Deep learning for drug response prediction in cancer

Abstract Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell line...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 1; pp. 360 - 379
Main Authors Baptista, Delora, Ferreira, Pedro G, Rocha, Miguel
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact:  mrocha@di.uminho.pt
AbstractList Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact:  mrocha@di.uminho.pt
Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt
Abstract Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact:  mrocha@di.uminho.pt
Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact:  mrocha@di.uminho.pt.
Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt.Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact: mrocha@di.uminho.pt.
Author Ferreira, Pedro G
Rocha, Miguel
Baptista, Delora
Author_xml – sequence: 1
  givenname: Delora
  surname: Baptista
  fullname: Baptista, Delora
  email: mrocha@di.uminho.pt
  organization: Biomedical Engineering at the University of Minho
– sequence: 2
  givenname: Pedro G
  surname: Ferreira
  fullname: Ferreira, Pedro G
  organization: University of Porto
– sequence: 3
  givenname: Miguel
  surname: Rocha
  fullname: Rocha, Miguel
  email: mrocha@di.uminho.pt
  organization: Department of Informatics and a Senior Researcher of the Centre of Biological Engineering at the University of Minho
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31950132$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoMo2lYv_gBZEEGE1XxskuYo9RMKXvQcssmsRLbJmuwe9Ne7pfVSxNPM4XlfZp4p2g8xAEKnBF8TrNhN7eubuv4mkuyhCamkLCvMq_31LmTJK8GO0DTnD4wplnNyiI4YURwTRieougPoihZMCj68F01MhUvDe5EgdzFkKLoEztvex1D4UFgTLKRjdNCYNsPJds7Q28P96-KpXL48Pi9ul6WtmOhLKagANxecORC1U0oKK2ojG9oI7KwTHAvKpWoss87OOTfYUEZ5Y8G6eY3ZDF1uersUPwfIvV75bKFtTYA4ZE1ZRQTDSqoRPd9BP-KQwnidppwqJeT64Rk621JDvQKnu-RXJn3pXx8jgDeATTHnBI22vjfr7_tkfKsJ1mvlelSuN8rHyNVO5Lf1T_hiA8eh-4_7AQ97jc0
CitedBy_id crossref_primary_10_1002_ima_23060
crossref_primary_10_3389_fmed_2023_1086097
crossref_primary_10_1038_s41698_023_00491_9
crossref_primary_10_1039_D1MO00411E
crossref_primary_10_2298_CSIS240327039D
crossref_primary_10_3390_app14020669
crossref_primary_10_1016_j_biotechadv_2024_108400
crossref_primary_10_7717_peerj_cs_2520
crossref_primary_10_1093_bioadv_vbae010
crossref_primary_10_1021_acs_jcim_3c01060
crossref_primary_10_1093_bib_bbab408
crossref_primary_10_1016_j_chemolab_2022_104562
crossref_primary_10_3390_biomedinformatics2040049
crossref_primary_10_1155_er_9934909
crossref_primary_10_1016_j_compbiomed_2024_108312
crossref_primary_10_1016_j_isci_2025_111992
crossref_primary_10_1093_bioinformatics_btae688
crossref_primary_10_1038_s41598_021_94564_z
crossref_primary_10_1016_j_neucom_2023_127168
crossref_primary_10_1093_bib_bbac605
crossref_primary_10_3390_cancers14030606
crossref_primary_10_1093_bib_bbab356
crossref_primary_10_3389_fgene_2025_1532651
crossref_primary_10_1371_journal_pone_0307649
crossref_primary_10_1038_s41598_020_65927_9
crossref_primary_10_1016_j_heliyon_2025_e41835
crossref_primary_10_3390_math9070772
crossref_primary_10_1007_s10462_022_10306_1
crossref_primary_10_1186_s12915_024_02023_8
crossref_primary_10_1186_s13321_025_00972_y
crossref_primary_10_1080_10495398_2024_2446251
crossref_primary_10_1016_j_ymeth_2023_11_018
crossref_primary_10_1016_j_csbj_2022_05_055
crossref_primary_10_1038_s41598_024_83090_3
crossref_primary_10_3390_ijms232213919
crossref_primary_10_1016_j_compbiomed_2023_107220
crossref_primary_10_2196_66831
crossref_primary_10_1016_j_sbi_2023_102747
crossref_primary_10_1002_jgh3_12915
crossref_primary_10_1016_j_compbiolchem_2023_107868
crossref_primary_10_1016_j_jgg_2021_03_007
crossref_primary_10_1016_j_neunet_2023_08_036
crossref_primary_10_1093_nargab_lqab128
crossref_primary_10_1016_j_compbiomed_2024_108577
crossref_primary_10_1109_ACCESS_2023_3336946
crossref_primary_10_1093_bib_bbac504
crossref_primary_10_1093_bioadv_vbad190
crossref_primary_10_1016_j_patter_2023_100894
crossref_primary_10_3389_fcvm_2024_1276608
crossref_primary_10_1093_bib_bbac469
crossref_primary_10_1093_bib_bbab378
crossref_primary_10_1093_bib_bbac501
crossref_primary_10_1093_database_baae125
crossref_primary_10_1093_bioadv_vbae047
crossref_primary_10_1007_s13748_024_00314_3
crossref_primary_10_1098_rsif_2022_0541
crossref_primary_10_1007_s10462_025_11148_3
crossref_primary_10_1111_cbdd_14164
crossref_primary_10_1038_s41598_024_81866_1
crossref_primary_10_1016_j_csbj_2021_07_007
crossref_primary_10_1186_s12859_023_05262_8
crossref_primary_10_7717_peerj_cs_1903
crossref_primary_10_1093_bioinformatics_btad390
crossref_primary_10_1093_gpbjnl_qzad008
crossref_primary_10_3390_jpm10040224
crossref_primary_10_3233_WEB_230260
crossref_primary_10_1016_j_artmed_2024_102820
crossref_primary_10_1093_bioinformatics_btad717
crossref_primary_10_1186_s12859_022_04720_z
crossref_primary_10_1093_bib_bbab561
crossref_primary_10_1093_bioinformatics_btad432
crossref_primary_10_1093_bioinformatics_btab650
crossref_primary_10_1186_s12885_022_10293_0
crossref_primary_10_1186_s40246_022_00396_x
crossref_primary_10_1093_database_baad054
crossref_primary_10_1371_journal_pcbi_1010200
crossref_primary_10_1016_j_semcancer_2023_02_005
crossref_primary_10_1186_s13073_021_01000_y
crossref_primary_10_1200_PO_23_00261
crossref_primary_10_1016_j_heliyon_2024_e35742
crossref_primary_10_3390_ijms22147721
crossref_primary_10_1016_j_molliq_2022_119675
crossref_primary_10_1371_journal_pcbi_1012748
crossref_primary_10_1007_s11831_025_10255_2
crossref_primary_10_1371_journal_pone_0292063
crossref_primary_10_1016_j_csbj_2021_10_006
crossref_primary_10_1093_bib_bbac282
crossref_primary_10_3389_frai_2023_1260361
crossref_primary_10_1007_s10489_022_03294_w
crossref_primary_10_1038_s41698_024_00583_0
crossref_primary_10_1186_s12916_022_02549_0
crossref_primary_10_1177_15330338241296725
crossref_primary_10_1002_ddr_22115
crossref_primary_10_1093_bib_bbab355
crossref_primary_10_1093_bib_bbad256
crossref_primary_10_1038_s41598_023_39179_2
crossref_primary_10_3389_fimmu_2024_1363144
crossref_primary_10_1016_j_compbiomed_2023_106859
crossref_primary_10_1155_2021_6668985
crossref_primary_10_1002_aisy_202400180
crossref_primary_10_1007_s10142_024_01445_5
crossref_primary_10_1109_JBHI_2023_3342280
crossref_primary_10_3389_fphar_2024_1522787
crossref_primary_10_1186_s12859_021_04352_9
crossref_primary_10_1186_s13244_024_01851_0
crossref_primary_10_3390_life10120347
crossref_primary_10_1080_23808993_2020_1758062
crossref_primary_10_1038_s41598_020_74921_0
crossref_primary_10_1007_s11030_023_10690_y
crossref_primary_10_1093_bib_bbad522
crossref_primary_10_3390_ijms221910891
crossref_primary_10_1016_j_bspc_2022_104144
crossref_primary_10_1097_MPA_0000000000002270
crossref_primary_10_1038_s41698_024_00691_x
crossref_primary_10_3389_fgene_2020_564792
crossref_primary_10_1002_wcms_1597
crossref_primary_10_1038_s42003_024_06865_4
crossref_primary_10_1109_TCBB_2021_3096960
crossref_primary_10_1109_TCBB_2021_3060430
crossref_primary_10_3390_diagnostics13122043
crossref_primary_10_32604_cmes_2021_016728
Cites_doi 10.1021/acs.molpharmaceut.5b00982
10.1007/BF01952257
10.1158/2159-8290.CD-15-0235
10.1186/s12859-018-2060-2
10.1613/jair.5714
10.1038/nature14539
10.1016/j.celrep.2013.07.018
10.1002/jcc.24764
10.1038/nm.3954
10.1021/acs.molpharmaceut.7b01144
10.1038/nature19838
10.1371/journal.pone.0186906
10.1038/nature17987
10.1016/j.cels.2018.03.012
10.1016/j.cell.2016.06.017
10.1016/j.coisb.2018.07.001
10.1146/annurev-pharmtox-010510-100502
10.1186/s12859-018-2509-3
10.1371/journal.pone.0061318
10.12688/f1000research.9611.1
10.1158/0008-5472.CAN-09-3788
10.1016/j.jbi.2018.07.024
10.1109/35.41400
10.1038/clpt.2012.96
10.1016/j.cell.2013.08.003
10.1093/nar/gkv1277
10.1186/1752-0509-6-S3-S3
10.1038/nature15736
10.1016/j.eng.2018.11.018
10.1093/bioinformatics/btv529
10.1109/DSAA.2018.00018
10.1056/NEJMp1607591
10.3389/fenvs.2015.00080
10.1186/s13321-019-0364-5
10.1162/neco.2006.18.7.1527
10.18632/oncotarget.20923
10.1158/1541-7786.MCR-17-0378
10.1021/acs.molpharmaceut.8b00284
10.1016/j.drudis.2018.05.010
10.1021/acs.molpharmaceut.7b00578
10.1007/BF03037089
10.1039/C7SC02664A
10.1098/rsif.2017.0387
10.1038/s41586-019-1186-3
10.1093/jnci/djt007
10.1016/j.ygeno.2018.07.002
10.1093/nar/gks1111
10.1186/s12920-018-0460-9
10.1038/nbt.3299
10.1038/s41591-019-0404-8
10.1038/nrc3599
10.1093/nar/gkr777
10.1016/j.cell.2017.06.010
10.1093/nar/gkx1063
10.1093/nar/gkx1121
10.1093/database/bar026
10.1093/bioinformatics/btu464
10.1093/nar/gky1015
10.1158/0008-5472.CAN-17-0489
10.1016/j.cels.2017.11.001
10.1021/ci500747n
10.1007/978-0-387-84858-7
10.1186/s13321-017-0232-0
10.1038/nature12831
10.1177/1947601912440575
10.1093/nar/gkv951
10.1111/j.1744-7348.1939.tb06990.x
10.1158/1535-7163.MCT-15-0843
10.1007/s10822-016-9938-8
10.1093/bioinformatics/btz158
10.1186/s13321-017-0226-y
10.1126/science.1127647
10.1039/C8SC00148K
10.1093/nar/gkx1037
10.1038/nbt.3052
10.1038/nature11003
10.1186/s12859-019-2910-6
10.1038/nature11005
10.1561/2200000006
10.1371/journal.pcbi.1005308
10.1016/j.cell.2017.10.049
10.1016/j.cell.2015.03.053
10.1186/gb-2011-12-4-r41
10.1146/annurev-pharmtox-010919-023537
10.1093/bioinformatics/btz418
10.1038/nrc1951
10.1038/s42256-019-0048-x
10.1158/1541-7786.MCR-15-0189
10.1038/nbt.2877
10.1038/nature20171
10.1109/TPAMI.2013.50
10.1021/acs.molpharmaceut.6b00248
10.1093/bioinformatics/btx806
10.1093/bioinformatics/btz318
10.1126/science.1132939
ContentType Journal Article
Copyright The authors 2020. Published by Oxford University Press. 2021
The authors 2020. Published by Oxford University Press.
Copyright_xml – notice: The authors 2020. Published by Oxford University Press. 2021
– notice: The authors 2020. Published by Oxford University Press.
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbz171
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 379
ExternalDocumentID 31950132
10_1093_bib_bbz171
10.1093/bib/bbz171
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABPQP
ABXZS
ACUXJ
AHGBF
ALXQX
ANAKG
CITATION
JXSIZ
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c436t-7626ed8653de6bd9976c6ba7f2f60dcd65062579fc3cdc855a0a2325fcecd8b03
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Jul 10 22:36:19 EDT 2025
Mon Jun 30 08:54:18 EDT 2025
Wed Feb 19 02:29:57 EST 2025
Thu Apr 24 22:59:18 EDT 2025
Tue Jul 01 03:39:29 EDT 2025
Thu Feb 27 05:38:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords drug synergy
deep learning
precision medicine
drug sensitivity
cancer
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The authors 2020. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-7626ed8653de6bd9976c6ba7f2f60dcd65062579fc3cdc855a0a2325fcecd8b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://hdl.handle.net/1822/73086
PMID 31950132
PQID 2529967501
PQPubID 26846
PageCount 20
ParticipantIDs proquest_miscellaneous_2341630979
proquest_journals_2529967501
pubmed_primary_31950132
crossref_citationtrail_10_1093_bib_bbz171
crossref_primary_10_1093_bib_bbz171
oup_primary_10_1093_bib_bbz171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Mayr (2021012203305454500_ref109) 2018; 9
Huang (2021012203305454500_ref9) 2017; 12
Hinton (2021012203305454500_ref51) 2006; 18
Goodspeed (2021012203305454500_ref73) 2016; 14
Baltrusaitis (2021012203305454500_ref34) 2019
Lipton (2021012203305454500_ref43) 2015
Geeleher (2021012203305454500_ref116) 2016; 540
Menden (2021012203305454500_ref15) 2013; 8
Menden (2021012203305454500_ref8) 2674; 10
Xu (2021012203305454500_ref108) 2017
van de Wetering (2021012203305454500_ref75) 2015; 161
Alvarez Melis (2021012203305454500_ref131) 2018
Bansal (2021012203305454500_ref7) 2014; 32
Chollet (2021012203305454500_ref56) 2015
Wishart (2021012203305454500_ref80) 2018; 46
Cortés-Ciriano (2021012203305454500_ref12) 2015; 32
Haverty (2021012203305454500_ref62) 2016; 533
Gaulton (2021012203305454500_ref79) 2012; 40
Cowley (2021012203305454500_ref84) 2014; 1
Hop (2021012203305454500_ref110) 2018; 15
Tallarida (2021012203305454500_ref29) 2011; 2
Eduati (2021012203305454500_ref87) 2015; 33
Holohan (2021012203305454500_ref100) 2013; 13
Strubell (2021012203305454500_ref119) 2019
Mayr (2021012203305454500_ref21) 2016; 3
Shrikumar (2021012203305454500_ref124) 2017
Lenselink (2021012203305454500_ref19) 2017; 9
Aliper (2021012203305454500_ref103) 2016; 13
Litichevskiy (2021012203305454500_ref71) 2018; 6
Gillet (2021012203305454500_ref72) 2013; 105
Lo (2021012203305454500_ref32) 2018; 23
Harding (2021012203305454500_ref82) 2018; 46
Shapley (2021012203305454500_ref127) 1953
Hinton (2021012203305454500_ref46) 2006; 313
Kim (2021012203305454500_ref78) 2016; 44
Rampášek (2021012203305454500_ref91) 2019; 35
Kalamara (2021012203305454500_ref16) 2018; 10
Naulaerts (2021012203305454500_ref13) 2017; 8
Gholami (2021012203305454500_ref66) 2013; 4
Garnett (2021012203305454500_ref5) 2012; 483
Koleti (2021012203305454500_ref70) 2018; 46
Loewe (2021012203305454500_ref89) 1926; 114
Bahdanau (2021012203305454500_ref24)
Paszke (2021012203305454500_ref54) 2017
Basu (2021012203305454500_ref3) 2013; 154
Ghandi (2021012203305454500_ref60) 2019; 569
Oskooei (2021012203305454500_ref44) 2018
Yang (2021012203305454500_ref2) 2013; 41
Meyer (2021012203305454500_ref25) 2013; 53
Mohri (2021012203305454500_ref31) 2012
Goodfellow (2021012203305454500_ref117) 2014
Holbeck (2021012203305454500_ref65) 2017; 77
Sharifi-Noghabi (2021012203305454500_ref92) 2019; 35
Hastie (2021012203305454500_ref30) 2009
Safikhani (2021012203305454500_ref114) 2016; 5
Cancer Cell Line Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer Consortium (2021012203305454500_ref115) 2015; 528
Pulley (2021012203305454500_ref102) 2020; 60
Gönen (2021012203305454500_ref11) 2014; 30
Kingma (2021012203305454500_ref37) 2015
Smolensky (2021012203305454500_ref52) 1986
Bengio (2021012203305454500_ref45) 2009; 2
Cortés-Ciriano (2021012203305454500_ref42) 2019; 11
Korotcov (2021012203305454500_ref22) 2017; 14
Mpindi (2021012203305454500_ref63) 2016; 540
Goodfellow (2021012203305454500_ref35) 2016
Salakhutdinov (2021012203305454500_ref38) 2009
Keenan (2021012203305454500_ref69) 2018; 6
Kearnes (2021012203305454500_ref106) 2016; 30
Preuer (2021012203305454500_ref39) 2018; 34
Subramanian (2021012203305454500_ref68) 2017; 171
Liu (2021012203305454500_ref93) 2019; 20
Koutsoukas (2021012203305454500_ref20) 2017; 9
Lamb (2021012203305454500_ref67) 2006; 313
Grossman (2021012203305454500_ref76) 2016; 375
Xia (2021012203305454500_ref97) 2018; 19
Ribeiro (2021012203305454500_ref122) 2016
Bliss (2021012203305454500_ref90) 1939; 26
Li (2021012203305454500_ref111) 2016; 19
Zeng (2021012203305454500_ref105) 2019
Chen (2021012203305454500_ref53) 2018; 85
Donner (2021012203305454500_ref104) 2018; 15
Duvenaud (2021012203305454500_ref33) 2015; 56
Le Cun (2021012203305454500_ref40) 1989; 27
Barretina (2021012203305454500_ref1) 2012; 483
Wu (2021012203305454500_ref107) 2018; 9
O’Neil (2021012203305454500_ref64) 2016; 15
Matlock (2021012203305454500_ref94) 2018; 19
Mermel (2021012203305454500_ref88) 2011; 12
Szklarczyk (2021012203305454500_ref81) 2016; 44
Chiu (2021012203305454500_ref49) 2019; 12
Li (2021012203305454500_ref61) 2019; 25
Iorio (2021012203305454500_ref6) 2016; 166
Tsherniak (2021012203305454500_ref85) 2017; 170
Srivastava (2021012203305454500_ref28) 2014; 15
Gao (2021012203305454500_ref74) 2015; 21
Brunton (2021012203305454500_ref27) 2011
LeCun (2021012203305454500_ref23) 2015; 521
Ma (2021012203305454500_ref18) 2015; 55
Whirl-Carrillo (2021012203305454500_ref86) 2012; 92
Haibe-Kains (2021012203305454500_ref113) 2013; 504
Costello (2021012203305454500_ref10) 2014; 32
Ding (2021012203305454500_ref47) 2018; 16
Abadi (2021012203305454500_ref55) 2016; 16
Seashore-Ludlow (2021012203305454500_ref4) 2015; 5
Ng (2021012203305454500_ref26) 2002
Liu (2021012203305454500_ref118) 2019; 5
Ching (2021012203305454500_ref41) 2018; 15
Bjerrum (2021012203305454500_ref98) 2017
Gilpin (2021012203305454500_ref121) 2018
Chang (2021012203305454500_ref96) 2018; 8
Chang (2021012203305454500_ref123) 2017
Ramsundar (2021012203305454500_ref57) 2019
Gayvert (2021012203305454500_ref14) 2017; 13
Mamoshina (2021012203305454500_ref112) 2016; 13
Tate (2021012203305454500_ref83) 2019; 47
Greshock (2021012203305454500_ref59) 2010; 70
Zhang (2021012203305454500_ref77) 2011; 2011
Rudin (2021012203305454500_ref130) 2019; 1
Shoemaker (2021012203305454500_ref58) 2006; 6
Kingma (2021012203305454500_ref50) 2013
Schwartz (2021012203305454500_ref120) 2019
Bengio (2021012203305454500_ref36) 2013; 35
Sundararajan (2021012203305454500_ref125)
Muggleton (2021012203305454500_ref128) 1991; 8
Evans (2021012203305454500_ref129) 2018; 61
Tan (2021012203305454500_ref95) 2018; 111
Lundberg (2021012203305454500_ref126) 2017
Deng (2021012203305454500_ref99) 2009
Qin (2021012203305454500_ref101) 2012; 6
Goh (2021012203305454500_ref17) 2017; 38
Li (2021012203305454500_ref48) 2019
References_xml – volume: 13
  start-page: 1445
  issue: 5
  year: 2016
  ident: 2021012203305454500_ref112
  article-title: Applications of deep learning in biomedicine
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.5b00982
– volume-title: Goodman and Gilman’s The Pharmacological Basis of Therapeutics
  year: 2011
  ident: 2021012203305454500_ref27
– volume: 114
  start-page: 313
  year: 1926
  ident: 2021012203305454500_ref89
  article-title: Effect of combinations: mathematical basis of problem
  publication-title: Arch Exp Pathol Pharmakol
  doi: 10.1007/BF01952257
– volume: 5
  start-page: 1210
  issue: 11
  year: 2015
  ident: 2021012203305454500_ref4
  article-title: Harnessing connectivity in a large-scale small-molecule sensitivity dataset
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0235
– volume: 19
  start-page: 71
  issue: Suppl 3
  year: 2018
  ident: 2021012203305454500_ref94
  article-title: Investigation of model stacking for drug sensitivity prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2060-2
– start-page: 4765
  volume-title: Adv. Neural Inf. Process. Syst. 30
  year: 2017
  ident: 2021012203305454500_ref126
  article-title: A unified approach to interpreting model predictions
– volume: 61
  start-page: 1
  year: 2018
  ident: 2021012203305454500_ref129
  article-title: Learning explanatory rules from noisy data
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.5714
– volume: 10
  start-page: 2019
  issue: 1
  year: 2674
  ident: 2021012203305454500_ref8
  article-title: Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  publication-title: Nat Commun
– start-page: 1135
  volume-title: Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min - KDD ’16
  year: 2016
  ident: 2021012203305454500_ref122
  article-title: ”Why Should I Trust You?”: Explaining the Predictions of Any Classifier
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2021012203305454500_ref23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 4
  start-page: 609
  issue: 3
  year: 2013
  ident: 2021012203305454500_ref66
  article-title: Global proteome analysis of the NCI-60 cell line panel
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.07.018
– year: 2017
  ident: 2021012203305454500_ref123
  article-title: Dropout feature ranking for deep learning models
– volume: 38
  start-page: 1291
  issue: 16
  year: 2017
  ident: 2021012203305454500_ref17
  article-title: Deep learning for computational chemistry
  publication-title: J Comput Chem
  doi: 10.1002/jcc.24764
– volume: 21
  start-page: 1318
  issue: 11
  year: 2015
  ident: 2021012203305454500_ref74
  article-title: High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response
  publication-title: Nat Med
  doi: 10.1038/nm.3954
– volume: 15
  start-page: 4371
  issue: 10
  year: 2018
  ident: 2021012203305454500_ref110
  article-title: Geometric deep learning autonomously learns chemical features that outperform those engineered by domain experts
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.7b01144
– volume: 540
  start-page: E1
  issue: 7631
  year: 2016
  ident: 2021012203305454500_ref116
  article-title: Consistency in large pharmacogenomic studies
  publication-title: Nature
  doi: 10.1038/nature19838
– volume: 12
  start-page: 1
  issue: 10
  year: 2017
  ident: 2021012203305454500_ref9
  article-title: Open source machine-learning algorithms for the prediction of optimal cancer drug therapies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0186906
– volume: 533
  start-page: 333
  issue: 7603
  year: 2016
  ident: 2021012203305454500_ref62
  article-title: Reproducible pharmacogenomic profiling of cancer cell line panels
  publication-title: Nature
  doi: 10.1038/nature17987
– volume: 6
  start-page: 424
  issue: 4
  year: 2018
  ident: 2021012203305454500_ref71
  article-title: A library of phosphoproteomic and chromatin signatures for characterizing cellular responses to drug perturbations
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2018.03.012
– volume: 166
  start-page: 740
  issue: 3
  year: 2016
  ident: 2021012203305454500_ref6
  article-title: A landscape of pharmacogenomic interactions in cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.017
– volume: 10
  start-page: 53
  year: 2018
  ident: 2021012203305454500_ref16
  article-title: How to find the right drug for each patient? Advances and challenges in pharmacogenomics
  publication-title: Curr Opin Syst Biol
  doi: 10.1016/j.coisb.2018.07.001
– volume: 53
  start-page: 475
  issue: 1
  year: 2013
  ident: 2021012203305454500_ref25
  article-title: Omics and drug response
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev-pharmtox-010510-100502
– volume: 1
  year: 2014
  ident: 2021012203305454500_ref84
  article-title: Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies
  publication-title: Sci Data
– volume: 19
  issue: S18
  year: 2018
  ident: 2021012203305454500_ref97
  article-title: Predicting tumor cell line response to drug pairs with deep learning
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2509-3
– volume: 8
  issue: 4
  year: 2013
  ident: 2021012203305454500_ref15
  article-title: Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061318
– volume: 5
  start-page: 2333
  year: 2016
  ident: 2021012203305454500_ref114
  article-title: Revisiting inconsistency in large pharmacogenomic studies
  publication-title: F1000Res
  doi: 10.12688/f1000research.9611.1
– volume: 70
  start-page: 3677
  issue: 9
  year: 2010
  ident: 2021012203305454500_ref59
  article-title: Molecular target class is predictive of in vitro response profile
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-3788
– volume: 19
  start-page: 325
  issue: 2
  year: 2016
  ident: 2021012203305454500_ref111
  article-title: A review on machine learning principles for multi-view biological data integration
  publication-title: Brief Bioinform
– year: 2017
  ident: 2021012203305454500_ref98
  article-title: SMILES enumeration as data augmentation for neural network modeling of molecules
– volume: 85
  start-page: 149
  year: 2018
  ident: 2021012203305454500_ref53
  article-title: Predict effective drug combination by deep belief network and ontology fingerprints
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.07.024
– volume: 27
  start-page: 41
  issue: 11
  year: 1989
  ident: 2021012203305454500_ref40
  article-title: Handwritten digit recognition: applications of neural network chips and automatic learning
  publication-title: IEEE Commun Mag
  doi: 10.1109/35.41400
– volume: 92
  start-page: 414
  issue: 4
  year: 2012
  ident: 2021012203305454500_ref86
  article-title: Pharmacogenomics knowledge for personalized medicine
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2012.96
– volume: 154
  start-page: 1151
  issue: 5
  year: 2013
  ident: 2021012203305454500_ref3
  article-title: An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.003
– volume: 16
  start-page: 486
  issue: 4
  year: 2016
  ident: 2021012203305454500_ref55
  article-title: TensorFlow: large-scale machine learning on heterogeneous distributed systems
  publication-title: Nat Neurosci
– volume: 44
  start-page: D380
  issue: D1
  year: 2016
  ident: 2021012203305454500_ref81
  article-title: STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1277
– volume: 6
  start-page: S3
  issue: Suppl 3
  year: 2012
  ident: 2021012203305454500_ref101
  article-title: Signaling network prediction by the ontology fingerprint enhanced Bayesian network
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-6-S3-S3
– start-page: 3319
  volume-title: Proceedings of the 34th International Conference on Machine Learning—Volume 70, JMLR.org2017, ICML’17
  ident: 2021012203305454500_ref125
  article-title: Axiomatic attribution for deep networks
– volume: 528
  start-page: 84
  issue: 7580
  year: 2015
  ident: 2021012203305454500_ref115
  article-title: Pharmacogenomic agreement between two cancer cell line data sets
  publication-title: Nature
  doi: 10.1038/nature15736
– volume: 5
  start-page: 156
  issue: 1
  year: 2019
  ident: 2021012203305454500_ref118
  article-title: Wasserstein GAN-based small-sample augmentation for new-generation artificial intelligence: a case study of cancer-staging data in biology
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.018
– start-page: 448
  year: 2009
  ident: 2021012203305454500_ref38
  article-title: Deep Boltzmann machines. In: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida, USA
– volume: 32
  start-page: 85
  issue: 1
  year: 2015
  ident: 2021012203305454500_ref12
  article-title: Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv529
– year: 2018
  ident: 2021012203305454500_ref44
  article-title: PaccMann: prediction of anticancer compound sensitivity with multi-modal attention-based neural networks
– start-page: 80
  volume-title: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)
  year: 2018
  ident: 2021012203305454500_ref121
  article-title: Explaining Explanations: An Overview of Interpretability of Machine Learning
  doi: 10.1109/DSAA.2018.00018
– volume: 375
  start-page: 1109
  issue: 12
  year: 2016
  ident: 2021012203305454500_ref76
  article-title: Toward a shared vision for cancer genomic data
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1607591
– volume: 3
  start-page: 80
  year: 2016
  ident: 2021012203305454500_ref21
  article-title: DeepTox: toxicity prediction using deep learning
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2015.00080
– volume: 11
  start-page: 41
  issue: 1
  year: 2019
  ident: 2021012203305454500_ref42
  article-title: KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
  publication-title: J Chem
  doi: 10.1186/s13321-019-0364-5
– start-page: 841
  year: 2002
  ident: 2021012203305454500_ref26
  article-title: On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 2021012203305454500_ref51
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– volume: 8
  issue: 1
  year: 2018
  ident: 2021012203305454500_ref96
  article-title: Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature
  publication-title: Sci Rep
– volume: 8
  start-page: 97025
  issue: 57
  year: 2017
  ident: 2021012203305454500_ref13
  article-title: Precision and recall oncology: combining multiple gene mutations for improved identification of drug-sensitive tumours
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20923
– volume: 16
  start-page: 269
  issue: 2
  year: 2018
  ident: 2021012203305454500_ref47
  article-title: Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-17-0378
– volume: 15
  start-page: 4314
  issue: 10
  year: 2018
  ident: 2021012203305454500_ref104
  article-title: Drug repurposing using deep embeddings of gene expression profiles
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.8b00284
– volume: 23
  start-page: 1538
  issue: 8
  year: 2018
  ident: 2021012203305454500_ref32
  article-title: Machine learning in chemoinformatics and drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.05.010
– volume-title: Deep Learning for the Life Sciences
  year: 2019
  ident: 2021012203305454500_ref57
– volume: 14
  start-page: 4462
  issue: 12
  year: 2017
  ident: 2021012203305454500_ref22
  article-title: Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.7b00578
– year: 2013
  ident: 2021012203305454500_ref50
  article-title: Auto-encoding variational bayes
– start-page: 3145
  volume-title: Proc. 34th Int. Conf. Mach. Learn. 70
  year: 2017
  ident: 2021012203305454500_ref124
  article-title: Learning important features through propagating activation differences
– year: 2019
  ident: 2021012203305454500_ref120
  article-title: Green AI
– volume: 8
  start-page: 295
  issue: 4
  year: 1991
  ident: 2021012203305454500_ref128
  article-title: Inductive logic programming
  publication-title: New Gener Comput
  doi: 10.1007/BF03037089
– start-page: 423
  volume-title: IEEE Trans Pattern Anal Mach Intell
  year: 2019
  ident: 2021012203305454500_ref34
  article-title: Multimodal Machine Learning: A Survey and Taxonomy
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  ident: 2021012203305454500_ref107
  article-title: MoleculeNet: a benchmark for molecular machine learning
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– start-page: 1
  year: 2019
  ident: 2021012203305454500_ref48
  article-title: DeepDSC: a deep learning method to predict drug sensitivity of cancer cell lines
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– year: 2015
  ident: 2021012203305454500_ref37
  article-title: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
– volume: 15
  issue: 141
  year: 2018
  ident: 2021012203305454500_ref41
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0387
– volume: 569
  start-page: 503
  issue: 7757
  year: 2019
  ident: 2021012203305454500_ref60
  article-title: Next-generation characterization of the cancer cell line encyclopedia
  publication-title: Nature
  doi: 10.1038/s41586-019-1186-3
– volume: 105
  start-page: 452
  issue: 7
  year: 2013
  ident: 2021012203305454500_ref72
  article-title: The clinical relevance of cancer cell lines
  publication-title: JNCI J Natl Cancer Inst
  doi: 10.1093/jnci/djt007
– volume: 111
  start-page: 1078
  issue: 5
  year: 2018
  ident: 2021012203305454500_ref95
  article-title: Drug response prediction by ensemble learning and drug-induced gene expression signatures
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.07.002
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 2021012203305454500_ref28
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 41
  start-page: D955
  issue: D1
  year: 2013
  ident: 2021012203305454500_ref2
  article-title: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1111
– volume: 12
  issue: S1
  year: 2019
  ident: 2021012203305454500_ref49
  article-title: Predicting drug response of tumors from integrated genomic profiles by deep neural networks
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-018-0460-9
– volume: 33
  start-page: 933
  issue: 9
  year: 2015
  ident: 2021012203305454500_ref87
  article-title: Prediction of human population responses to toxic compounds by a collaborative competition
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3299
– volume: 25
  start-page: 850
  issue: 5
  year: 2019
  ident: 2021012203305454500_ref61
  article-title: The landscape of cancer cell line metabolism
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0404-8
– volume: 13
  start-page: 714
  issue: 10
  year: 2013
  ident: 2021012203305454500_ref100
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3599
– volume: 40
  start-page: 1100
  issue: D1
  year: 2012
  ident: 2021012203305454500_ref79
  article-title: ChEMBL: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr777
– volume-title: Keras
  year: 2015
  ident: 2021012203305454500_ref56
– volume: 170
  start-page: 564
  issue: 3
  year: 2017
  ident: 2021012203305454500_ref85
  article-title: Defining a cancer dependency map
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.010
– volume: 46
  start-page: D558
  issue: D1
  year: 2018
  ident: 2021012203305454500_ref70
  article-title: Data portal for the library of integrated network-based cellular signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1063
– volume: 46
  start-page: D1091
  issue: D1
  year: 2018
  ident: 2021012203305454500_ref82
  article-title: The IUPHAR/BPS guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1121
– start-page: 307
  volume-title: Contributions to the Theory of Games (AM-28)
  year: 1953
  ident: 2021012203305454500_ref127
  article-title: A value for n-person games
– volume: 2011
  start-page: bar026
  year: 2011
  ident: 2021012203305454500_ref77
  article-title: International cancer genome consortium data portal—a one-stop shop for cancer genomics data
  publication-title: Database
  doi: 10.1093/database/bar026
– start-page: 3645
  year: 2019
  ident: 2021012203305454500_ref119
  article-title: Energy and policy considerations for deep learning in NLP
– volume: 30
  start-page: 556
  issue: 17
  year: 2014
  ident: 2021012203305454500_ref11
  article-title: Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu464
– volume: 47
  start-page: D941
  issue: D1
  year: 2019
  ident: 2021012203305454500_ref83
  article-title: COSMIC: the catalogue of somatic mutations in cancer
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1015
– volume: 77
  start-page: 3564
  issue: 13
  year: 2017
  ident: 2021012203305454500_ref65
  article-title: The National Cancer Institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0489
– start-page: 2672
  volume-title: Adv. Neural Inf. Process. Syst. 27
  year: 2014
  ident: 2021012203305454500_ref117
  article-title: Generative adversarial nets
– volume: 56
  start-page: 399
  issue: 2
  year: 2015
  ident: 2021012203305454500_ref33
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: J Chem Inf Model
– volume: 6
  start-page: 13
  issue: 1
  year: 2018
  ident: 2021012203305454500_ref69
  article-title: The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.11.001
– volume: 55
  start-page: 263
  issue: 2
  year: 2015
  ident: 2021012203305454500_ref18
  article-title: Deep neural nets as a method for quantitative structure–activity relationships
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500747n
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: 2021012203305454500_ref30
  doi: 10.1007/978-0-387-84858-7
– year: 2015
  ident: 2021012203305454500_ref43
  article-title: A Critical review of recurrent neural networks for sequence
  publication-title: Learning
– volume: 9
  start-page: 45
  issue: 1
  year: 2017
  ident: 2021012203305454500_ref19
  article-title: Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set
  publication-title: J Chem
  doi: 10.1186/s13321-017-0232-0
– volume: 504
  start-page: 389
  issue: 7480
  year: 2013
  ident: 2021012203305454500_ref113
  article-title: Inconsistency in large pharmacogenomic studies
  publication-title: Nature
  doi: 10.1038/nature12831
– volume: 2
  start-page: 1003
  issue: 11
  year: 2011
  ident: 2021012203305454500_ref29
  article-title: Quantitative methods for assessing drug synergism
  publication-title: Genes Cancer
  doi: 10.1177/1947601912440575
– volume: 44
  start-page: D1202
  issue: D1
  year: 2016
  ident: 2021012203305454500_ref78
  article-title: PubChem substance and compound databases
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv951
– volume: 26
  start-page: 585
  issue: 3
  year: 1939
  ident: 2021012203305454500_ref90
  article-title: The toxicity of poisons applied jointly
  publication-title: Ann Appl Biol
  doi: 10.1111/j.1744-7348.1939.tb06990.x
– volume: 15
  start-page: 1155
  issue: 6
  year: 2016
  ident: 2021012203305454500_ref64
  article-title: An unbiased oncology compound screen to identify novel combination strategies
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-15-0843
– volume: 30
  start-page: 595
  issue: 8
  year: 2016
  ident: 2021012203305454500_ref106
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9938-8
– volume: 35
  start-page: 3743
  year: 2019
  ident: 2021012203305454500_ref91
  article-title: Dr.VAE: improving drug response prediction via modeling of drug perturbation effects
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz158
– start-page: 248
  volume-title: 2009 IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2009
  ident: 2021012203305454500_ref99
  article-title: ImageNet: a large-scale hierarchical image database
– start-page: 285
  volume-title: Proc. 8th ACM Int. Conf. Bioinformatics, Comput. Biol. Heal. Informatics - ACM-BCB ’17
  year: 2017
  ident: 2021012203305454500_ref108
  article-title: Seq2seq Fingerprint
– volume: 9
  start-page: 42
  issue: 1
  year: 2017
  ident: 2021012203305454500_ref20
  article-title: Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data
  publication-title: J Chem
  doi: 10.1186/s13321-017-0226-y
– ident: 2021012203305454500_ref24
  article-title: Neural machine translation by jointly learning to align and translate
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 2021012203305454500_ref46
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 9
  start-page: 5441
  issue: 24
  year: 2018
  ident: 2021012203305454500_ref109
  article-title: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
  publication-title: Chem Sci
  doi: 10.1039/C8SC00148K
– volume: 46
  start-page: D1074
  issue: D1
  year: 2018
  ident: 2021012203305454500_ref80
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 32
  start-page: 1213
  issue: 12
  year: 2014
  ident: 2021012203305454500_ref7
  article-title: A community computational challenge to predict the activity of pairs of compounds
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3052
– volume: 483
  start-page: 603
  issue: 7391
  year: 2012
  ident: 2021012203305454500_ref1
  article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
– start-page: 7775
  volume-title: Advances in Neural Information Processing Systems 31
  year: 2018
  ident: 2021012203305454500_ref131
  article-title: Towards robust interpretability with self-explaining neural networks
– volume: 20
  issue: 1
  year: 2019
  ident: 2021012203305454500_ref93
  article-title: Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2910-6
– volume: 483
  start-page: 570
  issue: 7391
  year: 2012
  ident: 2021012203305454500_ref5
  article-title: Systematic identification of genomic markers of drug sensitivity in cancer cells
  publication-title: Nature
  doi: 10.1038/nature11005
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 2021012203305454500_ref45
  article-title: Learning deep architectures for AI
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– volume: 13
  issue: 1
  year: 2017
  ident: 2021012203305454500_ref14
  article-title: A computational approach for identifying synergistic drug combinations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005308
– volume: 171
  start-page: 1437
  issue: 6
  year: 2017
  ident: 2021012203305454500_ref68
  article-title: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.049
– volume: 161
  start-page: 933
  issue: 4
  year: 2015
  ident: 2021012203305454500_ref75
  article-title: Prospective derivation of a living organoid biobank of colorectal cancer patients
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.053
– volume: 12
  issue: 4
  year: 2011
  ident: 2021012203305454500_ref88
  article-title: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-4-r41
– volume: 60
  issue: 1
  year: 2020
  ident: 2021012203305454500_ref102
  article-title: Using what we already have: uncovering new drug repurposing strategies in existing omics data
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev-pharmtox-010919-023537
– year: 2019
  ident: 2021012203305454500_ref105
  article-title: deepDR: a network-based deep learning approach to in silico drug repositioning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz418
– volume: 6
  start-page: 813
  issue: 10
  year: 2006
  ident: 2021012203305454500_ref58
  article-title: The NCI60 human tumour cell line anticancer drug screen
  publication-title: Nat Rev
  doi: 10.1038/nrc1951
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  ident: 2021012203305454500_ref130
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0048-x
– volume: 14
  start-page: 3
  issue: 1
  year: 2016
  ident: 2021012203305454500_ref73
  article-title: Tumor-derived cell lines as molecular models of cancer pharmacogenomics
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-15-0189
– year: 1986
  ident: 2021012203305454500_ref52
  article-title: Information processing in dynamical systems: foundations of harmony theory
– volume-title: Foundations of Machine Learning
  year: 2012
  ident: 2021012203305454500_ref31
– volume: 32
  start-page: 1202
  issue: 12
  year: 2014
  ident: 2021012203305454500_ref10
  article-title: A community effort to assess and improve drug sensitivity prediction algorithms
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2877
– volume-title: Deep Learning
  year: 2016
  ident: 2021012203305454500_ref35
– volume: 540
  start-page: E5
  issue: 7631
  year: 2016
  ident: 2021012203305454500_ref63
  article-title: Consistency in drug response profiling
  publication-title: Nature
  doi: 10.1038/nature20171
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 2021012203305454500_ref36
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– volume: 13
  start-page: 2524
  issue: 7
  year: 2016
  ident: 2021012203305454500_ref103
  article-title: Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.6b00248
– volume: 34
  start-page: 1538
  issue: 9
  year: 2018
  ident: 2021012203305454500_ref39
  article-title: DeepSynergy: predicting anti-cancer drug synergy with deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx806
– volume: 35
  start-page: i501
  issue: 14
  year: 2019
  ident: 2021012203305454500_ref92
  article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz318
– start-page: 8024
  year: 2017
  ident: 2021012203305454500_ref54
  article-title: Pytorch: An imperative style, high-performance deep learning library
– volume: 313
  start-page: 1929
  issue: 5795
  year: 2006
  ident: 2021012203305454500_ref67
  article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease
  publication-title: Science
  doi: 10.1126/science.1132939
SSID ssj0020781
Score 2.6083405
SecondaryResourceType review_article
Snippet Abstract Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine...
Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML)...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 360
SubjectTerms Algorithms
Biotechnology
Cancer
Deep learning
Drug screening
High-throughput screening
Learning algorithms
Machine learning
Precision medicine
Prediction models
Predictions
Tumor cell lines
Tumors
Title Deep learning for drug response prediction in cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/31950132
https://www.proquest.com/docview/2529967501
https://www.proquest.com/docview/2341630979
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3dS8MwEMCDDARfxG-nc0T0xYewtmnS9lHUMQT1ZYO9lXyOgXSjWx_0r_fSdIXh0OdcCdylvd_1cncI3YNHknFoGUkh-HAjzGIimBZE0CC1gY1NErpq5Ld3PprEr1M2bS7RrHak8DM6kHM5kPI7rCvFwfu6Dvnjj2kbVrl2Nb6GKCGuufumCenWo1tuZ6uU7RdR1p5leIQOGyTEj96Gx2jPFCdo3w-J_DpF8bMxS9xMd5hhgEysy2qGS3-71eBl6ZItTsF4XmDlzFieocnwZfw0Is2sA6JiytcEvknc6JQzqg2XOgNKUFyKxEaWB1ppACmIVJLMKqq0ShkTgQAYYlYZpVMZ0HPUKRaFuUQ45IkA7LHAQjYGfyyBQoChU2Edy0Sqix42qshV0wjczaP4zH1CmuagttyrrYvuWtmlb3-xU6oPGv1ToLdRdt68I6s8YuAKIV4JYPm2XYbT7VIWojCLCmSoA8YgS7IuuvBGarehboItBNNX_-1-jQ4idxOl_nHSQ511WZkbQIm17Ncn6QcqNcPf
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+drug+response+prediction+in+cancer&rft.jtitle=Briefings+in+bioinformatics&rft.au=Baptista%2C+Delora&rft.au=Ferreira%2C+Pedro+G&rft.au=Rocha%2C+Miguel&rft.date=2021-01-01&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=360&rft.epage=379&rft_id=info:doi/10.1093%2Fbib%2Fbbz171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbz171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon