Mixed effect regression analysis for a cluster-based two-stage outcome-auxiliary-dependent sampling design with a continuous outcome

Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 13; no. 4; pp. 650 - 664
Main Authors Xu, W., Zhou, H.
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.09.2012
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project.
AbstractList Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project. [PUBLICATION ABSTRACT]
Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66 , 502–511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67 , 194–202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project.
Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project.Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project.
Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent research development further allowed one or both stages of the two-stage design to be outcome dependent on a continuous outcome variable. This outcome-dependent sampling feature enables further efficiency gain in parameter estimation and overall cost reduction of the study (e.g. Wang, X. and Zhou, H., 2010. Design and inference for cancer biomarker study with an outcome and auxiliary-dependent subsampling. Biometrics 66, 502-511; Zhou, H., Song, R., Wu, Y. and Qin, J., 2011. Statistical inference for a two-stage outcome-dependent sampling design with a continuous outcome. Biometrics 67, 194-202). In this paper, we develop a semiparametric mixed effect regression model for data from a two-stage design where the second-stage data are sampled with an outcome-auxiliary-dependent sample (OADS) scheme. Our method allows the cluster- or center-effects of the study subjects to be accounted for. We propose an estimated likelihood function to estimate the regression parameters. Simulation study indicates that greater study efficiency gains can be achieved under the proposed two-stage OADS design with center-effects when compared with other alternative sampling schemes. We illustrate the proposed method by analyzing a dataset from the Collaborative Perinatal Project.
Author Xu, W.
Zhou, H.
Author_xml – sequence: 1
  givenname: W.
  surname: Xu
  fullname: Xu, W.
– sequence: 2
  givenname: H.
  surname: Zhou
  fullname: Zhou, H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22723503$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhompse3Vf2AMiRs3Y2FgvlyYNI1fSY0bXRMGzkypM3DlMPZ27w-X8fYa24UrCDzvy8s555Qc-eCBkOecveasE2e9C5h0cpicwbPvO2RcPCInXNZtIUXVHP3ZV4WspTwmp4jXjJWlqMUTclyWTSkqJk7Ir89uB5bCMIBJNMIYAdEFT7XX0y06pEOIVFMzLZggFr3GjKebUOTHR6BhSSbMUOhl5yan421hYQvegk8U9bydnB-pBXSjpzcuXa1WwSfnl7DgQf2UPB70hPDsbt2Qb-_ffb34WFx--fDp4vyyMFLUqZBWcsmM7QfDBgOtsRy0ga7l-ai3nel0L7koe8Z4k7etAdE1ppKmqoXtpdiQt3vf7dLPYE0OGfWkttHNObkK2qn7N95dqTH8VEJKtpZuQ17dGcTwYwFManZoYJq0h_wfxZno2paLSmT05QP0OiwxF3WlJGtYmRuTqRf_Jvob5dCgDLzZAyYGxAiDMm7telgDuil7qXUa1L1pUPtpyGL5QHzw_6_sN4zHxfQ
CitedBy_id crossref_primary_10_1155_2021_5524076
crossref_primary_10_1007_s12561_023_09416_3
crossref_primary_10_1093_biostatistics_kxw015
Cites_doi 10.1080/01621459.1986.10478240
10.1093/biomet/82.1.139
10.1111/j.1541-0420.2010.01446.x
10.1093/biomet/88.2.447
10.1080/01621459.1991.10475006
10.1198/016214504000001853
10.1214/aos/1059655907
10.1111/j.0006-341X.2001.00795.x
10.1093/oxfordjournals.aje.a113266
10.1111/j.0006-341X.2002.00413.x
10.1080/01621459.1993.10594284
10.1111/j.0006-341X.2004.00165.x
10.1093/biomet/58.3.545
10.1111/j.1541-0420.2009.01280.x
10.1093/biostatistics/kxq080
10.1093/biomet/93.1.207
ContentType Journal Article
Copyright Copyright Oxford Publishing Limited(England) Sep 2012
The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2012
Copyright_xml – notice: Copyright Oxford Publishing Limited(England) Sep 2012
– notice: The Author 2012. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1093/biostatistics/kxs013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 664
ExternalDocumentID PMC3440236
2762801371
22723503
10_1093_biostatistics_kxs013
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES021900
– fundername: NIEHS NIH HHS
  grantid: P30 ES010126
– fundername: NCI NIH HHS
  grantid: R01 CA79949
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
AAYXX
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
O0~
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
ROL
ROX
RUSNO
RW1
RXO
RZO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAUQX
ABQTQ
ACIPB
C1A
CAG
CGR
COF
CUY
CVF
ECM
EIF
M49
NPM
NTWIH
NU-
RIG
RNI
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c436t-4d4140cdbfc0fce8cd1eace981dbfbd9c9ab4132b0017ab48ce397c54c563db43
ISSN 1465-4644
1468-4357
IngestDate Thu Aug 21 17:19:57 EDT 2025
Fri Jul 11 11:59:47 EDT 2025
Mon Jun 30 10:58:26 EDT 2025
Thu Apr 03 07:00:57 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 01 03:45:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-4d4140cdbfc0fce8cd1eace981dbfbd9c9ab4132b0017ab48ce397c54c563db43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
To whom correspondence should be addressed.
OpenAccessLink https://academic.oup.com/biostatistics/article-pdf/13/4/650/664597/kxs013.pdf
PMID 22723503
PQID 1040702464
PQPubID 26167
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3440236
proquest_miscellaneous_1039881353
proquest_journals_1040702464
pubmed_primary_22723503
crossref_citationtrail_10_1093_biostatistics_kxs013
crossref_primary_10_1093_biostatistics_kxs013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2012
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References (14_34646554) 2004; 60
PATTERSON (7_21243753) 1971; 58
Tsiatis (9_20298580) 2001; 88
(11_33672869) 2005; 100
(15_34059123) 2001; 57
Wang (10_35041500) 2010; 66
Zhou (17_37495065) 2011; 67
ZHOU (16_21242457) 1995; 82
Lu (5_21683197) 2006; 93
(8_28518842) 1986; 81
(13_24044610) 1991; 86
(1_23909505) 1993; 88
(18_33672872) 2002; 58
(19_39020688) 2011; 12
(2_38831375) 2003; 31
WHITE (12_8573057) 1982; 115
References_xml – volume: 81
  start-page: 82
  issn: 0162-1459
  year: 1986
  ident: 8_28518842
  doi: 10.1080/01621459.1986.10478240
– volume: 82
  start-page: 139
  issn: 0006-3444
  issue: 1
  year: 1995
  ident: 16_21242457
  publication-title: Biometrika
  doi: 10.1093/biomet/82.1.139
– volume: 67
  start-page: 194
  issn: 1541-0420
  issue: 1
  year: 2011
  ident: 17_37495065
  doi: 10.1111/j.1541-0420.2010.01446.x
– volume: 88
  start-page: 447
  issn: 0006-3444
  issue: 2
  year: 2001
  ident: 9_20298580
  publication-title: Biometrika
  doi: 10.1093/biomet/88.2.447
– volume: 86
  start-page: 79
  issn: 0162-1459
  year: 1991
  ident: 13_24044610
  doi: 10.1080/01621459.1991.10475006
– volume: 100
  start-page: 459
  issn: 0162-1459
  year: 2005
  ident: 11_33672869
  doi: 10.1198/016214504000001853
– volume: 31
  start-page: 1110
  year: 2003
  ident: 2_38831375
  publication-title: THE ANNALS OF STATISTICS
  doi: 10.1214/aos/1059655907
– volume: 57
  start-page: 795
  issn: 1541-0420
  year: 2001
  ident: 15_34059123
  doi: 10.1111/j.0006-341X.2001.00795.x
– volume: 115
  start-page: 119
  issn: 0002-9262
  issue: 1
  year: 1982
  ident: 12_8573057
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a113266
– volume: 58
  start-page: 413
  issn: 1541-0420
  year: 2002
  ident: 18_33672872
  doi: 10.1111/j.0006-341X.2002.00413.x
– volume: 88
  start-page: 9
  issn: 0162-1459
  year: 1993
  ident: 1_23909505
  doi: 10.1080/01621459.1993.10594284
– volume: 60
  start-page: 8
  issn: 1541-0420
  year: 2004
  ident: 14_34646554
  doi: 10.1111/j.0006-341X.2004.00165.x
– volume: 58
  start-page: 545
  issn: 0006-3444
  issue: 3
  year: 1971
  ident: 7_21243753
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.545
– volume: 66
  start-page: 502
  issn: 1541-0420
  issue: 2
  year: 2010
  ident: 10_35041500
  doi: 10.1111/j.1541-0420.2009.01280.x
– volume: 12
  start-page: 521
  issn: 1465-4644
  issue: 3
  year: 2011
  ident: 19_39020688
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxq080
– volume: 93
  start-page: 207
  issn: 0006-3444
  issue: 1
  year: 2006
  ident: 5_21683197
  publication-title: Biometrika
  doi: 10.1093/biomet/93.1.207
SSID ssj0022363
Score 1.9827411
Snippet Two-stage design is a well-known cost-effective way for conducting biomedical studies when the exposure variable is expensive or difficult to measure. Recent...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 650
SubjectTerms Biomedical research
Child
Cluster Analysis
Computer Simulation
Cost reduction
Environmental Pollutants - poisoning
Female
Humans
Intelligence
Likelihood Functions
Male
Maternal Exposure - adverse effects
Models, Statistical
Mothers
Parameter estimation
Polychlorinated Biphenyls - poisoning
Pregnancy
Regression analysis
Research Design
Simulation
Title Mixed effect regression analysis for a cluster-based two-stage outcome-auxiliary-dependent sampling design with a continuous outcome
URI https://www.ncbi.nlm.nih.gov/pubmed/22723503
https://www.proquest.com/docview/1040702464
https://www.proquest.com/docview/1039881353
https://pubmed.ncbi.nlm.nih.gov/PMC3440236
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiDeFBRmJW-Ru13Gc5IgQqIDgtCv1FsWPLBFVitpEdDlz5jczfqXJLlpYLlHqxG6T-WrP2J-_QehVCj44RMeKlAAfwsCjJRmVilSZ0JXkJVWVVfv8zBen7MMyWU4mvwaspa4VM_njj_tK_seqUAZ2Nbtkr2HZvlEogHOwLxzBwnD8Jxt_qnfgLzpKRrTRZ47TaujFXmnEUiQjueqMHAIxI5aK2u9rAi6hmSzoWvhVmpTdrl7V5eachJS4bbQtDdW8OYuUpXj4PXCW2V43neHN-tqjVeF6bTYoee1nI2S6C9x5nyxkMPGw7Cy_b7aful7bksVsOBNhKB15mIlwnSfjCWHc6TnOdCjLCLhk6ajHjQfIYoPukzsRWj8Sc6dvfqmTdwJYYvhI8Pnrbjv3DY9UtS-Mdj0H0a2-x8WoncK1cgPdpBB22BD9_cc-gKexzczXP2fYipnHR6NWjlwrY1fnUvxykYY78GtO7qI7PiDBrx267qGJbu6jWy5F6fkD9NNiDDuM4T3GcMAYBgvjEo8whnuM4SswhgPGsMMYNhgzTfUYC7UfotN3b0_eLIjP3EEki3lLmGIQuEslKjmvpM6kOoYBXucQHIlKqFzmpQDvidopCDjNpAa_WCZMJjxWgsWP0EGzbvQThI1YE6dVqXQyZ1VKSwE-Nc-gdnosINadoji85EJ6WXuTXWVVXGXgKSJ9rW9O1uUv9x8G-xW-A9jC3QwGTApImKKX_WXons2aW9loeE-FYVpkmUkuM0WPnbn7L6QUIJbM4Uo6AkJ_g5F-H19p6i9WAj5mzKR-eHrNx3iGbu__uIfooN10-jk41a14YZH-G2yO3nc
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+effect+regression+analysis+for+a+cluster-based+two-stage+outcome-auxiliary-dependent+sampling+design+with+a+continuous+outcome&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Xu%2C+W.&rft.au=Zhou%2C+H.&rft.date=2012-09-01&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=13&rft.issue=4&rft.spage=650&rft.epage=664&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxs013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biostatistics_kxs013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon