Random quantum batteries

Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of profound interest in recent years. Among these, quantum batteries play a very important role. In this paper we lay down a theory of random quantum batteries and provide a systematic way of computing t...

Full description

Saved in:
Bibliographic Details
Published inPhysical review research Vol. 2; no. 2; p. 023095
Main Authors Caravelli, Francesco, Coulter-De Wit, Ghislaine, García-Pintos, Luis Pedro, Hamma, Alioscia
Format Journal Article
LanguageEnglish
Published United States American Physical Society (APS) 28.04.2020
American Physical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of profound interest in recent years. Among these, quantum batteries play a very important role. In this paper we lay down a theory of random quantum batteries and provide a systematic way of computing the average work and work fluctuations in such devices by investigating their typical behavior. We show that the performance of random quantum batteries exhibits typicality and depends only on the spectral properties of the time evolving operator, the initial state, and the measuring Hamiltonian. At given revival times a random quantum battery features a quantum advantage over classical random batteries. Our method is particularly apt to be used both for exactly solvable models like the Jaynes-Cummings model or in perturbation theory, e.g., systems subject to harmonic perturbations. We also study the setting of quantum adiabatic random batteries.
AbstractList Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of profound interest in recent years. Among these, quantum batteries play a very important role. In this paper we lay down a theory of random quantum batteries and provide a systematic way of computing the average work and work fluctuations in such devices by investigating their typical behavior. We show that the performance of random quantum batteries exhibits typicality and depends only on the spectral properties of the time evolving operator, the initial state, and the measuring Hamiltonian. At given revival times a random quantum battery features a quantum advantage over classical random batteries. Our method is particularly apt to be used both for exactly solvable models like the Jaynes-Cummings model or in perturbation theory, e.g., systems subject to harmonic perturbations. We also study the setting of quantum adiabatic random batteries.
ArticleNumber 023095
Author Hamma, Alioscia
Caravelli, Francesco
García-Pintos, Luis Pedro
Coulter-De Wit, Ghislaine
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0001-7964-3030
  surname: Caravelli
  fullname: Caravelli, Francesco
– sequence: 2
  givenname: Ghislaine
  surname: Coulter-De Wit
  fullname: Coulter-De Wit, Ghislaine
– sequence: 3
  givenname: Luis Pedro
  surname: García-Pintos
  fullname: García-Pintos, Luis Pedro
– sequence: 4
  givenname: Alioscia
  surname: Hamma
  fullname: Hamma, Alioscia
BackLink https://www.osti.gov/biblio/1616365$$D View this record in Osti.gov
BookMark eNqFkM1LAzEUxIMoWGvvHov31mTzfRGk-FEoKEXPIcm-tSntRpNU6H_v6opIL57e8Jj5DcwZOm5jCwiNCZ4SgunV02qfl_CxhAw2-dW0muKKYs2P0KASjE4IF-z4jz5Fo5zXGOOKE8IUH6CLpW3ruB2_72xbdtuxs6VACpDP0UljNxlGP3eIXu5un2cPk8Xj_Xx2s5h4RkWZqEpRB04KEM4rDLKuLbimxoIJxSSvWaM8BVtJjmmtrGRAnJS1bbTTThE6RPOeW0e7Nm8pbG3am2iD-X7E9GpsKsFvwGiqHaXOY00w06RxWnBoCPNYEu2AdqzLnhVzCSb7UMCvfGxb8MUQQQQVvDOp3uRTzDlB81tKsPla1RysairTr9pFrw-iXYUtIbYl2bD5H_AJO-6FRQ
CitedBy_id crossref_primary_10_1103_PhysRevA_106_032212
crossref_primary_10_1103_PhysRevE_109_014131
crossref_primary_10_1209_0295_5075_131_43001
crossref_primary_10_1103_PhysRevA_103_052220
crossref_primary_10_1103_PhysRevA_107_022215
crossref_primary_10_1103_PhysRevLett_127_100601
crossref_primary_10_1103_PhysRevLett_128_140501
crossref_primary_10_21468_SciPostPhys_10_3_076
crossref_primary_10_1063_5_0247924
crossref_primary_10_1088_1674_1056_ac728b
crossref_primary_10_1103_PhysRevA_110_022433
crossref_primary_10_1103_PhysRevLett_125_236402
crossref_primary_10_1088_1402_4896_acde1d
crossref_primary_10_1103_PhysRevA_109_032201
crossref_primary_10_1007_s11467_021_1130_5
crossref_primary_10_1103_PhysRevA_108_052218
crossref_primary_10_1103_PhysRevE_102_042111
crossref_primary_10_1103_PhysRevA_108_052213
crossref_primary_10_1140_epjb_s10051_021_00235_3
crossref_primary_10_1103_PhysRevA_109_022607
crossref_primary_10_1103_PhysRevResearch_5_013155
crossref_primary_10_3390_e23050612
crossref_primary_10_3389_fphy_2022_1097564
crossref_primary_10_1103_PhysRevA_108_042618
crossref_primary_10_1103_PhysRevA_104_043706
crossref_primary_10_22331_q_2021_07_13_500
crossref_primary_10_1103_PhysRevA_108_062402
crossref_primary_10_1103_PhysRevE_107_054125
crossref_primary_10_1103_PhysRevResearch_4_013172
crossref_primary_10_3390_photonics12030177
crossref_primary_10_1103_PhysRevA_109_012224
crossref_primary_10_3390_e24060820
crossref_primary_10_1103_PhysRevB_105_115405
crossref_primary_10_1103_PhysRevA_103_033715
crossref_primary_10_1103_PhysRevA_104_L030402
crossref_primary_10_3390_e25030430
crossref_primary_10_1007_JHEP11_2020_067
crossref_primary_10_22331_q_2021_07_15_505
crossref_primary_10_1088_1367_2630_ad3843
crossref_primary_10_1103_PhysRevLett_132_090401
crossref_primary_10_1103_PhysRevE_105_044125
crossref_primary_10_1103_PhysRevA_106_052203
crossref_primary_10_1103_PhysRevApplied_19_064069
crossref_primary_10_1103_PhysRevA_107_023725
crossref_primary_10_1209_0295_5075_ad4413
crossref_primary_10_1103_PhysRevA_106_042601
crossref_primary_10_1103_PhysRevB_111_075138
crossref_primary_10_1103_PhysRevE_109_014142
crossref_primary_10_1103_RevModPhys_96_031001
crossref_primary_10_1103_PhysRevLett_125_040601
crossref_primary_10_1103_PhysRevE_106_014138
crossref_primary_10_1103_PhysRevE_104_044116
crossref_primary_10_1103_PhysRevA_109_022226
crossref_primary_10_1103_PhysRevLett_130_210401
crossref_primary_10_1088_1402_4896_ad2efd
crossref_primary_10_1103_PhysRevB_109_235432
crossref_primary_10_1103_PhysRevE_102_022106
crossref_primary_10_3390_e23081073
crossref_primary_10_1103_PhysRevE_104_024129
Cites_doi 10.1007/JHEP04(2017)121
10.1038/s41598-018-30982-w
10.1103/PhysRevB.100.115142
10.1038/nphys1730
10.1103/PhysRevE.100.032107
10.1109/9.14428
10.1063/1.446862
10.1109/PROC.1963.1664
10.1103/PhysRevLett.105.130401
10.1103/PhysRevLett.118.150601
10.1103/PhysRevA.58.883
10.1103/PhysRevLett.103.080502
10.1109/TAC.1987.1104700
10.1103/PhysRevLett.109.040502
10.1088/1367-2630/18/2/023045
10.1038/nmat2717
10.1103/PhysRevLett.118.050601
10.1038/ncomms14538
10.1088/1367-2630/19/1/010201
10.1103/PhysRevA.96.052112
10.1103/PhysRevLett.107.010403
10.1103/PhysRevB.99.205437
10.1103/PhysRevLett.120.117702
10.1038/ncomms13511
10.1126/science.1057726
10.1103/PhysRevLett.124.160603
10.1103/PhysRevA.93.052331
10.1103/PhysRevA.69.062319
10.1103/PhysRevLett.123.190601
10.1103/PhysRevA.97.032304
10.1038/s41598-019-39300-4
10.1007/BF01647331
10.1103/PhysRevLett.113.150402
10.22331/q-2019-03-04-127
10.1038/ncomms2712
10.1088/1367-2630/17/11/115012
10.22331/q-2018-04-23-61
10.1103/PhysRevB.98.205423
10.1038/ncomms5185
10.1103/PhysRevE.85.061126
10.1038/nphys444
10.1088/1367-2630/17/6/065006
10.1088/1367-2630/18/10/103017
10.1103/PhysRevA.86.052324
10.1103/PhysRevE.87.042123
10.1103/PhysRevLett.122.047702
10.22331/q-2019-02-14-121
10.1103/PhysRevA.97.022106
10.1103/PhysRevE.90.052136
10.1103/PhysRevA.101.032115
10.1038/ncomms2067
10.1038/srep06208
10.1103/PhysRevX.6.041017
10.1103/PhysRevLett.111.250404
10.1209/epl/i2004-10101-2
10.1023/B:OPSY.0000047566.72717.71
10.1103/PhysRevA.99.062306
10.1088/1751-8113/49/14/143001
10.1109/TAC.1986.1104370
10.1103/PhysRevE.87.042131
10.1103/RevModPhys.89.041003
10.1103/RevModPhys.90.015002
10.1088/1367-2630/17/7/075015
10.1103/PhysRevLett.118.100602
10.1088/0305-4470/12/5/007
10.1103/PhysRevE.99.042105
10.1103/PhysRevX.5.021001
ContentType Journal Article
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
OTOTI
DOA
DOI 10.1103/PhysRevResearch.2.023095
DatabaseName CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Mathematics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_939b33bc0910491fb965ef14c0719be3
1616365
10_1103_PhysRevResearch_2_023095
GroupedDBID 3MX
AAYXX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ABCKA
OTOTI
ID FETCH-LOGICAL-c436t-8283beb76e6bc80e7ddaebfd06468475d4f8c3ea27503d8a74e1b77daf9b9b813
IEDL.DBID DOA
ISSN 2643-1564
IngestDate Wed Aug 27 01:24:28 EDT 2025
Mon Apr 01 04:55:26 EDT 2024
Tue Jul 01 02:05:34 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-8283beb76e6bc80e7ddaebfd06468475d4f8c3ea27503d8a74e1b77daf9b9b813
Notes USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
National Science Foundation (NSF)
LA-UR-19-28177
AC52-06NA25396; PRD20170660; PRD20190195; SC0019040; 89233218CNA000001; SC0019449
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0001-7964-3030
0000000179643030
OpenAccessLink https://doaj.org/article/939b33bc0910491fb965ef14c0719be3
ParticipantIDs doaj_primary_oai_doaj_org_article_939b33bc0910491fb965ef14c0719be3
osti_scitechconnect_1616365
crossref_primary_10_1103_PhysRevResearch_2_023095
crossref_citationtrail_10_1103_PhysRevResearch_2_023095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-28
PublicationDateYYYYMMDD 2020-04-28
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review research
PublicationYear 2020
Publisher American Physical Society (APS)
American Physical Society
Publisher_xml – name: American Physical Society (APS)
– name: American Physical Society
References PhysRevResearch.2.023095Cc5R1
PhysRevResearch.2.023095Cc12R1
PhysRevResearch.2.023095Cc33R1
PhysRevResearch.2.023095Cc58R1
PhysRevResearch.2.023095Cc3R1
PhysRevResearch.2.023095Cc14R1
PhysRevResearch.2.023095Cc35R1
PhysRevResearch.2.023095Cc56R1
PhysRevResearch.2.023095Cc9R1
PhysRevResearch.2.023095Cc16R1
PhysRevResearch.2.023095Cc37R1
PhysRevResearch.2.023095Cc58R2
PhysRevResearch.2.023095Cc18R1
PhysRevResearch.2.023095Cc39R1
PhysRevResearch.2.023095Cc50R1
PhysRevResearch.2.023095Cc54R1
F. Campaioli (PhysRevResearch.2.023095Cc1R1) 2018
PhysRevResearch.2.023095Cc10R1
PhysRevResearch.2.023095Cc31R1
PhysRevResearch.2.023095Cc52R1
PhysRevResearch.2.023095Cc23R1
PhysRevResearch.2.023095Cc46R1
PhysRevResearch.2.023095Cc25R1
PhysRevResearch.2.023095Cc44R1
PhysRevResearch.2.023095Cc67R1
PhysRevResearch.2.023095Cc27R1
PhysRevResearch.2.023095Cc29R1
PhysRevResearch.2.023095Cc48R1
PhysRevResearch.2.023095Cc61R1
PhysRevResearch.2.023095Cc63R2
PhysRevResearch.2.023095Cc40R1
PhysRevResearch.2.023095Cc63R3
PhysRevResearch.2.023095Cc65R1
PhysRevResearch.2.023095Cc21R1
PhysRevResearch.2.023095Cc42R1
PhysRevResearch.2.023095Cc63R1
PhysRevResearch.2.023095Cc11R1
PhysRevResearch.2.023095Cc34R1
PhysRevResearch.2.023095Cc57R1
PhysRevResearch.2.023095Cc4R1
PhysRevResearch.2.023095Cc13R1
PhysRevResearch.2.023095Cc36R1
PhysRevResearch.2.023095Cc55R1
PhysRevResearch.2.023095Cc2R1
PhysRevResearch.2.023095Cc15R1
PhysRevResearch.2.023095Cc38R1
PhysRevResearch.2.023095Cc8R1
PhysRevResearch.2.023095Cc17R1
PhysRevResearch.2.023095Cc59R1
PhysRevResearch.2.023095Cc6R1
PhysRevResearch.2.023095Cc17R2
PhysRevResearch.2.023095Cc30R1
PhysRevResearch.2.023095Cc32R1
PhysRevResearch.2.023095Cc22R1
PhysRevResearch.2.023095Cc47R1
PhysRevResearch.2.023095Cc66R1
PhysRevResearch.2.023095Cc24R1
PhysRevResearch.2.023095Cc45R1
PhysRevResearch.2.023095Cc26R1
PhysRevResearch.2.023095Cc28R1
PhysRevResearch.2.023095Cc49R1
PhysRevResearch.2.023095Cc60R1
PhysRevResearch.2.023095Cc41R1
PhysRevResearch.2.023095Cc64R1
PhysRevResearch.2.023095Cc43R1
PhysRevResearch.2.023095Cc62R1
PhysRevResearch.2.023095Cc20R1
PhysRevResearch.2.023095Cc19R1
References_xml – ident: PhysRevResearch.2.023095Cc52R1
  doi: 10.1007/JHEP04(2017)121
– ident: PhysRevResearch.2.023095Cc33R1
  doi: 10.1038/s41598-018-30982-w
– ident: PhysRevResearch.2.023095Cc31R1
  doi: 10.1103/PhysRevB.100.115142
– ident: PhysRevResearch.2.023095Cc38R1
  doi: 10.1038/nphys1730
– ident: PhysRevResearch.2.023095Cc61R1
  doi: 10.1103/PhysRevE.100.032107
– ident: PhysRevResearch.2.023095Cc63R3
  doi: 10.1109/9.14428
– ident: PhysRevResearch.2.023095Cc17R2
  doi: 10.1063/1.446862
– ident: PhysRevResearch.2.023095Cc55R1
  doi: 10.1109/PROC.1963.1664
– ident: PhysRevResearch.2.023095Cc19R1
  doi: 10.1103/PhysRevLett.105.130401
– ident: PhysRevResearch.2.023095Cc57R1
  doi: 10.1103/PhysRevLett.118.150601
– ident: PhysRevResearch.2.023095Cc39R1
  doi: 10.1103/PhysRevA.58.883
– ident: PhysRevResearch.2.023095Cc66R1
  doi: 10.1103/PhysRevLett.103.080502
– ident: PhysRevResearch.2.023095Cc63R2
  doi: 10.1109/TAC.1987.1104700
– ident: PhysRevResearch.2.023095Cc40R1
  doi: 10.1103/PhysRevLett.109.040502
– ident: PhysRevResearch.2.023095Cc46R1
  doi: 10.1088/1367-2630/18/2/023045
– volume-title: Thermodynamics in the Quantum Regime
  year: 2018
  ident: PhysRevResearch.2.023095Cc1R1
– ident: PhysRevResearch.2.023095Cc37R1
  doi: 10.1038/nmat2717
– ident: PhysRevResearch.2.023095Cc10R1
  doi: 10.1103/PhysRevLett.118.050601
– ident: PhysRevResearch.2.023095Cc16R1
  doi: 10.1038/ncomms14538
– ident: PhysRevResearch.2.023095Cc20R1
  doi: 10.1088/1367-2630/19/1/010201
– ident: PhysRevResearch.2.023095Cc21R1
  doi: 10.1103/PhysRevA.96.052112
– ident: PhysRevResearch.2.023095Cc54R1
  doi: 10.1103/PhysRevLett.107.010403
– ident: PhysRevResearch.2.023095Cc6R1
  doi: 10.1103/PhysRevB.99.205437
– ident: PhysRevResearch.2.023095Cc3R1
  doi: 10.1103/PhysRevLett.120.117702
– ident: PhysRevResearch.2.023095Cc34R1
  doi: 10.1038/ncomms13511
– ident: PhysRevResearch.2.023095Cc58R1
  doi: 10.1126/science.1057726
– ident: PhysRevResearch.2.023095Cc27R1
  doi: 10.1103/PhysRevLett.124.160603
– ident: PhysRevResearch.2.023095Cc49R1
  doi: 10.1103/PhysRevA.93.052331
– ident: PhysRevResearch.2.023095Cc62R1
  doi: 10.1103/PhysRevA.69.062319
– ident: PhysRevResearch.2.023095Cc14R1
  doi: 10.1103/PhysRevLett.123.190601
– ident: PhysRevResearch.2.023095Cc65R1
  doi: 10.1103/PhysRevA.97.032304
– ident: PhysRevResearch.2.023095Cc47R1
  doi: 10.1038/s41598-019-39300-4
– ident: PhysRevResearch.2.023095Cc67R1
  doi: 10.1007/BF01647331
– ident: PhysRevResearch.2.023095Cc43R1
  doi: 10.1103/PhysRevLett.113.150402
– ident: PhysRevResearch.2.023095Cc32R1
  doi: 10.22331/q-2019-03-04-127
– ident: PhysRevResearch.2.023095Cc12R1
  doi: 10.1038/ncomms2712
– ident: PhysRevResearch.2.023095Cc15R1
  doi: 10.1088/1367-2630/17/11/115012
– ident: PhysRevResearch.2.023095Cc26R1
  doi: 10.22331/q-2018-04-23-61
– ident: PhysRevResearch.2.023095Cc4R1
  doi: 10.1103/PhysRevB.98.205423
– ident: PhysRevResearch.2.023095Cc18R1
  doi: 10.1038/ncomms5185
– ident: PhysRevResearch.2.023095Cc11R1
  doi: 10.1103/PhysRevE.85.061126
– ident: PhysRevResearch.2.023095Cc35R1
  doi: 10.1038/nphys444
– ident: PhysRevResearch.2.023095Cc44R1
  doi: 10.1088/1367-2630/17/6/065006
– ident: PhysRevResearch.2.023095Cc29R1
  doi: 10.1088/1367-2630/18/10/103017
– ident: PhysRevResearch.2.023095Cc41R1
  doi: 10.1103/PhysRevA.86.052324
– ident: PhysRevResearch.2.023095Cc2R1
  doi: 10.1103/PhysRevE.87.042123
– ident: PhysRevResearch.2.023095Cc5R1
  doi: 10.1103/PhysRevLett.122.047702
– ident: PhysRevResearch.2.023095Cc22R1
  doi: 10.22331/q-2019-02-14-121
– ident: PhysRevResearch.2.023095Cc8R1
  doi: 10.1103/PhysRevA.97.022106
– ident: PhysRevResearch.2.023095Cc25R1
  doi: 10.1103/PhysRevE.90.052136
– ident: PhysRevResearch.2.023095Cc30R1
  doi: 10.1103/PhysRevA.101.032115
– ident: PhysRevResearch.2.023095Cc24R1
  doi: 10.1038/ncomms2067
– ident: PhysRevResearch.2.023095Cc60R1
  doi: 10.1038/srep06208
– ident: PhysRevResearch.2.023095Cc13R1
  doi: 10.1103/PhysRevX.6.041017
– ident: PhysRevResearch.2.023095Cc23R1
  doi: 10.1103/PhysRevLett.111.250404
– ident: PhysRevResearch.2.023095Cc36R1
  doi: 10.1209/epl/i2004-10101-2
– ident: PhysRevResearch.2.023095Cc42R1
  doi: 10.1023/B:OPSY.0000047566.72717.71
– ident: PhysRevResearch.2.023095Cc59R1
  doi: 10.1103/PhysRevA.99.062306
– ident: PhysRevResearch.2.023095Cc28R1
  doi: 10.1088/1751-8113/49/14/143001
– ident: PhysRevResearch.2.023095Cc63R1
  doi: 10.1109/TAC.1986.1104370
– ident: PhysRevResearch.2.023095Cc9R1
  doi: 10.1103/PhysRevE.87.042131
– ident: PhysRevResearch.2.023095Cc50R1
  doi: 10.1103/RevModPhys.89.041003
– ident: PhysRevResearch.2.023095Cc58R2
  doi: 10.1103/RevModPhys.90.015002
– ident: PhysRevResearch.2.023095Cc56R1
  doi: 10.1088/1367-2630/17/7/075015
– ident: PhysRevResearch.2.023095Cc64R1
  doi: 10.1103/PhysRevLett.118.100602
– ident: PhysRevResearch.2.023095Cc17R1
  doi: 10.1088/0305-4470/12/5/007
– ident: PhysRevResearch.2.023095Cc45R1
  doi: 10.1103/PhysRevE.99.042105
– ident: PhysRevResearch.2.023095Cc48R1
  doi: 10.1103/PhysRevX.5.021001
SSID ssj0002511485
Score 2.4615777
Snippet Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of profound interest in recent years. Among these, quantum...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 023095
SubjectTerms CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Mathematics
nanophysics
quantum information
quantum physics
quantum work
Title Random quantum batteries
URI https://www.osti.gov/biblio/1616365
https://doaj.org/article/939b33bc0910491fb965ef14c0719be3
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4NAEN2YJiZejJ9prRoOXmmB_WKPamwak3pobNLbhll2T7b1o_Xob3cGaEO86MELJMAGeAPMe9nhDWM3GSouLyCJtVMiFi7ouIBMx4HmzJzXIVTenZMnNZ6Jx7mct1p9UU1YbQ9cAzc03ADn4CivCZMGMEr6kAqHudGAr3w-cV9LTNE3mIizyOW2dCfhQyqonPrPbT3bIBsQ-6a2Eq18VNn242qFr1crzYyO2GHDD6Pb-rqO2Z5fnrD9qk7TfZyy7hSV_2oRvW0Qkc0igsoeE9XuGZuNHp7vx3HT3CB2gqs1_b7NwYNWXoHLE6_LsvAQSqQICjOGLEXIHfcF-a_zMi-08CloXRbBgIE85eess1wtfZdFRsjEaQmgkX-ZsjCBS4KgkDRrmvIe09tbtK5x_qYGFC-2UgAJtz_AsZmtwemxdDfytXa_-MOYO0Jxdzz5V1cbMKq2iar9Lao91qcYWKQB5GXrqOjHrS3SU8WVvPiPU_TZQUbaORFxll-yzvp946-QYKzhunqWcDn5evgGDjzODQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+quantum+batteries&rft.jtitle=Physical+review+research&rft.au=Caravelli%2C+Francesco&rft.au=Coulter-De+Wit%2C+Ghislaine&rft.au=Garc%C3%ADa-Pintos%2C+Luis+Pedro&rft.au=Hamma%2C+Alioscia&rft.date=2020-04-28&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevResearch.2.023095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_2_023095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon