyU4PNPKSaz14PrxGCaa0jKpsfUFrYpGm1NPswcOW4MNJeCZinie5B697Drjc_N8f9Oj_Z3kGN1B25Ke9xf5juMmIH6mqLt2G0fL8wj5BN2upn3b87MO3qxahnxBQNwc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+cognitive+traits+and+occupational+proficiency+using+EEG+and+statistical+inference&rft.jtitle=Scientific+reports&rft.au=Mikheev%2C+Ilya&rft.au=Steiner%2C+Helen&rft.au=Martynova%2C+Olga&rft.date=2024-03-07&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=5605&rft_id=info:doi/10.1038%2Fs41598-024-55163-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |