Detecting cognitive traits and occupational proficiency using EEG and statistical inference

Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remai...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 5605 - 12
Main Authors Mikheev, Ilya, Steiner, Helen, Martynova, Olga
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84–0.89, 0.85–0.88, and 0.86–0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG.
AbstractList Abstract Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84–0.89, 0.85–0.88, and 0.86–0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG.
Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84-0.89, 0.85-0.88, and 0.86-0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG.Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84-0.89, 0.85-0.88, and 0.86-0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG.
Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84–0.89, 0.85–0.88, and 0.86–0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG.
ArticleNumber 5605
Author Steiner, Helen
Martynova, Olga
Mikheev, Ilya
Author_xml – sequence: 1
  givenname: Ilya
  surname: Mikheev
  fullname: Mikheev, Ilya
  email: imikheev@hse.ru
  organization: Department of Psychology, HSE University
– sequence: 2
  givenname: Helen
  surname: Steiner
  fullname: Steiner, Helen
  organization: Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
– sequence: 3
  givenname: Olga
  surname: Martynova
  fullname: Martynova, Olga
  organization: Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Centre for Cognition and Decision Making, HSE University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38453969$$D View this record in MEDLINE/PubMed
BookMark eNp90U1vFCEYB3Biamyt_QIezCRevEzlfeBo2rU2aeJFTx4Iyzxs2OzCCoxNv73MTq3GQ7lAyO95ePm_RicxRUDoLcGXBDP1sXAitOox5b0QRLL-_gU6o5iLnjJKT_5Zn6KLUra4DUE1J_oVOmWKC6alPkM_rqGCqyFuOpc2MdTwC7qabails3HsknPTwdaQot11h5x8cAGie-imMtesVjdHVmozpQbXVIgecjPwBr30dlfg4nE-R98_r75dfenvvt7cXn266x1nsvZKi5EKO1CwwDCTgggAzvnoCZOSOk8xAzlqvPaYs2YxWSuth0GSkfHBsXN0u_Qdk92aQw57mx9MssEcN1LeGJvb3XZg1IgVkVZ6v5acMqkHha11RCk1-JHR1uvD0qu99ecEpZp9KA52OxshTcVQLfgwEMJn-v4_uk1Tbv80q_bPg9R4Vu8e1bTew_h0vT8RNEAX4HIqJYN_IgSbOWqzRG1a1OYYtblvRWwpKg3HDeS_Zz9T9RtfCqmd
Cites_doi 10.1007/s11571-015-9345-1
10.1038/srep24194
10.1016/j.chb.2009.10.014
10.3390/app13116606
10.17323/1813-8918-2018-2-268-278
10.5405/jmbe.926
10.1155/2018/4638903
10.1007/s00429-018-1618-0
10.3233/JAD-200171
10.1016/0167-8760(96)00031-1
10.1111/psyp.13335
10.1016/j.neuroimage.2014.12.040
10.1016/j.future.2021.06.046
10.1162/neco_a_01394
10.1088/1741-2552/aaf12e
10.1016/j.ijpsycho.2004.11.003
10.1016/j.jneumeth.2007.03.024
10.1109/MMSP.2010.5662067
10.3390/s21072369
10.1038/s41598-023-35032-8
10.3389/fnins.2014.00385
10.1016/j.neuroimage.2020.116893
10.3389/fnins.2013.00267
10.1111/ejn.14363
10.1371/journal.pone.0053699
10.1142/S0219635213500088
10.3934/mbe.2022325
10.1186/s11689-021-09392-z
10.1049/htl.2016.0073
10.1371/journal.pone.0251490
10.1016/j.neuroimage.2013.10.067
10.1016/j.neuroimage.2022.119351
10.1016/j.ijpsycho.2016.05.006
10.1109/86.847810
10.1142/S0129065715500045
10.3389/fnbot.2022.958052
10.3389/fnbeh.2015.00269
10.1016/j.neuroimage.2007.02.026
10.1080/21622965.2020.1830403
10.1073/pnas.1603205113
10.1016/j.nlm.2020.107228
10.1504/IJAACS.2013.050694
10.3389/fpsyg.2012.00428
10.1016/j.neuron.2010.08.040
10.1109/TNSRE.2004.838443
10.1016/j.conb.2014.08.010
10.33549/physiolres.931629
10.1017/CBO9780511622762
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-55163-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Education
Mathematics
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_8d0816a6ffb642369780aac18887fd32
38453969
10_1038_s41598_024_55163_w
Genre Journal Article
GrantInformation_xml – fundername: National Research University Higher School of Economics
  grantid: Basic Research Program
  funderid: http://dx.doi.org/10.13039/501100007251
– fundername: National Research University Higher School of Economics
  grantid: Basic Research Program
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c436t-895d25a72eae3036515ee444df13662cf203e6d90bf0435d201b8997761d347c3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:09:51 EDT 2025
Fri Jul 11 08:53:56 EDT 2025
Wed Aug 13 04:54:21 EDT 2025
Mon Jul 21 06:05:43 EDT 2025
Tue Jul 01 00:51:33 EDT 2025
Fri Feb 21 02:40:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EEG
Cognitive traits
Machine learning
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-895d25a72eae3036515ee444df13662cf203e6d90bf0435d201b8997761d347c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2941976902?pq-origsite=%requestingapplication%
PMID 38453969
PQID 2941976902
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8d0816a6ffb642369780aac18887fd32
proquest_miscellaneous_2954771142
proquest_journals_2941976902
pubmed_primary_38453969
crossref_primary_10_1038_s41598_024_55163_w
springer_journals_10_1038_s41598_024_55163_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-07
PublicationDateYYYYMMDD 2024-03-07
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Dehaene, Cohen (CR48) 1995; 1
Dong, Mills, Knight, Kam (CR16) 2021; 16
Sabbagh, Ablin, Varoquaux, Gramfort, Engemann (CR18) 2020; 222
Ke (CR31) 2017; 30
Hinault, Lemaire (CR2) 2016; 106
Gerjets, Walter, Rosenstiel, Bogdan, Zander (CR8) 2014; 8
Vecchio (CR38) 2020; 75
Ou, Sun, Gan, Zhou, Yang (CR15) 2022; 19
CR32
Steiner, Martynova, Mikheev (CR7) 2023; 13
Fairclough, Venables, Tattersall (CR10) 2005; 56
Bosch, Herrera, López, Maldonado (CR24) 2018
Artemenko, Soltanlou, Dresler, Ehlis, Nuerk (CR20) 2018; 223
Poikonen, Zaluska, Wang, Magno, Kapur (CR27) 2023; 13
Mussigmann, Bardel, Lefaucheur (CR39) 2022; 258
Babiloni (CR14) 2000; 8
Xiang, Jiang, Chao, Wu, Mo (CR3) 2016; 6
Grabner, De Smedt (CR1) 2012; 3
Benevides, Bastos, Sarcinelli-Filho (CR12) 2012; 32
CR46
Saha, Ahmed, Mostafa, Khandoker, Hadjileontiadis (CR26) 2016; 4
Aydarkin, Fomina (CR5) 2013; 12
Saha, Ahmed, Mostafa, Khandoker, Hadjileontiadis (CR33) 2016; 4
Chen, Yu, Yang (CR37) 2022; 16
Alotaibi, Maharatna (CR40) 2021; 33
Proverbio, Carminati (CR21) 2019; 50
Friedrich, Friederici (CR47) 2013; 8
Anzalone, Luedke, Green, Decker (CR19) 2020; 11
Gysels, Millan, Chiappa, Celka (CR13) 2022; 12
Abiri, Borhani, Sellers, Jiang, Zhao (CR36) 2018; 16
Lin, Jung, Wu, She, Jung (CR22) 2015; 25
Alexander, O’Boyle, Benbow (CR4) 1996; 23
Amalric, Dehaene (CR23) 2016; 113
CR52
Zhang, Gan, Wang (CR49) 2015; 9
CR51
Chemerisova, Atanov, Mikheev, Martynova (CR6) 2018; 15
Maris, Oostenveld (CR53) 2007; 164
Zeng (CR17) 2021; 21
Ray (CR35) 2015; 9
Engemann, Gramfort (CR28) 2014; 108
Sherfey, Ardid, Mller, Hasselmo, Kopell (CR44) 2020; 173
Gramfort (CR50) 2013
Fairclough, Gilleade, Ewing, Roberts (CR11) 2013; 6
Bressler, Richter (CR43) 2014; 31C
Aguilar, Loyola-González, Medina-Pérez, Cañete, Choo (CR42) 2021; 125
Mizuhara, Yamaguchi (CR45) 2007; 36
Antonenko, Niederhauser (CR9) 2010; 26
Giedd, Rapoport (CR34) 2010; 67
Sassenhagen, Draschkow (CR41) 2019; 56
Hamburg, Bush, Strydom, Startin (CR25) 2021; 13
Barachant, Bonnet, Congedo, Jutten (CR29) 2010
Haufe (CR30) 2014; 87
E Gysels (55163_CR13) 2022; 12
H Zeng (55163_CR17) 2021; 21
E Aydarkin (55163_CR5) 2013; 12
P Bosch (55163_CR24) 2018
A Gramfort (55163_CR50) 2013
A Benevides (55163_CR12) 2012; 32
C Artemenko (55163_CR20) 2018; 223
A Proverbio (55163_CR21) 2019; 50
H Poikonen (55163_CR27) 2023; 13
T Hinault (55163_CR2) 2016; 106
P Gerjets (55163_CR8) 2014; 8
J Alexander (55163_CR4) 1996; 23
M Amalric (55163_CR23) 2016; 113
D Aguilar (55163_CR42) 2021; 125
PP Antonenko (55163_CR9) 2010; 26
Y Xiang (55163_CR3) 2016; 6
55163_CR46
R Grabner (55163_CR1) 2012; 3
S Bressler (55163_CR43) 2014; 31C
55163_CR52
L Zhang (55163_CR49) 2015; 9
55163_CR51
J Sassenhagen (55163_CR41) 2019; 56
J Giedd (55163_CR34) 2010; 67
L Chen (55163_CR37) 2022; 16
S Saha (55163_CR33) 2016; 4
F Vecchio (55163_CR38) 2020; 75
S Hamburg (55163_CR25) 2021; 13
J Sherfey (55163_CR44) 2020; 173
S Fairclough (55163_CR11) 2013; 6
S Fairclough (55163_CR10) 2005; 56
A Barachant (55163_CR29) 2010
H Dong (55163_CR16) 2021; 16
C-L Lin (55163_CR22) 2015; 25
R Friedrich (55163_CR47) 2013; 8
S Saha (55163_CR26) 2016; 4
E Maris (55163_CR53) 2007; 164
C Anzalone (55163_CR19) 2020; 11
D Engemann (55163_CR28) 2014; 108
S Dehaene (55163_CR48) 1995; 1
A Ray (55163_CR35) 2015; 9
F Babiloni (55163_CR14) 2000; 8
R Abiri (55163_CR36) 2018; 16
S Haufe (55163_CR30) 2014; 87
EV Chemerisova (55163_CR6) 2018; 15
T Mussigmann (55163_CR39) 2022; 258
G Ke (55163_CR31) 2017; 30
N Alotaibi (55163_CR40) 2021; 33
D Sabbagh (55163_CR18) 2020; 222
H Steiner (55163_CR7) 2023; 13
55163_CR32
H Mizuhara (55163_CR45) 2007; 36
Y Ou (55163_CR15) 2022; 19
References_xml – volume: 9
  start-page: 495
  year: 2015
  end-page: 508
  ident: CR49
  article-title: Localization of neural efficiency of the mathematically gifted brain through a feature subset selection method
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-015-9345-1
– volume: 6
  start-page: 24194
  year: 2016
  ident: CR3
  article-title: Brain-mechanistic responses to varying difficulty levels of approximate solutions to arithmetic problems
  publication-title: Sci. Rep.
  doi: 10.1038/srep24194
– volume: 26
  start-page: 140
  year: 2010
  end-page: 150
  ident: CR9
  article-title: The influence of leads on cognitive load and learning in a hypertext environment
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2009.10.014
– volume: 13
  start-page: 6606
  year: 2023
  ident: CR7
  article-title: Cross-subject classification of effectiveness in performing cognitive tasks using resting-state eeg
  publication-title: MDPI
  doi: 10.3390/app13116606
– volume: 15
  start-page: 268
  year: 2018
  end-page: 278
  ident: CR6
  article-title: Classification of verbal and mathematical mental operations based on the power spectral density of eeg
  publication-title: Psychology
  doi: 10.17323/1813-8918-2018-2-268-278
– volume: 32
  start-page: 411
  year: 2012
  end-page: 416
  ident: CR12
  article-title: Pseudo-online classification of mental tasks using Kullback–Leibler symmetric divergence
  publication-title: J. Med. Biol. Eng.
  doi: 10.5405/jmbe.926
– year: 2018
  ident: CR24
  article-title: Mining eeg with svm for understanding cognitive underpinnings of math problem solving strategies
  publication-title: Behav. Neurol.
  doi: 10.1155/2018/4638903
– ident: CR51
– volume: 223
  start-page: 1618
  year: 2018
  ident: CR20
  article-title: The neural correlates of arithmetic difficulty depend on mathematical ability: evidence from combined fnirs and erp
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-018-1618-0
– volume: 75
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR38
  article-title: Classification of Alzheimer’s disease with respect to physiological aging with innovative eeg biomarkers in a machine learning implementation
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-200171
– volume: 23
  start-page: 25
  year: 1996
  end-page: 31
  ident: CR4
  article-title: Developmentally advanced eeg alpha power in gifted male and female adolescents
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(96)00031-1
– volume: 56
  start-page: 13335
  year: 2019
  ident: CR41
  article-title: Cluster-based permutation tests of meg/eeg data do not establish significance of effect latency or location
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13335
– volume: 108
  start-page: 328
  year: 2014
  end-page: 342
  ident: CR28
  article-title: Automated model selection in covariance estimation and spatial whitening of meg and eeg signals
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.040
– volume: 125
  start-page: 71
  year: 2021
  end-page: 90
  ident: CR42
  article-title: Pbc4occ: A novel contrast pattern-based classifier for one-class classification
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2021.06.046
– volume: 33
  start-page: 1914
  year: 2021
  end-page: 1941
  ident: CR40
  article-title: Classification of autism spectrum disorder from eeg-based functional brain connectivity analysis
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01394
– volume: 16
  year: 2018
  ident: CR36
  article-title: A comprehensive review of eeg-based brain-computer interface paradigms
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– volume: 56
  start-page: 171
  year: 2005
  end-page: 84
  ident: CR10
  article-title: The influence of task demand and learning on the psychophysiological response
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2004.11.003
– ident: CR46
– volume: 164
  start-page: 177
  year: 2007
  end-page: 90
  ident: CR53
  article-title: Nonparametric statistical testing of eeg- and meg-data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– year: 2010
  ident: CR29
  article-title: Common spatial pattern revisited by riemannian geometry
  publication-title: IEEE Explor.
  doi: 10.1109/MMSP.2010.5662067
– volume: 21
  start-page: 2369
  year: 2021
  ident: CR17
  article-title: An eeg-based transfer learning method for cross-subject fatigue mental state prediction
  publication-title: Sensors
  doi: 10.3390/s21072369
– volume: 13
  start-page: 8012
  year: 2023
  ident: CR27
  article-title: Nonlinear and machine learning analyses on high-density eeg data of math experts and novices
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35032-8
– ident: CR32
– volume: 8
  start-page: 385
  year: 2014
  ident: CR8
  article-title: Cognitive state monitoring and the design of adaptive instruction in digital environments: Lessons learned from cognitive workload assessment using a passive brain-computer interface approach
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00385
– volume: 1
  start-page: 83
  year: 1995
  end-page: 120
  ident: CR48
  article-title: Towards an anatomical and functional model of number processing
  publication-title: Math. Cogn.
– volume: 222
  year: 2020
  ident: CR18
  article-title: Predictive regression modeling with meg/eeg: From source power to signals and cognitive states
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116893
– year: 2013
  ident: CR50
  article-title: Meg and eeg data analysis with mne-python
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00267
– volume: 50
  start-page: 14363
  year: 2019
  ident: CR21
  article-title: Electrophysiological markers of poor vs. superior math abilities in healthy individuals
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.14363
– volume: 8
  year: 2013
  ident: CR47
  article-title: Mathematical logic in the human brain: Semantics
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053699
– volume: 12
  start-page: 73
  year: 2013
  end-page: 89
  ident: CR5
  article-title: Neurophysiological mechanisms of complex arithmetic task solving
  publication-title: J. Integr. Neurosci.
  doi: 10.1142/S0219635213500088
– volume: 19
  start-page: 6907
  year: 2022
  end-page: 6922
  ident: CR15
  article-title: An improved self-supervised learning for eeg classification
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022325
– volume: 13
  start-page: 9392
  year: 2021
  ident: CR25
  article-title: Comparison of resting-state eeg between adults with down syndrome and typically developing controls
  publication-title: J. Neurodev. Disord.
  doi: 10.1186/s11689-021-09392-z
– volume: 4
  start-page: 39
  year: 2016
  end-page: 43
  ident: CR33
  article-title: Enhanced inter-subject brain computer interface with associative sensorimotor oscillations
  publication-title: IET Healthc. Technol. Lett.
  doi: 10.1049/htl.2016.0073
– volume: 16
  year: 2021
  ident: CR16
  article-title: Detection of mind wandering using eeg: Within and across individuals
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0251490
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  ident: CR30
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.067
– volume: 258
  year: 2022
  ident: CR39
  article-title: Resting-state electroencephalography (eeg) biomarkers of chronic neuropathic pain: A systematic review
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119351
– volume: 106
  start-page: 317
  year: 2016
  end-page: 330
  ident: CR2
  article-title: What does eeg tell us about arithmetic strategies? A review
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2016.05.006
– volume: 8
  start-page: 186
  year: 2000
  end-page: 8
  ident: CR14
  article-title: Linear classification of low-resolution eeg patterns produced by imagined hand movements
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.847810
– volume: 30
  start-page: 1
  year: 2017
  end-page: 19
  ident: CR31
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  start-page: 1550004
  year: 2015
  ident: CR22
  article-title: Neural correlates of mathematical problem solving
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065715500045
– volume: 16
  year: 2022
  ident: CR37
  article-title: Spd-cnn: A plain cnn-based model using the symmetric positive definite matrices for cross-subject eeg classification with meta-transfer-learning
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2022.958052
– volume: 9
  start-page: 269
  year: 2015
  ident: CR35
  article-title: A subject-independent pattern-based brain-computer interface
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2015.00269
– volume: 36
  start-page: 232
  year: 2007
  end-page: 44
  ident: CR45
  article-title: Human cortical circuits for central executive function emerge by theta phase synchronization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.026
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR19
  article-title: Qeeg coherence patterns related to mathematics ability in children
  publication-title: Appl. Neuropsychol.
  doi: 10.1080/21622965.2020.1830403
– ident: CR52
– volume: 113
  start-page: 201603205
  year: 2016
  ident: CR23
  article-title: Origins of the brain networks for advanced mathematics in expert mathematicians
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1603205113
– volume: 173
  year: 2020
  ident: CR44
  article-title: Prefrontal oscillations modulate the propagation of neuronal activity required for working memory
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2020.107228
– volume: 6
  start-page: 63
  year: 2013
  end-page: 79
  ident: CR11
  article-title: Capturing user engagement via psychophysiology: Measures and mechanisms for biocybernetic adaptation
  publication-title: Int. J. Auton. Adapt. Commun. Syst.
  doi: 10.1504/IJAACS.2013.050694
– volume: 3
  start-page: 428
  year: 2012
  ident: CR1
  article-title: Oscillatory eeg correlates of arithmetic strategies: A training study
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00428
– volume: 67
  start-page: 728
  year: 2010
  end-page: 34
  ident: CR34
  article-title: Structural mri of pediatric brain development: What have we learned and where are we going?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.040
– volume: 12
  start-page: 8443
  year: 2022
  ident: CR13
  article-title: Studying phase synchrony for classification of mental tasks in brain machine interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2004.838443
– volume: 4
  start-page: 73
  year: 2016
  ident: CR26
  article-title: Enhanced inter-subject brain computer interface with associative sensorimotor oscillations
  publication-title: IET Healthc. Technol. Lett.
  doi: 10.1049/htl.2016.0073
– volume: 31C
  start-page: 62
  year: 2014
  end-page: 66
  ident: CR43
  article-title: Interareal oscillatory synchronization in top-down neocortical processing
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.08.010
– volume: 258
  year: 2022
  ident: 55163_CR39
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119351
– volume: 50
  start-page: 14363
  year: 2019
  ident: 55163_CR21
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.14363
– volume: 16
  year: 2018
  ident: 55163_CR36
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– ident: 55163_CR46
  doi: 10.33549/physiolres.931629
– volume: 9
  start-page: 269
  year: 2015
  ident: 55163_CR35
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2015.00269
– volume: 11
  start-page: 1
  year: 2020
  ident: 55163_CR19
  publication-title: Appl. Neuropsychol.
  doi: 10.1080/21622965.2020.1830403
– volume: 67
  start-page: 728
  year: 2010
  ident: 55163_CR34
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.040
– volume: 23
  start-page: 25
  year: 1996
  ident: 55163_CR4
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(96)00031-1
– volume: 12
  start-page: 73
  year: 2013
  ident: 55163_CR5
  publication-title: J. Integr. Neurosci.
  doi: 10.1142/S0219635213500088
– ident: 55163_CR52
– volume: 113
  start-page: 201603205
  year: 2016
  ident: 55163_CR23
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1603205113
– volume: 13
  start-page: 8012
  year: 2023
  ident: 55163_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35032-8
– volume: 173
  year: 2020
  ident: 55163_CR44
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2020.107228
– volume: 1
  start-page: 83
  year: 1995
  ident: 55163_CR48
  publication-title: Math. Cogn.
– volume: 164
  start-page: 177
  year: 2007
  ident: 55163_CR53
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– year: 2018
  ident: 55163_CR24
  publication-title: Behav. Neurol.
  doi: 10.1155/2018/4638903
– volume: 33
  start-page: 1914
  year: 2021
  ident: 55163_CR40
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01394
– volume: 106
  start-page: 317
  year: 2016
  ident: 55163_CR2
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2016.05.006
– volume: 4
  start-page: 73
  year: 2016
  ident: 55163_CR26
  publication-title: IET Healthc. Technol. Lett.
  doi: 10.1049/htl.2016.0073
– volume: 26
  start-page: 140
  year: 2010
  ident: 55163_CR9
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2009.10.014
– volume: 87
  start-page: 96
  year: 2014
  ident: 55163_CR30
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.067
– volume: 56
  start-page: 13335
  year: 2019
  ident: 55163_CR41
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13335
– volume: 8
  year: 2013
  ident: 55163_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053699
– volume: 13
  start-page: 6606
  year: 2023
  ident: 55163_CR7
  publication-title: MDPI
  doi: 10.3390/app13116606
– year: 2010
  ident: 55163_CR29
  publication-title: IEEE Explor.
  doi: 10.1109/MMSP.2010.5662067
– volume: 15
  start-page: 268
  year: 2018
  ident: 55163_CR6
  publication-title: Psychology
  doi: 10.17323/1813-8918-2018-2-268-278
– volume: 16
  year: 2021
  ident: 55163_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0251490
– ident: 55163_CR32
– volume: 75
  start-page: 1
  year: 2020
  ident: 55163_CR38
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-200171
– volume: 9
  start-page: 495
  year: 2015
  ident: 55163_CR49
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-015-9345-1
– volume: 125
  start-page: 71
  year: 2021
  ident: 55163_CR42
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2021.06.046
– year: 2013
  ident: 55163_CR50
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00267
– volume: 12
  start-page: 8443
  year: 2022
  ident: 55163_CR13
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2004.838443
– volume: 19
  start-page: 6907
  year: 2022
  ident: 55163_CR15
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022325
– volume: 222
  year: 2020
  ident: 55163_CR18
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116893
– volume: 21
  start-page: 2369
  year: 2021
  ident: 55163_CR17
  publication-title: Sensors
  doi: 10.3390/s21072369
– volume: 16
  year: 2022
  ident: 55163_CR37
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2022.958052
– volume: 56
  start-page: 171
  year: 2005
  ident: 55163_CR10
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2004.11.003
– volume: 32
  start-page: 411
  year: 2012
  ident: 55163_CR12
  publication-title: J. Med. Biol. Eng.
  doi: 10.5405/jmbe.926
– volume: 223
  start-page: 1618
  year: 2018
  ident: 55163_CR20
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-018-1618-0
– volume: 36
  start-page: 232
  year: 2007
  ident: 55163_CR45
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.026
– volume: 8
  start-page: 385
  year: 2014
  ident: 55163_CR8
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00385
– ident: 55163_CR51
  doi: 10.1017/CBO9780511622762
– volume: 25
  start-page: 1550004
  year: 2015
  ident: 55163_CR22
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065715500045
– volume: 6
  start-page: 63
  year: 2013
  ident: 55163_CR11
  publication-title: Int. J. Auton. Adapt. Commun. Syst.
  doi: 10.1504/IJAACS.2013.050694
– volume: 31C
  start-page: 62
  year: 2014
  ident: 55163_CR43
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.08.010
– volume: 13
  start-page: 9392
  year: 2021
  ident: 55163_CR25
  publication-title: J. Neurodev. Disord.
  doi: 10.1186/s11689-021-09392-z
– volume: 3
  start-page: 428
  year: 2012
  ident: 55163_CR1
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00428
– volume: 30
  start-page: 1
  year: 2017
  ident: 55163_CR31
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 39
  year: 2016
  ident: 55163_CR33
  publication-title: IET Healthc. Technol. Lett.
  doi: 10.1049/htl.2016.0073
– volume: 6
  start-page: 24194
  year: 2016
  ident: 55163_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/srep24194
– volume: 8
  start-page: 186
  year: 2000
  ident: 55163_CR14
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.847810
– volume: 108
  start-page: 328
  year: 2014
  ident: 55163_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.040
SSID ssj0000529419
Score 2.418519
Snippet Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive...
Abstract Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 5605
SubjectTerms 631/378/116/1925
631/378/2649/1725
Classification
Cognition
Cognition & reasoning
Cognitive ability
Cognitive traits
Education
EEG
Electroencephalography
Electroencephalography - methods
Humanities and Social Sciences
Humans
Machine Learning
Mathematics
multidisciplinary
Neurological diseases
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et9VVInjTYpukSXv0sat48KQgeAhJk4iXrri7iP_embS7rqh48dpMSzIz6cwwM98QcpQLb0WlIMiB0AsClIKlxoiQ-rqsnckzY32striV1_fi5qF4mBv1hTVhLTxwy7jT0uFoCCNDsOAqc4mIOcbUOURuKjge_75g8-aCqRbVm1Uir7oumYyXpyOwVNhNxkSKuSGevn2xRBGw_ycv81uGNBqewSpZ6TxGetbudI0s-GadLLUzJN83yOOlxzwAvEpnpUAUBz-MR9Q0jg7nYIRpnNAdb_M7xYr3J9rvX0UybCyKmM1A9TxtAtwk94P-3cV12k1MSGvB5Tgtq8KxwijmjUfbBM6K90IIF3IuJasDy7iXrspsyMBPcmD9LQRcSsnccaFqvkUWm2HjdwgVubWu8sZwwYS0rrSFqYNR1rtgnOQJOZ5yT7-0wBg6JrR5qVtea-C1jrzWbwk5RwbPKBHUOj4AUetO1PovUSekNxWP7m7aSEc5K1A0WD6cLcMdwcSHafxwgjSFUAq7hhOy3Yp1thNeioJXskrIyVTOnx___UC7_3GgPbLMUCGxpE31yOL4deL3wccZ24Oozh8EHfY4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB9qRbAPoudH11aJ4Juu3ibZZPdBxI-rRahPHhR8CMkmKULZq3dX6v33ncl-qHj6usmG3cwMM8PM_H4AzwsZnKw1JjmYemGCUvLcWhnz0FSNt8XUupC6Lb6o47n8fFqe7sBAd9Rf4Gprakd8UvPl-aufPzZv0eDfdCPj1esVOiEaFOMyp7KPyK9uwE30TJoYDU76cL_D-ua1LOp-dmb7q3_4pwTjvy32_KtumtzR0V2408eR7F0n-HuwE9oJ3OqYJTcTImPuGzcmsHcyQrOu7sO3j4HqBngoG1uHGBFFrFfMtp4tfoMdZonRO1n_hlGH_BmbzT6lbTSIlDCecdf3YWjwAcyPZl8_HOc9w0LeSKHWeVWXnpdW82AD-TIMbkKQUvpYCKV4E_lUBOXrqYtTjKs8RgsOEzStVeGF1I14CLvtog37wGThnK-DtUJyqZyvXGmbaLULPlqvRAYvhns1Fx2QhkkFcFGZTgoGpWCSFMxVBu_p6sedBIKdHiyWZ6a3KVN5Yg2xKkaHWZRQBKZkbVNgUq-jFzyDw0FwZlAskzRAo2Li8rNxGW2KCiW2DYtL2lNKrWnKOINHncDHLxGVLEWt6gxeDhrw6_B__9Dj_3_LAdzmpITU3KYPYXe9vAxPMNpZu6dJha8BIX36BQ
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcYaBIXtA22FdiUSbuxam2SJu3xAY-hd9hlQ0LaIUqaBO3SN_EeQvz32OnHQIPDro1TtbZT27X9M8DnUgYnG41BDoZeGKBUPLdWxjy0dettWVgXUrXFd3V-IReX1eUG8LEXJhXtJ0jL9Jkeq8O-rtDQUDMYlzmldkR--wK2CKoddXtrNlv8WEx_Vih3Jctm6JApRP3E5kdWKIH1P-Vh_pMdTUbn7BXsDN4im_XP9xo2QvcGXvbzI-924ddpoBwAbmVTGRCjoQ_rFbOdZ8sHEMIsTedOJ_mOUbX7FZvPvyUyaipKeM1I9XtsANyDi7P5z5PzfJiWkLdSqHVeN5XnldU82EB2CR2VEKSUPpZCKd5GXoigfFO4WKCP5NHyOwy2tFalF1K34i1sdssuvAcmS-d8E6wVkkvlfO0q20arXfDReiUyOBq5Z_70oBgmJbNFbXpeG-S1Sbw2txkcE4MnSgK0TheW11dmELCpPU0AsSpGhxGRUASMZG1bYoCuoxc8g8NRPGY4ZSuT5KxRyXD507SM54OSHrYLyxuiqaTW1DGcwbterNOTiBr1p1FNBl9GOf-9-fMvtP9_5AewzUn1qHBNH8Lm-vomfEBPZu0-Dqp7Dy677fk
  priority: 102
  providerName: Springer Nature
Title Detecting cognitive traits and occupational proficiency using EEG and statistical inference
URI https://link.springer.com/article/10.1038/s41598-024-55163-w
https://www.ncbi.nlm.nih.gov/pubmed/38453969
https://www.proquest.com/docview/2941976902
https://www.proquest.com/docview/2954771142
https://doaj.org/article/8d0816a6ffb642369780aac18887fd32
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcNAWQR9ET63RekTwTUOT3c1u8iTX82o5aBG1cODDspvdFF-S2lwp_ffObD6q-PGSwGYSNjuzO98zAG8y4a0oFSo5qHqhgpKzxBhRJ74qKmey1Fgfoi1O5fGZWG_yzWBw64awyvFMDAe1ayuykR-wUmTIOsuUvb_4kVDXKPKuDi007sIulS4jqlYbNdlYyIuFbw25MikvDjrkV5RTxkRCHiKeXP_Gj0LZ_r_Jmn_4SQP7OXoEDwe5MV70iH4Md3wzg3t9J8mbGTVfHgI1ZvDgZCrF2j2Bbx88-Qnwo_EUKhRTY4htF5vGxe0vZYbj0ME77PabmCLiz-PV6mMAo8SjUNMZob6PSYJP4exo9XV5nAwdFZJKcLlNijJ3LDeKeeOJd6Ew470QwtUZl5JVNUu5l65MbZ2iHOVQOrCokCklM8eFqvgz2Gnaxj-HWGTWutIbwwUT0rrC5qaqjbLe1cZJHsHbcV31RV84QweHNy90jwWNWNABC_o6gkNa-gmSil6HgfbyXA97SBeOuoQYWdcWtSYuqXiSMVWGSryqHWcR7I-I08NO7PQt3UTwenqMe4gcI6bx7RXB5EIpyiqOYK9H-DQTXoicl7KM4N1IAbcf__cPvfj_XF7CfUZESMFsah92tpdX_hVKN1s7DyQ8h93FYv1ljffD1emnzzi6lMt5sBjg9UQUPwEIDvxs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQg4IBiWBgoECU4QNbEdJzkgBHTKlC6nVhqJg2vHTsUlaZupRvOn-I285ywFsdx6TSzL8dvzlg_gdSKcEUWGQQ6GXhigpCzSWlSRK_PS6iTWxvlqi0M5OxZf5-l8DX4MvTBUVjnoRK-obVPSP_ItVogETWcRsw9n5xGhRlF2dYDQ6Nhiz62WGLK173e3kb5vGNuZHn2eRT2qQFQKLhdRXqSWpTpjTjvS32jQnRNC2CrhUrKyYjF30haxqWL0JSxaSINBSYbxvuUiKznuewNuouGNKdjL5tn4T4eyZnjKvjcn5vlWi_aRetiYiCgjxaPlb_bPwwT8zbf9Iy_rzd3OfbjX-6nhx46xHsCaqydwq0OuXE0I7LkvDJnA3YNx9Gv7EL5tO8pL4KbhWJoUEhDFog11bcPml7HGoUcM99plFVIF_mk4nX7xy6jRyc-QxlXfh6bER3B8LXf9GNbrpnYbEIrEGFs4rblgQhqbm1SXlc6Ms5W2kgfwdrhXddYN6lA-wc5z1VFBIRWUp4JaBvCJrn5cSUO2_YPm4lT1MqtyS6gkWlaVwSiNSxrWpHWZ5KiYK8tZAJsD4VQv-a264tMAXo2vUWYpEaNr11zSmlRkGXUxB_CkI_h4Ep6LlBeyCODdwAFXm__7g57-_ywv4fbs6GBf7e8e7j2DO4wYkgrpsk1YX1xcuufoWS3MC8_OIZxct_z8BGuKMWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qU4HggGBYGigQJDhBNIntbAeEKDNDS2FUISpV6sHYsVP1kpRmqtH8NX4d7zlLQSy3XhPLcvz2vOUDeBEJq0WeYpCDoRcGKDELlBJlYIusMCoKlbau2mKR7B6Kj0fx0Qb86HthqKyy14lOUZu6oH_kE5aLCE1nHrJJ2ZVFHEznb8--B4QgRZnWHk6jZZF9u15h-Na82ZsirV8yNp99fb8bdAgDQSF4sgyyPDYsVimzypIuR-NurRDClBFPElaULOQ2MXmoyxD9CoPWUmOAkmLsb7hIC477XoPNlKKiEWzuzBYHX4Y_PJRDwzN3nTohzyYNWkvqaGMioPwUD1a_WUMHGvA3T_ePLK0zfvM7cLvzWv13LZvdhQ1bjeF6i2O5HhP0c1cmMoZbn4dBsM09OJ5aylLgpv5QqOQTLMWy8VVl_PqXIce-ww93umbtUz3-iT-bfXDLqO3JTZTGVad9i-J9OLyS234Ao6qu7Bb4ItLa5FYpLphItMl0rIpSpdqaUpmEe_Cqv1d51o7tkC7dzjPZUkEiFaSjglx5sENXP6ykkdvuQX1-IjsJlpkhjBKVlKXGmI0nNLpJqSLKUE2XhjMPtnvCyU4PNPKSaz14PrxGCaa0jKpsfUFrYpGm1NPswcOW4MNJeCZinie5B697Drjc_N8f9Oj_Z3kGN1B25Ke9xf5juMmIH6mqLt2G0fL8wj5BN2upn3b87MO3qxahnxBQNwc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+cognitive+traits+and+occupational+proficiency+using+EEG+and+statistical+inference&rft.jtitle=Scientific+reports&rft.au=Mikheev%2C+Ilya&rft.au=Steiner%2C+Helen&rft.au=Martynova%2C+Olga&rft.date=2024-03-07&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=5605&rft_id=info:doi/10.1038%2Fs41598-024-55163-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon