Enhancement of long-horizon task planning via active and passive modification in large language models

This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action comma...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 7113 - 21
Main Authors Hori, Kazuki, Suzuki, Kanata, Ogata, Tetsuya
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.02.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-91448-4

Cover

Abstract This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method.
AbstractList Abstract This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method.
This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method.This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method.
This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method.
ArticleNumber 7113
Author Ogata, Tetsuya
Suzuki, Kanata
Hori, Kazuki
Author_xml – sequence: 1
  givenname: Kazuki
  surname: Hori
  fullname: Hori, Kazuki
  email: horikazuki28@akane.waseda.jp
  organization: Faculty of Science and Engineering, Waseda University
– sequence: 2
  givenname: Kanata
  surname: Suzuki
  fullname: Suzuki, Kanata
  organization: Faculty of Science and Engineering, Waseda University, Artificial Intelligence Laboratories, Fujitsu Limited
– sequence: 3
  givenname: Tetsuya
  surname: Ogata
  fullname: Ogata, Tetsuya
  organization: Faculty of Science and Engineering, Waseda University, Waseda Research Institute for Science and Engineering (WISE), Waseda University, National Institute of Advanced Industrial Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40016395$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEYhYmpsbX2D7gwk7jpZpTvgaVpam3SxI2uCZ9TrjNwhZkm-uvl3qnVuJAFvIHnHF44L8FJyskD8BrBdwgS8b5SxKToIWa9RJSKnj4DZxhS1mOC8clf9Sm4qHUH22BYUiRfgFMKIeJEsjMQrtO9TtbPPi1dDt2U09jf5xJ_5tQtun7r9pNOKaaxe4i603aJD77TyXV7XeuhnrOLIVq9xKaIqZt0GX2b07jq8Xjsp_oKPA96qv7icT0HXz9ef7n61N99vrm9-nDXW0r40lPPgxSeGCOwcy4YxAZuEefMEQeDG4bWP0UoMGcMtkEEwwcnvUTCChM4OQe3m6_Leqf2Jc66_FBZR3XcyGVUuizRTl4FRog2iAxBk_aXUHsntAkQB08kR6x5XW5e-5K_r74uao7V-qk9zee1KoIGjPkgOG7o23_QXV5Lai89UEge_GCj3jxSq5m9e2rvdxoNwBtgS661-PCEIKgOqastddVSV8fUFW0isolqg9Poy5-7_6P6BZtfrt0
Cites_doi 10.1109/SII58957.2024.10417333
10.5555/3666122.3667509
10.15607/RSS.2023.XIX.016
10.1109/LRA.2021.3067862
10.1109/ACCESS.2024.3387941
10.5555/3666122.3667156
10.48550/arXiv.2204.01691
10.1109/LRA.2016.2633383
10.1109/IROS51168.2021.9635954
10.5555/3600270.3601883
10.48550/arXiv.2401.02117
10.5555/3618408.3619378
10.1109/IEEECONF49454.2021.9382700
10.5555/3666122.3667602
10.48550/arXiv.2401.04157
10.1109/LRA.2022.3153728
10.1177/02783649241273668
10.1109/ICRA57147.2024.10610676
10.1007/s10514-023-10133-5
10.48550/arXiv.2304.11477
10.1109/IROS58592.2024.10802349
10.48550/arXiv.2410.02193
10.1109/LRA.2022.3196159
10.1109/ICCV51070.2023.00280
10.1109/ICRA48891.2023.10160390
10.48550/arXiv.2404.03275
10.1007/s10514-023-10139-z
10.48550/arXiv.2309.14837
10.1109/SII52469.2022.9708612
10.48550/arXiv.2306.14714
10.48550/arXiv.2302.12927
10.1109/ICRA48891.2023.10160591
10.48550/arXiv.2212.06817
10.48550/arXiv.2410.24164
10.1109/LRA.2021.3063702
10.1109/ICRA57147.2024.10611477
10.48550/arXiv.2306.15724
10.1109/ICRA48891.2023.10161534
10.1109/LRA.2018.2853651
10.5555/3618408.3618748
10.1109/ICRA57147.2024.10611376
10.1109/SII58957.2024.10417267
10.1109/IROS55552.2023.10342363
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-91448-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 21
ExternalDocumentID oai_doaj_org_article_f533ab137fa34150aed8abf02fe39615
40016395
10_1038_s41598_025_91448_4
Genre Journal Article
GrantInformation_xml – fundername: JSPS Grant-in-Aid for Early-Career Scientists
  grantid: 24K20877
– fundername: Moonshot Research and Development Program
  grantid: JPMJMS2031
  funderid: http://dx.doi.org/10.13039/501100020963
– fundername: Moonshot Research and Development Program
  grantid: JPMJMS2031
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c436t-4e6f98e3bb82dddfb1576c1665d3d0fd77419411f5dbb2cf8fb67d9e918c8bf63
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:12 EDT 2025
Thu Sep 04 19:26:26 EDT 2025
Wed Aug 13 07:37:59 EDT 2025
Mon Jul 21 06:07:03 EDT 2025
Tue Jul 01 05:27:09 EDT 2025
Fri Feb 28 01:53:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-4e6f98e3bb82dddfb1576c1665d3d0fd77419411f5dbb2cf8fb67d9e918c8bf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f533ab137fa34150aed8abf02fe39615
PMID 40016395
PQID 3171996150
PQPubID 2041939
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_f533ab137fa34150aed8abf02fe39615
proquest_miscellaneous_3172267862
proquest_journals_3171996150
pubmed_primary_40016395
crossref_primary_10_1038_s41598_025_91448_4
springer_journals_10_1038_s41598_025_91448_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-28
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References M Toyoda (91448_CR16) 2021; 6
91448_CR39
91448_CR37
91448_CR38
SH Vemprala (91448_CR27) 2024; 12
91448_CR35
91448_CR36
91448_CR5
91448_CR33
91448_CR4
91448_CR34
91448_CR3
91448_CR2
91448_CR32
91448_CR1
91448_CR30
K Suzuki (91448_CR11) 2018; 3
91448_CR8
91448_CR7
91448_CR6
J Wu (91448_CR31) 2023; 47
91448_CR48
91448_CR49
91448_CR46
91448_CR47
91448_CR44
91448_CR45
91448_CR42
91448_CR43
Y Ding (91448_CR40) 2023; 47
91448_CR41
K Suzuki (91448_CR53) 2021; 6
J Liu (91448_CR51) 2022; 7
91448_CR19
91448_CR18
91448_CR15
91448_CR13
91448_CR14
M Toyoda (91448_CR17) 2022; 7
91448_CR12
91448_CR54
91448_CR52
91448_CR50
PC Yang (91448_CR10) 2016; 2
C Chi (91448_CR9) 2024
91448_CR28
91448_CR29
91448_CR26
91448_CR24
91448_CR25
91448_CR22
91448_CR23
91448_CR20
91448_CR21
References_xml – ident: 91448_CR54
  doi: 10.1109/SII58957.2024.10417333
– ident: 91448_CR41
  doi: 10.5555/3666122.3667509
– ident: 91448_CR7
  doi: 10.15607/RSS.2023.XIX.016
– volume: 6
  start-page: 4225
  year: 2021
  ident: 91448_CR16
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2021.3067862
– volume: 12
  start-page: 55682
  year: 2024
  ident: 91448_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3387941
– ident: 91448_CR43
  doi: 10.5555/3666122.3667156
– ident: 91448_CR5
  doi: 10.48550/arXiv.2204.01691
– volume: 2
  start-page: 397
  year: 2016
  ident: 91448_CR10
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2016.2633383
– ident: 91448_CR13
  doi: 10.1109/IROS51168.2021.9635954
– ident: 91448_CR6
– ident: 91448_CR50
  doi: 10.5555/3600270.3601883
– ident: 91448_CR8
  doi: 10.48550/arXiv.2401.02117
– ident: 91448_CR4
  doi: 10.5555/3618408.3619378
– ident: 91448_CR44
– ident: 91448_CR52
  doi: 10.1109/IEEECONF49454.2021.9382700
– ident: 91448_CR38
  doi: 10.5555/3666122.3667602
– ident: 91448_CR46
  doi: 10.48550/arXiv.2401.04157
– ident: 91448_CR20
– volume: 7
  start-page: 5159
  year: 2022
  ident: 91448_CR51
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3153728
– year: 2024
  ident: 91448_CR9
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/02783649241273668
– ident: 91448_CR2
– ident: 91448_CR42
  doi: 10.1109/ICRA57147.2024.10610676
– volume: 47
  start-page: 981
  year: 2023
  ident: 91448_CR40
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-023-10133-5
– ident: 91448_CR34
  doi: 10.48550/arXiv.2304.11477
– ident: 91448_CR24
– ident: 91448_CR30
– ident: 91448_CR19
  doi: 10.1109/IROS58592.2024.10802349
– ident: 91448_CR36
  doi: 10.48550/arXiv.2410.02193
– volume: 7
  start-page: 10930
  year: 2022
  ident: 91448_CR17
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3196159
– ident: 91448_CR47
– ident: 91448_CR35
  doi: 10.1109/ICCV51070.2023.00280
– ident: 91448_CR3
  doi: 10.1109/ICRA48891.2023.10160390
– ident: 91448_CR18
– ident: 91448_CR32
  doi: 10.48550/arXiv.2404.03275
– volume: 47
  start-page: 1087
  year: 2023
  ident: 91448_CR31
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-023-10139-z
– ident: 91448_CR14
  doi: 10.48550/arXiv.2309.14837
– ident: 91448_CR12
  doi: 10.1109/SII52469.2022.9708612
– ident: 91448_CR49
  doi: 10.48550/arXiv.2306.14714
– ident: 91448_CR33
  doi: 10.48550/arXiv.2302.12927
– ident: 91448_CR26
  doi: 10.1109/ICRA48891.2023.10160591
– ident: 91448_CR29
– ident: 91448_CR25
– ident: 91448_CR28
  doi: 10.48550/arXiv.2212.06817
– ident: 91448_CR22
  doi: 10.48550/arXiv.2410.24164
– volume: 6
  start-page: 3475
  year: 2021
  ident: 91448_CR53
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2021.3063702
– ident: 91448_CR21
  doi: 10.1109/ICRA57147.2024.10611477
– ident: 91448_CR39
  doi: 10.48550/arXiv.2306.15724
– ident: 91448_CR45
  doi: 10.1109/ICRA48891.2023.10161534
– volume: 3
  start-page: 3481
  year: 2018
  ident: 91448_CR11
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2853651
– ident: 91448_CR1
  doi: 10.5555/3618408.3618748
– ident: 91448_CR15
– ident: 91448_CR37
  doi: 10.1109/ICRA57147.2024.10611376
– ident: 91448_CR23
  doi: 10.1109/SII58957.2024.10417267
– ident: 91448_CR48
  doi: 10.1109/IROS55552.2023.10342363
SSID ssj0000529419
Score 2.4464476
Snippet This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been...
Abstract This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 7113
SubjectTerms 639/166
639/705
Algorithms
Humanities and Social Sciences
Humans
Large Language Models
Models, Theoretical
multidisciplinary
Planning
Robotics - methods
Robots
Science
Science (multidisciplinary)
Task Performance and Analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9cwEA86EXwRf1udEsE3LWuaNE2fRGVjCPrk4PsWkia3DWf6df1uMP9679L2O8Qfb6UNIb275D73I3eMva6UC8KZUIJHE0U1TpVOyrr0RrhGe-j7XL748xd9eKQ-rZrV7HAb57TK5UzMB3UYevKR76Geo4RZxC_v1j9K6hpF0dW5hcZNdiuXLkN5blft1sdCUSwluvmuTCXN3oj6iu6U1dSgUJEv7Td9lMv2_w1r_hEnzern4B67O-NG_n5i9H12I6YH7PbUSfLqIYP9dEL8I18fH4CfDem4PMH1_xwS37jxG1_P3Yn45anjLp9y3KXA14ie6fn7EChrKDOKnyZ-RinifHFn8twxZ3zEjg72v348LOcWCmWvpN6UKmroTJTemzqEAF6gfdELrZsgQwUBwZ9AEglogvd1Dwa8bkMXO2F640HLx2wnDSk-ZRyBoNbU6kiKSEaZk2A04OiqB424s2BvFkLa9VQpw-YItzR2IrtFsttMdqsK9oFovR1JVa7zi-H82M6bxgJiUeeFbMGhsm0qF4NxHqoaoiRRKNjuwik7b73RXgtKwV5tP-OmoUiIS3G4yGMQdrZozRXsycTh7UoUoWDZ4eRvF5ZfT_7vH3r2_7U8Z3dqkrp8GX6X7WzOL-ILhDMb_zLL7C9TdPHs
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPQRfxG-rp0TwTYtNk2bTx1XuOBb0RQ_uLSRN5m7xTJfdPUH_eidpuyKeD76VdhramSTzy3wCvK6k9dxqX6KjI4psrCytEHXpNLeNcth1uXzxx0_q9Ewuz5vzA6inXJgctJ9LWuZteooOe7clRZOSwerUWVAmI9gtONSk_uoZHC4Wy8_LvWUl-a4kb8cMmUroG17-QwvlYv03Icy_vKNZ6Zzcg7sjWmSL4fvuw0GID-D20D_yx0PA43iZpJYsfKxHdtXHi_Ky36x-9pHt7PYrW489idj3lWU2723MRs_WhJnT9bfep1ihLB62iuwqBYazyYjJcp-c7SM4Ozn-8uG0HBsnlJ0UalfKoLDVQTina-89Ok6nio4r1XjhK_QE-TixiGPjnas71OjU3Leh5brTDpV4DLPYx_AUGME_pVKDI8FDOopZgVohUVcdKkKbBbyZGGnWQ30Mk_3aQpuB7YbYbjLbjSzgfeL1njLVts43-s2FGWVtkBCodVzM0ZKKbSobvLYOqxqDaAmAFXA0ScqMC25rCAaleGoiL-DV_jEtleT_sDH015mGwOacznAFPBkkvP8SmbCvaGnwt5PIfw_-7x969n_kz-FOnWZhTok_gtlucx1eEKjZuZfjLP4FNgHxKQ
  priority: 102
  providerName: Springer Nature
Title Enhancement of long-horizon task planning via active and passive modification in large language models
URI https://link.springer.com/article/10.1038/s41598-025-91448-4
https://www.ncbi.nlm.nih.gov/pubmed/40016395
https://www.proquest.com/docview/3171996150
https://www.proquest.com/docview/3172267862
https://doaj.org/article/f533ab137fa34150aed8abf02fe39615
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBIvE-Nrga0yEm8QLY4dx3nsqk5TJSYETOqbZcc2qxhOtXZI21_P2UnLECBeeErkXCz7zh-_s-8D4E3BtaVa2twbVFF4pXmuGStzI6muhPFtm8IXvz8Tp-d8Nq_md1J9RZuwPjxwz7gjj3hEG8pqr3HBrQrtrNTGF6V3rBHJvbwsmuKOMtVH9S4bTpvBS6Zg8miFP0dvsjKmJuTxFO2XnSgF7P8TyvzthjRtPCePYXdAjGTct3QP7rnwBB72OSRvnoKfhosouXjKRzpPLrvwJb_orha3XSBrvfpKlkNeIvJ9oYlO6xvRwZIl4ub4_q2z0V4oiYgsArmMxuFkc5BJUq6c1TM4P5l-npzmQ_KEvOVMrHPuhG-kY8bI0lrrDUXNoqVCVJbZwluEfRRZRH1ljSlbL70RtW1cQ2UrjRfsOeyELrh9IAgBhYhJjhh1UR3TzEvhkbpovUDEmcHbDSPVso-RodLdNpOqZ7tCtqvEdsUzOI683lLG-NapAKWuBqmrf0k9g4ONpNQw6VYKoVC0qUbyDF5vP-N0iXcgOrjuOtEg4KxRj8vgRS_hbUt4xL-swcrfbUT-s_K_d-jl_-jQK3hUxrGZnOUPYGd9de0OEe6szQju1_N6BA_G49mnGT6Pp2cfPmLpRExGadT_ADIJ_7A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SChgJThA1iROv94AQha22tF0h1Eq9uXZstxVtsjRbUPlR_EZmnGQrxOPWW5Q4VjIee76Z8fgDeJHk2qZa2tgbdFHyQuex5jyLjUx1IYwvy3B88c5UTPbyj_vF_hL87GthaFtlvyaGhdrWJcXI19DO0YZZxC9vZ19jYo2i7GpPodGqxZa7-I4uW_Nm8wOO78ss2xjvvp_EHatAXOZczOPcCT-SjhsjM2utNylC7jIVorDcJt4iHkLHPk19YY3JSi-9EUM7cqNUltJ4wbHfa7CcU0XrAJbXx9NPnxdRHcqb4etddU7C5VqDFpKq2DKiRMwpevebBQxEAX9Dt39kZoPB27gNtzqkyt61qnUHllx1F6633JUX98CPqyPSGIoustqzk7o6jI9QYj_qis1184XNOj4k9u1YMx3WVaYry2aI1-n6tLa0TymoBjuu2AltSmd9AJUFjp7mPuxdiXgfwKCqK_cIGEJPIYhciaeO3EDNvRQeWyelF4h0I3jVC1LN2rM5VMipc6lasSsUuwpiV3kE6yTrRUs6VzvcqM8OVTdNlUf0q03Kh16jeS8S7azUxieZd5yUL4LVfqRUN9kbdamaETxfPMZpSrkXXbn6PLRBoDtE_zGCh-0IL74kJ9zNR9j5637ILzv_9w-t_P9bnsGNye7OttrenG49hpsZaWAoxV-Fwfzs3D1BMDU3TzsNZnBw1ZPmF8EsMdY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhCXijcpBYwEJ4g2iRPHe0BVoV21FCoOVNqbsWO7rWiTbbMFlZ_Gr2PGSbZCPG69rXa9VjKe8XzzsD-AF0mubaqljb3BECUvdB5rzrPYyFQXwviqCtcXf9wT2_v5-2kxXYKfw1kYaqsc9sSwUdumohz5CP0cNcwifhn5vi3i0-ZkfXYaE4MUVVoHOo1ORXbdxXcM39o3O5u41i-zbLL1-d123DMMxFXOxTzOnfBj6bgxMrPWepMi_K5SIQrLbeItYiMM8tPUF9aYrPLSG1HasRunspLGC47zXoPrJUdUhbZUTstFfocqaPjn_pxOwuWoRV9J59kyIkfMKY_3my8MlAF_w7l_1GiD65vchpUes7KNTsnuwJKr78KNjsXy4h74rfqQdIfyjKzx7LipD-JDlNePpmZz3X5ls54ZiX070kyHHZbp2rIZInf6fNJY6lgKSsKOanZM7elsSKWywNbT3of9KxHuA1ium9o9AoYgVAiiWeKpo4BQcy-Fx9FJ5QVi3gheDYJUs-6WDhWq61yqTuwKxa6C2FUewVuS9WIk3bAdvmjODlRvsMojDtYm5aXX6OiLRDsrtfFJ5h0nNYxgbVgp1Zt9qy6VNILni5_RYKkKo2vXnIcxCHlLjCQjeNit8OJJckLgfIyTvx6W_HLyf7_Q6v-f5RncRFNRH3b2dh_DrYwUMJzJX4Pl-dm5e4Koam6eBvVl8OWq7eUXi_E0nQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+long-horizon+task+planning+via+active+and+passive+modification+in+large+language+models&rft.jtitle=Scientific+reports&rft.au=Kazuki+Hori&rft.au=Kanata+Suzuki&rft.au=Tetsuya+Ogata&rft.date=2025-02-28&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1038%2Fs41598-025-91448-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f533ab137fa34150aed8abf02fe39615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon