Mixed effect regression analysis for a cluster-based two-stage outcome-auxiliary-dependent sampling design with a continuous outcome
Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This...
Saved in:
Published in | Biostatistics (Oxford, England) Vol. 13; no. 4; pp. 650 - 664 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford Publishing Limited (England)
01.09.2012
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project. |
---|---|
AbstractList | Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project. [PUBLICATION ABSTRACT] Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66 , 502–511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67 , 194–202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project. Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project.Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project. Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project. |
Author | Xu, W. Zhou, H. |
Author_xml | – sequence: 1 givenname: W. surname: Xu fullname: Xu, W. – sequence: 2 givenname: H. surname: Zhou fullname: Zhou, H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22723503$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhompse3Vf2AMiRs3Y2FgvlyYNI1fSY0bXRMGzkypM3DlMPZ27w-X8fYa24UrCDzvy8s555Qc-eCBkOecveasE2e9C5h0cpicwbPvO2RcPCInXNZtIUXVHP3ZV4WspTwmp4jXjJWlqMUTclyWTSkqJk7Ir89uB5bCMIBJNMIYAdEFT7XX0y06pEOIVFMzLZggFr3GjKebUOTHR6BhSSbMUOhl5yan421hYQvegk8U9bydnB-pBXSjpzcuXa1WwSfnl7DgQf2UPB70hPDsbt2Qb-_ffb34WFx--fDp4vyyMFLUqZBWcsmM7QfDBgOtsRy0ga7l-ai3nel0L7koe8Z4k7etAdE1ppKmqoXtpdiQt3vf7dLPYE0OGfWkttHNObkK2qn7N95dqTH8VEJKtpZuQ17dGcTwYwFManZoYJq0h_wfxZno2paLSmT05QP0OiwxF3WlJGtYmRuTqRf_Jvob5dCgDLzZAyYGxAiDMm7telgDuil7qXUa1L1pUPtpyGL5QHzw_6_sN4zHxfQ |
CitedBy_id | crossref_primary_10_1155_2021_5524076 crossref_primary_10_1007_s12561_023_09416_3 crossref_primary_10_1093_biostatistics_kxw015 |
Cites_doi | 10.1080/01621459.1986.10478240 10.1093/biomet/82.1.139 10.1111/j.1541-0420.2010.01446.x 10.1093/biomet/88.2.447 10.1080/01621459.1991.10475006 10.1198/016214504000001853 10.1214/aos/1059655907 10.1111/j.0006-341X.2001.00795.x 10.1093/oxfordjournals.aje.a113266 10.1111/j.0006-341X.2002.00413.x 10.1080/01621459.1993.10594284 10.1111/j.0006-341X.2004.00165.x 10.1093/biomet/58.3.545 10.1111/j.1541-0420.2009.01280.x 10.1093/biostatistics/kxq080 10.1093/biomet/93.1.207 |
ContentType | Journal Article |
Copyright | Copyright Oxford Publishing Limited(England) Sep 2012 The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2012 |
Copyright_xml | – notice: Copyright Oxford Publishing Limited(England) Sep 2012 – notice: The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1093/biostatistics/kxs013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1468-4357 |
EndPage | 664 |
ExternalDocumentID | PMC3440236 2762801371 22723503 10_1093_biostatistics_kxs013 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES021900 – fundername: NIEHS NIH HHS grantid: P30 ES010126 – fundername: NCI NIH HHS grantid: R01 CA79949 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAWTL AAYXX ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EJD EMOBN F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NMDNZ NOMLY O0~ O9- ODMLO OJQWA OJZSN OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 ROL ROX RUSNO RW1 RXO RZO SV3 TEORI TJP TN5 TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 AAUQX ABQTQ ACIPB C1A CAG CGR COF CUY CVF ECM EIF M49 NPM NTWIH NU- RIG RNI 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c436t-4d4140cdbfc0fce8cd1eace981dbfbd9c9ab4132b0017ab48ce397c54c563db43 |
ISSN | 1465-4644 1468-4357 |
IngestDate | Thu Aug 21 17:19:57 EDT 2025 Fri Jul 11 11:59:47 EDT 2025 Mon Jun 30 10:58:26 EDT 2025 Thu Apr 03 07:00:57 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 01 03:45:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-4d4140cdbfc0fce8cd1eace981dbfbd9c9ab4132b0017ab48ce397c54c563db43 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 To whom correspondence should be addressed. |
OpenAccessLink | https://academic.oup.com/biostatistics/article-pdf/13/4/650/664597/kxs013.pdf |
PMID | 22723503 |
PQID | 1040702464 |
PQPubID | 26167 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3440236 proquest_miscellaneous_1039881353 proquest_journals_1040702464 pubmed_primary_22723503 crossref_citationtrail_10_1093_biostatistics_kxs013 crossref_primary_10_1093_biostatistics_kxs013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biostatistics (Oxford, England) |
PublicationTitleAlternate | Biostatistics |
PublicationYear | 2012 |
Publisher | Oxford Publishing Limited (England) Oxford University Press |
Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
References | (14_34646554) 2004; 60 PATTERSON (7_21243753) 1971; 58 Tsiatis (9_20298580) 2001; 88 (11_33672869) 2005; 100 (15_34059123) 2001; 57 Wang (10_35041500) 2010; 66 Zhou (17_37495065) 2011; 67 ZHOU (16_21242457) 1995; 82 Lu (5_21683197) 2006; 93 (8_28518842) 1986; 81 (13_24044610) 1991; 86 (1_23909505) 1993; 88 (18_33672872) 2002; 58 (19_39020688) 2011; 12 (2_38831375) 2003; 31 WHITE (12_8573057) 1982; 115 |
References_xml | – volume: 81 start-page: 82 issn: 0162-1459 year: 1986 ident: 8_28518842 doi: 10.1080/01621459.1986.10478240 – volume: 82 start-page: 139 issn: 0006-3444 issue: 1 year: 1995 ident: 16_21242457 publication-title: Biometrika doi: 10.1093/biomet/82.1.139 – volume: 67 start-page: 194 issn: 1541-0420 issue: 1 year: 2011 ident: 17_37495065 doi: 10.1111/j.1541-0420.2010.01446.x – volume: 88 start-page: 447 issn: 0006-3444 issue: 2 year: 2001 ident: 9_20298580 publication-title: Biometrika doi: 10.1093/biomet/88.2.447 – volume: 86 start-page: 79 issn: 0162-1459 year: 1991 ident: 13_24044610 doi: 10.1080/01621459.1991.10475006 – volume: 100 start-page: 459 issn: 0162-1459 year: 2005 ident: 11_33672869 doi: 10.1198/016214504000001853 – volume: 31 start-page: 1110 year: 2003 ident: 2_38831375 publication-title: THE ANNALS OF STATISTICS doi: 10.1214/aos/1059655907 – volume: 57 start-page: 795 issn: 1541-0420 year: 2001 ident: 15_34059123 doi: 10.1111/j.0006-341X.2001.00795.x – volume: 115 start-page: 119 issn: 0002-9262 issue: 1 year: 1982 ident: 12_8573057 publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a113266 – volume: 58 start-page: 413 issn: 1541-0420 year: 2002 ident: 18_33672872 doi: 10.1111/j.0006-341X.2002.00413.x – volume: 88 start-page: 9 issn: 0162-1459 year: 1993 ident: 1_23909505 doi: 10.1080/01621459.1993.10594284 – volume: 60 start-page: 8 issn: 1541-0420 year: 2004 ident: 14_34646554 doi: 10.1111/j.0006-341X.2004.00165.x – volume: 58 start-page: 545 issn: 0006-3444 issue: 3 year: 1971 ident: 7_21243753 publication-title: Biometrika doi: 10.1093/biomet/58.3.545 – volume: 66 start-page: 502 issn: 1541-0420 issue: 2 year: 2010 ident: 10_35041500 doi: 10.1111/j.1541-0420.2009.01280.x – volume: 12 start-page: 521 issn: 1465-4644 issue: 3 year: 2011 ident: 19_39020688 publication-title: Biostatistics doi: 10.1093/biostatistics/kxq080 – volume: 93 start-page: 207 issn: 0006-3444 issue: 1 year: 2006 ident: 5_21683197 publication-title: Biometrika doi: 10.1093/biomet/93.1.207 |
SSID | ssj0022363 |
Score | 1.9827411 |
Snippet | Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 650 |
SubjectTerms | Biomedical research Child Cluster Analysis Computer Simulation Cost reduction Environmental Pollutants - poisoning Female Humans Intelligence Likelihood Functions Male Maternal Exposure - adverse effects Models, Statistical Mothers Parameter estimation Polychlorinated Biphenyls - poisoning Pregnancy Regression analysis Research Design Simulation |
Title | Mixed effect regression analysis for a cluster-based two-stage outcome-auxiliary-dependent sampling design with a continuous outcome |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22723503 https://www.proquest.com/docview/1040702464 https://www.proquest.com/docview/1039881353 https://pubmed.ncbi.nlm.nih.gov/PMC3440236 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiDeFBRmJW-Ru13Gc5IgQqIDgtCv1FsWPLBFVitpEdDlz5jczfqXJLlpYLlHqxG6T-WrP2J-_QehVCj44RMeKlAAfwsCjJRmVilSZ0JXkJVWVVfv8zBen7MMyWU4mvwaspa4VM_njj_tK_seqUAZ2Nbtkr2HZvlEogHOwLxzBwnD8Jxt_qnfgLzpKRrTRZ47TaujFXmnEUiQjueqMHAIxI5aK2u9rAi6hmSzoWvhVmpTdrl7V5eachJS4bbQtDdW8OYuUpXj4PXCW2V43neHN-tqjVeF6bTYoee1nI2S6C9x5nyxkMPGw7Cy_b7aful7bksVsOBNhKB15mIlwnSfjCWHc6TnOdCjLCLhk6ajHjQfIYoPukzsRWj8Sc6dvfqmTdwJYYvhI8Pnrbjv3DY9UtS-Mdj0H0a2-x8WoncK1cgPdpBB22BD9_cc-gKexzczXP2fYipnHR6NWjlwrY1fnUvxykYY78GtO7qI7PiDBrx267qGJbu6jWy5F6fkD9NNiDDuM4T3GcMAYBgvjEo8whnuM4SswhgPGsMMYNhgzTfUYC7UfotN3b0_eLIjP3EEki3lLmGIQuEslKjmvpM6kOoYBXucQHIlKqFzmpQDvidopCDjNpAa_WCZMJjxWgsWP0EGzbvQThI1YE6dVqXQyZ1VKSwE-Nc-gdnosINadoji85EJ6WXuTXWVVXGXgKSJ9rW9O1uUv9x8G-xW-A9jC3QwGTApImKKX_WXons2aW9loeE-FYVpkmUkuM0WPnbn7L6QUIJbM4Uo6AkJ_g5F-H19p6i9WAj5mzKR-eHrNx3iGbu__uIfooN10-jk41a14YZH-G2yO3nc |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+effect+regression+analysis+for+a+cluster-based+two-stage+outcome-auxiliary-dependent+sampling+design+with+a+continuous+outcome&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Xu%2C+W.&rft.au=Zhou%2C+H.&rft.date=2012-09-01&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=13&rft.issue=4&rft.spage=650&rft.epage=664&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxs013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biostatistics_kxs013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon |