Preference Learning for Cognitive Modeling: A Case Study on Entertainment Preferences

Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper presents a comparative study of four alternative instance preference learning algorithms (both linear and nonlinear). The case study investi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 39; no. 6; pp. 1165 - 1175
Main Authors Yannakakis, G.N., Maragoudakis, M., Hallam, J.
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper presents a comparative study of four alternative instance preference learning algorithms (both linear and nonlinear). The case study investigated is to learn to predict the expressed entertainment preferences of children when playing physical games built on their personalized playing features ( entertainment modeling ). Two of the approaches are derived from the literature-the large-margin algorithm (LMA) and preference learning with Gaussian processes-while the remaining two are custom-designed approaches for the problem under investigation: meta-LMA and neuroevolution. Preference learning techniques are combined with feature set selection methods permitting the construction of effective preference models, given suitable individual playing features. The underlying preference model that best reflects children preferences is obtained through neuroevolution: 82.22% of cross-validation accuracy in predicting reported entertainment in the main set of game survey experimentation. The model is able to correctly match expressed preferences in 66.66% of cases on previously unseen data ( p -value = 0.0136) of a second physical activity control experiment. Results indicate the benefit of the use of neuroevolution and sequential forward selection for the investigated complex case study of cognitive modeling in physical games.
AbstractList Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper presents a comparative study of four alternative instance preference learning algorithms (both linear and nonlinear). The case study investigated is to learn to predict the expressed entertainment preferences of children when playing physical games built on their personalized playing features ( entertainment modeling ). Two of the approaches are derived from the literature-the large-margin algorithm (LMA) and preference learning with Gaussian processes-while the remaining two are custom-designed approaches for the problem under investigation: meta-LMA and neuroevolution. Preference learning techniques are combined with feature set selection methods permitting the construction of effective preference models, given suitable individual playing features. The underlying preference model that best reflects children preferences is obtained through neuroevolution: 82.22% of cross-validation accuracy in predicting reported entertainment in the main set of game survey experimentation. The model is able to correctly match expressed preferences in 66.66% of cases on previously unseen data ( p -value = 0.0136) of a second physical activity control experiment. Results indicate the benefit of the use of neuroevolution and sequential forward selection for the investigated complex case study of cognitive modeling in physical games.
Author Yannakakis, G.N.
Maragoudakis, M.
Hallam, J.
Author_xml – sequence: 1
  givenname: G.N.
  surname: Yannakakis
  fullname: Yannakakis, G.N.
  organization: IT Univ. of Copenhagen, Copenhagen, Denmark
– sequence: 2
  givenname: M.
  surname: Maragoudakis
  fullname: Maragoudakis, M.
  organization: Dept. of Inf. & Commun. Syst. Eng., Univ. of the Aegean, Karlovasi, Greece
– sequence: 3
  givenname: J.
  surname: Hallam
  fullname: Hallam, J.
  organization: Maersk Mc-Kinney Moller Inst., Univ. of Southern Denmark, Odense, Denmark
BookMark eNp9kE1LAzEQhoNUUKt_QC-5edqar90k3spSP6CioD0vaXa2RLaJJqnQf-9qi4IHLzPD8D7z8Z6gkQ8eEDqnZEIp0Vcvzw_1dMII0UNgipbsAB3TslQFE6waDTVRvBCCySN0ktIrIVQILY7R4ilCBxG8BTwHE73zK9yFiOuw8i67D8APoYV-aF_jKa5NAvycN-0WB49nPkPMxvk1-Ix_J6VTdNiZPsHZPo_R4mb2Ut8V88fb-3o6L6zgVS4U74hWVBJGGbBuybUorWyBWVJq0K1cyopSxqGVnKqlZYYPz4GppC4tUR0fo8vd3LcY3jeQcrN2yULfGw9hkxpVaSWkqtSgZDuljSGl4dLmLbq1iduGkubLwubbwubLwmZv4QCpP5B12WQXfI7G9f-jFzvUAcDPrpJJJkrKPwHTEIBI
CODEN ITSHFX
CitedBy_id crossref_primary_10_1007_s11023_010_9210_2
crossref_primary_10_1080_24725854_2018_1493244
crossref_primary_10_1109_T_AFFC_2011_6
crossref_primary_10_1016_j_entcom_2014_09_002
crossref_primary_10_1109_TAFFC_2018_2879512
crossref_primary_10_18506_anemon_976300
crossref_primary_10_1016_j_asoc_2021_107109
crossref_primary_10_1109_TCIAIG_2014_2307272
crossref_primary_10_1109_T_AFFC_2011_4
crossref_primary_10_1007_s10710_022_09442_y
crossref_primary_10_3390_app10134529
crossref_primary_10_4018_IJGCMS_2019040101
crossref_primary_10_1109_TCYB_2013_2271738
crossref_primary_10_3390_electronics12081789
crossref_primary_10_2139_ssrn_4073150
crossref_primary_10_1016_j_eswa_2012_01_053
crossref_primary_10_1007_s11257_010_9078_0
crossref_primary_10_1109_TSMCA_2010_2069095
crossref_primary_10_1109_TSMCA_2010_2052600
crossref_primary_10_1016_j_ijar_2020_10_006
crossref_primary_10_1109_TCIAIG_2012_2231413
crossref_primary_10_1016_j_trc_2022_103948
crossref_primary_10_1109_TCIAIG_2014_2335273
crossref_primary_10_1109_TCIAIG_2011_2149523
crossref_primary_10_1142_S0218213013500280
crossref_primary_10_1109_TCIAIG_2009_2024533
crossref_primary_10_1109_TSMCA_2012_2183588
crossref_primary_10_1016_j_entcom_2011_12_001
crossref_primary_10_1109_TCIAIG_2010_2043950
Cites_doi 10.1111/1467-8721.t01-1-01250
10.1007/s10015-005-0350-z
10.1080/01449290500331156
10.1145/775047.775067
10.1142/S0218213007003667
10.1109/5.784219
10.1016/j.ijhcs.2008.06.004
10.1007/s11257-007-9036-7
10.1111/j.0824-7935.2004.00233.x
10.1109/CIG.2007.368105
10.1145/1178477.1178514
10.1109/34.954607
10.1109/CIG.2006.311692
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7TK
DOI 10.1109/TSMCA.2009.2028152
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Neurosciences Abstracts
DatabaseTitle CrossRef
Neurosciences Abstracts
DatabaseTitleList
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1558-2426
EndPage 1175
ExternalDocumentID 10_1109_TSMCA_2009_2028152
5272451
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
VJK
AAYOK
AAYXX
CITATION
7TK
ID FETCH-LOGICAL-c436t-83f098170212e2fb3945c7de2c059e9d7b761123ed7318bc2a3028ea6795c08f3
IEDL.DBID RIE
ISSN 1083-4427
IngestDate Thu Jul 10 21:10:57 EDT 2025
Tue Jul 01 04:13:43 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Tue Aug 26 16:47:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-83f098170212e2fb3945c7de2c059e9d7b761123ed7318bc2a3028ea6795c08f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.um.edu.mt/library/oar//handle/123456789/22947
PQID 869847868
PQPubID 23462
PageCount 11
ParticipantIDs crossref_primary_10_1109_TSMCA_2009_2028152
crossref_citationtrail_10_1109_TSMCA_2009_2028152
ieee_primary_5272451
proquest_miscellaneous_869847868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationTitle IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
PublicationTitleAbbrev TSMCA
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
References Malone (29) 1981; 6
23
Montana (20) 1989
Williams (18) 1996
28
Bahamonde (12) 2004
Metaxas (24) 2005
Frnkranz (1) 2005; 19
Yannakakis (37) 2005
Liljedahl (22) 2006
Gervasio (14) 2005
Gervasio (15) 1999
Yannakakis (5) 2006; 3955
Yannakakis (7) 2007
Holl (19) 1975
31
Haapalainen (36) 2005
32
Read (2) 2002
33
13
Yannakakis (27) 2006; 4161, Lecture
38
17
Joachims (11) 2002
Devijver (35) 1982
Magerkurth (25) 2003
Yannakakis (30) 2007
Beal (34) 2002
Fiechter (3) 2000
6
Yannakakis (8) 2008; 18
9
Ishii (26) 1999
Papadimitriou (16) 1982
Chu (4) 2005
Herbrich (10) 1998
21
References_xml – start-page: 287
  year: 2000
  ident: 3
  article-title: Learning subjective functions with large margins
  publication-title: Proc. 17th ICML
– ident: 32
  doi: 10.1111/1467-8721.t01-1-01250
– start-page: 8
  year: 2002
  ident: 34
  article-title: Intelligent modelling of the user in interactive entertainment
  publication-title: Proc. AAAI Spring Symp. Artif. Intell. Interactive Entertainment
– ident: 21
  doi: 10.1007/s10015-005-0350-z
– ident: 31
  doi: 10.1080/01449290500331156
– start-page: 133
  year: 2002
  ident: 11
  article-title: Optimizing search engines using clickthrough data
  publication-title: Proc. KDD
  doi: 10.1145/775047.775067
– year: 1982
  ident: 35
  publication-title: Pattern RecognitionA Statistical Approach
– year: 2006
  ident: 22
  article-title: DigiWallAn audio mostly game
  publication-title: Proc. Int. Conf. Auditory Display
– volume: 4161, Lecture
  start-page: 314
  year: 2006
  ident: 27
  article-title: Capturing entertainment through heart-rate dynamics in the playware playground
  publication-title: Proc. 5th Int. Conf. Entertainment Comput.
– volume: 3955
  start-page: 432
  volume-title: Lecture Notes in Artificial Intelligence
  year: 2006
  ident: 5
  article-title: Towards capturing and enhancing entertainment in computer games
  publication-title: Proc. 4th Hellenic Conf. Artif. Intell.
– ident: 28
  doi: 10.1142/S0218213007003667
– volume: 19
  start-page: 60
  year: 2005
  ident: 1
  article-title: Preference learning
  publication-title: Knstliche Intelligenz
– start-page: 394
  year: 1999
  ident: 26
  article-title: PingPongPlus: Design of an athletic-tangible interface for computer-supported cooperative play
  publication-title: Proc. SIGCHI Conf. Human Factors Comput. Syst. CHI
– start-page: 37
  year: 2007
  ident: 30
  article-title: Feature selection for capturing the experience of fun
  publication-title: Proc. AIIDE Workshop Optimizing Player Satisfaction
– start-page: 598
  year: 1996
  ident: 18
  article-title: Gaussian processes for regression
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– volume: 6
  start-page: 258
  year: 1981
  ident: 29
  article-title: What makes computer games fun?
  publication-title: Byte
– ident: 13
  doi: 10.1109/5.784219
– ident: 38
  doi: 10.1016/j.ijhcs.2008.06.004
– start-page: 1
  year: 2002
  ident: 2
  article-title: Endurability, engagement and expectations
  publication-title: Proc. Int. Conf. Interaction Des. Children
– start-page: 49
  year: 2004
  ident: 12
  publication-title: Proc. 21st Int. Conf. Mach. Learn.
– year: 1975
  ident: 19
  publication-title: Adaptation in Natural and Artificial Systems
– year: 2005
  ident: 37
  publication-title: AI in computer games: Generating interesting interactive opponents by the use of evolutionary computation
– volume: 18
  start-page: 207
  year: 2008
  ident: 8
  article-title: Entertainment capture through heart rate activity in physical interactive playgrounds
  publication-title: User Model. User-Adapted Interaction
  doi: 10.1007/s11257-007-9036-7
– ident: 9
  doi: 10.1111/j.0824-7935.2004.00233.x
– year: 2007
  ident: 7
  publication-title: ``Preliminary studies for capturing entertainment through physiology in physical play
– ident: 17
  doi: 10.1109/CIG.2007.368105
– start-page: 412
  year: 2005
  ident: 36
  article-title: Methods for classifying spot welding process: A comparative study of performance
  publication-title: Proc. IEA/AIE
– start-page: 229
  year: 2005
  ident: 24
  article-title: SCORPIODROME: An exploration in mixed reality social gaming for children
  publication-title: Proc. ACM SIGCHI Int. Conf. Adv. Comput. Entertainment Technol.
  doi: 10.1145/1178477.1178514
– start-page: 137
  year: 2005
  ident: 4
  article-title: Preference learning with Gaussian processes
  publication-title: Proc. 22nd ICML
– year: 1982
  ident: 16
  publication-title: Combinatorial Optimization: Algorithms and Complexity
– ident: 33
  doi: 10.1109/34.954607
– ident: 6
  doi: 10.1109/CIG.2006.311692
– start-page: 267
  year: 2003
  ident: 25
  article-title: STARSA ubiquitous computing platform for computer augmented tabletop games
  publication-title: Proc. Ext. Abstr. UbiComp
– start-page: 90
  year: 2005
  ident: 14
  article-title: Active preference learning for personalized calendar scheduling assistance
  publication-title: Proc. 10th Int. Conf. IUI
– start-page: 80
  year: 1998
  ident: 10
  article-title: Learning preference relations for information retrieval
  publication-title: Proc. Text Categorization ICML
– ident: 23
  publication-title: Mixed Reality Lab
– start-page: 152
  year: 1999
  ident: 15
  article-title: Learning user evaluation functions for adaptive scheduling assistance
  publication-title: Proc. 16th Int. Conf. Mach. Learn.
– start-page: 762
  year: 1989
  ident: 20
  article-title: Training feedforward neural networks using genetic algorithms
  publication-title: Proc. 11th IJCAI
SSID ssj0014494
Score 2.1593356
Snippet Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1165
SubjectTerms Accuracy
Augmented-reality games
Bayesian learning (BL)
Bayesian methods
Communication systems
entertainment modeling
Investments
large-margin classifiers
Machine learning
Machine learning algorithms
neuroevolution
Predictive models
preference learning
Supervised learning
Systems engineering and theory
Technological innovation
Title Preference Learning for Cognitive Modeling: A Case Study on Entertainment Preferences
URI https://ieeexplore.ieee.org/document/5272451
https://www.proquest.com/docview/869847868
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEww8WhDlJQ8MIEhJHMcPtqoCVUggJKjEFtXOhQGUItoO8OuxnQcUEGLL4FhWzvZ9l7v7PoDDRERaotaB1kIHDlIHCpEGYU658fzpI8_2ecMHQ3b1kDwswGnTC4OIvvgMu-7R5_KzsZm5X2VnCRWUuX7pRRu4lb1aTcaAMS96GFlIETBGRd0gE6qz-7vrfq-kprShvowSOueEvKrKj6vY-5fLNbiuV1aWlTx1Z1PdNe_fSBv_u_R1WK2AJumVO2MDFrBowcoX-sEWbFQHe0KOKvbp4zYMbxvlEVKRrz4Si2xJvy40Ik4_zXWxn5Me6VsvSFwx4hsZF2SuxIB8zjTZhOHlxX1_EFTaC4FhMZ8GMs5D5cj7rGtDmutYscSIDKmxeAxVJrTgFqrFmAl7K2hDR7H9tDjiQiUmlHm8BUvFuMBtIFmchDzTOUPNGYa5TmTIbJhiL9bMziY7ENXGSE1FTO70MZ5TH6CEKvUGdIKZKq0M2IGT5p2Xkpbjz9FtZ5FmZGWMDpDa5qk9VC5TMipwPJukkivrtSWXO7-_uQvLPqvkexL3YGn6OsN9C06m-sDvyg9wXd7_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hOJQeSnlUpEDrQw8g2LDr9ZNbFIFSShASicRtFXtnOVBtEEkO5ddjex8UilBve7Aty2N7Pu_MfB_ADy4To9CYyBhpIg-pI41Io7igwgb-9Elg-7wUgzE7v-E3S3DU1sIgYkg-w67_DLH8fGoX_lfZMaeSMl8vveL8Pk-qaq02ZsBYkD1MHKiIGKOyKZGJ9fHoetjvVeSU7rGvEk5fuKGgq_LPZRw8zNkaDJu5VYkld93F3HTt4yvaxv-d_Gf4VENN0qv2xjosYbkBH_8iINyA9fpoz8h-zT99sAnjq1Z7hNT0q7fEYVvSb1KNiFdQ83XsJ6RH-s4PEp-O-IdMS_IiyYA8jzTbgvHZ6ag_iGr1hciyVMwjlRax9vR9zrkhLUyqGbcyR2odIkOdSyOFA2sp5tLdC8bSSeqWFidCam5jVaRfYLmclrgNJE95LHJTMDSCYVwYrmLmHiruas3daKoDSWOMzNbU5F4h43cWniixzoIBvWSmzmoDduCw7XNfEXO823rTW6RtWRujA6SxeeaOlY-VTEqcLmaZEtr5bSXU17d7focPg9HwIrv4eflrB1ZDjClUKO7C8vxhgXsOqszNt7BDnwA8J-JI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preference+Learning+for+Cognitive+Modeling%3A+A+Case+Study+on+Entertainment+Preferences&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=Yannakakis%2C+G.N.&rft.au=Maragoudakis%2C+M.&rft.au=Hallam%2C+J.&rft.date=2009-11-01&rft.pub=IEEE&rft.issn=1083-4427&rft.volume=39&rft.issue=6&rft.spage=1165&rft.epage=1175&rft_id=info:doi/10.1109%2FTSMCA.2009.2028152&rft.externalDocID=5272451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon