Detecting cognitive traits and occupational proficiency using EEG and statistical inference
Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remai...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 5605 - 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM). 128-channel EEGs were recorded from 26 healthy volunteers while they solved arithmetic, logical, and verbal tasks. The participants were divided into two groups based on their higher education and occupation: specialists in mathematics and humanities. The balanced accuracy of the education type was significantly above chance for all pipelines: 0.84–0.89, 0.85–0.88, and 0.86–0.88 for each type of task, respectively. All three pipelines allowed us to distinguish mathematical proficiency based on learning experience with different trade-offs between performance and explainability. Our results suggest that ML approaches could also be effective for recognizing individual cognitive traits using EEG. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-55163-w |