Preference Learning for Cognitive Modeling: A Case Study on Entertainment Preferences
Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper presents a comparative study of four alternative instance preference learning algorithms (both linear and nonlinear). The case study investi...
Saved in:
Published in | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 39; no. 6; pp. 1165 - 1175 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.11.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper presents a comparative study of four alternative instance preference learning algorithms (both linear and nonlinear). The case study investigated is to learn to predict the expressed entertainment preferences of children when playing physical games built on their personalized playing features ( entertainment modeling ). Two of the approaches are derived from the literature-the large-margin algorithm (LMA) and preference learning with Gaussian processes-while the remaining two are custom-designed approaches for the problem under investigation: meta-LMA and neuroevolution. Preference learning techniques are combined with feature set selection methods permitting the construction of effective preference models, given suitable individual playing features. The underlying preference model that best reflects children preferences is obtained through neuroevolution: 82.22% of cross-validation accuracy in predicting reported entertainment in the main set of game survey experimentation. The model is able to correctly match expressed preferences in 66.66% of cases on previously unseen data ( p -value = 0.0136) of a second physical activity control experiment. Results indicate the benefit of the use of neuroevolution and sequential forward selection for the investigated complex case study of cognitive modeling in physical games. |
---|---|
AbstractList | Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper presents a comparative study of four alternative instance preference learning algorithms (both linear and nonlinear). The case study investigated is to learn to predict the expressed entertainment preferences of children when playing physical games built on their personalized playing features ( entertainment modeling ). Two of the approaches are derived from the literature-the large-margin algorithm (LMA) and preference learning with Gaussian processes-while the remaining two are custom-designed approaches for the problem under investigation: meta-LMA and neuroevolution. Preference learning techniques are combined with feature set selection methods permitting the construction of effective preference models, given suitable individual playing features. The underlying preference model that best reflects children preferences is obtained through neuroevolution: 82.22% of cross-validation accuracy in predicting reported entertainment in the main set of game survey experimentation. The model is able to correctly match expressed preferences in 66.66% of cases on previously unseen data ( p -value = 0.0136) of a second physical activity control experiment. Results indicate the benefit of the use of neuroevolution and sequential forward selection for the investigated complex case study of cognitive modeling in physical games. |
Author | Yannakakis, G.N. Maragoudakis, M. Hallam, J. |
Author_xml | – sequence: 1 givenname: G.N. surname: Yannakakis fullname: Yannakakis, G.N. organization: IT Univ. of Copenhagen, Copenhagen, Denmark – sequence: 2 givenname: M. surname: Maragoudakis fullname: Maragoudakis, M. organization: Dept. of Inf. & Commun. Syst. Eng., Univ. of the Aegean, Karlovasi, Greece – sequence: 3 givenname: J. surname: Hallam fullname: Hallam, J. organization: Maersk Mc-Kinney Moller Inst., Univ. of Southern Denmark, Odense, Denmark |
BookMark | eNp9kE1LAzEQhoNUUKt_QC-5edqar90k3spSP6CioD0vaXa2RLaJJqnQf-9qi4IHLzPD8D7z8Z6gkQ8eEDqnZEIp0Vcvzw_1dMII0UNgipbsAB3TslQFE6waDTVRvBCCySN0ktIrIVQILY7R4ilCBxG8BTwHE73zK9yFiOuw8i67D8APoYV-aF_jKa5NAvycN-0WB49nPkPMxvk1-Ix_J6VTdNiZPsHZPo_R4mb2Ut8V88fb-3o6L6zgVS4U74hWVBJGGbBuybUorWyBWVJq0K1cyopSxqGVnKqlZYYPz4GppC4tUR0fo8vd3LcY3jeQcrN2yULfGw9hkxpVaSWkqtSgZDuljSGl4dLmLbq1iduGkubLwubbwubLwmZv4QCpP5B12WQXfI7G9f-jFzvUAcDPrpJJJkrKPwHTEIBI |
CODEN | ITSHFX |
CitedBy_id | crossref_primary_10_1007_s11023_010_9210_2 crossref_primary_10_1080_24725854_2018_1493244 crossref_primary_10_1109_T_AFFC_2011_6 crossref_primary_10_1016_j_entcom_2014_09_002 crossref_primary_10_1109_TAFFC_2018_2879512 crossref_primary_10_18506_anemon_976300 crossref_primary_10_1016_j_asoc_2021_107109 crossref_primary_10_1109_TCIAIG_2014_2307272 crossref_primary_10_1109_T_AFFC_2011_4 crossref_primary_10_1007_s10710_022_09442_y crossref_primary_10_3390_app10134529 crossref_primary_10_4018_IJGCMS_2019040101 crossref_primary_10_1109_TCYB_2013_2271738 crossref_primary_10_3390_electronics12081789 crossref_primary_10_2139_ssrn_4073150 crossref_primary_10_1016_j_eswa_2012_01_053 crossref_primary_10_1007_s11257_010_9078_0 crossref_primary_10_1109_TSMCA_2010_2069095 crossref_primary_10_1109_TSMCA_2010_2052600 crossref_primary_10_1016_j_ijar_2020_10_006 crossref_primary_10_1109_TCIAIG_2012_2231413 crossref_primary_10_1016_j_trc_2022_103948 crossref_primary_10_1109_TCIAIG_2014_2335273 crossref_primary_10_1109_TCIAIG_2011_2149523 crossref_primary_10_1142_S0218213013500280 crossref_primary_10_1109_TCIAIG_2009_2024533 crossref_primary_10_1109_TSMCA_2012_2183588 crossref_primary_10_1016_j_entcom_2011_12_001 crossref_primary_10_1109_TCIAIG_2010_2043950 |
Cites_doi | 10.1111/1467-8721.t01-1-01250 10.1007/s10015-005-0350-z 10.1080/01449290500331156 10.1145/775047.775067 10.1142/S0218213007003667 10.1109/5.784219 10.1016/j.ijhcs.2008.06.004 10.1007/s11257-007-9036-7 10.1111/j.0824-7935.2004.00233.x 10.1109/CIG.2007.368105 10.1145/1178477.1178514 10.1109/34.954607 10.1109/CIG.2006.311692 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION 7TK |
DOI | 10.1109/TSMCA.2009.2028152 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Neurosciences Abstracts |
DatabaseTitle | CrossRef Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1558-2426 |
EndPage | 1175 |
ExternalDocumentID | 10_1109_TSMCA_2009_2028152 5272451 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS VH1 VJK AAYOK AAYXX CITATION 7TK |
ID | FETCH-LOGICAL-c436t-83f098170212e2fb3945c7de2c059e9d7b761123ed7318bc2a3028ea6795c08f3 |
IEDL.DBID | RIE |
ISSN | 1083-4427 |
IngestDate | Thu Jul 10 21:10:57 EDT 2025 Tue Jul 01 04:13:43 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Aug 26 16:47:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-83f098170212e2fb3945c7de2c059e9d7b761123ed7318bc2a3028ea6795c08f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.um.edu.mt/library/oar//handle/123456789/22947 |
PQID | 869847868 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TSMCA_2009_2028152 crossref_citationtrail_10_1109_TSMCA_2009_2028152 ieee_primary_5272451 proquest_miscellaneous_869847868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-01 |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
PublicationTitleAbbrev | TSMCA |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | Malone (29) 1981; 6 23 Montana (20) 1989 Williams (18) 1996 28 Bahamonde (12) 2004 Metaxas (24) 2005 Frnkranz (1) 2005; 19 Yannakakis (37) 2005 Liljedahl (22) 2006 Gervasio (14) 2005 Gervasio (15) 1999 Yannakakis (5) 2006; 3955 Yannakakis (7) 2007 Holl (19) 1975 31 Haapalainen (36) 2005 32 Read (2) 2002 33 13 Yannakakis (27) 2006; 4161, Lecture 38 17 Joachims (11) 2002 Devijver (35) 1982 Magerkurth (25) 2003 Yannakakis (30) 2007 Beal (34) 2002 Fiechter (3) 2000 6 Yannakakis (8) 2008; 18 9 Ishii (26) 1999 Papadimitriou (16) 1982 Chu (4) 2005 Herbrich (10) 1998 21 |
References_xml | – start-page: 287 year: 2000 ident: 3 article-title: Learning subjective functions with large margins publication-title: Proc. 17th ICML – ident: 32 doi: 10.1111/1467-8721.t01-1-01250 – start-page: 8 year: 2002 ident: 34 article-title: Intelligent modelling of the user in interactive entertainment publication-title: Proc. AAAI Spring Symp. Artif. Intell. Interactive Entertainment – ident: 21 doi: 10.1007/s10015-005-0350-z – ident: 31 doi: 10.1080/01449290500331156 – start-page: 133 year: 2002 ident: 11 article-title: Optimizing search engines using clickthrough data publication-title: Proc. KDD doi: 10.1145/775047.775067 – year: 1982 ident: 35 publication-title: Pattern RecognitionA Statistical Approach – year: 2006 ident: 22 article-title: DigiWallAn audio mostly game publication-title: Proc. Int. Conf. Auditory Display – volume: 4161, Lecture start-page: 314 year: 2006 ident: 27 article-title: Capturing entertainment through heart-rate dynamics in the playware playground publication-title: Proc. 5th Int. Conf. Entertainment Comput. – volume: 3955 start-page: 432 volume-title: Lecture Notes in Artificial Intelligence year: 2006 ident: 5 article-title: Towards capturing and enhancing entertainment in computer games publication-title: Proc. 4th Hellenic Conf. Artif. Intell. – ident: 28 doi: 10.1142/S0218213007003667 – volume: 19 start-page: 60 year: 2005 ident: 1 article-title: Preference learning publication-title: Knstliche Intelligenz – start-page: 394 year: 1999 ident: 26 article-title: PingPongPlus: Design of an athletic-tangible interface for computer-supported cooperative play publication-title: Proc. SIGCHI Conf. Human Factors Comput. Syst. CHI – start-page: 37 year: 2007 ident: 30 article-title: Feature selection for capturing the experience of fun publication-title: Proc. AIIDE Workshop Optimizing Player Satisfaction – start-page: 598 year: 1996 ident: 18 article-title: Gaussian processes for regression publication-title: Proc. Adv. Neural Inf. Process. Syst. – volume: 6 start-page: 258 year: 1981 ident: 29 article-title: What makes computer games fun? publication-title: Byte – ident: 13 doi: 10.1109/5.784219 – ident: 38 doi: 10.1016/j.ijhcs.2008.06.004 – start-page: 1 year: 2002 ident: 2 article-title: Endurability, engagement and expectations publication-title: Proc. Int. Conf. Interaction Des. Children – start-page: 49 year: 2004 ident: 12 publication-title: Proc. 21st Int. Conf. Mach. Learn. – year: 1975 ident: 19 publication-title: Adaptation in Natural and Artificial Systems – year: 2005 ident: 37 publication-title: AI in computer games: Generating interesting interactive opponents by the use of evolutionary computation – volume: 18 start-page: 207 year: 2008 ident: 8 article-title: Entertainment capture through heart rate activity in physical interactive playgrounds publication-title: User Model. User-Adapted Interaction doi: 10.1007/s11257-007-9036-7 – ident: 9 doi: 10.1111/j.0824-7935.2004.00233.x – year: 2007 ident: 7 publication-title: ``Preliminary studies for capturing entertainment through physiology in physical play – ident: 17 doi: 10.1109/CIG.2007.368105 – start-page: 412 year: 2005 ident: 36 article-title: Methods for classifying spot welding process: A comparative study of performance publication-title: Proc. IEA/AIE – start-page: 229 year: 2005 ident: 24 article-title: SCORPIODROME: An exploration in mixed reality social gaming for children publication-title: Proc. ACM SIGCHI Int. Conf. Adv. Comput. Entertainment Technol. doi: 10.1145/1178477.1178514 – start-page: 137 year: 2005 ident: 4 article-title: Preference learning with Gaussian processes publication-title: Proc. 22nd ICML – year: 1982 ident: 16 publication-title: Combinatorial Optimization: Algorithms and Complexity – ident: 33 doi: 10.1109/34.954607 – ident: 6 doi: 10.1109/CIG.2006.311692 – start-page: 267 year: 2003 ident: 25 article-title: STARSA ubiquitous computing platform for computer augmented tabletop games publication-title: Proc. Ext. Abstr. UbiComp – start-page: 90 year: 2005 ident: 14 article-title: Active preference learning for personalized calendar scheduling assistance publication-title: Proc. 10th Int. Conf. IUI – start-page: 80 year: 1998 ident: 10 article-title: Learning preference relations for information retrieval publication-title: Proc. Text Categorization ICML – ident: 23 publication-title: Mixed Reality Lab – start-page: 152 year: 1999 ident: 15 article-title: Learning user evaluation functions for adaptive scheduling assistance publication-title: Proc. 16th Int. Conf. Mach. Learn. – start-page: 762 year: 1989 ident: 20 article-title: Training feedforward neural networks using genetic algorithms publication-title: Proc. 11th IJCAI |
SSID | ssj0014494 |
Score | 2.1593356 |
Snippet | Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1165 |
SubjectTerms | Accuracy Augmented-reality games Bayesian learning (BL) Bayesian methods Communication systems entertainment modeling Investments large-margin classifiers Machine learning Machine learning algorithms neuroevolution Predictive models preference learning Supervised learning Systems engineering and theory Technological innovation |
Title | Preference Learning for Cognitive Modeling: A Case Study on Entertainment Preferences |
URI | https://ieeexplore.ieee.org/document/5272451 https://www.proquest.com/docview/869847868 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEww8WhDlJQ8MIEhJHMcPtqoCVUggJKjEFtXOhQGUItoO8OuxnQcUEGLL4FhWzvZ9l7v7PoDDRERaotaB1kIHDlIHCpEGYU658fzpI8_2ecMHQ3b1kDwswGnTC4OIvvgMu-7R5_KzsZm5X2VnCRWUuX7pRRu4lb1aTcaAMS96GFlIETBGRd0gE6qz-7vrfq-kprShvowSOueEvKrKj6vY-5fLNbiuV1aWlTx1Z1PdNe_fSBv_u_R1WK2AJumVO2MDFrBowcoX-sEWbFQHe0KOKvbp4zYMbxvlEVKRrz4Si2xJvy40Ik4_zXWxn5Me6VsvSFwx4hsZF2SuxIB8zjTZhOHlxX1_EFTaC4FhMZ8GMs5D5cj7rGtDmutYscSIDKmxeAxVJrTgFqrFmAl7K2hDR7H9tDjiQiUmlHm8BUvFuMBtIFmchDzTOUPNGYa5TmTIbJhiL9bMziY7ENXGSE1FTO70MZ5TH6CEKvUGdIKZKq0M2IGT5p2Xkpbjz9FtZ5FmZGWMDpDa5qk9VC5TMipwPJukkivrtSWXO7-_uQvLPqvkexL3YGn6OsN9C06m-sDvyg9wXd7_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hOJQeSnlUpEDrQw8g2LDr9ZNbFIFSShASicRtFXtnOVBtEEkO5ddjex8UilBve7Aty2N7Pu_MfB_ADy4To9CYyBhpIg-pI41Io7igwgb-9Elg-7wUgzE7v-E3S3DU1sIgYkg-w67_DLH8fGoX_lfZMaeSMl8vveL8Pk-qaq02ZsBYkD1MHKiIGKOyKZGJ9fHoetjvVeSU7rGvEk5fuKGgq_LPZRw8zNkaDJu5VYkld93F3HTt4yvaxv-d_Gf4VENN0qv2xjosYbkBH_8iINyA9fpoz8h-zT99sAnjq1Z7hNT0q7fEYVvSb1KNiFdQ83XsJ6RH-s4PEp-O-IdMS_IiyYA8jzTbgvHZ6ag_iGr1hciyVMwjlRax9vR9zrkhLUyqGbcyR2odIkOdSyOFA2sp5tLdC8bSSeqWFidCam5jVaRfYLmclrgNJE95LHJTMDSCYVwYrmLmHiruas3daKoDSWOMzNbU5F4h43cWniixzoIBvWSmzmoDduCw7XNfEXO823rTW6RtWRujA6SxeeaOlY-VTEqcLmaZEtr5bSXU17d7focPg9HwIrv4eflrB1ZDjClUKO7C8vxhgXsOqszNt7BDnwA8J-JI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preference+Learning+for+Cognitive+Modeling%3A+A+Case+Study+on+Entertainment+Preferences&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=Yannakakis%2C+G.N.&rft.au=Maragoudakis%2C+M.&rft.au=Hallam%2C+J.&rft.date=2009-11-01&rft.pub=IEEE&rft.issn=1083-4427&rft.volume=39&rft.issue=6&rft.spage=1165&rft.epage=1175&rft_id=info:doi/10.1109%2FTSMCA.2009.2028152&rft.externalDocID=5272451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon |