Supramolecular chiroptical switches
Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence (CPL) are reversibly interchangeable between two states, offer many promising applications in the fields of chiral sensing, optical displays, in...
Saved in:
Published in | Chemical Society reviews Vol. 49; no. 24; pp. 995 - 912 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-0012 1460-4744 1460-4744 |
DOI | 10.1039/d0cs00191k |
Cover
Loading…
Abstract | Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence (CPL) are reversibly interchangeable between two states, offer many promising applications in the fields of chiral sensing, optical displays, information storage, asymmetric catalysis and so on. Through various non-covalent interactions, supramolecular chiroptical switches have been constructed by combining the chiral and responsive functional components. This review summarizes the recent progress in the construction of supramolecular chiroptical switchable systems that reversibly respond to various stimuli, such as light, electricity, magnetic fields, mechanical force, solvents, pH, temperature, and chemical additives. The switching of supramolecular chirality in the forms of on/off, amplification/weakening and chirality inversion is shown. Additionally, the design of chiroptical switchable systems for chiral logic gates, data communication, chiral separation and asymmetric catalysis has been demonstrated. Future challenges in developing supramolecular chiroptical switches are also discussed.
Recent progress in chiroptical switches including on/off, amplification, and inversion of the chiral signals such as ECD and CPL in supramolecular assemblies is shown. |
---|---|
AbstractList | Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence (CPL) are reversibly interchangeable between two states, offer many promising applications in the fields of chiral sensing, optical displays, information storage, asymmetric catalysis and so on. Through various non-covalent interactions, supramolecular chiroptical switches have been constructed by combining the chiral and responsive functional components. This review summarizes the recent progress in the construction of supramolecular chiroptical switchable systems that reversibly respond to various stimuli, such as light, electricity, magnetic fields, mechanical force, solvents, pH, temperature, and chemical additives. The switching of supramolecular chirality in the forms of on/off, amplification/weakening and chirality inversion is shown. Additionally, the design of chiroptical switchable systems for chiral logic gates, data communication, chiral separation and asymmetric catalysis has been demonstrated. Future challenges in developing supramolecular chiroptical switches are also discussed. Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence (CPL) are reversibly interchangeable between two states, offer many promising applications in the fields of chiral sensing, optical displays, information storage, asymmetric catalysis and so on. Through various non-covalent interactions, supramolecular chiroptical switches have been constructed by combining the chiral and responsive functional components. This review summarizes the recent progress in the construction of supramolecular chiroptical switchable systems that reversibly respond to various stimuli, such as light, electricity, magnetic fields, mechanical force, solvents, pH, temperature, and chemical additives. The switching of supramolecular chirality in the forms of on/off, amplification/weakening and chirality inversion is shown. Additionally, the design of chiroptical switchable systems for chiral logic gates, data communication, chiral separation and asymmetric catalysis has been demonstrated. Future challenges in developing supramolecular chiroptical switches are also discussed.Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence (CPL) are reversibly interchangeable between two states, offer many promising applications in the fields of chiral sensing, optical displays, information storage, asymmetric catalysis and so on. Through various non-covalent interactions, supramolecular chiroptical switches have been constructed by combining the chiral and responsive functional components. This review summarizes the recent progress in the construction of supramolecular chiroptical switchable systems that reversibly respond to various stimuli, such as light, electricity, magnetic fields, mechanical force, solvents, pH, temperature, and chemical additives. The switching of supramolecular chirality in the forms of on/off, amplification/weakening and chirality inversion is shown. Additionally, the design of chiroptical switchable systems for chiral logic gates, data communication, chiral separation and asymmetric catalysis has been demonstrated. Future challenges in developing supramolecular chiroptical switches are also discussed. Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence (CPL) are reversibly interchangeable between two states, offer many promising applications in the fields of chiral sensing, optical displays, information storage, asymmetric catalysis and so on. Through various non-covalent interactions, supramolecular chiroptical switches have been constructed by combining the chiral and responsive functional components. This review summarizes the recent progress in the construction of supramolecular chiroptical switchable systems that reversibly respond to various stimuli, such as light, electricity, magnetic fields, mechanical force, solvents, pH, temperature, and chemical additives. The switching of supramolecular chirality in the forms of on/off, amplification/weakening and chirality inversion is shown. Additionally, the design of chiroptical switchable systems for chiral logic gates, data communication, chiral separation and asymmetric catalysis has been demonstrated. Future challenges in developing supramolecular chiroptical switches are also discussed. Recent progress in chiroptical switches including on/off, amplification, and inversion of the chiral signals such as ECD and CPL in supramolecular assemblies is shown. |
Author | Wang, Han-Xiao Li, Shuai Liu, Minghua Zhang, Li |
AuthorAffiliation | Chinese Academy of Sciences Institute of Chemistry CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Beijing National Laboratory for Molecular Science (BNLMS) |
AuthorAffiliation_xml | – name: CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics – name: Institute of Chemistry – name: Chinese Academy of Sciences – name: Beijing National Laboratory for Molecular Science (BNLMS) |
Author_xml | – sequence: 1 givenname: Li surname: Zhang fullname: Zhang, Li – sequence: 2 givenname: Han-Xiao surname: Wang fullname: Wang, Han-Xiao – sequence: 3 givenname: Shuai surname: Li fullname: Li, Shuai – sequence: 4 givenname: Minghua surname: Liu fullname: Liu, Minghua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33118560$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1LwzAYBvAgE_ehF-_KYBcRqvluc5T6iQMP03NJ05Rltk1NWsT_3ujmhCF4SiC_94E3zxgMGttoAI4RvECQiMsCKg8hEuh1D4wQ5TCiMaUDMIIE8ii84CEYe78KNxRzfACGhCCUMA5HYLboWydrW2nVV9JN1dI423ZGyWrq302nltofgv1SVl4fbc4JeLm9eU7vo_nT3UN6NY8UJbyLaIkYKzkhlHJaap6wRApMY55rSRhNYMxLhKWUOicF1oXACuc5KjGiMmd5QibgbJ3bOvvWa99ltfFKV5VstO19hhlCYUsh4v8pZSyhTDAc6GyHrmzvmrBIUFwkNA6hQZ1uVJ_XushaZ2rpPrKfnwrgfA2Us947XW4JgtlXDdk1TBffNTwGDHewMp3sjG06J03198jJesR5tY3-bZZ8Aoz_kCw |
CitedBy_id | crossref_primary_10_1002_anie_202304075 crossref_primary_10_1021_acs_inorgchem_1c03362 crossref_primary_10_1002_anie_202306252 crossref_primary_10_1002_anie_202203938 crossref_primary_10_1016_j_colsurfa_2022_129436 crossref_primary_10_1002_anie_202412548 crossref_primary_10_1002_cptc_202200090 crossref_primary_10_1016_j_carbpol_2022_119944 crossref_primary_10_1002_adfm_202201512 crossref_primary_10_1002_anie_202420290 crossref_primary_10_1002_pol_20220658 crossref_primary_10_1039_D1RA08984F crossref_primary_10_1002_cptc_202100124 crossref_primary_10_1002_chem_202400691 crossref_primary_10_1002_adom_202201229 crossref_primary_10_1039_D1DT00182E crossref_primary_10_1002_rpm_20240034 crossref_primary_10_1002_anie_202100934 crossref_primary_10_1002_adma_202104678 crossref_primary_10_1021_acsnano_2c08315 crossref_primary_10_1021_acsnano_3c06461 crossref_primary_10_1039_D3SC03230B crossref_primary_10_1002_anie_202501122 crossref_primary_10_1007_s11426_024_2197_1 crossref_primary_10_1039_D2CC05787E crossref_primary_10_1002_marc_202100904 crossref_primary_10_1021_acs_inorgchem_3c02101 crossref_primary_10_1002_adom_202300779 crossref_primary_10_1002_ange_202421310 crossref_primary_10_1016_j_ica_2021_120495 crossref_primary_10_1016_j_dyepig_2023_111911 crossref_primary_10_1039_D4RA01386G crossref_primary_10_1021_acs_langmuir_2c01473 crossref_primary_10_1002_adfm_202417308 crossref_primary_10_1002_anie_202406524 crossref_primary_10_1021_acs_jpclett_4c03120 crossref_primary_10_1038_s41467_023_41390_8 crossref_primary_10_1039_D2CS00129B crossref_primary_10_1002_ange_202208574 crossref_primary_10_1002_ceur_202400107 crossref_primary_10_1039_D1TC01948A crossref_primary_10_1039_D1CC04471K crossref_primary_10_1002_chem_202302376 crossref_primary_10_1016_j_xcrp_2023_101523 crossref_primary_10_1039_D1DT00508A crossref_primary_10_1039_D1QO00717C crossref_primary_10_1002_asia_202500344 crossref_primary_10_1002_ange_202409782 crossref_primary_10_1002_ange_202418938 crossref_primary_10_1021_acs_joc_0c03005 crossref_primary_10_1007_s10118_021_2580_5 crossref_primary_10_1016_j_molliq_2025_127413 crossref_primary_10_1021_acs_joc_4c00387 crossref_primary_10_1021_acs_orglett_4c01509 crossref_primary_10_1038_s41467_024_45935_3 crossref_primary_10_1002_adom_202102146 crossref_primary_10_1002_adma_202307971 crossref_primary_10_1016_j_saa_2023_123018 crossref_primary_10_1002_ange_202416863 crossref_primary_10_1016_j_colsurfa_2022_130212 crossref_primary_10_1039_D2DT01745H crossref_primary_10_1002_anie_202413747 crossref_primary_10_1002_ange_202217020 crossref_primary_10_1021_jacs_2c10023 crossref_primary_10_1002_ange_202314510 crossref_primary_10_1016_j_dyepig_2022_110228 crossref_primary_10_1039_D3QM00200D crossref_primary_10_1002_ange_202410416 crossref_primary_10_1002_ange_202216600 crossref_primary_10_1002_cptc_202100255 crossref_primary_10_1002_cptc_202100256 crossref_primary_10_1002_smo_20230015 crossref_primary_10_1002_adom_202401463 crossref_primary_10_1021_acs_jpclett_2c00657 crossref_primary_10_1038_s41467_022_35745_w crossref_primary_10_1360_SSC_2024_0062 crossref_primary_10_1039_D3TC02375C crossref_primary_10_1002_ange_202214424 crossref_primary_10_1002_ange_202501122 crossref_primary_10_1002_cplu_202100556 crossref_primary_10_1021_acsmacrolett_2c00136 crossref_primary_10_1038_s41467_023_40698_9 crossref_primary_10_1039_D1TC02381K crossref_primary_10_1039_D4SC02756F crossref_primary_10_1021_jacs_2c12253 crossref_primary_10_1002_anie_202404684 crossref_primary_10_1002_anie_202209953 crossref_primary_10_1002_ange_202406524 crossref_primary_10_1021_acs_inorgchem_3c02806 crossref_primary_10_1021_acsami_4c04268 crossref_primary_10_1016_j_colsurfa_2025_136449 crossref_primary_10_1039_D4SC04216F crossref_primary_10_1093_bulcsj_uoae075 crossref_primary_10_2174_0113852728292501240301062823 crossref_primary_10_1002_agt2_268 crossref_primary_10_1021_jacs_1c05183 crossref_primary_10_1021_jacs_3c10835 crossref_primary_10_1039_D2SC05255E crossref_primary_10_1002_anie_202500879 crossref_primary_10_1016_j_jssc_2024_124679 crossref_primary_10_1002_adom_202300337 crossref_primary_10_1002_ange_202413747 crossref_primary_10_1002_chem_202301080 crossref_primary_10_2139_ssrn_4145276 crossref_primary_10_1039_D2CC02680E crossref_primary_10_1016_j_cej_2022_138390 crossref_primary_10_1039_D4NR04308A crossref_primary_10_1007_s11426_023_1612_y crossref_primary_10_1002_idm2_12117 crossref_primary_10_1002_ange_202115600 crossref_primary_10_1039_D3QI00588G crossref_primary_10_1002_ange_202308281 crossref_primary_10_1002_anie_202421310 crossref_primary_10_1002_smll_202409541 crossref_primary_10_1039_D2TC03952D crossref_primary_10_1039_D1QM01654G crossref_primary_10_1002_smll_202103177 crossref_primary_10_1021_jacsau_4c00777 crossref_primary_10_1038_s41377_024_01479_1 crossref_primary_10_1016_j_cocis_2022_101657 crossref_primary_10_1002_anie_202407605 crossref_primary_10_1002_adma_202312331 crossref_primary_10_1002_ange_202404684 crossref_primary_10_1016_j_jcis_2023_12_052 crossref_primary_10_1016_j_cclet_2024_109909 crossref_primary_10_1039_D4QO02412E crossref_primary_10_1021_acs_chemmater_4c00109 crossref_primary_10_1016_j_cclet_2022_06_013 crossref_primary_10_1039_D1RA01583D crossref_primary_10_1002_ange_202100934 crossref_primary_10_1016_j_chempr_2022_10_022 crossref_primary_10_1002_anie_202115600 crossref_primary_10_1021_acsami_3c05803 crossref_primary_10_1016_j_cclet_2025_111060 crossref_primary_10_1002_ange_202209953 crossref_primary_10_1016_j_carbpol_2025_123405 crossref_primary_10_1002_marc_202100649 crossref_primary_10_1016_j_eurpolymj_2022_111768 crossref_primary_10_1016_j_molliq_2025_127323 crossref_primary_10_1038_s41467_024_53928_5 crossref_primary_10_1021_jacs_4c12211 crossref_primary_10_1016_j_molstruc_2024_140258 crossref_primary_10_1039_D0PY01630F crossref_primary_10_1002_ange_202407605 crossref_primary_10_1002_anie_202217020 crossref_primary_10_1002_anie_202416863 crossref_primary_10_1021_jacs_1c12767 crossref_primary_10_1021_jacs_3c10766 crossref_primary_10_1002_adfm_202309133 crossref_primary_10_1021_acsphyschemau_4c00025 crossref_primary_10_1002_ange_202500879 crossref_primary_10_1002_ejic_202100902 crossref_primary_10_1002_chem_202400059 crossref_primary_10_1002_anie_202308281 crossref_primary_10_1021_acs_inorgchem_3c01080 crossref_primary_10_1016_j_dyepig_2023_111530 crossref_primary_10_1021_acs_jpclett_2c00606 crossref_primary_10_1021_acsorginorgau_2c00051 crossref_primary_10_1002_cplu_202300080 crossref_primary_10_1039_D2TC04802G crossref_primary_10_1002_anie_202216600 crossref_primary_10_1002_anie_202214424 crossref_primary_10_1021_acsami_3c02237 crossref_primary_10_1002_advs_202207333 crossref_primary_10_1016_j_matt_2022_01_001 crossref_primary_10_1021_jacs_3c01122 crossref_primary_10_1039_D1SC03561D crossref_primary_10_1016_j_fmre_2021_10_006 crossref_primary_10_1002_chem_202500335 crossref_primary_10_1016_j_cclet_2023_109162 crossref_primary_10_1039_D2NJ04062J crossref_primary_10_1002_agt2_508 crossref_primary_10_1002_anie_202113844 crossref_primary_10_1016_j_dyepig_2024_112234 crossref_primary_10_1002_anie_202410416 crossref_primary_10_1002_anie_202418938 crossref_primary_10_1021_jacs_5c00695 crossref_primary_10_1016_j_cclet_2022_108126 crossref_primary_10_1021_acs_chemrev_1c00740 crossref_primary_10_1021_jacs_2c00760 crossref_primary_10_1021_acsami_1c03940 crossref_primary_10_1038_s41467_025_56253_7 crossref_primary_10_1002_cjoc_202300333 crossref_primary_10_1002_anie_202406927 crossref_primary_10_1002_adma_202101797 crossref_primary_10_1039_D1CC05902E crossref_primary_10_1039_D4NR05421K crossref_primary_10_1021_acsnano_4c14797 crossref_primary_10_1021_acsomega_4c03584 crossref_primary_10_1002_advs_202408107 crossref_primary_10_1039_D3CS00705G crossref_primary_10_1021_acsami_1c20969 crossref_primary_10_1002_adma_202204413 crossref_primary_10_1007_s10118_021_2561_8 crossref_primary_10_1021_acsnanoscienceau_4c00052 crossref_primary_10_1016_j_molstruc_2024_140585 crossref_primary_10_1002_adom_202303204 crossref_primary_10_1002_ange_202412548 crossref_primary_10_1039_D1OB01277K crossref_primary_10_1103_PhysRevLett_134_106901 crossref_primary_10_1002_chir_23522 crossref_primary_10_1007_s40843_021_1897_x crossref_primary_10_1038_s41428_021_00550_7 crossref_primary_10_1246_bcsj_20220135 crossref_primary_10_1038_s41467_022_29820_5 crossref_primary_10_1002_anie_202409782 crossref_primary_10_1021_acsphotonics_2c02004 crossref_primary_10_1002_ange_202420290 crossref_primary_10_1002_anie_202416181 crossref_primary_10_1002_chem_202401956 crossref_primary_10_1002_chem_202404425 crossref_primary_10_1002_ange_202203938 crossref_primary_10_1002_chem_202400866 crossref_primary_10_1039_D4CS00271G crossref_primary_10_3390_biomimetics8070527 crossref_primary_10_1039_D1NJ01327K crossref_primary_10_1016_j_dyepig_2021_109906 crossref_primary_10_1016_j_cclet_2025_111135 crossref_primary_10_1021_acs_chemmater_4c00534 crossref_primary_10_1002_anie_202424918 crossref_primary_10_1371_journal_pone_0289433 crossref_primary_10_1021_acs_inorgchem_2c02202 crossref_primary_10_1016_j_jcis_2021_11_073 crossref_primary_10_1039_D4SC07859D crossref_primary_10_1002_chir_23530 crossref_primary_10_1021_acsnano_3c01647 crossref_primary_10_1016_j_matt_2023_06_011 crossref_primary_10_1002_anie_202205633 crossref_primary_10_1002_anie_202314510 crossref_primary_10_1002_macp_202100092 crossref_primary_10_1002_anie_202210542 crossref_primary_10_1007_s11426_023_1740_2 crossref_primary_10_1039_D2SC04006A crossref_primary_10_1021_acsnano_2c07263 crossref_primary_10_1002_ange_202406927 crossref_primary_10_1002_chem_202100070 crossref_primary_10_1039_D2QO01443B crossref_primary_10_1038_s41467_024_48412_z crossref_primary_10_1039_D1QM00850A crossref_primary_10_1002_ange_202424918 crossref_primary_10_1021_jacs_2c00556 crossref_primary_10_1080_02678292_2024_2302458 crossref_primary_10_1002_adma_202403329 crossref_primary_10_1002_adma_202410094 crossref_primary_10_1007_s11426_022_1319_9 crossref_primary_10_1002_ange_202419434 crossref_primary_10_1002_ange_202306252 crossref_primary_10_1016_j_ccr_2023_215598 crossref_primary_10_1002_ange_202304075 crossref_primary_10_1002_chir_23547 crossref_primary_10_1002_adom_202201784 crossref_primary_10_1002_ange_202416181 crossref_primary_10_26599_NR_2025_94907095 crossref_primary_10_1002_adpr_202100287 crossref_primary_10_1021_acs_macromol_3c01189 crossref_primary_10_1016_j_jcis_2024_03_129 crossref_primary_10_1002_smll_202408147 crossref_primary_10_1039_D2CS00476C crossref_primary_10_1002_advs_202202636 crossref_primary_10_34057_PPj_2024_43_03_2024_3_5 crossref_primary_10_1002_anie_202419434 crossref_primary_10_1002_cptc_202200201 crossref_primary_10_1021_acsnano_2c01731 crossref_primary_10_1021_jacs_1c11699 crossref_primary_10_1002_ange_202116656 crossref_primary_10_1016_j_ccr_2022_214753 crossref_primary_10_1039_D2NJ06145G crossref_primary_10_1016_j_molliq_2024_125477 crossref_primary_10_1002_smll_202302668 crossref_primary_10_1002_rpm_20240010 crossref_primary_10_1002_ange_202301127 crossref_primary_10_1016_j_molliq_2022_119903 crossref_primary_10_1039_D1CC00741F crossref_primary_10_1039_D3SC00828B crossref_primary_10_1002_anie_202208574 crossref_primary_10_1039_D3QM00339F crossref_primary_10_1002_pi_6509 crossref_primary_10_1039_D2SM00325B crossref_primary_10_1002_chir_23567 crossref_primary_10_1039_D3SM01342A crossref_primary_10_1002_ange_202205633 crossref_primary_10_1016_j_dyepig_2024_112370 crossref_primary_10_1002_anie_202116656 crossref_primary_10_1039_D2NJ05708E crossref_primary_10_1002_adma_202109496 crossref_primary_10_1016_j_jssc_2024_125024 crossref_primary_10_1016_j_poly_2024_117081 crossref_primary_10_1016_j_cocis_2021_101526 crossref_primary_10_1021_acsami_2c01615 crossref_primary_10_1364_OL_533057 crossref_primary_10_1002_advs_202200004 crossref_primary_10_1002_smll_202409379 crossref_primary_10_1021_acsami_2c01608 crossref_primary_10_1039_D4RA00380B crossref_primary_10_1021_acs_jpclett_1c00865 crossref_primary_10_1002_ange_202113844 crossref_primary_10_1021_acs_organomet_1c00435 crossref_primary_10_1039_D3NH00419H crossref_primary_10_1007_s00604_024_06803_5 crossref_primary_10_1002_ange_202210542 crossref_primary_10_1002_anie_202301127 crossref_primary_10_1007_s11426_023_1846_0 |
Cites_doi | 10.1039/C5PY01301A 10.1021/ja00119a039 10.1039/C9NR01959F 10.1039/C7PY00130D 10.1021/jp205893y 10.1021/acs.chemrev.9b00221 10.1038/nchem.2362 10.1021/ja509531t 10.1039/C6CC01423B 10.1021/ja5069323 10.1021/acs.organomet.7b00534 10.1021/ja0288486 10.1016/j.jphotochem.2019.112146 10.1021/ja0120429 10.1002/anie.202000589 10.1126/science.273.5282.1686 10.1039/b710165a 10.1021/jo050489k 10.1039/C4CC03944K 10.1039/C9CC02849H 10.1002/chem.201603998 10.1002/anie.201411593 10.1002/adma.201504883 10.1021/acs.inorgchem.5b01902 10.1038/ncomms7652 10.1002/anie.201502209 10.1002/anie.201916285 10.1021/jacs.8b11872 10.1021/jacs.5b11580 10.1002/chem.201405176 10.1038/ncomms10591 10.1021/jp110636b 10.1002/anie.202006486 10.1002/cctc.201800081 10.1021/ja4098803 10.1002/chem.201704431 10.1002/chem.201500704 10.1021/jacs.9b13184 10.1021/jacs.7b07639 10.1021/acsami.0c02080 10.1002/adfm.200600130 10.1002/anie.201801462 10.1126/science.1095353 10.1126/science.aao7172 10.1002/anie.201505520 10.1021/cr500249p 10.1002/adma.200501047 10.1002/chem.200305276 10.1002/adfm.201900587 10.1038/s41467-018-04303-8 10.1351/pac200173040639 10.1039/b819270g 10.1002/anie.202005703 10.1002/anie.201601633 10.1002/adom.201700014 10.1021/jacs.7b07626 10.1002/chem.201805814 10.1021/acs.langmuir.7b02285 10.1038/ncomms7959 10.1039/C5PY01175B 10.1039/c3cp53620c 10.1016/j.reactfunctpolym.2012.04.011 10.3390/polym8080310 10.1002/anie.201407223 10.1021/acs.jpclett.9b02269 10.1002/chem.201502237 10.1039/C8SC04026E 10.1039/C6CC03256G 10.1021/acscatal.7b00827 10.1021/acs.biomac.7b01554 10.1038/srep10479 10.1039/C8CC02777C 10.1002/(SICI)1521-3935(19980801)199:8<1675::AID-MACP1675>3.0.CO;2-E 10.1021/jacs.7b07469 10.1002/asia.201601114 10.1039/C7SM00935F 10.1021/acs.langmuir.5b00423 10.1021/acs.jpclett.8b00690 10.1021/acs.chemrev.7b00225 10.1021/ma501059z 10.1039/C7CS00245A 10.1002/anie.201104708 10.1002/chem.201902676 10.1039/c1sm05219e 10.1002/chem.200400463 10.1007/s41061-017-0161-4 10.1039/C7PY00804J 10.1039/b312170d 10.1039/C8DT01808A 10.1002/anie.200701285 10.1039/C3CS60181A 10.1021/ja711283c 10.1039/C9CC01138B 10.1039/C7CS00163K 10.1002/anie.201607681 10.1021/ja400160j 10.1039/C5PY00496A 10.1021/ic5019136 10.1038/nchem.2668 10.1038/s41570-017-0045 10.1002/chem.201203401 10.1002/adfm.201701368 10.1039/C6CC01748G 10.1021/acs.jpcc.8b03412 10.1002/adma.200801165 10.1039/C7OB03057F 10.1039/c0cc00891e 10.1021/ja055268a 10.1021/ol100117s 10.1021/acs.inorgchem.6b03094 10.1002/chem.201803069 10.1039/b800412a 10.1126/science.1062070 10.1021/ja304424t 10.1002/smll.201905734 10.1021/ja00191a076 10.1002/macp.200800192 10.1039/C6CC01277A 10.1039/C4NR00340C 10.1021/acsmacrolett.7b00131 10.1021/jacs.6b02401 10.1039/C9SC03694F 10.1021/jacs.9b04133 10.1038/140281a0 10.1039/c0py00044b 10.1002/anie.199503481 10.1039/C7CC04903J 10.1039/C7PY01669G 10.1021/acs.jpca.5b03474 10.1039/C4TC02800G 10.1021/acsnano.6b06233 10.1002/anie.201602035 10.1021/jacs.6b10550 10.1002/chem.201203243 10.1021/ja00206a013 10.1039/C9CC08090B 10.3390/molecules17021247 10.1021/acs.nanolett.7b03946 10.1021/jacs.7b05316 10.1039/C5CS00096C 10.1016/j.chempr.2018.12.006 10.1002/chem.201303123 10.1002/anie.201811060 10.1038/s41598-018-29152-9 10.1002/cplu.202000049 10.1038/ncomms3948 10.1038/nchem.1916 10.1038/s41467-018-03542-z 10.1016/j.crci.2015.06.014 10.1021/cr980068l 10.1021/jo070394d 10.1002/anie.201900607 10.1039/C9CC09687F 10.1038/s41467-019-13428-3 10.1021/acs.chemmater.8b00057 10.1021/ja206546b 10.1016/j.ccr.2010.03.004 10.1021/cr9900228 10.1002/anie.201209497 10.1002/adma.201906665 10.1021/ja00014a057 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d0cs00191k |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef PubMed AGRICOLA MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 912 |
ExternalDocumentID | 33118560 10_1039_D0CS00191K d0cs00191k |
Genre | Journal Article |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 -JG NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-4f155f6334464fe6858a92476bea3548076f12aaaeb3d2ed92c2bb1f214ab5b83 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 15:53:59 EDT 2025 Fri Jul 11 05:29:22 EDT 2025 Mon Jun 30 03:45:18 EDT 2025 Wed Feb 19 02:30:09 EST 2025 Thu Apr 24 23:06:39 EDT 2025 Tue Jul 01 04:18:44 EDT 2025 Sat Jan 08 03:48:09 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-4f155f6334464fe6858a92476bea3548076f12aaaeb3d2ed92c2bb1f214ab5b83 |
Notes | Li Zhang received her PhD degree in physical chemistry from the Institute of Chemistry, Chinese Academy of Sciences (2004) under the supervision of Prof. Minghua Liu. Following graduation, she worked for 2 years at Tohoku University as a Postdoc fellow. She is currently an associate professor at the Institute of Chemistry, Chinese Academy of Sciences. She has carried out research into chiral supramolecular assemblies and chiroptical switches. Shuai Li received his BS degree in Chemistry from Shandong University in China (2015) and MSc degree in physical chemistry from the Institute of Chemistry of the Chinese Academy of Sciences (2018) under the supervision of Prof. Minghua Liu. He focused on the research of supramolecular chirality regulation. He is currently pursuing a PhD degree at Duke University, USA. Minghua Liu received his BSc from Nanjing University in 1986 and PhD from Saitama University, Japan, in 1994. After carrying out postdoctoral research at the institute of Physical and Chemical Research (RIKEN) and at the Tokyo University of Agriculture and Industry, he joined the Institute of Photographic Chemistry in 1998 and then the Institute of Chemistry, CAS in 1999, and has been working as a professor to date. His research interests cover supramolecular chemistry, colloid and interface science, self-assembly, and gel-based soft nanomaterials. He is particularly interested in chirality issues with regard to supramolecular and self-assembly systems. Han-Xiao Wang received her PhD degree in organic chemistry under the supervision of Chuan-Feng Chen from the Institute of Chemistry, Chinese Academy of Sciences, in 2017. Her PhD research mainly focused on constructing orientational (pseudo)rotaxanes. After that she joined Professor Minghua Liu's Group as a postdoctoral fellow. She is currently an assistant professor at the Institute of Chemistry, CAS. Her current research interest lies in the design of chiral gelators and fine control over morphology and supramolecular chirality of their assemblies. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8525-4509 0000-0002-6603-1251 |
PMID | 33118560 |
PQID | 2469847119 |
PQPubID | 2047503 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2511191997 pubmed_primary_33118560 crossref_primary_10_1039_D0CS00191K rsc_primary_d0cs00191k crossref_citationtrail_10_1039_D0CS00191K proquest_miscellaneous_2455845952 proquest_journals_2469847119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-21 |
PublicationDateYYYYMMDD | 2020-12-21 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yang (D0CS00191K-(cit31)/*[position()=1]) 2017; 13 Isla (D0CS00191K-(cit85)/*[position()=1]) 2016; 19 Kuzyk (D0CS00191K-(cit38)/*[position()=1]) 2016; 7 Zhang (D0CS00191K-(cit99)/*[position()=1]) 2015; 3 Suk (D0CS00191K-(cit126)/*[position()=1]) 2011; 133 Irie (D0CS00191K-(cit51)/*[position()=1]) 2014; 114 Wang (D0CS00191K-(cit79)/*[position()=1]) 2013; 52 Niu (D0CS00191K-(cit125)/*[position()=1]) 2019; 58 Hartley (D0CS00191K-(cit18)/*[position()=1]) 1937; 140 Li (D0CS00191K-(cit72)/*[position()=1]) 2017; 5 Nagata (D0CS00191K-(cit133)/*[position()=1]) 2016; 55 Zhao (D0CS00191K-(cit149)/*[position()=1]) 2015; 6 Wang (D0CS00191K-(cit43)/*[position()=1]) 2017; 139 Romanazzi (D0CS00191K-(cit148)/*[position()=1]) 2017; 7 Huck (D0CS00191K-(cit66)/*[position()=1]) 1996; 273 Pianowski (D0CS00191K-(cit17)/*[position()=1]) 2019; 25 de Jong (D0CS00191K-(cit52)/*[position()=1]) 2005; 127 Chen (D0CS00191K-(cit70)/*[position()=1]) 2010; 12 Schreiber (D0CS00191K-(cit135)/*[position()=1]) 2013; 4 Bouas-Laurent (D0CS00191K-(cit16)/*[position()=1]) 2001; 73 Angiolini (D0CS00191K-(cit48)/*[position()=1]) 2012; 72 Lv (D0CS00191K-(cit114)/*[position()=1]) 2013; 15 Kim (D0CS00191K-(cit76)/*[position()=1]) 2015; 6 Hemraz (D0CS00191K-(cit112)/*[position()=1]) 2014; 6 Adam (D0CS00191K-(cit27)/*[position()=1]) 2017; 139 Cai (D0CS00191K-(cit58)/*[position()=1]) 2016; 138 Louis (D0CS00191K-(cit101)/*[position()=1]) 2019; 10 Clark (D0CS00191K-(cit2)/*[position()=1]) 2010 Jiang (D0CS00191K-(cit7)/*[position()=1]) 2018; 122 Xie (D0CS00191K-(cit30)/*[position()=1]) 2016; 22 Iida (D0CS00191K-(cit87)/*[position()=1]) 2010; 1 de Jong (D0CS00191K-(cit1)/*[position()=1]) 2004; 304 Zhao (D0CS00191K-(cit69)/*[position()=1]) 2017; 9 Kerner (D0CS00191K-(cit24)/*[position()=1]) 2015; 119 Hashimoto (D0CS00191K-(cit54)/*[position()=1]) 2016; 52 Yuan (D0CS00191K-(cit155)/*[position()=1]) 2018; 10 Yu (D0CS00191K-(cit19)/*[position()=1]) 2016; 52 Pieraccini (D0CS00191K-(cit23)/*[position()=1]) 2004; 10 Goskulwad (D0CS00191K-(cit110)/*[position()=1]) 2018; 8 Ciardelli (D0CS00191K-(cit45)/*[position()=1]) 1989; 111 Hu (D0CS00191K-(cit74)/*[position()=1]) 2016; 52 Imai (D0CS00191K-(cit122)/*[position()=1]) 2019; 55 Brandt (D0CS00191K-(cit84)/*[position()=1]) 2017; 53 Niu (D0CS00191K-(cit117)/*[position()=1]) 2020; 12 Isla (D0CS00191K-(cit123)/*[position()=1]) 2016; 52 Wang (D0CS00191K-(cit158)/*[position()=1]) 2018; 24 Nagata (D0CS00191K-(cit134)/*[position()=1]) 2014; 50 Guo (D0CS00191K-(cit118)/*[position()=1]) 2006; 18 Miao (D0CS00191K-(cit49)/*[position()=1]) 2017; 27 Wu (D0CS00191K-(cit98)/*[position()=1]) 2017; 139 Zahn (D0CS00191K-(cit88)/*[position()=1]) 2002; 124 Ouyang (D0CS00191K-(cit152)/*[position()=1]) 2015; 54 Lv (D0CS00191K-(cit156)/*[position()=1]) 2016; 8 Shen (D0CS00191K-(cit140)/*[position()=1]) 2018; 37 Feringa (D0CS00191K-(cit12)/*[position()=1]) 2007; 72 Li (D0CS00191K-(cit55)/*[position()=1]) 2019; 141 Mukhopadhyay (D0CS00191K-(cit106)/*[position()=1]) 2018; 9 Jager (D0CS00191K-(cit63)/*[position()=1]) 1995; 34 Ji (D0CS00191K-(cit32)/*[position()=1]) 2017; 33 Li (D0CS00191K-(cit103)/*[position()=1]) 2007; 3 Jin (D0CS00191K-(cit104)/*[position()=1]) 2016; 10 Mayer (D0CS00191K-(cit20)/*[position()=1]) 1998; 199 Park (D0CS00191K-(cit120)/*[position()=1]) 2018; 30 Green (D0CS00191K-(cit9)/*[position()=1]) 1995; 117 Zhao (D0CS00191K-(cit41)/*[position()=1]) 2015; 31 Bisoyi (D0CS00191K-(cit15)/*[position()=1]) 2016; 55 Yin (D0CS00191K-(cit35)/*[position()=1]) 2017; 8 Canary (D0CS00191K-(cit13)/*[position()=1]) 2009; 38 Garcia-Lopez (D0CS00191K-(cit61)/*[position()=1]) 2020; 120 Kulkarni (D0CS00191K-(cit107)/*[position()=1]) 2017; 139 Liu (D0CS00191K-(cit161)/*[position()=1]) 2020; 59 Li (D0CS00191K-(cit138)/*[position()=1]) 2019; 141 Hu (D0CS00191K-(cit159)/*[position()=1]) 2020; 59 Shen (D0CS00191K-(cit86)/*[position()=1]) 2018; 24 Kassem (D0CS00191K-(cit60)/*[position()=1]) 2017; 46 Liu (D0CS00191K-(cit141)/*[position()=1]) 2016; 28 Kistemaker (D0CS00191K-(cit65)/*[position()=1]) 2015; 7 Maeda (D0CS00191K-(cit145)/*[position()=1]) 2017; 375 Klajn (D0CS00191K-(cit46)/*[position()=1]) 2014; 43 Afrasiabi (D0CS00191K-(cit82)/*[position()=1]) 2015; 21 Amabilino (D0CS00191K-(cit162)/*[position()=1]) 2017; 46 Hashimoto (D0CS00191K-(cit53)/*[position()=1]) 2018; 9 Fitz (D0CS00191K-(cit28)/*[position()=1]) 2020; 388 Gropp (D0CS00191K-(cit128)/*[position()=1]) 2016; 55 Canary (D0CS00191K-(cit14)/*[position()=1]) 2010; 254 Greciano (D0CS00191K-(cit77)/*[position()=1]) 2020; 56 Wang (D0CS00191K-(cit78)/*[position()=1]) 2019; 10 Manchineella (D0CS00191K-(cit127)/*[position()=1]) 2013; 19 Zhao (D0CS00191K-(cit39)/*[position()=1]) 2019; 29 Palmans (D0CS00191K-(cit10)/*[position()=1]) 2007; 46 Ikai (D0CS00191K-(cit146)/*[position()=1]) 2017; 8 Yuan (D0CS00191K-(cit5)/*[position()=1]) 2003; 125 Wu (D0CS00191K-(cit44)/*[position()=1]) 2016; 11 Miao (D0CS00191K-(cit92)/*[position()=1]) 2013; 19 Ke (D0CS00191K-(cit153)/*[position()=1]) 2015; 54 Kim (D0CS00191K-(cit42)/*[position()=1]) 2006; 16 Mammana (D0CS00191K-(cit57)/*[position()=1]) 2011; 115 Yang (D0CS00191K-(cit95)/*[position()=1]) 2020; 59 Qiu (D0CS00191K-(cit119)/*[position()=1]) 2008; 20 Nunez (D0CS00191K-(cit21)/*[position()=1]) 2013; 19 Liu (D0CS00191K-(cit37)/*[position()=1]) 2018; 118 Nishikawa (D0CS00191K-(cit131)/*[position()=1]) 2017; 6 Guo (D0CS00191K-(cit130)/*[position()=1]) 2018; 19 Yin (D0CS00191K-(cit34)/*[position()=1]) 2015; 6 Angiolini (D0CS00191K-(cit47)/*[position()=1]) 2008; 209 Chen (D0CS00191K-(cit147)/*[position()=1]) 2016; 138 Shin (D0CS00191K-(cit124)/*[position()=1]) 2013; 135 Feringa (D0CS00191K-(cit64)/*[position()=1]) 2001; 292 Li (D0CS00191K-(cit90)/*[position()=1]) 2009 Li (D0CS00191K-(cit59)/*[position()=1]) 2019; 5 Gregolinski (D0CS00191K-(cit89)/*[position()=1]) 2016; 55 Reuther (D0CS00191K-(cit129)/*[position()=1]) 2013; 135 Feringa (D0CS00191K-(cit62)/*[position()=1]) 1991; 113 Shang (D0CS00191K-(cit160)/*[position()=1]) 2020; 59 Wu (D0CS00191K-(cit96)/*[position()=1]) 2020; 16 Han (D0CS00191K-(cit115)/*[position()=1]) 2018; 54 Brandt (D0CS00191K-(cit3)/*[position()=1]) 2017; 1 Lifson (D0CS00191K-(cit8)/*[position()=1]) 1989; 111 Dhiman (D0CS00191K-(cit136)/*[position()=1]) 2017; 139 Jiang (D0CS00191K-(cit33)/*[position()=1]) 2010; 46 Schweinfurth (D0CS00191K-(cit83)/*[position()=1]) 2014; 136 Srebro (D0CS00191K-(cit81)/*[position()=1]) 2015; 21 Shimomura (D0CS00191K-(cit144)/*[position()=1]) 2014; 6 Feringa (D0CS00191K-(cit11)/*[position()=1]) 2000; 100 van Delden (D0CS00191K-(cit25)/*[position()=1]) 2004; 10 Katoono (D0CS00191K-(cit121)/*[position()=1]) 2018; 16 Jiang (D0CS00191K-(cit75)/*[position()=1]) 2019; 58 Kanj (D0CS00191K-(cit143)/*[position()=1]) 2019; 55 Nagata (D0CS00191K-(cit154)/*[position()=1]) 2014; 136 Shen (D0CS00191K-(cit6)/*[position()=1]) 2014; 53 Fan (D0CS00191K-(cit105)/*[position()=1]) 2019; 25 Okano (D0CS00191K-(cit100)/*[position()=1]) 2011; 50 van Delden (D0CS00191K-(cit67)/*[position()=1]) 2004 Cai (D0CS00191K-(cit56)/*[position()=1]) 2018; 47 Dai (D0CS00191K-(cit4)/*[position()=1]) 2012; 17 Irie (D0CS00191K-(cit50)/*[position()=1]) 2000; 100 Akagi (D0CS00191K-(cit108)/*[position()=1]) 2020; 32 Zhang (D0CS00191K-(cit109)/*[position()=1]) 2015; 54 Saleh (D0CS00191K-(cit113)/*[position()=1]) 2015; 21 Lu (D0CS00191K-(cit26)/*[position()=1]) 2015; 6 Guan (D0CS00191K-(cit111)/*[position()=1]) 2015; 5 Zhou (D0CS00191K-(cit139)/*[position()=1]) 2005; 70 Yang (D0CS00191K-(cit94)/*[position()=1]) 2014; 47 Shen (D0CS00191K-(cit142)/*[position()=1]) 2016; 55 Qiao (D0CS00191K-(cit71)/*[position()=1]) 2019; 55 Lu (D0CS00191K-(cit73)/*[position()=1]) 2019; 10 Yeom (D0CS00191K-(cit97)/*[position()=1]) 2018; 359 Fan (D0CS00191K-(cit116)/*[position()=1]) 2019; 11 Mishra (D0CS00191K-(cit137)/*[position()=1]) 2018; 9 Jiang (D0CS00191K-(cit40)/*[position()=1]) 2017; 17 Takaishi (D0CS00191K-(cit132)/*[position()=1]) 2020; 142 Cao (D0CS00191K-(cit29)/*[position()=1]) 2011; 7 Pijper (D0CS00191K-(cit68)/*[position()=1]) 2008; 130 Cortijo (D0CS00191K-(cit91)/*[position()=1]) 2017; 56 Gaedke (D0CS00191K-(cit93)/*[position()=1]) 2019; 10 Anger (D0CS00191K-(cit80)/*[position()=1]) 2012; 134 Zhu (D0CS00191K-(cit151)/*[position()=1]) 2017; 8 Blanco (D0CS00191K-(cit150)/*[position()=1]) 2015; 44 Jiang (D0CS00191K-(cit36)/*[position()=1]) 2015; 6 Duan (D0CS00191K-(cit102)/*[position()=1]) 2011; 115 Liu (D0CS00191K-(cit157)/*[position()=1]) 2018; 57 Hou (D0CS00191K-(cit22)/*[position()=1]) 2020; 85 |
References_xml | – issn: 2010 publication-title: Molecular Biology. Academic Cell Update doi: Clark – volume: 6 start-page: 8144 year: 2015 ident: D0CS00191K-(cit26)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C5PY01301A – volume: 117 start-page: 4181 year: 1995 ident: D0CS00191K-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00119a039 – volume: 11 start-page: 10504 year: 2019 ident: D0CS00191K-(cit116)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR01959F – volume: 8 start-page: 1906 year: 2017 ident: D0CS00191K-(cit35)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C7PY00130D – volume: 115 start-page: 11581 year: 2011 ident: D0CS00191K-(cit57)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp205893y – volume: 120 start-page: 79 year: 2020 ident: D0CS00191K-(cit61)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00221 – volume: 7 start-page: 890 year: 2015 ident: D0CS00191K-(cit65)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2362 – volume: 136 start-page: 15901 year: 2014 ident: D0CS00191K-(cit154)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509531t – volume: 52 start-page: 6639 year: 2016 ident: D0CS00191K-(cit19)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC01423B – volume: 136 start-page: 13045 year: 2014 ident: D0CS00191K-(cit83)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5069323 – volume: 37 start-page: 697 year: 2018 ident: D0CS00191K-(cit140)/*[position()=1] publication-title: Organometallics doi: 10.1021/acs.organomet.7b00534 – volume: 125 start-page: 5051 year: 2003 ident: D0CS00191K-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0288486 – volume: 388 start-page: 112146 year: 2020 ident: D0CS00191K-(cit28)/*[position()=1] publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2019.112146 – volume: 124 start-page: 9204 year: 2002 ident: D0CS00191K-(cit88)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0120429 – volume: 59 start-page: 4953 year: 2020 ident: D0CS00191K-(cit159)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000589 – volume: 273 start-page: 1686 year: 1996 ident: D0CS00191K-(cit66)/*[position()=1] publication-title: Science doi: 10.1126/science.273.5282.1686 – volume: 3 start-page: 1312 year: 2007 ident: D0CS00191K-(cit103)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b710165a – volume: 70 start-page: 6164 year: 2005 ident: D0CS00191K-(cit139)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo050489k – volume: 50 start-page: 9951 year: 2014 ident: D0CS00191K-(cit134)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC03944K – volume: 55 start-page: 8776 year: 2019 ident: D0CS00191K-(cit143)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC02849H – volume: 22 start-page: 18208 year: 2016 ident: D0CS00191K-(cit30)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201603998 – volume: 54 start-page: 4334 year: 2015 ident: D0CS00191K-(cit152)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411593 – volume: 28 start-page: 1644 year: 2016 ident: D0CS00191K-(cit141)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504883 – volume: 55 start-page: 633 year: 2016 ident: D0CS00191K-(cit89)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01902 – volume: 6 start-page: 6652 year: 2015 ident: D0CS00191K-(cit149)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7652 – volume: 54 start-page: 9333 year: 2015 ident: D0CS00191K-(cit153)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502209 – volume: 59 start-page: 8094 year: 2020 ident: D0CS00191K-(cit95)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916285 – volume: 141 start-page: 2097 year: 2019 ident: D0CS00191K-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11872 – volume: 138 start-page: 2219 year: 2016 ident: D0CS00191K-(cit58)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11580 – volume: 21 start-page: 1673 year: 2015 ident: D0CS00191K-(cit113)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201405176 – volume: 7 start-page: 10591 year: 2016 ident: D0CS00191K-(cit38)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10591 – volume: 115 start-page: 3322 year: 2011 ident: D0CS00191K-(cit102)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp110636b – volume: 59 start-page: 15226 year: 2020 ident: D0CS00191K-(cit161)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006486 – volume: 10 start-page: 2190 year: 2018 ident: D0CS00191K-(cit155)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201800081 – volume: 135 start-page: 19292 year: 2013 ident: D0CS00191K-(cit129)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4098803 – volume: 24 start-page: 1509 year: 2018 ident: D0CS00191K-(cit158)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201704431 – volume: 21 start-page: 7695 year: 2015 ident: D0CS00191K-(cit82)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201500704 – volume: 142 start-page: 1774 year: 2020 ident: D0CS00191K-(cit132)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13184 – volume: 139 start-page: 13867 year: 2017 ident: D0CS00191K-(cit107)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07639 – volume: 12 start-page: 18148 year: 2020 ident: D0CS00191K-(cit117)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c02080 – volume: 16 start-page: 2089 year: 2006 ident: D0CS00191K-(cit42)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600130 – volume: 57 start-page: 6475 year: 2018 ident: D0CS00191K-(cit157)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801462 – volume: 304 start-page: 278 year: 2004 ident: D0CS00191K-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1095353 – volume: 359 start-page: 309 year: 2018 ident: D0CS00191K-(cit97)/*[position()=1] publication-title: Science doi: 10.1126/science.aao7172 – volume: 55 start-page: 2994 year: 2016 ident: D0CS00191K-(cit15)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201505520 – volume: 114 start-page: 12174 year: 2014 ident: D0CS00191K-(cit51)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500249p – volume: 18 start-page: 177 year: 2006 ident: D0CS00191K-(cit118)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200501047 – volume: 10 start-page: 61 year: 2004 ident: D0CS00191K-(cit25)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200305276 – volume: 29 start-page: 1900587 year: 2019 ident: D0CS00191K-(cit39)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900587 – volume: 9 start-page: 1897 year: 2018 ident: D0CS00191K-(cit106)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04303-8 – volume: 73 start-page: 639 year: 2001 ident: D0CS00191K-(cit16)/*[position()=1] publication-title: Pure Appl. Chem. doi: 10.1351/pac200173040639 – start-page: 1529 year: 2009 ident: D0CS00191K-(cit90)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b819270g – volume: 59 start-page: 12811 year: 2020 ident: D0CS00191K-(cit160)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005703 – volume: 55 start-page: 8062 year: 2016 ident: D0CS00191K-(cit142)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201601633 – volume: 5 start-page: 1700014 year: 2017 ident: D0CS00191K-(cit72)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700014 – volume: 139 start-page: 13218 year: 2017 ident: D0CS00191K-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07626 – volume: 25 start-page: 5128 year: 2019 ident: D0CS00191K-(cit17)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201805814 – volume: 33 start-page: 12419 year: 2017 ident: D0CS00191K-(cit32)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02285 – volume: 6 start-page: 6959 year: 2015 ident: D0CS00191K-(cit76)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7959 – volume: 6 start-page: 7045 year: 2015 ident: D0CS00191K-(cit34)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C5PY01175B – volume: 15 start-page: 20197 year: 2013 ident: D0CS00191K-(cit114)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53620c – volume: 72 start-page: 469 year: 2012 ident: D0CS00191K-(cit48)/*[position()=1] publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2012.04.011 – volume: 8 start-page: 310 year: 2016 ident: D0CS00191K-(cit156)/*[position()=1] publication-title: Polymers doi: 10.3390/polym8080310 – volume: 53 start-page: 13424 year: 2014 ident: D0CS00191K-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407223 – volume: 10 start-page: 5861 year: 2019 ident: D0CS00191K-(cit78)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02269 – volume: 21 start-page: 17100 year: 2015 ident: D0CS00191K-(cit81)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201502237 – volume: 10 start-page: 843 year: 2019 ident: D0CS00191K-(cit101)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC04026E – volume: 52 start-page: 7990 year: 2016 ident: D0CS00191K-(cit74)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC03256G – volume: 7 start-page: 4100 year: 2017 ident: D0CS00191K-(cit148)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00827 – volume: 19 start-page: 449 year: 2018 ident: D0CS00191K-(cit130)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01554 – volume: 5 start-page: 10479 year: 2015 ident: D0CS00191K-(cit111)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep10479 – volume: 54 start-page: 5630 year: 2018 ident: D0CS00191K-(cit115)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC02777C – volume: 199 start-page: 1675 year: 1998 ident: D0CS00191K-(cit20)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/(SICI)1521-3935(19980801)199:8<1675::AID-MACP1675>3.0.CO;2-E – volume: 139 start-page: 16568 year: 2017 ident: D0CS00191K-(cit136)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07469 – volume: 11 start-page: 3102 year: 2016 ident: D0CS00191K-(cit44)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201601114 – volume: 13 start-page: 6129 year: 2017 ident: D0CS00191K-(cit31)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C7SM00935F – volume: 31 start-page: 2288 year: 2015 ident: D0CS00191K-(cit41)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.5b00423 – volume: 9 start-page: 2151 year: 2018 ident: D0CS00191K-(cit53)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00690 – volume: 118 start-page: 3032 year: 2018 ident: D0CS00191K-(cit37)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00225 – volume: 47 start-page: 7043 year: 2014 ident: D0CS00191K-(cit94)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma501059z – volume: 46 start-page: 2592 year: 2017 ident: D0CS00191K-(cit60)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00245A – volume: 50 start-page: 12474 year: 2011 ident: D0CS00191K-(cit100)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201104708 – volume: 25 start-page: 12526 year: 2019 ident: D0CS00191K-(cit105)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201902676 – volume: 7 start-page: 4654 year: 2011 ident: D0CS00191K-(cit29)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c1sm05219e – volume: 10 start-page: 5632 year: 2004 ident: D0CS00191K-(cit23)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200400463 – volume: 375 start-page: 72 year: 2017 ident: D0CS00191K-(cit145)/*[position()=1] publication-title: Top. Curr. Chem. doi: 10.1007/s41061-017-0161-4 – volume: 8 start-page: 4190 year: 2017 ident: D0CS00191K-(cit146)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C7PY00804J – start-page: 200 year: 2004 ident: D0CS00191K-(cit67)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b312170d – volume: 47 start-page: 14204 year: 2018 ident: D0CS00191K-(cit56)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT01808A – volume: 46 start-page: 8948 year: 2007 ident: D0CS00191K-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701285 – volume: 43 start-page: 148 year: 2014 ident: D0CS00191K-(cit46)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60181A – volume: 130 start-page: 4541 year: 2008 ident: D0CS00191K-(cit68)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711283c – volume: 55 start-page: 4095 year: 2019 ident: D0CS00191K-(cit122)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC01138B – volume: 46 start-page: 2404 year: 2017 ident: D0CS00191K-(cit162)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00163K – volume: 55 start-page: 14442 year: 2016 ident: D0CS00191K-(cit128)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607681 – volume: 135 start-page: 2156 year: 2013 ident: D0CS00191K-(cit124)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400160j – volume: 6 start-page: 4230 year: 2015 ident: D0CS00191K-(cit36)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C5PY00496A – volume: 54 start-page: 143 year: 2015 ident: D0CS00191K-(cit109)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic5019136 – volume: 9 start-page: 250 year: 2017 ident: D0CS00191K-(cit69)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2668 – volume: 1 start-page: 0045 year: 2017 ident: D0CS00191K-(cit3)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0045 – volume: 19 start-page: 3029 year: 2013 ident: D0CS00191K-(cit92)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201203401 – volume: 27 start-page: 1701368 year: 2017 ident: D0CS00191K-(cit49)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701368 – volume: 52 start-page: 5932 year: 2016 ident: D0CS00191K-(cit123)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC01748G – volume: 122 start-page: 12559 year: 2018 ident: D0CS00191K-(cit7)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03412 – volume: 20 start-page: 2908 year: 2008 ident: D0CS00191K-(cit119)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200801165 – volume: 16 start-page: 1167 year: 2018 ident: D0CS00191K-(cit121)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C7OB03057F – volume: 46 start-page: 7178 year: 2010 ident: D0CS00191K-(cit33)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc00891e – volume: 127 start-page: 13804 year: 2005 ident: D0CS00191K-(cit52)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055268a – volume: 12 start-page: 1472 year: 2010 ident: D0CS00191K-(cit70)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol100117s – volume: 56 start-page: 4555 year: 2017 ident: D0CS00191K-(cit91)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b03094 – volume: 24 start-page: 15067 year: 2018 ident: D0CS00191K-(cit86)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201803069 – volume: 38 start-page: 747 year: 2009 ident: D0CS00191K-(cit13)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b800412a – volume: 292 start-page: 2021 year: 2001 ident: D0CS00191K-(cit64)/*[position()=1] publication-title: Science doi: 10.1126/science.1062070 – volume: 134 start-page: 15628 year: 2012 ident: D0CS00191K-(cit80)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304424t – volume: 16 start-page: 1905734 year: 2020 ident: D0CS00191K-(cit96)/*[position()=1] publication-title: Small doi: 10.1002/smll.201905734 – volume: 111 start-page: 3470 year: 1989 ident: D0CS00191K-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00191a076 – volume: 209 start-page: 2049 year: 2008 ident: D0CS00191K-(cit47)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200800192 – volume: 52 start-page: 5171 year: 2016 ident: D0CS00191K-(cit54)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC01277A – volume: 6 start-page: 9421 year: 2014 ident: D0CS00191K-(cit112)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR00340C – volume: 6 start-page: 431 year: 2017 ident: D0CS00191K-(cit131)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.7b00131 – volume-title: Molecular Biology. Academic Cell Update year: 2010 ident: D0CS00191K-(cit2)/*[position()=1] – volume: 138 start-page: 5773 year: 2016 ident: D0CS00191K-(cit147)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02401 – volume: 10 start-page: 10003 year: 2019 ident: D0CS00191K-(cit93)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC03694F – volume: 141 start-page: 12610 year: 2019 ident: D0CS00191K-(cit138)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04133 – volume: 140 start-page: 281 year: 1937 ident: D0CS00191K-(cit18)/*[position()=1] publication-title: Nature doi: 10.1038/140281a0 – volume: 1 start-page: 841 year: 2010 ident: D0CS00191K-(cit87)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c0py00044b – volume: 34 start-page: 348 year: 1995 ident: D0CS00191K-(cit63)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199503481 – volume: 53 start-page: 9059 year: 2017 ident: D0CS00191K-(cit84)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC04903J – volume: 8 start-page: 7108 year: 2017 ident: D0CS00191K-(cit151)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C7PY01669G – volume: 119 start-page: 8588 year: 2015 ident: D0CS00191K-(cit24)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b03474 – volume: 3 start-page: 2350 year: 2015 ident: D0CS00191K-(cit99)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC02800G – volume: 10 start-page: 11179 year: 2016 ident: D0CS00191K-(cit104)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b06233 – volume: 55 start-page: 7126 year: 2016 ident: D0CS00191K-(cit133)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602035 – volume: 139 start-page: 785 year: 2017 ident: D0CS00191K-(cit98)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10550 – volume: 19 start-page: 3397 year: 2013 ident: D0CS00191K-(cit21)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201203243 – volume: 111 start-page: 8850 year: 1989 ident: D0CS00191K-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00206a013 – volume: 55 start-page: 14590 year: 2019 ident: D0CS00191K-(cit71)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC08090B – volume: 17 start-page: 1247 year: 2012 ident: D0CS00191K-(cit4)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules17021247 – volume: 17 start-page: 7125 year: 2017 ident: D0CS00191K-(cit40)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03946 – volume: 139 start-page: 9708 year: 2017 ident: D0CS00191K-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05316 – volume: 44 start-page: 5341 year: 2015 ident: D0CS00191K-(cit150)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00096C – volume: 5 start-page: 634 year: 2019 ident: D0CS00191K-(cit59)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.12.006 – volume: 19 start-page: 16615 year: 2013 ident: D0CS00191K-(cit127)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201303123 – volume: 58 start-page: 785 year: 2019 ident: D0CS00191K-(cit75)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811060 – volume: 8 start-page: 11220 year: 2018 ident: D0CS00191K-(cit110)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-29152-9 – volume: 85 start-page: 1104 year: 2020 ident: D0CS00191K-(cit22)/*[position()=1] publication-title: ChemPlusChem doi: 10.1002/cplu.202000049 – volume: 4 start-page: 2948 year: 2013 ident: D0CS00191K-(cit135)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3948 – volume: 6 start-page: 429 year: 2014 ident: D0CS00191K-(cit144)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1916 – volume: 9 start-page: 1295 year: 2018 ident: D0CS00191K-(cit137)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03542-z – volume: 19 start-page: 39 year: 2016 ident: D0CS00191K-(cit85)/*[position()=1] publication-title: C. R. Chim. doi: 10.1016/j.crci.2015.06.014 – volume: 100 start-page: 1683 year: 2000 ident: D0CS00191K-(cit50)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr980068l – volume: 72 start-page: 6635 year: 2007 ident: D0CS00191K-(cit12)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo070394d – volume: 58 start-page: 5946 year: 2019 ident: D0CS00191K-(cit125)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900607 – volume: 56 start-page: 2244 year: 2020 ident: D0CS00191K-(cit77)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC09687F – volume: 10 start-page: 5480 year: 2019 ident: D0CS00191K-(cit73)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-13428-3 – volume: 30 start-page: 2074 year: 2018 ident: D0CS00191K-(cit120)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00057 – volume: 133 start-page: 13938 year: 2011 ident: D0CS00191K-(cit126)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206546b – volume: 254 start-page: 2249 year: 2010 ident: D0CS00191K-(cit14)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2010.03.004 – volume: 100 start-page: 1789 year: 2000 ident: D0CS00191K-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr9900228 – volume: 52 start-page: 4577 year: 2013 ident: D0CS00191K-(cit79)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209497 – volume: 32 start-page: 1906665 year: 2020 ident: D0CS00191K-(cit108)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201906665 – volume: 113 start-page: 5468 year: 1991 ident: D0CS00191K-(cit62)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00014a057 |
SSID | ssj0011762 |
Score | 2.6928084 |
SecondaryResourceType | review_article |
Snippet | Chiroptical switches, whose chiral optical signals such as optical rotatory dispersion (ORD), circular dichroism (CD) and circularly polarized luminescence... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 995 |
SubjectTerms | Additives Asymmetry Catalysis catalytic activity Chirality circular dichroism spectroscopy Circular polarization design Dichroism electricity fields forces gates Information storage Logic circuits luminescence magnetic fields Optical communication optical isomerism separation society solvents Switches temperature |
Title | Supramolecular chiroptical switches |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33118560 https://www.proquest.com/docview/2469847119 https://www.proquest.com/docview/2455845952 https://www.proquest.com/docview/2511191997 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8AFMWAQGFPRuHAIxB9x6uM0Og0o49BU9BbZiTMqIK3aRkj76_cc20mmThNwiapXK3X9np9_7_l9IPQWrC0VC8pCoXkeMk2SUBDNwlxyCYADFzwxucNfL_j5jH2ex_Ou22aTXbJV7_OrW_NK_oerQAO-mizZf-Bs-1IgwGfgLzyBw_D8Kx5P69Va_vYNbk1i9nq5ss7pzZ-F4cemDz7b4gA-VNOVIt1xHk8WnWKqwvlCNv7U79KdciZ-pwkCmP6o5aIj1TYOv7oEct-bQJrIDNJ5E6zPws-iCQhxbed6eokaJ0Tkop-11ZuMRyFLbClHr1htLVInQIT11KSIbGdNd-QK3CTE7arziJpqqEWUmwZpAv_sDi1_UX_xLTubTSZZOp6n99EeAWOBDNDeyTj9NGlvk3DC3W2SnbgvU0vFh-7dN4HJjrUB2GPte8I02CN9jB45o2F4YiVgH93T1RP0oF20p-j4piQMe5Iw9JLwDM3OxunpeejaX4Q5o3wbshKwXskpBYudldo0CpBgLSdcaUlNmb6El5hIKbWiBdGFIDlRCpcEM6liNaIHaFAtK_0CDWOWx4IriXUCShu230iNWDGCzRhRAMgyQO_8f89yVxvetCj5lTUxClRkH6PTabNOXwJ03I5d2Yoot4469EuYuR2zyYhpVwpoCIsAvWm_hqUyl1Sy0svajIkBE8ciJneMASsBfkSIJEDPLXvaqVAKJjPA-AAdAL9acsfnl3fP7BV62O2LQzTYrmv9GnDnVh05sboGhx2AIg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+chiroptical+switches&rft.jtitle=Chemical+Society+reviews&rft.au=Zhang%2C+Li&rft.au=Han-Xiao%2C+Wang&rft.au=Li%2C+Shuai&rft.au=Liu%2C+Minghua&rft.date=2020-12-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=49&rft.issue=24&rft.spage=9095&rft.epage=9120&rft_id=info:doi/10.1039%2Fd0cs00191k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |