Enhancement of long-horizon task planning via active and passive modification in large language models
This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action comma...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 7113 - 21 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.02.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-025-91448-4 |
Cover
Abstract | This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method. |
---|---|
AbstractList | Abstract This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method. This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method.This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method. This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been conducted in recent years on robot task planning using LLMs, the planning results tend to be simple, consisting of ten or fewer action commands, depending on the task. In the proposed method, the LLM actively collects missing information by asking questions, and the task plan is upgraded with one dialog example. One of the contributions of this study is a Q&A process in which ambiguity judgment is left to the LLM. By sequentially eliminating ambiguities contained in long-horizon tasks through dialogue, our method increases the amount of information included in movement plans. This study aims to further refine action plans obtained from active modification through dialogue by passive modification, and few studies have addressed these issues for long-horizon robot tasks. In our experiments, we define the number of items in the task planning as information for robot task execution, and we demonstrate the effectiveness of the proposed method through dialogue experiments using a cooking task as the subject. And as a result of the experiment, the amount of information could be increased by the proposed method. |
ArticleNumber | 7113 |
Author | Ogata, Tetsuya Suzuki, Kanata Hori, Kazuki |
Author_xml | – sequence: 1 givenname: Kazuki surname: Hori fullname: Hori, Kazuki email: horikazuki28@akane.waseda.jp organization: Faculty of Science and Engineering, Waseda University – sequence: 2 givenname: Kanata surname: Suzuki fullname: Suzuki, Kanata organization: Faculty of Science and Engineering, Waseda University, Artificial Intelligence Laboratories, Fujitsu Limited – sequence: 3 givenname: Tetsuya surname: Ogata fullname: Ogata, Tetsuya organization: Faculty of Science and Engineering, Waseda University, Waseda Research Institute for Science and Engineering (WISE), Waseda University, National Institute of Advanced Industrial Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40016395$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFSEYhYmpsbX2D7gwk7jpZpTvgaVpam3SxI2uCZ9TrjNwhZkm-uvl3qnVuJAFvIHnHF44L8FJyskD8BrBdwgS8b5SxKToIWa9RJSKnj4DZxhS1mOC8clf9Sm4qHUH22BYUiRfgFMKIeJEsjMQrtO9TtbPPi1dDt2U09jf5xJ_5tQtun7r9pNOKaaxe4i603aJD77TyXV7XeuhnrOLIVq9xKaIqZt0GX2b07jq8Xjsp_oKPA96qv7icT0HXz9ef7n61N99vrm9-nDXW0r40lPPgxSeGCOwcy4YxAZuEefMEQeDG4bWP0UoMGcMtkEEwwcnvUTCChM4OQe3m6_Leqf2Jc66_FBZR3XcyGVUuizRTl4FRog2iAxBk_aXUHsntAkQB08kR6x5XW5e-5K_r74uao7V-qk9zee1KoIGjPkgOG7o23_QXV5Lai89UEge_GCj3jxSq5m9e2rvdxoNwBtgS661-PCEIKgOqastddVSV8fUFW0isolqg9Poy5-7_6P6BZtfrt0 |
Cites_doi | 10.1109/SII58957.2024.10417333 10.5555/3666122.3667509 10.15607/RSS.2023.XIX.016 10.1109/LRA.2021.3067862 10.1109/ACCESS.2024.3387941 10.5555/3666122.3667156 10.48550/arXiv.2204.01691 10.1109/LRA.2016.2633383 10.1109/IROS51168.2021.9635954 10.5555/3600270.3601883 10.48550/arXiv.2401.02117 10.5555/3618408.3619378 10.1109/IEEECONF49454.2021.9382700 10.5555/3666122.3667602 10.48550/arXiv.2401.04157 10.1109/LRA.2022.3153728 10.1177/02783649241273668 10.1109/ICRA57147.2024.10610676 10.1007/s10514-023-10133-5 10.48550/arXiv.2304.11477 10.1109/IROS58592.2024.10802349 10.48550/arXiv.2410.02193 10.1109/LRA.2022.3196159 10.1109/ICCV51070.2023.00280 10.1109/ICRA48891.2023.10160390 10.48550/arXiv.2404.03275 10.1007/s10514-023-10139-z 10.48550/arXiv.2309.14837 10.1109/SII52469.2022.9708612 10.48550/arXiv.2306.14714 10.48550/arXiv.2302.12927 10.1109/ICRA48891.2023.10160591 10.48550/arXiv.2212.06817 10.48550/arXiv.2410.24164 10.1109/LRA.2021.3063702 10.1109/ICRA57147.2024.10611477 10.48550/arXiv.2306.15724 10.1109/ICRA48891.2023.10161534 10.1109/LRA.2018.2853651 10.5555/3618408.3618748 10.1109/ICRA57147.2024.10611376 10.1109/SII58957.2024.10417267 10.1109/IROS55552.2023.10342363 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-025-91448-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_f533ab137fa34150aed8abf02fe39615 40016395 10_1038_s41598_025_91448_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: JSPS Grant-in-Aid for Early-Career Scientists grantid: 24K20877 – fundername: Moonshot Research and Development Program grantid: JPMJMS2031 funderid: http://dx.doi.org/10.13039/501100020963 – fundername: Moonshot Research and Development Program grantid: JPMJMS2031 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c436t-4e6f98e3bb82dddfb1576c1665d3d0fd77419411f5dbb2cf8fb67d9e918c8bf63 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:12 EDT 2025 Thu Sep 04 19:26:26 EDT 2025 Wed Aug 13 07:37:59 EDT 2025 Mon Jul 21 06:07:03 EDT 2025 Tue Jul 01 05:27:09 EDT 2025 Fri Feb 28 01:53:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-4e6f98e3bb82dddfb1576c1665d3d0fd77419411f5dbb2cf8fb67d9e918c8bf63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/f533ab137fa34150aed8abf02fe39615 |
PMID | 40016395 |
PQID | 3171996150 |
PQPubID | 2041939 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f533ab137fa34150aed8abf02fe39615 proquest_miscellaneous_3172267862 proquest_journals_3171996150 pubmed_primary_40016395 crossref_primary_10_1038_s41598_025_91448_4 springer_journals_10_1038_s41598_025_91448_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-28 |
PublicationDateYYYYMMDD | 2025-02-28 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | M Toyoda (91448_CR16) 2021; 6 91448_CR39 91448_CR37 91448_CR38 SH Vemprala (91448_CR27) 2024; 12 91448_CR35 91448_CR36 91448_CR5 91448_CR33 91448_CR4 91448_CR34 91448_CR3 91448_CR2 91448_CR32 91448_CR1 91448_CR30 K Suzuki (91448_CR11) 2018; 3 91448_CR8 91448_CR7 91448_CR6 J Wu (91448_CR31) 2023; 47 91448_CR48 91448_CR49 91448_CR46 91448_CR47 91448_CR44 91448_CR45 91448_CR42 91448_CR43 Y Ding (91448_CR40) 2023; 47 91448_CR41 K Suzuki (91448_CR53) 2021; 6 J Liu (91448_CR51) 2022; 7 91448_CR19 91448_CR18 91448_CR15 91448_CR13 91448_CR14 M Toyoda (91448_CR17) 2022; 7 91448_CR12 91448_CR54 91448_CR52 91448_CR50 PC Yang (91448_CR10) 2016; 2 C Chi (91448_CR9) 2024 91448_CR28 91448_CR29 91448_CR26 91448_CR24 91448_CR25 91448_CR22 91448_CR23 91448_CR20 91448_CR21 |
References_xml | – ident: 91448_CR54 doi: 10.1109/SII58957.2024.10417333 – ident: 91448_CR41 doi: 10.5555/3666122.3667509 – ident: 91448_CR7 doi: 10.15607/RSS.2023.XIX.016 – volume: 6 start-page: 4225 year: 2021 ident: 91448_CR16 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2021.3067862 – volume: 12 start-page: 55682 year: 2024 ident: 91448_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3387941 – ident: 91448_CR43 doi: 10.5555/3666122.3667156 – ident: 91448_CR5 doi: 10.48550/arXiv.2204.01691 – volume: 2 start-page: 397 year: 2016 ident: 91448_CR10 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2016.2633383 – ident: 91448_CR13 doi: 10.1109/IROS51168.2021.9635954 – ident: 91448_CR6 – ident: 91448_CR50 doi: 10.5555/3600270.3601883 – ident: 91448_CR8 doi: 10.48550/arXiv.2401.02117 – ident: 91448_CR4 doi: 10.5555/3618408.3619378 – ident: 91448_CR44 – ident: 91448_CR52 doi: 10.1109/IEEECONF49454.2021.9382700 – ident: 91448_CR38 doi: 10.5555/3666122.3667602 – ident: 91448_CR46 doi: 10.48550/arXiv.2401.04157 – ident: 91448_CR20 – volume: 7 start-page: 5159 year: 2022 ident: 91448_CR51 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2022.3153728 – year: 2024 ident: 91448_CR9 publication-title: The International Journal of Robotics Research doi: 10.1177/02783649241273668 – ident: 91448_CR2 – ident: 91448_CR42 doi: 10.1109/ICRA57147.2024.10610676 – volume: 47 start-page: 981 year: 2023 ident: 91448_CR40 publication-title: Autonomous Robots doi: 10.1007/s10514-023-10133-5 – ident: 91448_CR34 doi: 10.48550/arXiv.2304.11477 – ident: 91448_CR24 – ident: 91448_CR30 – ident: 91448_CR19 doi: 10.1109/IROS58592.2024.10802349 – ident: 91448_CR36 doi: 10.48550/arXiv.2410.02193 – volume: 7 start-page: 10930 year: 2022 ident: 91448_CR17 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2022.3196159 – ident: 91448_CR47 – ident: 91448_CR35 doi: 10.1109/ICCV51070.2023.00280 – ident: 91448_CR3 doi: 10.1109/ICRA48891.2023.10160390 – ident: 91448_CR18 – ident: 91448_CR32 doi: 10.48550/arXiv.2404.03275 – volume: 47 start-page: 1087 year: 2023 ident: 91448_CR31 publication-title: Autonomous Robots doi: 10.1007/s10514-023-10139-z – ident: 91448_CR14 doi: 10.48550/arXiv.2309.14837 – ident: 91448_CR12 doi: 10.1109/SII52469.2022.9708612 – ident: 91448_CR49 doi: 10.48550/arXiv.2306.14714 – ident: 91448_CR33 doi: 10.48550/arXiv.2302.12927 – ident: 91448_CR26 doi: 10.1109/ICRA48891.2023.10160591 – ident: 91448_CR29 – ident: 91448_CR25 – ident: 91448_CR28 doi: 10.48550/arXiv.2212.06817 – ident: 91448_CR22 doi: 10.48550/arXiv.2410.24164 – volume: 6 start-page: 3475 year: 2021 ident: 91448_CR53 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2021.3063702 – ident: 91448_CR21 doi: 10.1109/ICRA57147.2024.10611477 – ident: 91448_CR39 doi: 10.48550/arXiv.2306.15724 – ident: 91448_CR45 doi: 10.1109/ICRA48891.2023.10161534 – volume: 3 start-page: 3481 year: 2018 ident: 91448_CR11 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2853651 – ident: 91448_CR1 doi: 10.5555/3618408.3618748 – ident: 91448_CR15 – ident: 91448_CR37 doi: 10.1109/ICRA57147.2024.10611376 – ident: 91448_CR23 doi: 10.1109/SII58957.2024.10417267 – ident: 91448_CR48 doi: 10.1109/IROS55552.2023.10342363 |
SSID | ssj0000529419 |
Score | 2.4464476 |
Snippet | This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies have been... Abstract This study proposes a method for generating complex and long-horizon off-line task plans using large language models (LLMs). Although several studies... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 7113 |
SubjectTerms | 639/166 639/705 Algorithms Humanities and Social Sciences Humans Large Language Models Models, Theoretical multidisciplinary Planning Robotics - methods Robots Science Science (multidisciplinary) Task Performance and Analysis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9cwEA86EXwRf1udEsE3LWuaNE2fRGVjCPrk4PsWkia3DWf6df1uMP9679L2O8Qfb6UNIb275D73I3eMva6UC8KZUIJHE0U1TpVOyrr0RrhGe-j7XL748xd9eKQ-rZrV7HAb57TK5UzMB3UYevKR76Geo4RZxC_v1j9K6hpF0dW5hcZNdiuXLkN5blft1sdCUSwluvmuTCXN3oj6iu6U1dSgUJEv7Td9lMv2_w1r_hEnzern4B67O-NG_n5i9H12I6YH7PbUSfLqIYP9dEL8I18fH4CfDem4PMH1_xwS37jxG1_P3Yn45anjLp9y3KXA14ie6fn7EChrKDOKnyZ-RinifHFn8twxZ3zEjg72v348LOcWCmWvpN6UKmroTJTemzqEAF6gfdELrZsgQwUBwZ9AEglogvd1Dwa8bkMXO2F640HLx2wnDSk-ZRyBoNbU6kiKSEaZk2A04OiqB424s2BvFkLa9VQpw-YItzR2IrtFsttMdqsK9oFovR1JVa7zi-H82M6bxgJiUeeFbMGhsm0qF4NxHqoaoiRRKNjuwik7b73RXgtKwV5tP-OmoUiIS3G4yGMQdrZozRXsycTh7UoUoWDZ4eRvF5ZfT_7vH3r2_7U8Z3dqkrp8GX6X7WzOL-ILhDMb_zLL7C9TdPHs priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPQRfxG-rp0TwTYtNk2bTx1XuOBb0RQ_uLSRN5m7xTJfdPUH_eidpuyKeD76VdhramSTzy3wCvK6k9dxqX6KjI4psrCytEHXpNLeNcth1uXzxx0_q9Ewuz5vzA6inXJgctJ9LWuZteooOe7clRZOSwerUWVAmI9gtONSk_uoZHC4Wy8_LvWUl-a4kb8cMmUroG17-QwvlYv03Icy_vKNZ6Zzcg7sjWmSL4fvuw0GID-D20D_yx0PA43iZpJYsfKxHdtXHi_Ky36x-9pHt7PYrW489idj3lWU2723MRs_WhJnT9bfep1ihLB62iuwqBYazyYjJcp-c7SM4Ozn-8uG0HBsnlJ0UalfKoLDVQTina-89Ok6nio4r1XjhK_QE-TixiGPjnas71OjU3Leh5brTDpV4DLPYx_AUGME_pVKDI8FDOopZgVohUVcdKkKbBbyZGGnWQ30Mk_3aQpuB7YbYbjLbjSzgfeL1njLVts43-s2FGWVtkBCodVzM0ZKKbSobvLYOqxqDaAmAFXA0ScqMC25rCAaleGoiL-DV_jEtleT_sDH015mGwOacznAFPBkkvP8SmbCvaGnwt5PIfw_-7x969n_kz-FOnWZhTok_gtlucx1eEKjZuZfjLP4FNgHxKQ priority: 102 providerName: Springer Nature |
Title | Enhancement of long-horizon task planning via active and passive modification in large language models |
URI | https://link.springer.com/article/10.1038/s41598-025-91448-4 https://www.ncbi.nlm.nih.gov/pubmed/40016395 https://www.proquest.com/docview/3171996150 https://www.proquest.com/docview/3172267862 https://doaj.org/article/f533ab137fa34150aed8abf02fe39615 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBIvE-Nrga0yEm8QLY4dx3nsqk5TJSYETOqbZcc2qxhOtXZI21_P2UnLECBeeErkXCz7zh-_s-8D4E3BtaVa2twbVFF4pXmuGStzI6muhPFtm8IXvz8Tp-d8Nq_md1J9RZuwPjxwz7gjj3hEG8pqr3HBrQrtrNTGF6V3rBHJvbwsmuKOMtVH9S4bTpvBS6Zg8miFP0dvsjKmJuTxFO2XnSgF7P8TyvzthjRtPCePYXdAjGTct3QP7rnwBB72OSRvnoKfhosouXjKRzpPLrvwJb_orha3XSBrvfpKlkNeIvJ9oYlO6xvRwZIl4ub4_q2z0V4oiYgsArmMxuFkc5BJUq6c1TM4P5l-npzmQ_KEvOVMrHPuhG-kY8bI0lrrDUXNoqVCVJbZwluEfRRZRH1ljSlbL70RtW1cQ2UrjRfsOeyELrh9IAgBhYhJjhh1UR3TzEvhkbpovUDEmcHbDSPVso-RodLdNpOqZ7tCtqvEdsUzOI683lLG-NapAKWuBqmrf0k9g4ONpNQw6VYKoVC0qUbyDF5vP-N0iXcgOrjuOtEg4KxRj8vgRS_hbUt4xL-swcrfbUT-s_K_d-jl_-jQK3hUxrGZnOUPYGd9de0OEe6szQju1_N6BA_G49mnGT6Pp2cfPmLpRExGadT_ADIJ_7A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SChgJThA1iROv94AQha22tF0h1Eq9uXZstxVtsjRbUPlR_EZmnGQrxOPWW5Q4VjIee76Z8fgDeJHk2qZa2tgbdFHyQuex5jyLjUx1IYwvy3B88c5UTPbyj_vF_hL87GthaFtlvyaGhdrWJcXI19DO0YZZxC9vZ19jYo2i7GpPodGqxZa7-I4uW_Nm8wOO78ss2xjvvp_EHatAXOZczOPcCT-SjhsjM2utNylC7jIVorDcJt4iHkLHPk19YY3JSi-9EUM7cqNUltJ4wbHfa7CcU0XrAJbXx9NPnxdRHcqb4etddU7C5VqDFpKq2DKiRMwpevebBQxEAX9Dt39kZoPB27gNtzqkyt61qnUHllx1F6633JUX98CPqyPSGIoustqzk7o6jI9QYj_qis1184XNOj4k9u1YMx3WVaYry2aI1-n6tLa0TymoBjuu2AltSmd9AJUFjp7mPuxdiXgfwKCqK_cIGEJPIYhciaeO3EDNvRQeWyelF4h0I3jVC1LN2rM5VMipc6lasSsUuwpiV3kE6yTrRUs6VzvcqM8OVTdNlUf0q03Kh16jeS8S7azUxieZd5yUL4LVfqRUN9kbdamaETxfPMZpSrkXXbn6PLRBoDtE_zGCh-0IL74kJ9zNR9j5637ILzv_9w-t_P9bnsGNye7OttrenG49hpsZaWAoxV-Fwfzs3D1BMDU3TzsNZnBw1ZPmF8EsMdY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhCXijcpBYwEJ4g2iRPHe0BVoV21FCoOVNqbsWO7rWiTbbMFlZ_Gr2PGSbZCPG69rXa9VjKe8XzzsD-AF0mubaqljb3BECUvdB5rzrPYyFQXwviqCtcXf9wT2_v5-2kxXYKfw1kYaqsc9sSwUdumohz5CP0cNcwifhn5vi3i0-ZkfXYaE4MUVVoHOo1ORXbdxXcM39o3O5u41i-zbLL1-d123DMMxFXOxTzOnfBj6bgxMrPWepMi_K5SIQrLbeItYiMM8tPUF9aYrPLSG1HasRunspLGC47zXoPrJUdUhbZUTstFfocqaPjn_pxOwuWoRV9J59kyIkfMKY_3my8MlAF_w7l_1GiD65vchpUes7KNTsnuwJKr78KNjsXy4h74rfqQdIfyjKzx7LipD-JDlNePpmZz3X5ls54ZiX070kyHHZbp2rIZInf6fNJY6lgKSsKOanZM7elsSKWywNbT3of9KxHuA1ium9o9AoYgVAiiWeKpo4BQcy-Fx9FJ5QVi3gheDYJUs-6WDhWq61yqTuwKxa6C2FUewVuS9WIk3bAdvmjODlRvsMojDtYm5aXX6OiLRDsrtfFJ5h0nNYxgbVgp1Zt9qy6VNILni5_RYKkKo2vXnIcxCHlLjCQjeNit8OJJckLgfIyTvx6W_HLyf7_Q6v-f5RncRFNRH3b2dh_DrYwUMJzJX4Pl-dm5e4Koam6eBvVl8OWq7eUXi_E0nQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+long-horizon+task+planning+via+active+and+passive+modification+in+large+language+models&rft.jtitle=Scientific+reports&rft.au=Kazuki+Hori&rft.au=Kanata+Suzuki&rft.au=Tetsuya+Ogata&rft.date=2025-02-28&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1038%2Fs41598-025-91448-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f533ab137fa34150aed8abf02fe39615 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |