Deep learning for drug response prediction in cancer
Abstract Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell line...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 1; pp. 360 - 379 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt |
---|---|
AbstractList | Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt Abstract Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt. Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt.Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt. |
Author | Ferreira, Pedro G Rocha, Miguel Baptista, Delora |
Author_xml | – sequence: 1 givenname: Delora surname: Baptista fullname: Baptista, Delora email: mrocha@di.uminho.pt organization: Biomedical Engineering at the University of Minho – sequence: 2 givenname: Pedro G surname: Ferreira fullname: Ferreira, Pedro G organization: University of Porto – sequence: 3 givenname: Miguel surname: Rocha fullname: Rocha, Miguel email: mrocha@di.uminho.pt organization: Department of Informatics and a Senior Researcher of the Centre of Biological Engineering at the University of Minho |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31950132$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoMo2lYv_gBZEEGE1XxskuYo9RMKXvQcssmsRLbJmuwe9Ne7pfVSxNPM4XlfZp4p2g8xAEKnBF8TrNhN7eubuv4mkuyhCamkLCvMq_31LmTJK8GO0DTnD4wplnNyiI4YURwTRieougPoihZMCj68F01MhUvDe5EgdzFkKLoEztvex1D4UFgTLKRjdNCYNsPJds7Q28P96-KpXL48Pi9ul6WtmOhLKagANxecORC1U0oKK2ojG9oI7KwTHAvKpWoss87OOTfYUEZ5Y8G6eY3ZDF1uersUPwfIvV75bKFtTYA4ZE1ZRQTDSqoRPd9BP-KQwnidppwqJeT64Rk621JDvQKnu-RXJn3pXx8jgDeATTHnBI22vjfr7_tkfKsJ1mvlelSuN8rHyNVO5Lf1T_hiA8eh-4_7AQ97jc0 |
CitedBy_id | crossref_primary_10_1002_ima_23060 crossref_primary_10_3389_fmed_2023_1086097 crossref_primary_10_1038_s41698_023_00491_9 crossref_primary_10_1039_D1MO00411E crossref_primary_10_2298_CSIS240327039D crossref_primary_10_3390_app14020669 crossref_primary_10_1016_j_biotechadv_2024_108400 crossref_primary_10_7717_peerj_cs_2520 crossref_primary_10_1093_bioadv_vbae010 crossref_primary_10_1021_acs_jcim_3c01060 crossref_primary_10_1093_bib_bbab408 crossref_primary_10_1016_j_chemolab_2022_104562 crossref_primary_10_3390_biomedinformatics2040049 crossref_primary_10_1155_er_9934909 crossref_primary_10_1016_j_compbiomed_2024_108312 crossref_primary_10_1016_j_isci_2025_111992 crossref_primary_10_1093_bioinformatics_btae688 crossref_primary_10_1038_s41598_021_94564_z crossref_primary_10_1016_j_neucom_2023_127168 crossref_primary_10_1093_bib_bbac605 crossref_primary_10_3390_cancers14030606 crossref_primary_10_1093_bib_bbab356 crossref_primary_10_3389_fgene_2025_1532651 crossref_primary_10_1371_journal_pone_0307649 crossref_primary_10_1038_s41598_020_65927_9 crossref_primary_10_1016_j_heliyon_2025_e41835 crossref_primary_10_3390_math9070772 crossref_primary_10_1007_s10462_022_10306_1 crossref_primary_10_1186_s12915_024_02023_8 crossref_primary_10_1186_s13321_025_00972_y crossref_primary_10_1080_10495398_2024_2446251 crossref_primary_10_1016_j_ymeth_2023_11_018 crossref_primary_10_1016_j_csbj_2022_05_055 crossref_primary_10_1038_s41598_024_83090_3 crossref_primary_10_3390_ijms232213919 crossref_primary_10_1016_j_compbiomed_2023_107220 crossref_primary_10_2196_66831 crossref_primary_10_1016_j_sbi_2023_102747 crossref_primary_10_1002_jgh3_12915 crossref_primary_10_1016_j_compbiolchem_2023_107868 crossref_primary_10_1016_j_jgg_2021_03_007 crossref_primary_10_1016_j_neunet_2023_08_036 crossref_primary_10_1093_nargab_lqab128 crossref_primary_10_1016_j_compbiomed_2024_108577 crossref_primary_10_1109_ACCESS_2023_3336946 crossref_primary_10_1093_bib_bbac504 crossref_primary_10_1093_bioadv_vbad190 crossref_primary_10_1016_j_patter_2023_100894 crossref_primary_10_3389_fcvm_2024_1276608 crossref_primary_10_1093_bib_bbac469 crossref_primary_10_1093_bib_bbab378 crossref_primary_10_1093_bib_bbac501 crossref_primary_10_1093_database_baae125 crossref_primary_10_1093_bioadv_vbae047 crossref_primary_10_1007_s13748_024_00314_3 crossref_primary_10_1098_rsif_2022_0541 crossref_primary_10_1007_s10462_025_11148_3 crossref_primary_10_1111_cbdd_14164 crossref_primary_10_1038_s41598_024_81866_1 crossref_primary_10_1016_j_csbj_2021_07_007 crossref_primary_10_1186_s12859_023_05262_8 crossref_primary_10_7717_peerj_cs_1903 crossref_primary_10_1093_bioinformatics_btad390 crossref_primary_10_1093_gpbjnl_qzad008 crossref_primary_10_3390_jpm10040224 crossref_primary_10_3233_WEB_230260 crossref_primary_10_1016_j_artmed_2024_102820 crossref_primary_10_1093_bioinformatics_btad717 crossref_primary_10_1186_s12859_022_04720_z crossref_primary_10_1093_bib_bbab561 crossref_primary_10_1093_bioinformatics_btad432 crossref_primary_10_1093_bioinformatics_btab650 crossref_primary_10_1186_s12885_022_10293_0 crossref_primary_10_1186_s40246_022_00396_x crossref_primary_10_1093_database_baad054 crossref_primary_10_1371_journal_pcbi_1010200 crossref_primary_10_1016_j_semcancer_2023_02_005 crossref_primary_10_1186_s13073_021_01000_y crossref_primary_10_1200_PO_23_00261 crossref_primary_10_1016_j_heliyon_2024_e35742 crossref_primary_10_3390_ijms22147721 crossref_primary_10_1016_j_molliq_2022_119675 crossref_primary_10_1371_journal_pcbi_1012748 crossref_primary_10_1007_s11831_025_10255_2 crossref_primary_10_1371_journal_pone_0292063 crossref_primary_10_1016_j_csbj_2021_10_006 crossref_primary_10_1093_bib_bbac282 crossref_primary_10_3389_frai_2023_1260361 crossref_primary_10_1007_s10489_022_03294_w crossref_primary_10_1038_s41698_024_00583_0 crossref_primary_10_1186_s12916_022_02549_0 crossref_primary_10_1177_15330338241296725 crossref_primary_10_1002_ddr_22115 crossref_primary_10_1093_bib_bbab355 crossref_primary_10_1093_bib_bbad256 crossref_primary_10_1038_s41598_023_39179_2 crossref_primary_10_3389_fimmu_2024_1363144 crossref_primary_10_1016_j_compbiomed_2023_106859 crossref_primary_10_1155_2021_6668985 crossref_primary_10_1002_aisy_202400180 crossref_primary_10_1007_s10142_024_01445_5 crossref_primary_10_1109_JBHI_2023_3342280 crossref_primary_10_3389_fphar_2024_1522787 crossref_primary_10_1186_s12859_021_04352_9 crossref_primary_10_1186_s13244_024_01851_0 crossref_primary_10_3390_life10120347 crossref_primary_10_1080_23808993_2020_1758062 crossref_primary_10_1038_s41598_020_74921_0 crossref_primary_10_1007_s11030_023_10690_y crossref_primary_10_1093_bib_bbad522 crossref_primary_10_3390_ijms221910891 crossref_primary_10_1016_j_bspc_2022_104144 crossref_primary_10_1097_MPA_0000000000002270 crossref_primary_10_1038_s41698_024_00691_x crossref_primary_10_3389_fgene_2020_564792 crossref_primary_10_1002_wcms_1597 crossref_primary_10_1038_s42003_024_06865_4 crossref_primary_10_1109_TCBB_2021_3096960 crossref_primary_10_1109_TCBB_2021_3060430 crossref_primary_10_3390_diagnostics13122043 crossref_primary_10_32604_cmes_2021_016728 |
Cites_doi | 10.1021/acs.molpharmaceut.5b00982 10.1007/BF01952257 10.1158/2159-8290.CD-15-0235 10.1186/s12859-018-2060-2 10.1613/jair.5714 10.1038/nature14539 10.1016/j.celrep.2013.07.018 10.1002/jcc.24764 10.1038/nm.3954 10.1021/acs.molpharmaceut.7b01144 10.1038/nature19838 10.1371/journal.pone.0186906 10.1038/nature17987 10.1016/j.cels.2018.03.012 10.1016/j.cell.2016.06.017 10.1016/j.coisb.2018.07.001 10.1146/annurev-pharmtox-010510-100502 10.1186/s12859-018-2509-3 10.1371/journal.pone.0061318 10.12688/f1000research.9611.1 10.1158/0008-5472.CAN-09-3788 10.1016/j.jbi.2018.07.024 10.1109/35.41400 10.1038/clpt.2012.96 10.1016/j.cell.2013.08.003 10.1093/nar/gkv1277 10.1186/1752-0509-6-S3-S3 10.1038/nature15736 10.1016/j.eng.2018.11.018 10.1093/bioinformatics/btv529 10.1109/DSAA.2018.00018 10.1056/NEJMp1607591 10.3389/fenvs.2015.00080 10.1186/s13321-019-0364-5 10.1162/neco.2006.18.7.1527 10.18632/oncotarget.20923 10.1158/1541-7786.MCR-17-0378 10.1021/acs.molpharmaceut.8b00284 10.1016/j.drudis.2018.05.010 10.1021/acs.molpharmaceut.7b00578 10.1007/BF03037089 10.1039/C7SC02664A 10.1098/rsif.2017.0387 10.1038/s41586-019-1186-3 10.1093/jnci/djt007 10.1016/j.ygeno.2018.07.002 10.1093/nar/gks1111 10.1186/s12920-018-0460-9 10.1038/nbt.3299 10.1038/s41591-019-0404-8 10.1038/nrc3599 10.1093/nar/gkr777 10.1016/j.cell.2017.06.010 10.1093/nar/gkx1063 10.1093/nar/gkx1121 10.1093/database/bar026 10.1093/bioinformatics/btu464 10.1093/nar/gky1015 10.1158/0008-5472.CAN-17-0489 10.1016/j.cels.2017.11.001 10.1021/ci500747n 10.1007/978-0-387-84858-7 10.1186/s13321-017-0232-0 10.1038/nature12831 10.1177/1947601912440575 10.1093/nar/gkv951 10.1111/j.1744-7348.1939.tb06990.x 10.1158/1535-7163.MCT-15-0843 10.1007/s10822-016-9938-8 10.1093/bioinformatics/btz158 10.1186/s13321-017-0226-y 10.1126/science.1127647 10.1039/C8SC00148K 10.1093/nar/gkx1037 10.1038/nbt.3052 10.1038/nature11003 10.1186/s12859-019-2910-6 10.1038/nature11005 10.1561/2200000006 10.1371/journal.pcbi.1005308 10.1016/j.cell.2017.10.049 10.1016/j.cell.2015.03.053 10.1186/gb-2011-12-4-r41 10.1146/annurev-pharmtox-010919-023537 10.1093/bioinformatics/btz418 10.1038/nrc1951 10.1038/s42256-019-0048-x 10.1158/1541-7786.MCR-15-0189 10.1038/nbt.2877 10.1038/nature20171 10.1109/TPAMI.2013.50 10.1021/acs.molpharmaceut.6b00248 10.1093/bioinformatics/btx806 10.1093/bioinformatics/btz318 10.1126/science.1132939 |
ContentType | Journal Article |
Copyright | The authors 2020. Published by Oxford University Press. 2021 The authors 2020. Published by Oxford University Press. |
Copyright_xml | – notice: The authors 2020. Published by Oxford University Press. 2021 – notice: The authors 2020. Published by Oxford University Press. |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbz171 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 379 |
ExternalDocumentID | 31950132 10_1093_bib_bbz171 10.1093/bib/bbz171 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABPQP ABXZS ACUXJ AHGBF ALXQX ANAKG CITATION JXSIZ NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c436t-7626ed8653de6bd9976c6ba7f2f60dcd65062579fc3cdc855a0a2325fcecd8b03 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Jul 10 22:36:19 EDT 2025 Mon Jun 30 08:54:18 EDT 2025 Wed Feb 19 02:29:57 EST 2025 Thu Apr 24 22:59:18 EDT 2025 Tue Jul 01 03:39:29 EDT 2025 Thu Feb 27 05:38:07 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | drug synergy deep learning precision medicine drug sensitivity cancer |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The authors 2020. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-7626ed8653de6bd9976c6ba7f2f60dcd65062579fc3cdc855a0a2325fcecd8b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://hdl.handle.net/1822/73086 |
PMID | 31950132 |
PQID | 2529967501 |
PQPubID | 26846 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2341630979 proquest_journals_2529967501 pubmed_primary_31950132 crossref_citationtrail_10_1093_bib_bbz171 crossref_primary_10_1093_bib_bbz171 oup_primary_10_1093_bib_bbz171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Mayr (2021012203305454500_ref109) 2018; 9 Huang (2021012203305454500_ref9) 2017; 12 Hinton (2021012203305454500_ref51) 2006; 18 Goodspeed (2021012203305454500_ref73) 2016; 14 Baltrusaitis (2021012203305454500_ref34) 2019 Lipton (2021012203305454500_ref43) 2015 Geeleher (2021012203305454500_ref116) 2016; 540 Menden (2021012203305454500_ref15) 2013; 8 Menden (2021012203305454500_ref8) 2674; 10 Xu (2021012203305454500_ref108) 2017 van de Wetering (2021012203305454500_ref75) 2015; 161 Alvarez Melis (2021012203305454500_ref131) 2018 Bansal (2021012203305454500_ref7) 2014; 32 Chollet (2021012203305454500_ref56) 2015 Wishart (2021012203305454500_ref80) 2018; 46 Cortés-Ciriano (2021012203305454500_ref12) 2015; 32 Haverty (2021012203305454500_ref62) 2016; 533 Gaulton (2021012203305454500_ref79) 2012; 40 Cowley (2021012203305454500_ref84) 2014; 1 Hop (2021012203305454500_ref110) 2018; 15 Tallarida (2021012203305454500_ref29) 2011; 2 Eduati (2021012203305454500_ref87) 2015; 33 Holohan (2021012203305454500_ref100) 2013; 13 Strubell (2021012203305454500_ref119) 2019 Mayr (2021012203305454500_ref21) 2016; 3 Shrikumar (2021012203305454500_ref124) 2017 Lenselink (2021012203305454500_ref19) 2017; 9 Aliper (2021012203305454500_ref103) 2016; 13 Litichevskiy (2021012203305454500_ref71) 2018; 6 Gillet (2021012203305454500_ref72) 2013; 105 Lo (2021012203305454500_ref32) 2018; 23 Harding (2021012203305454500_ref82) 2018; 46 Shapley (2021012203305454500_ref127) 1953 Hinton (2021012203305454500_ref46) 2006; 313 Kim (2021012203305454500_ref78) 2016; 44 Rampášek (2021012203305454500_ref91) 2019; 35 Kalamara (2021012203305454500_ref16) 2018; 10 Naulaerts (2021012203305454500_ref13) 2017; 8 Gholami (2021012203305454500_ref66) 2013; 4 Garnett (2021012203305454500_ref5) 2012; 483 Koleti (2021012203305454500_ref70) 2018; 46 Loewe (2021012203305454500_ref89) 1926; 114 Bahdanau (2021012203305454500_ref24) Paszke (2021012203305454500_ref54) 2017 Basu (2021012203305454500_ref3) 2013; 154 Ghandi (2021012203305454500_ref60) 2019; 569 Oskooei (2021012203305454500_ref44) 2018 Yang (2021012203305454500_ref2) 2013; 41 Meyer (2021012203305454500_ref25) 2013; 53 Mohri (2021012203305454500_ref31) 2012 Goodfellow (2021012203305454500_ref117) 2014 Holbeck (2021012203305454500_ref65) 2017; 77 Sharifi-Noghabi (2021012203305454500_ref92) 2019; 35 Hastie (2021012203305454500_ref30) 2009 Safikhani (2021012203305454500_ref114) 2016; 5 Cancer Cell Line Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer Consortium (2021012203305454500_ref115) 2015; 528 Pulley (2021012203305454500_ref102) 2020; 60 Gönen (2021012203305454500_ref11) 2014; 30 Kingma (2021012203305454500_ref37) 2015 Smolensky (2021012203305454500_ref52) 1986 Bengio (2021012203305454500_ref45) 2009; 2 Cortés-Ciriano (2021012203305454500_ref42) 2019; 11 Korotcov (2021012203305454500_ref22) 2017; 14 Mpindi (2021012203305454500_ref63) 2016; 540 Goodfellow (2021012203305454500_ref35) 2016 Salakhutdinov (2021012203305454500_ref38) 2009 Keenan (2021012203305454500_ref69) 2018; 6 Kearnes (2021012203305454500_ref106) 2016; 30 Preuer (2021012203305454500_ref39) 2018; 34 Subramanian (2021012203305454500_ref68) 2017; 171 Liu (2021012203305454500_ref93) 2019; 20 Koutsoukas (2021012203305454500_ref20) 2017; 9 Lamb (2021012203305454500_ref67) 2006; 313 Grossman (2021012203305454500_ref76) 2016; 375 Xia (2021012203305454500_ref97) 2018; 19 Ribeiro (2021012203305454500_ref122) 2016 Bliss (2021012203305454500_ref90) 1939; 26 Li (2021012203305454500_ref111) 2016; 19 Zeng (2021012203305454500_ref105) 2019 Chen (2021012203305454500_ref53) 2018; 85 Donner (2021012203305454500_ref104) 2018; 15 Duvenaud (2021012203305454500_ref33) 2015; 56 Le Cun (2021012203305454500_ref40) 1989; 27 Barretina (2021012203305454500_ref1) 2012; 483 Wu (2021012203305454500_ref107) 2018; 9 O’Neil (2021012203305454500_ref64) 2016; 15 Matlock (2021012203305454500_ref94) 2018; 19 Mermel (2021012203305454500_ref88) 2011; 12 Szklarczyk (2021012203305454500_ref81) 2016; 44 Chiu (2021012203305454500_ref49) 2019; 12 Li (2021012203305454500_ref61) 2019; 25 Iorio (2021012203305454500_ref6) 2016; 166 Tsherniak (2021012203305454500_ref85) 2017; 170 Srivastava (2021012203305454500_ref28) 2014; 15 Gao (2021012203305454500_ref74) 2015; 21 Brunton (2021012203305454500_ref27) 2011 LeCun (2021012203305454500_ref23) 2015; 521 Ma (2021012203305454500_ref18) 2015; 55 Whirl-Carrillo (2021012203305454500_ref86) 2012; 92 Haibe-Kains (2021012203305454500_ref113) 2013; 504 Costello (2021012203305454500_ref10) 2014; 32 Ding (2021012203305454500_ref47) 2018; 16 Abadi (2021012203305454500_ref55) 2016; 16 Seashore-Ludlow (2021012203305454500_ref4) 2015; 5 Ng (2021012203305454500_ref26) 2002 Liu (2021012203305454500_ref118) 2019; 5 Ching (2021012203305454500_ref41) 2018; 15 Bjerrum (2021012203305454500_ref98) 2017 Gilpin (2021012203305454500_ref121) 2018 Chang (2021012203305454500_ref96) 2018; 8 Chang (2021012203305454500_ref123) 2017 Ramsundar (2021012203305454500_ref57) 2019 Gayvert (2021012203305454500_ref14) 2017; 13 Mamoshina (2021012203305454500_ref112) 2016; 13 Tate (2021012203305454500_ref83) 2019; 47 Greshock (2021012203305454500_ref59) 2010; 70 Zhang (2021012203305454500_ref77) 2011; 2011 Rudin (2021012203305454500_ref130) 2019; 1 Shoemaker (2021012203305454500_ref58) 2006; 6 Kingma (2021012203305454500_ref50) 2013 Schwartz (2021012203305454500_ref120) 2019 Bengio (2021012203305454500_ref36) 2013; 35 Sundararajan (2021012203305454500_ref125) Muggleton (2021012203305454500_ref128) 1991; 8 Evans (2021012203305454500_ref129) 2018; 61 Tan (2021012203305454500_ref95) 2018; 111 Lundberg (2021012203305454500_ref126) 2017 Deng (2021012203305454500_ref99) 2009 Qin (2021012203305454500_ref101) 2012; 6 Goh (2021012203305454500_ref17) 2017; 38 Li (2021012203305454500_ref48) 2019 |
References_xml | – volume: 13 start-page: 1445 issue: 5 year: 2016 ident: 2021012203305454500_ref112 article-title: Applications of deep learning in biomedicine publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.5b00982 – volume-title: Goodman and Gilman’s The Pharmacological Basis of Therapeutics year: 2011 ident: 2021012203305454500_ref27 – volume: 114 start-page: 313 year: 1926 ident: 2021012203305454500_ref89 article-title: Effect of combinations: mathematical basis of problem publication-title: Arch Exp Pathol Pharmakol doi: 10.1007/BF01952257 – volume: 5 start-page: 1210 issue: 11 year: 2015 ident: 2021012203305454500_ref4 article-title: Harnessing connectivity in a large-scale small-molecule sensitivity dataset publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-0235 – volume: 19 start-page: 71 issue: Suppl 3 year: 2018 ident: 2021012203305454500_ref94 article-title: Investigation of model stacking for drug sensitivity prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2060-2 – start-page: 4765 volume-title: Adv. Neural Inf. Process. Syst. 30 year: 2017 ident: 2021012203305454500_ref126 article-title: A unified approach to interpreting model predictions – volume: 61 start-page: 1 year: 2018 ident: 2021012203305454500_ref129 article-title: Learning explanatory rules from noisy data publication-title: J Artif Intell Res doi: 10.1613/jair.5714 – volume: 10 start-page: 2019 issue: 1 year: 2674 ident: 2021012203305454500_ref8 article-title: Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen publication-title: Nat Commun – start-page: 1135 volume-title: Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min - KDD ’16 year: 2016 ident: 2021012203305454500_ref122 article-title: ”Why Should I Trust You?”: Explaining the Predictions of Any Classifier – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2021012203305454500_ref23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 4 start-page: 609 issue: 3 year: 2013 ident: 2021012203305454500_ref66 article-title: Global proteome analysis of the NCI-60 cell line panel publication-title: Cell Rep doi: 10.1016/j.celrep.2013.07.018 – year: 2017 ident: 2021012203305454500_ref123 article-title: Dropout feature ranking for deep learning models – volume: 38 start-page: 1291 issue: 16 year: 2017 ident: 2021012203305454500_ref17 article-title: Deep learning for computational chemistry publication-title: J Comput Chem doi: 10.1002/jcc.24764 – volume: 21 start-page: 1318 issue: 11 year: 2015 ident: 2021012203305454500_ref74 article-title: High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response publication-title: Nat Med doi: 10.1038/nm.3954 – volume: 15 start-page: 4371 issue: 10 year: 2018 ident: 2021012203305454500_ref110 article-title: Geometric deep learning autonomously learns chemical features that outperform those engineered by domain experts publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.7b01144 – volume: 540 start-page: E1 issue: 7631 year: 2016 ident: 2021012203305454500_ref116 article-title: Consistency in large pharmacogenomic studies publication-title: Nature doi: 10.1038/nature19838 – volume: 12 start-page: 1 issue: 10 year: 2017 ident: 2021012203305454500_ref9 article-title: Open source machine-learning algorithms for the prediction of optimal cancer drug therapies publication-title: PLoS One doi: 10.1371/journal.pone.0186906 – volume: 533 start-page: 333 issue: 7603 year: 2016 ident: 2021012203305454500_ref62 article-title: Reproducible pharmacogenomic profiling of cancer cell line panels publication-title: Nature doi: 10.1038/nature17987 – volume: 6 start-page: 424 issue: 4 year: 2018 ident: 2021012203305454500_ref71 article-title: A library of phosphoproteomic and chromatin signatures for characterizing cellular responses to drug perturbations publication-title: Cell Syst doi: 10.1016/j.cels.2018.03.012 – volume: 166 start-page: 740 issue: 3 year: 2016 ident: 2021012203305454500_ref6 article-title: A landscape of pharmacogenomic interactions in cancer publication-title: Cell doi: 10.1016/j.cell.2016.06.017 – volume: 10 start-page: 53 year: 2018 ident: 2021012203305454500_ref16 article-title: How to find the right drug for each patient? Advances and challenges in pharmacogenomics publication-title: Curr Opin Syst Biol doi: 10.1016/j.coisb.2018.07.001 – volume: 53 start-page: 475 issue: 1 year: 2013 ident: 2021012203305454500_ref25 article-title: Omics and drug response publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-010510-100502 – volume: 1 year: 2014 ident: 2021012203305454500_ref84 article-title: Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies publication-title: Sci Data – volume: 19 issue: S18 year: 2018 ident: 2021012203305454500_ref97 article-title: Predicting tumor cell line response to drug pairs with deep learning publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2509-3 – volume: 8 issue: 4 year: 2013 ident: 2021012203305454500_ref15 article-title: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties publication-title: PLoS One doi: 10.1371/journal.pone.0061318 – volume: 5 start-page: 2333 year: 2016 ident: 2021012203305454500_ref114 article-title: Revisiting inconsistency in large pharmacogenomic studies publication-title: F1000Res doi: 10.12688/f1000research.9611.1 – volume: 70 start-page: 3677 issue: 9 year: 2010 ident: 2021012203305454500_ref59 article-title: Molecular target class is predictive of in vitro response profile publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-3788 – volume: 19 start-page: 325 issue: 2 year: 2016 ident: 2021012203305454500_ref111 article-title: A review on machine learning principles for multi-view biological data integration publication-title: Brief Bioinform – year: 2017 ident: 2021012203305454500_ref98 article-title: SMILES enumeration as data augmentation for neural network modeling of molecules – volume: 85 start-page: 149 year: 2018 ident: 2021012203305454500_ref53 article-title: Predict effective drug combination by deep belief network and ontology fingerprints publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.07.024 – volume: 27 start-page: 41 issue: 11 year: 1989 ident: 2021012203305454500_ref40 article-title: Handwritten digit recognition: applications of neural network chips and automatic learning publication-title: IEEE Commun Mag doi: 10.1109/35.41400 – volume: 92 start-page: 414 issue: 4 year: 2012 ident: 2021012203305454500_ref86 article-title: Pharmacogenomics knowledge for personalized medicine publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2012.96 – volume: 154 start-page: 1151 issue: 5 year: 2013 ident: 2021012203305454500_ref3 article-title: An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules publication-title: Cell doi: 10.1016/j.cell.2013.08.003 – volume: 16 start-page: 486 issue: 4 year: 2016 ident: 2021012203305454500_ref55 article-title: TensorFlow: large-scale machine learning on heterogeneous distributed systems publication-title: Nat Neurosci – volume: 44 start-page: D380 issue: D1 year: 2016 ident: 2021012203305454500_ref81 article-title: STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1277 – volume: 6 start-page: S3 issue: Suppl 3 year: 2012 ident: 2021012203305454500_ref101 article-title: Signaling network prediction by the ontology fingerprint enhanced Bayesian network publication-title: BMC Syst Biol doi: 10.1186/1752-0509-6-S3-S3 – start-page: 3319 volume-title: Proceedings of the 34th International Conference on Machine Learning—Volume 70, JMLR.org2017, ICML’17 ident: 2021012203305454500_ref125 article-title: Axiomatic attribution for deep networks – volume: 528 start-page: 84 issue: 7580 year: 2015 ident: 2021012203305454500_ref115 article-title: Pharmacogenomic agreement between two cancer cell line data sets publication-title: Nature doi: 10.1038/nature15736 – volume: 5 start-page: 156 issue: 1 year: 2019 ident: 2021012203305454500_ref118 article-title: Wasserstein GAN-based small-sample augmentation for new-generation artificial intelligence: a case study of cancer-staging data in biology publication-title: Engineering doi: 10.1016/j.eng.2018.11.018 – start-page: 448 year: 2009 ident: 2021012203305454500_ref38 article-title: Deep Boltzmann machines. In: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida, USA – volume: 32 start-page: 85 issue: 1 year: 2015 ident: 2021012203305454500_ref12 article-title: Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv529 – year: 2018 ident: 2021012203305454500_ref44 article-title: PaccMann: prediction of anticancer compound sensitivity with multi-modal attention-based neural networks – start-page: 80 volume-title: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) year: 2018 ident: 2021012203305454500_ref121 article-title: Explaining Explanations: An Overview of Interpretability of Machine Learning doi: 10.1109/DSAA.2018.00018 – volume: 375 start-page: 1109 issue: 12 year: 2016 ident: 2021012203305454500_ref76 article-title: Toward a shared vision for cancer genomic data publication-title: N Engl J Med doi: 10.1056/NEJMp1607591 – volume: 3 start-page: 80 year: 2016 ident: 2021012203305454500_ref21 article-title: DeepTox: toxicity prediction using deep learning publication-title: Front Environ Sci doi: 10.3389/fenvs.2015.00080 – volume: 11 start-page: 41 issue: 1 year: 2019 ident: 2021012203305454500_ref42 article-title: KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images publication-title: J Chem doi: 10.1186/s13321-019-0364-5 – start-page: 841 year: 2002 ident: 2021012203305454500_ref26 article-title: On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 2021012203305454500_ref51 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 8 issue: 1 year: 2018 ident: 2021012203305454500_ref96 article-title: Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature publication-title: Sci Rep – volume: 8 start-page: 97025 issue: 57 year: 2017 ident: 2021012203305454500_ref13 article-title: Precision and recall oncology: combining multiple gene mutations for improved identification of drug-sensitive tumours publication-title: Oncotarget doi: 10.18632/oncotarget.20923 – volume: 16 start-page: 269 issue: 2 year: 2018 ident: 2021012203305454500_ref47 article-title: Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-17-0378 – volume: 15 start-page: 4314 issue: 10 year: 2018 ident: 2021012203305454500_ref104 article-title: Drug repurposing using deep embeddings of gene expression profiles publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.8b00284 – volume: 23 start-page: 1538 issue: 8 year: 2018 ident: 2021012203305454500_ref32 article-title: Machine learning in chemoinformatics and drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2018.05.010 – volume-title: Deep Learning for the Life Sciences year: 2019 ident: 2021012203305454500_ref57 – volume: 14 start-page: 4462 issue: 12 year: 2017 ident: 2021012203305454500_ref22 article-title: Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.7b00578 – year: 2013 ident: 2021012203305454500_ref50 article-title: Auto-encoding variational bayes – start-page: 3145 volume-title: Proc. 34th Int. Conf. Mach. Learn. 70 year: 2017 ident: 2021012203305454500_ref124 article-title: Learning important features through propagating activation differences – year: 2019 ident: 2021012203305454500_ref120 article-title: Green AI – volume: 8 start-page: 295 issue: 4 year: 1991 ident: 2021012203305454500_ref128 article-title: Inductive logic programming publication-title: New Gener Comput doi: 10.1007/BF03037089 – start-page: 423 volume-title: IEEE Trans Pattern Anal Mach Intell year: 2019 ident: 2021012203305454500_ref34 article-title: Multimodal Machine Learning: A Survey and Taxonomy – volume: 9 start-page: 513 issue: 2 year: 2018 ident: 2021012203305454500_ref107 article-title: MoleculeNet: a benchmark for molecular machine learning publication-title: Chem Sci doi: 10.1039/C7SC02664A – start-page: 1 year: 2019 ident: 2021012203305454500_ref48 article-title: DeepDSC: a deep learning method to predict drug sensitivity of cancer cell lines publication-title: IEEE/ACM Trans Comput Biol Bioinform – year: 2015 ident: 2021012203305454500_ref37 article-title: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings – volume: 15 issue: 141 year: 2018 ident: 2021012203305454500_ref41 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0387 – volume: 569 start-page: 503 issue: 7757 year: 2019 ident: 2021012203305454500_ref60 article-title: Next-generation characterization of the cancer cell line encyclopedia publication-title: Nature doi: 10.1038/s41586-019-1186-3 – volume: 105 start-page: 452 issue: 7 year: 2013 ident: 2021012203305454500_ref72 article-title: The clinical relevance of cancer cell lines publication-title: JNCI J Natl Cancer Inst doi: 10.1093/jnci/djt007 – volume: 111 start-page: 1078 issue: 5 year: 2018 ident: 2021012203305454500_ref95 article-title: Drug response prediction by ensemble learning and drug-induced gene expression signatures publication-title: Genomics doi: 10.1016/j.ygeno.2018.07.002 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 2021012203305454500_ref28 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 41 start-page: D955 issue: D1 year: 2013 ident: 2021012203305454500_ref2 article-title: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1111 – volume: 12 issue: S1 year: 2019 ident: 2021012203305454500_ref49 article-title: Predicting drug response of tumors from integrated genomic profiles by deep neural networks publication-title: BMC Med Genomics doi: 10.1186/s12920-018-0460-9 – volume: 33 start-page: 933 issue: 9 year: 2015 ident: 2021012203305454500_ref87 article-title: Prediction of human population responses to toxic compounds by a collaborative competition publication-title: Nat Biotechnol doi: 10.1038/nbt.3299 – volume: 25 start-page: 850 issue: 5 year: 2019 ident: 2021012203305454500_ref61 article-title: The landscape of cancer cell line metabolism publication-title: Nat Med doi: 10.1038/s41591-019-0404-8 – volume: 13 start-page: 714 issue: 10 year: 2013 ident: 2021012203305454500_ref100 article-title: Cancer drug resistance: an evolving paradigm publication-title: Nat Rev Cancer doi: 10.1038/nrc3599 – volume: 40 start-page: 1100 issue: D1 year: 2012 ident: 2021012203305454500_ref79 article-title: ChEMBL: a large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr777 – volume-title: Keras year: 2015 ident: 2021012203305454500_ref56 – volume: 170 start-page: 564 issue: 3 year: 2017 ident: 2021012203305454500_ref85 article-title: Defining a cancer dependency map publication-title: Cell doi: 10.1016/j.cell.2017.06.010 – volume: 46 start-page: D558 issue: D1 year: 2018 ident: 2021012203305454500_ref70 article-title: Data portal for the library of integrated network-based cellular signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1063 – volume: 46 start-page: D1091 issue: D1 year: 2018 ident: 2021012203305454500_ref82 article-title: The IUPHAR/BPS guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1121 – start-page: 307 volume-title: Contributions to the Theory of Games (AM-28) year: 1953 ident: 2021012203305454500_ref127 article-title: A value for n-person games – volume: 2011 start-page: bar026 year: 2011 ident: 2021012203305454500_ref77 article-title: International cancer genome consortium data portal—a one-stop shop for cancer genomics data publication-title: Database doi: 10.1093/database/bar026 – start-page: 3645 year: 2019 ident: 2021012203305454500_ref119 article-title: Energy and policy considerations for deep learning in NLP – volume: 30 start-page: 556 issue: 17 year: 2014 ident: 2021012203305454500_ref11 article-title: Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu464 – volume: 47 start-page: D941 issue: D1 year: 2019 ident: 2021012203305454500_ref83 article-title: COSMIC: the catalogue of somatic mutations in cancer publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1015 – volume: 77 start-page: 3564 issue: 13 year: 2017 ident: 2021012203305454500_ref65 article-title: The National Cancer Institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0489 – start-page: 2672 volume-title: Adv. Neural Inf. Process. Syst. 27 year: 2014 ident: 2021012203305454500_ref117 article-title: Generative adversarial nets – volume: 56 start-page: 399 issue: 2 year: 2015 ident: 2021012203305454500_ref33 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: J Chem Inf Model – volume: 6 start-page: 13 issue: 1 year: 2018 ident: 2021012203305454500_ref69 article-title: The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations publication-title: Cell Syst doi: 10.1016/j.cels.2017.11.001 – volume: 55 start-page: 263 issue: 2 year: 2015 ident: 2021012203305454500_ref18 article-title: Deep neural nets as a method for quantitative structure–activity relationships publication-title: J Chem Inf Model doi: 10.1021/ci500747n – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2009 ident: 2021012203305454500_ref30 doi: 10.1007/978-0-387-84858-7 – year: 2015 ident: 2021012203305454500_ref43 article-title: A Critical review of recurrent neural networks for sequence publication-title: Learning – volume: 9 start-page: 45 issue: 1 year: 2017 ident: 2021012203305454500_ref19 article-title: Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set publication-title: J Chem doi: 10.1186/s13321-017-0232-0 – volume: 504 start-page: 389 issue: 7480 year: 2013 ident: 2021012203305454500_ref113 article-title: Inconsistency in large pharmacogenomic studies publication-title: Nature doi: 10.1038/nature12831 – volume: 2 start-page: 1003 issue: 11 year: 2011 ident: 2021012203305454500_ref29 article-title: Quantitative methods for assessing drug synergism publication-title: Genes Cancer doi: 10.1177/1947601912440575 – volume: 44 start-page: D1202 issue: D1 year: 2016 ident: 2021012203305454500_ref78 article-title: PubChem substance and compound databases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv951 – volume: 26 start-page: 585 issue: 3 year: 1939 ident: 2021012203305454500_ref90 article-title: The toxicity of poisons applied jointly publication-title: Ann Appl Biol doi: 10.1111/j.1744-7348.1939.tb06990.x – volume: 15 start-page: 1155 issue: 6 year: 2016 ident: 2021012203305454500_ref64 article-title: An unbiased oncology compound screen to identify novel combination strategies publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-15-0843 – volume: 30 start-page: 595 issue: 8 year: 2016 ident: 2021012203305454500_ref106 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9938-8 – volume: 35 start-page: 3743 year: 2019 ident: 2021012203305454500_ref91 article-title: Dr.VAE: improving drug response prediction via modeling of drug perturbation effects publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz158 – start-page: 248 volume-title: 2009 IEEE Conf. Comput. Vis. Pattern Recognit. year: 2009 ident: 2021012203305454500_ref99 article-title: ImageNet: a large-scale hierarchical image database – start-page: 285 volume-title: Proc. 8th ACM Int. Conf. Bioinformatics, Comput. Biol. Heal. Informatics - ACM-BCB ’17 year: 2017 ident: 2021012203305454500_ref108 article-title: Seq2seq Fingerprint – volume: 9 start-page: 42 issue: 1 year: 2017 ident: 2021012203305454500_ref20 article-title: Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data publication-title: J Chem doi: 10.1186/s13321-017-0226-y – ident: 2021012203305454500_ref24 article-title: Neural machine translation by jointly learning to align and translate – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 2021012203305454500_ref46 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 9 start-page: 5441 issue: 24 year: 2018 ident: 2021012203305454500_ref109 article-title: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL publication-title: Chem Sci doi: 10.1039/C8SC00148K – volume: 46 start-page: D1074 issue: D1 year: 2018 ident: 2021012203305454500_ref80 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 32 start-page: 1213 issue: 12 year: 2014 ident: 2021012203305454500_ref7 article-title: A community computational challenge to predict the activity of pairs of compounds publication-title: Nat Biotechnol doi: 10.1038/nbt.3052 – volume: 483 start-page: 603 issue: 7391 year: 2012 ident: 2021012203305454500_ref1 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – start-page: 7775 volume-title: Advances in Neural Information Processing Systems 31 year: 2018 ident: 2021012203305454500_ref131 article-title: Towards robust interpretability with self-explaining neural networks – volume: 20 issue: 1 year: 2019 ident: 2021012203305454500_ref93 article-title: Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2910-6 – volume: 483 start-page: 570 issue: 7391 year: 2012 ident: 2021012203305454500_ref5 article-title: Systematic identification of genomic markers of drug sensitivity in cancer cells publication-title: Nature doi: 10.1038/nature11005 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 2021012203305454500_ref45 article-title: Learning deep architectures for AI publication-title: Found Trends Mach Learn doi: 10.1561/2200000006 – volume: 13 issue: 1 year: 2017 ident: 2021012203305454500_ref14 article-title: A computational approach for identifying synergistic drug combinations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005308 – volume: 171 start-page: 1437 issue: 6 year: 2017 ident: 2021012203305454500_ref68 article-title: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles publication-title: Cell doi: 10.1016/j.cell.2017.10.049 – volume: 161 start-page: 933 issue: 4 year: 2015 ident: 2021012203305454500_ref75 article-title: Prospective derivation of a living organoid biobank of colorectal cancer patients publication-title: Cell doi: 10.1016/j.cell.2015.03.053 – volume: 12 issue: 4 year: 2011 ident: 2021012203305454500_ref88 article-title: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers publication-title: Genome Biol doi: 10.1186/gb-2011-12-4-r41 – volume: 60 issue: 1 year: 2020 ident: 2021012203305454500_ref102 article-title: Using what we already have: uncovering new drug repurposing strategies in existing omics data publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-010919-023537 – year: 2019 ident: 2021012203305454500_ref105 article-title: deepDR: a network-based deep learning approach to in silico drug repositioning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz418 – volume: 6 start-page: 813 issue: 10 year: 2006 ident: 2021012203305454500_ref58 article-title: The NCI60 human tumour cell line anticancer drug screen publication-title: Nat Rev doi: 10.1038/nrc1951 – volume: 1 start-page: 206 issue: 5 year: 2019 ident: 2021012203305454500_ref130 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0048-x – volume: 14 start-page: 3 issue: 1 year: 2016 ident: 2021012203305454500_ref73 article-title: Tumor-derived cell lines as molecular models of cancer pharmacogenomics publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-15-0189 – year: 1986 ident: 2021012203305454500_ref52 article-title: Information processing in dynamical systems: foundations of harmony theory – volume-title: Foundations of Machine Learning year: 2012 ident: 2021012203305454500_ref31 – volume: 32 start-page: 1202 issue: 12 year: 2014 ident: 2021012203305454500_ref10 article-title: A community effort to assess and improve drug sensitivity prediction algorithms publication-title: Nat Biotechnol doi: 10.1038/nbt.2877 – volume-title: Deep Learning year: 2016 ident: 2021012203305454500_ref35 – volume: 540 start-page: E5 issue: 7631 year: 2016 ident: 2021012203305454500_ref63 article-title: Consistency in drug response profiling publication-title: Nature doi: 10.1038/nature20171 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 2021012203305454500_ref36 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.50 – volume: 13 start-page: 2524 issue: 7 year: 2016 ident: 2021012203305454500_ref103 article-title: Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.6b00248 – volume: 34 start-page: 1538 issue: 9 year: 2018 ident: 2021012203305454500_ref39 article-title: DeepSynergy: predicting anti-cancer drug synergy with deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx806 – volume: 35 start-page: i501 issue: 14 year: 2019 ident: 2021012203305454500_ref92 article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz318 – start-page: 8024 year: 2017 ident: 2021012203305454500_ref54 article-title: Pytorch: An imperative style, high-performance deep learning library – volume: 313 start-page: 1929 issue: 5795 year: 2006 ident: 2021012203305454500_ref67 article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease publication-title: Science doi: 10.1126/science.1132939 |
SSID | ssj0020781 |
Score | 2.6083405 |
SecondaryResourceType | review_article |
Snippet | Abstract
Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine... Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML)... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 360 |
SubjectTerms | Algorithms Biotechnology Cancer Deep learning Drug screening High-throughput screening Learning algorithms Machine learning Precision medicine Prediction models Predictions Tumor cell lines Tumors |
Title | Deep learning for drug response prediction in cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31950132 https://www.proquest.com/docview/2529967501 https://www.proquest.com/docview/2341630979 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3dS8MwEMCDDARfxG-nc0T0xYewtmnS9lHUMQT1ZYO9lXyOgXSjWx_0r_fSdIXh0OdcCdylvd_1cncI3YNHknFoGUkh-HAjzGIimBZE0CC1gY1NErpq5Ld3PprEr1M2bS7RrHak8DM6kHM5kPI7rCvFwfu6Dvnjj2kbVrl2Nb6GKCGuufumCenWo1tuZ6uU7RdR1p5leIQOGyTEj96Gx2jPFCdo3w-J_DpF8bMxS9xMd5hhgEysy2qGS3-71eBl6ZItTsF4XmDlzFieocnwZfw0Is2sA6JiytcEvknc6JQzqg2XOgNKUFyKxEaWB1ppACmIVJLMKqq0ShkTgQAYYlYZpVMZ0HPUKRaFuUQ45IkA7LHAQjYGfyyBQoChU2Edy0Sqix42qshV0wjczaP4zH1CmuagttyrrYvuWtmlb3-xU6oPGv1ToLdRdt68I6s8YuAKIV4JYPm2XYbT7VIWojCLCmSoA8YgS7IuuvBGarehboItBNNX_-1-jQ4idxOl_nHSQ511WZkbQIm17Ncn6QcqNcPf |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+drug+response+prediction+in+cancer&rft.jtitle=Briefings+in+bioinformatics&rft.au=Baptista%2C+Delora&rft.au=Ferreira%2C+Pedro+G&rft.au=Rocha%2C+Miguel&rft.date=2021-01-01&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=360&rft.epage=379&rft_id=info:doi/10.1093%2Fbib%2Fbbz171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbz171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |