Random quantum batteries
Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of profound interest in recent years. Among these, quantum batteries play a very important role. In this paper we lay down a theory of random quantum batteries and provide a systematic way of computing t...
Saved in:
Published in | Physical review research Vol. 2; no. 2; p. 023095 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physical Society (APS)
28.04.2020
American Physical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of profound interest in recent years. Among these, quantum batteries play a very important role. In this paper we lay down a theory of random quantum batteries and provide a systematic way of computing the average work and work fluctuations in such devices by investigating their typical behavior. We show that the performance of random quantum batteries exhibits typicality and depends only on the spectral properties of the time evolving operator, the initial state, and the measuring Hamiltonian. At given revival times a random quantum battery features a quantum advantage over classical random batteries. Our method is particularly apt to be used both for exactly solvable models like the Jaynes-Cummings model or in perturbation theory, e.g., systems subject to harmonic perturbations. We also study the setting of quantum adiabatic random batteries. |
---|---|
AbstractList | Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of profound interest in recent years. Among these, quantum batteries play a very important role. In this paper we lay down a theory of random quantum batteries and provide a systematic way of computing the average work and work fluctuations in such devices by investigating their typical behavior. We show that the performance of random quantum batteries exhibits typicality and depends only on the spectral properties of the time evolving operator, the initial state, and the measuring Hamiltonian. At given revival times a random quantum battery features a quantum advantage over classical random batteries. Our method is particularly apt to be used both for exactly solvable models like the Jaynes-Cummings model or in perturbation theory, e.g., systems subject to harmonic perturbations. We also study the setting of quantum adiabatic random batteries. |
ArticleNumber | 023095 |
Author | Hamma, Alioscia Caravelli, Francesco García-Pintos, Luis Pedro Coulter-De Wit, Ghislaine |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0001-7964-3030 surname: Caravelli fullname: Caravelli, Francesco – sequence: 2 givenname: Ghislaine surname: Coulter-De Wit fullname: Coulter-De Wit, Ghislaine – sequence: 3 givenname: Luis Pedro surname: García-Pintos fullname: García-Pintos, Luis Pedro – sequence: 4 givenname: Alioscia surname: Hamma fullname: Hamma, Alioscia |
BackLink | https://www.osti.gov/biblio/1616365$$D View this record in Osti.gov |
BookMark | eNqFkM1LAzEUxIMoWGvvHov31mTzfRGk-FEoKEXPIcm-tSntRpNU6H_v6opIL57e8Jj5DcwZOm5jCwiNCZ4SgunV02qfl_CxhAw2-dW0muKKYs2P0KASjE4IF-z4jz5Fo5zXGOOKE8IUH6CLpW3ruB2_72xbdtuxs6VACpDP0UljNxlGP3eIXu5un2cPk8Xj_Xx2s5h4RkWZqEpRB04KEM4rDLKuLbimxoIJxSSvWaM8BVtJjmmtrGRAnJS1bbTTThE6RPOeW0e7Nm8pbG3am2iD-X7E9GpsKsFvwGiqHaXOY00w06RxWnBoCPNYEu2AdqzLnhVzCSb7UMCvfGxb8MUQQQQVvDOp3uRTzDlB81tKsPla1RysairTr9pFrw-iXYUtIbYl2bD5H_AJO-6FRQ |
CitedBy_id | crossref_primary_10_1103_PhysRevA_106_032212 crossref_primary_10_1103_PhysRevE_109_014131 crossref_primary_10_1209_0295_5075_131_43001 crossref_primary_10_1103_PhysRevA_103_052220 crossref_primary_10_1103_PhysRevA_107_022215 crossref_primary_10_1103_PhysRevLett_127_100601 crossref_primary_10_1103_PhysRevLett_128_140501 crossref_primary_10_21468_SciPostPhys_10_3_076 crossref_primary_10_1063_5_0247924 crossref_primary_10_1088_1674_1056_ac728b crossref_primary_10_1103_PhysRevA_110_022433 crossref_primary_10_1103_PhysRevLett_125_236402 crossref_primary_10_1088_1402_4896_acde1d crossref_primary_10_1103_PhysRevA_109_032201 crossref_primary_10_1007_s11467_021_1130_5 crossref_primary_10_1103_PhysRevA_108_052218 crossref_primary_10_1103_PhysRevE_102_042111 crossref_primary_10_1103_PhysRevA_108_052213 crossref_primary_10_1140_epjb_s10051_021_00235_3 crossref_primary_10_1103_PhysRevA_109_022607 crossref_primary_10_1103_PhysRevResearch_5_013155 crossref_primary_10_3390_e23050612 crossref_primary_10_3389_fphy_2022_1097564 crossref_primary_10_1103_PhysRevA_108_042618 crossref_primary_10_1103_PhysRevA_104_043706 crossref_primary_10_22331_q_2021_07_13_500 crossref_primary_10_1103_PhysRevA_108_062402 crossref_primary_10_1103_PhysRevE_107_054125 crossref_primary_10_1103_PhysRevResearch_4_013172 crossref_primary_10_3390_photonics12030177 crossref_primary_10_1103_PhysRevA_109_012224 crossref_primary_10_3390_e24060820 crossref_primary_10_1103_PhysRevB_105_115405 crossref_primary_10_1103_PhysRevA_103_033715 crossref_primary_10_1103_PhysRevA_104_L030402 crossref_primary_10_3390_e25030430 crossref_primary_10_1007_JHEP11_2020_067 crossref_primary_10_22331_q_2021_07_15_505 crossref_primary_10_1088_1367_2630_ad3843 crossref_primary_10_1103_PhysRevLett_132_090401 crossref_primary_10_1103_PhysRevE_105_044125 crossref_primary_10_1103_PhysRevA_106_052203 crossref_primary_10_1103_PhysRevApplied_19_064069 crossref_primary_10_1103_PhysRevA_107_023725 crossref_primary_10_1209_0295_5075_ad4413 crossref_primary_10_1103_PhysRevA_106_042601 crossref_primary_10_1103_PhysRevB_111_075138 crossref_primary_10_1103_PhysRevE_109_014142 crossref_primary_10_1103_RevModPhys_96_031001 crossref_primary_10_1103_PhysRevLett_125_040601 crossref_primary_10_1103_PhysRevE_106_014138 crossref_primary_10_1103_PhysRevE_104_044116 crossref_primary_10_1103_PhysRevA_109_022226 crossref_primary_10_1103_PhysRevLett_130_210401 crossref_primary_10_1088_1402_4896_ad2efd crossref_primary_10_1103_PhysRevB_109_235432 crossref_primary_10_1103_PhysRevE_102_022106 crossref_primary_10_3390_e23081073 crossref_primary_10_1103_PhysRevE_104_024129 |
Cites_doi | 10.1007/JHEP04(2017)121 10.1038/s41598-018-30982-w 10.1103/PhysRevB.100.115142 10.1038/nphys1730 10.1103/PhysRevE.100.032107 10.1109/9.14428 10.1063/1.446862 10.1109/PROC.1963.1664 10.1103/PhysRevLett.105.130401 10.1103/PhysRevLett.118.150601 10.1103/PhysRevA.58.883 10.1103/PhysRevLett.103.080502 10.1109/TAC.1987.1104700 10.1103/PhysRevLett.109.040502 10.1088/1367-2630/18/2/023045 10.1038/nmat2717 10.1103/PhysRevLett.118.050601 10.1038/ncomms14538 10.1088/1367-2630/19/1/010201 10.1103/PhysRevA.96.052112 10.1103/PhysRevLett.107.010403 10.1103/PhysRevB.99.205437 10.1103/PhysRevLett.120.117702 10.1038/ncomms13511 10.1126/science.1057726 10.1103/PhysRevLett.124.160603 10.1103/PhysRevA.93.052331 10.1103/PhysRevA.69.062319 10.1103/PhysRevLett.123.190601 10.1103/PhysRevA.97.032304 10.1038/s41598-019-39300-4 10.1007/BF01647331 10.1103/PhysRevLett.113.150402 10.22331/q-2019-03-04-127 10.1038/ncomms2712 10.1088/1367-2630/17/11/115012 10.22331/q-2018-04-23-61 10.1103/PhysRevB.98.205423 10.1038/ncomms5185 10.1103/PhysRevE.85.061126 10.1038/nphys444 10.1088/1367-2630/17/6/065006 10.1088/1367-2630/18/10/103017 10.1103/PhysRevA.86.052324 10.1103/PhysRevE.87.042123 10.1103/PhysRevLett.122.047702 10.22331/q-2019-02-14-121 10.1103/PhysRevA.97.022106 10.1103/PhysRevE.90.052136 10.1103/PhysRevA.101.032115 10.1038/ncomms2067 10.1038/srep06208 10.1103/PhysRevX.6.041017 10.1103/PhysRevLett.111.250404 10.1209/epl/i2004-10101-2 10.1023/B:OPSY.0000047566.72717.71 10.1103/PhysRevA.99.062306 10.1088/1751-8113/49/14/143001 10.1109/TAC.1986.1104370 10.1103/PhysRevE.87.042131 10.1103/RevModPhys.89.041003 10.1103/RevModPhys.90.015002 10.1088/1367-2630/17/7/075015 10.1103/PhysRevLett.118.100602 10.1088/0305-4470/12/5/007 10.1103/PhysRevE.99.042105 10.1103/PhysRevX.5.021001 |
ContentType | Journal Article |
CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
DBID | AAYXX CITATION OTOTI DOA |
DOI | 10.1103/PhysRevResearch.2.023095 |
DatabaseName | CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Mathematics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_939b33bc0910491fb965ef14c0719be3 1616365 10_1103_PhysRevResearch_2_023095 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL ABCKA OTOTI |
ID | FETCH-LOGICAL-c436t-8283beb76e6bc80e7ddaebfd06468475d4f8c3ea27503d8a74e1b77daf9b9b813 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:24:28 EDT 2025 Mon Apr 01 04:55:26 EDT 2024 Tue Jul 01 02:05:34 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-8283beb76e6bc80e7ddaebfd06468475d4f8c3ea27503d8a74e1b77daf9b9b813 |
Notes | USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) National Science Foundation (NSF) LA-UR-19-28177 AC52-06NA25396; PRD20170660; PRD20190195; SC0019040; 89233218CNA000001; SC0019449 USDOE National Nuclear Security Administration (NNSA) |
ORCID | 0000-0001-7964-3030 0000000179643030 |
OpenAccessLink | https://doaj.org/article/939b33bc0910491fb965ef14c0719be3 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_939b33bc0910491fb965ef14c0719be3 osti_scitechconnect_1616365 crossref_primary_10_1103_PhysRevResearch_2_023095 crossref_citationtrail_10_1103_PhysRevResearch_2_023095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-28 |
PublicationDateYYYYMMDD | 2020-04-28 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review research |
PublicationYear | 2020 |
Publisher | American Physical Society (APS) American Physical Society |
Publisher_xml | – name: American Physical Society (APS) – name: American Physical Society |
References | PhysRevResearch.2.023095Cc5R1 PhysRevResearch.2.023095Cc12R1 PhysRevResearch.2.023095Cc33R1 PhysRevResearch.2.023095Cc58R1 PhysRevResearch.2.023095Cc3R1 PhysRevResearch.2.023095Cc14R1 PhysRevResearch.2.023095Cc35R1 PhysRevResearch.2.023095Cc56R1 PhysRevResearch.2.023095Cc9R1 PhysRevResearch.2.023095Cc16R1 PhysRevResearch.2.023095Cc37R1 PhysRevResearch.2.023095Cc58R2 PhysRevResearch.2.023095Cc18R1 PhysRevResearch.2.023095Cc39R1 PhysRevResearch.2.023095Cc50R1 PhysRevResearch.2.023095Cc54R1 F. Campaioli (PhysRevResearch.2.023095Cc1R1) 2018 PhysRevResearch.2.023095Cc10R1 PhysRevResearch.2.023095Cc31R1 PhysRevResearch.2.023095Cc52R1 PhysRevResearch.2.023095Cc23R1 PhysRevResearch.2.023095Cc46R1 PhysRevResearch.2.023095Cc25R1 PhysRevResearch.2.023095Cc44R1 PhysRevResearch.2.023095Cc67R1 PhysRevResearch.2.023095Cc27R1 PhysRevResearch.2.023095Cc29R1 PhysRevResearch.2.023095Cc48R1 PhysRevResearch.2.023095Cc61R1 PhysRevResearch.2.023095Cc63R2 PhysRevResearch.2.023095Cc40R1 PhysRevResearch.2.023095Cc63R3 PhysRevResearch.2.023095Cc65R1 PhysRevResearch.2.023095Cc21R1 PhysRevResearch.2.023095Cc42R1 PhysRevResearch.2.023095Cc63R1 PhysRevResearch.2.023095Cc11R1 PhysRevResearch.2.023095Cc34R1 PhysRevResearch.2.023095Cc57R1 PhysRevResearch.2.023095Cc4R1 PhysRevResearch.2.023095Cc13R1 PhysRevResearch.2.023095Cc36R1 PhysRevResearch.2.023095Cc55R1 PhysRevResearch.2.023095Cc2R1 PhysRevResearch.2.023095Cc15R1 PhysRevResearch.2.023095Cc38R1 PhysRevResearch.2.023095Cc8R1 PhysRevResearch.2.023095Cc17R1 PhysRevResearch.2.023095Cc59R1 PhysRevResearch.2.023095Cc6R1 PhysRevResearch.2.023095Cc17R2 PhysRevResearch.2.023095Cc30R1 PhysRevResearch.2.023095Cc32R1 PhysRevResearch.2.023095Cc22R1 PhysRevResearch.2.023095Cc47R1 PhysRevResearch.2.023095Cc66R1 PhysRevResearch.2.023095Cc24R1 PhysRevResearch.2.023095Cc45R1 PhysRevResearch.2.023095Cc26R1 PhysRevResearch.2.023095Cc28R1 PhysRevResearch.2.023095Cc49R1 PhysRevResearch.2.023095Cc60R1 PhysRevResearch.2.023095Cc41R1 PhysRevResearch.2.023095Cc64R1 PhysRevResearch.2.023095Cc43R1 PhysRevResearch.2.023095Cc62R1 PhysRevResearch.2.023095Cc20R1 PhysRevResearch.2.023095Cc19R1 |
References_xml | – ident: PhysRevResearch.2.023095Cc52R1 doi: 10.1007/JHEP04(2017)121 – ident: PhysRevResearch.2.023095Cc33R1 doi: 10.1038/s41598-018-30982-w – ident: PhysRevResearch.2.023095Cc31R1 doi: 10.1103/PhysRevB.100.115142 – ident: PhysRevResearch.2.023095Cc38R1 doi: 10.1038/nphys1730 – ident: PhysRevResearch.2.023095Cc61R1 doi: 10.1103/PhysRevE.100.032107 – ident: PhysRevResearch.2.023095Cc63R3 doi: 10.1109/9.14428 – ident: PhysRevResearch.2.023095Cc17R2 doi: 10.1063/1.446862 – ident: PhysRevResearch.2.023095Cc55R1 doi: 10.1109/PROC.1963.1664 – ident: PhysRevResearch.2.023095Cc19R1 doi: 10.1103/PhysRevLett.105.130401 – ident: PhysRevResearch.2.023095Cc57R1 doi: 10.1103/PhysRevLett.118.150601 – ident: PhysRevResearch.2.023095Cc39R1 doi: 10.1103/PhysRevA.58.883 – ident: PhysRevResearch.2.023095Cc66R1 doi: 10.1103/PhysRevLett.103.080502 – ident: PhysRevResearch.2.023095Cc63R2 doi: 10.1109/TAC.1987.1104700 – ident: PhysRevResearch.2.023095Cc40R1 doi: 10.1103/PhysRevLett.109.040502 – ident: PhysRevResearch.2.023095Cc46R1 doi: 10.1088/1367-2630/18/2/023045 – volume-title: Thermodynamics in the Quantum Regime year: 2018 ident: PhysRevResearch.2.023095Cc1R1 – ident: PhysRevResearch.2.023095Cc37R1 doi: 10.1038/nmat2717 – ident: PhysRevResearch.2.023095Cc10R1 doi: 10.1103/PhysRevLett.118.050601 – ident: PhysRevResearch.2.023095Cc16R1 doi: 10.1038/ncomms14538 – ident: PhysRevResearch.2.023095Cc20R1 doi: 10.1088/1367-2630/19/1/010201 – ident: PhysRevResearch.2.023095Cc21R1 doi: 10.1103/PhysRevA.96.052112 – ident: PhysRevResearch.2.023095Cc54R1 doi: 10.1103/PhysRevLett.107.010403 – ident: PhysRevResearch.2.023095Cc6R1 doi: 10.1103/PhysRevB.99.205437 – ident: PhysRevResearch.2.023095Cc3R1 doi: 10.1103/PhysRevLett.120.117702 – ident: PhysRevResearch.2.023095Cc34R1 doi: 10.1038/ncomms13511 – ident: PhysRevResearch.2.023095Cc58R1 doi: 10.1126/science.1057726 – ident: PhysRevResearch.2.023095Cc27R1 doi: 10.1103/PhysRevLett.124.160603 – ident: PhysRevResearch.2.023095Cc49R1 doi: 10.1103/PhysRevA.93.052331 – ident: PhysRevResearch.2.023095Cc62R1 doi: 10.1103/PhysRevA.69.062319 – ident: PhysRevResearch.2.023095Cc14R1 doi: 10.1103/PhysRevLett.123.190601 – ident: PhysRevResearch.2.023095Cc65R1 doi: 10.1103/PhysRevA.97.032304 – ident: PhysRevResearch.2.023095Cc47R1 doi: 10.1038/s41598-019-39300-4 – ident: PhysRevResearch.2.023095Cc67R1 doi: 10.1007/BF01647331 – ident: PhysRevResearch.2.023095Cc43R1 doi: 10.1103/PhysRevLett.113.150402 – ident: PhysRevResearch.2.023095Cc32R1 doi: 10.22331/q-2019-03-04-127 – ident: PhysRevResearch.2.023095Cc12R1 doi: 10.1038/ncomms2712 – ident: PhysRevResearch.2.023095Cc15R1 doi: 10.1088/1367-2630/17/11/115012 – ident: PhysRevResearch.2.023095Cc26R1 doi: 10.22331/q-2018-04-23-61 – ident: PhysRevResearch.2.023095Cc4R1 doi: 10.1103/PhysRevB.98.205423 – ident: PhysRevResearch.2.023095Cc18R1 doi: 10.1038/ncomms5185 – ident: PhysRevResearch.2.023095Cc11R1 doi: 10.1103/PhysRevE.85.061126 – ident: PhysRevResearch.2.023095Cc35R1 doi: 10.1038/nphys444 – ident: PhysRevResearch.2.023095Cc44R1 doi: 10.1088/1367-2630/17/6/065006 – ident: PhysRevResearch.2.023095Cc29R1 doi: 10.1088/1367-2630/18/10/103017 – ident: PhysRevResearch.2.023095Cc41R1 doi: 10.1103/PhysRevA.86.052324 – ident: PhysRevResearch.2.023095Cc2R1 doi: 10.1103/PhysRevE.87.042123 – ident: PhysRevResearch.2.023095Cc5R1 doi: 10.1103/PhysRevLett.122.047702 – ident: PhysRevResearch.2.023095Cc22R1 doi: 10.22331/q-2019-02-14-121 – ident: PhysRevResearch.2.023095Cc8R1 doi: 10.1103/PhysRevA.97.022106 – ident: PhysRevResearch.2.023095Cc25R1 doi: 10.1103/PhysRevE.90.052136 – ident: PhysRevResearch.2.023095Cc30R1 doi: 10.1103/PhysRevA.101.032115 – ident: PhysRevResearch.2.023095Cc24R1 doi: 10.1038/ncomms2067 – ident: PhysRevResearch.2.023095Cc60R1 doi: 10.1038/srep06208 – ident: PhysRevResearch.2.023095Cc13R1 doi: 10.1103/PhysRevX.6.041017 – ident: PhysRevResearch.2.023095Cc23R1 doi: 10.1103/PhysRevLett.111.250404 – ident: PhysRevResearch.2.023095Cc36R1 doi: 10.1209/epl/i2004-10101-2 – ident: PhysRevResearch.2.023095Cc42R1 doi: 10.1023/B:OPSY.0000047566.72717.71 – ident: PhysRevResearch.2.023095Cc59R1 doi: 10.1103/PhysRevA.99.062306 – ident: PhysRevResearch.2.023095Cc28R1 doi: 10.1088/1751-8113/49/14/143001 – ident: PhysRevResearch.2.023095Cc63R1 doi: 10.1109/TAC.1986.1104370 – ident: PhysRevResearch.2.023095Cc9R1 doi: 10.1103/PhysRevE.87.042131 – ident: PhysRevResearch.2.023095Cc50R1 doi: 10.1103/RevModPhys.89.041003 – ident: PhysRevResearch.2.023095Cc58R2 doi: 10.1103/RevModPhys.90.015002 – ident: PhysRevResearch.2.023095Cc56R1 doi: 10.1088/1367-2630/17/7/075015 – ident: PhysRevResearch.2.023095Cc64R1 doi: 10.1103/PhysRevLett.118.100602 – ident: PhysRevResearch.2.023095Cc17R1 doi: 10.1088/0305-4470/12/5/007 – ident: PhysRevResearch.2.023095Cc45R1 doi: 10.1103/PhysRevE.99.042105 – ident: PhysRevResearch.2.023095Cc48R1 doi: 10.1103/PhysRevX.5.021001 |
SSID | ssj0002511485 |
Score | 2.4615777 |
Snippet | Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of profound interest in recent years. Among these, quantum... |
SourceID | doaj osti crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 023095 |
SubjectTerms | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Mathematics nanophysics quantum information quantum physics quantum work |
Title | Random quantum batteries |
URI | https://www.osti.gov/biblio/1616365 https://doaj.org/article/939b33bc0910491fb965ef14c0719be3 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4NAEN2YJiZejJ9prRoOXmmB_WKPamwak3pobNLbhll2T7b1o_Xob3cGaEO86MELJMAGeAPMe9nhDWM3GSouLyCJtVMiFi7ouIBMx4HmzJzXIVTenZMnNZ6Jx7mct1p9UU1YbQ9cAzc03ADn4CivCZMGMEr6kAqHudGAr3w-cV9LTNE3mIizyOW2dCfhQyqonPrPbT3bIBsQ-6a2Eq18VNn242qFr1crzYyO2GHDD6Pb-rqO2Z5fnrD9qk7TfZyy7hSV_2oRvW0Qkc0igsoeE9XuGZuNHp7vx3HT3CB2gqs1_b7NwYNWXoHLE6_LsvAQSqQICjOGLEXIHfcF-a_zMi-08CloXRbBgIE85eess1wtfZdFRsjEaQmgkX-ZsjCBS4KgkDRrmvIe09tbtK5x_qYGFC-2UgAJtz_AsZmtwemxdDfytXa_-MOYO0Jxdzz5V1cbMKq2iar9Lao91qcYWKQB5GXrqOjHrS3SU8WVvPiPU_TZQUbaORFxll-yzvp946-QYKzhunqWcDn5evgGDjzODQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+quantum+batteries&rft.jtitle=Physical+review+research&rft.au=Caravelli%2C+Francesco&rft.au=Coulter-De+Wit%2C+Ghislaine&rft.au=Garc%C3%ADa-Pintos%2C+Luis+Pedro&rft.au=Hamma%2C+Alioscia&rft.date=2020-04-28&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevResearch.2.023095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_2_023095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |