Robust remote detection of depressive tendency based on keystroke dynamics and behavioural characteristics

Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals’ kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental s...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 28025 - 13
Main Authors Fadul, Ruba, AlShehhi, Aamna, Hadjileontiadis, Leontios
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-78489-x

Cover

Loading…
Abstract Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals’ kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects’ DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations—hold-time and flight-time variables—and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users’ behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild.
AbstractList Abstract Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals’ kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects’ DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations—hold-time and flight-time variables—and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users’ behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild.
Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals’ kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects’ DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations—hold-time and flight-time variables—and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users’ behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild.
Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals' kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects' DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations-hold-time and flight-time variables-and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users' behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild.Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals' kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects' DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations-hold-time and flight-time variables-and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users' behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild.
ArticleNumber 28025
Author Hadjileontiadis, Leontios
AlShehhi, Aamna
Fadul, Ruba
Author_xml – sequence: 1
  givenname: Ruba
  orcidid: 0000-0002-3443-6756
  surname: Fadul
  fullname: Fadul, Ruba
  email: ruba.fadul@ku.ac.ae
  organization: Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology
– sequence: 2
  givenname: Aamna
  orcidid: 0000-0003-1868-1003
  surname: AlShehhi
  fullname: AlShehhi, Aamna
  organization: Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology
– sequence: 3
  givenname: Leontios
  orcidid: 0000-0002-9932-9302
  surname: Hadjileontiadis
  fullname: Hadjileontiadis, Leontios
  organization: Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39543182$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PFTEUhhuDEUT-gAsziRs3o_2caZeGKJKQmBBYN_04A3OZaa9th3D_veUOonFBN23Ped7T0_O-RQchBkDoPcGfCWbyS-ZEKNliyttecqnah1foiGIuWsooPfjnfIhOct7gugRVnKg36JApwRmR9AhtLqNdcmkSzLFA46GAK2MMTRzqZZsg5_EemgLBQ3C7xpoMvqn5O9jlkuJd1eyCmUeXGxN8Y-HW3I9xSWZq3K1JxhVIYy41_w69HsyU4eRpP0bX379dnf5oL36enZ9-vWgdZ11pufWd6qmU3IEQGDtlbUcJtrIHzEBhz4Zh6GuMetX1BGNb52EACzHYzlF2jM7Xuj6ajd6mcTZpp6MZ9T4Q0402qTY0ge6IBa56b6iRnA7KUAFW8l4MivU9yFrr01prm-KvBXLR85gdTJMJEJesGamNUt5JVdGP_6GbOoZQf7qneKdoxyr14Yla7Az-ub0_jlSAroBLMecEwzNCsH50Xq_O6-q83juvH6qIraJc4XAD6e_bL6h-A3LasNM
Cites_doi 10.1016/j.eswa.2017.10.016
10.1016/j.compeleceng.2013.11.024
10.1016/j.knosys.2012.06.005
10.1136/bmjhci-2023-100914
10.1016/j.neucom.2018.03.067
10.1007/s11042-018-6083-5
10.1109/TNN.2006.875979
10.1016/j.eswa.2021.115222
10.1093/fampra/cmr092
10.1038/s41598-019-50002-9
10.1613/jair.953
10.4103/0253-7176.70510
10.1109/TAFFC.2022.3216993
10.1016/S1532-0464(03)00034-0
10.1371/journal.pone.0116820
10.4249/scholarpedia.1883
10.1016/j.softx.2020.100456
10.1023/A:1010933404324
10.1214/aos/1013203451
10.1046/j.1525-1497.2001.016009606.x
10.1016/S1874-1029(13)60052-X
10.1016/S2215-0366(21)00395-3
10.1080/08839514.2020.1861407
10.1001/jama.282.18.1737
10.23919/INDIACom54597.2022.9763125
10.1038/srep09678
10.1145/3292500.3330701
10.1037/e517532013-004
10.1155/2013/565183
10.1109/CEC.2019.8789891
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-78489-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ : directory of open access journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_61be497da2a842f9a25eb8475f9377e8
39543182
10_1038_s41598_024_78489_x
Genre Journal Article
GrantInformation_xml – fundername: ASPIRE Award for Research Excellence (AARE-20), Abu Dhabi, UAE
  grantid: AARE20-293
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
3V.
88A
ACSMW
AJTQC
M0L
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c436t-4bd6972884ce5500c9bb6210b87e03e90d3fff7b622d967100b038ae055fb6c23
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:13:39 EDT 2025
Fri Jul 11 05:03:06 EDT 2025
Wed Aug 13 07:01:43 EDT 2025
Wed Feb 19 02:16:11 EST 2025
Tue Jul 01 03:23:35 EDT 2025
Mon Jul 21 06:23:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Remote screening
Typing
Detection
Depression disease
Keystroke dynamics
Machine learning
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-4bd6972884ce5500c9bb6210b87e03e90d3fff7b622d967100b038ae055fb6c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3443-6756
0000-0002-9932-9302
0000-0003-1868-1003
OpenAccessLink https://doaj.org/article/61be497da2a842f9a25eb8475f9377e8
PMID 39543182
PQID 3128469263
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_61be497da2a842f9a25eb8475f9377e8
proquest_miscellaneous_3128824689
proquest_journals_3128469263
pubmed_primary_39543182
crossref_primary_10_1038_s41598_024_78489_x
springer_journals_10_1038_s41598_024_78489_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-14
PublicationDateYYYYMMDD 2024-11-14
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Pentland (CR12) 2010
Windeatt (CR34) 2006; 17
CR19
CR18
Christ, Braun, Neuffer, Kempa-Liehr (CR21) 2018; 307
Reddy (CR8) 2010; 32
CR17
Whiteford, Ferrari, Degenhardt, Feigin, Vos (CR2) 2015; 10
CR16
CR15
Chandrashekar, Sahin (CR27) 2014; 40
CR37
CR36
Peterson (CR33) 2009; 4
CR35
Wang (CR3) 2007; 6
Cao, Miao, Liu, Gao (CR30) 2013; 39
Hu, Gao, Zhao, Zhang, Wang (CR25) 2018; 93
Breiman (CR29) 2001; 45
Collaborators (CR1) 2022; 9
Deng, Li, Weng, Zhang (CR23) 2019; 78
Kroenke, Spitzer, Williams (CR10) 2001; 16
CR6
CR5
Macias Alonso, Hirt, Woelfle, Janiaud, Hemkens (CR11) 2024; 31
CR7
Friedman (CR31) 2001; 29
Schumann, Schneider, Kantert, Löwe, Linde (CR9) 2011; 29
Uysal, Gunal (CR26) 2012; 36
Mastoras (CR14) 2019; 9
Wainer, Cawley (CR38) 2021; 182
Too, Mirjalili (CR24) 2021; 35
Hajian-Tilaki (CR39) 2013; 4
Barandas (CR22) 2020; 11
Guilbert (CR4) 2002; 16
Goncalves, Busso (CR13) 2022; 13
Chawla, Bowyer, Hall, Kegelmeyer (CR20) 2002; 16
Song, Lu (CR28) 2015; 27
Dreiseitl, Ohno-Machado (CR32) 2002; 35
G Chandrashekar (78489_CR27) 2014; 40
M Christ (78489_CR21) 2018; 307
78489_CR5
78489_CR6
78489_CR35
78489_CR7
78489_CR36
78489_CR15
J Too (78489_CR24) 2021; 35
78489_CR37
78489_CR16
NV Chawla (78489_CR20) 2002; 16
M Barandas (78489_CR22) 2020; 11
L Hu (78489_CR25) 2018; 93
JH Friedman (78489_CR31) 2001; 29
S Dreiseitl (78489_CR32) 2002; 35
PS Wang (78489_CR3) 2007; 6
GMD Collaborators (78489_CR1) 2022; 9
K Hajian-Tilaki (78489_CR39) 2013; 4
AK Uysal (78489_CR26) 2012; 36
J Wainer (78489_CR38) 2021; 182
R-E Mastoras (78489_CR14) 2019; 9
Y-Y Song (78489_CR28) 2015; 27
HA Whiteford (78489_CR2) 2015; 10
L Goncalves (78489_CR13) 2022; 13
JJ Guilbert (78489_CR4) 2002; 16
T Windeatt (78489_CR34) 2006; 17
L Breiman (78489_CR29) 2001; 45
A Pentland (78489_CR12) 2010
I Schumann (78489_CR9) 2011; 29
MS Reddy (78489_CR8) 2010; 32
K Kroenke (78489_CR10) 2001; 16
78489_CR17
78489_CR18
78489_CR19
LE Peterson (78489_CR33) 2009; 4
AK Macias Alonso (78489_CR11) 2024; 31
Y Cao (78489_CR30) 2013; 39
X Deng (78489_CR23) 2019; 78
References_xml – volume: 93
  start-page: 423
  year: 2018
  end-page: 434
  ident: CR25
  article-title: Feature selection considering two types of feature relevancy and feature interdependency
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.016
– ident: CR18
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: CR27
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 36
  start-page: 226
  year: 2012
  end-page: 235
  ident: CR26
  article-title: A novel probabilistic feature selection method for text classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.06.005
– volume: 31
  year: 2024
  ident: CR11
  article-title: Definitions of digital biomarkers: a systematic mapping of the biomedical literature
  publication-title: BMJ Health Care Inform
  doi: 10.1136/bmjhci-2023-100914
– ident: CR16
– ident: CR37
– volume: 16
  start-page: 230
  year: 2002
  ident: CR4
  article-title: The world health report 2002 - reducing risks, promoting healthy life
  publication-title: Educ. Health
– volume: 307
  start-page: 72
  year: 2018
  end-page: 77
  ident: CR21
  article-title: Time series FeatuRe extraction on basis of scalable hypothesis tests (tsfresh-a python package)
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.067
– volume: 78
  start-page: 3797
  year: 2019
  end-page: 3816
  ident: CR23
  article-title: Feature selection for text classification: A review
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6083-5
– volume: 6
  start-page: 177
  year: 2007
  ident: CR3
  article-title: Delay and failure in treatment seeking after first onset of mental disorders in the world health organization’s world mental health survey initiative
  publication-title: World Psychiatry
– volume: 17
  start-page: 1194
  year: 2006
  end-page: 1211
  ident: CR34
  article-title: Accuracy/diversity and ensemble MLP classifier design
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.875979
– ident: CR35
– ident: CR6
– volume: 182
  year: 2021
  ident: CR38
  article-title: Nested cross-validation when selecting classifiers is overzealous for most practical applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115222
– volume: 29
  start-page: 255
  year: 2011
  end-page: 263
  ident: CR9
  article-title: Physicians attitudes, diagnostic process and barriers regarding depression diagnosis in primary care: a systematic review of qualitative studies
  publication-title: Fam. Pract.
  doi: 10.1093/fampra/cmr092
– volume: 9
  start-page: 13414
  year: 2019
  ident: CR14
  article-title: Touchscreen typing pattern analysis for remote detection of the depressive tendency
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50002-9
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR20
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 32
  start-page: 1
  year: 2010
  end-page: 2
  ident: CR8
  article-title: Depression: The disorder and the burden
  publication-title: Indian J. Psychol. Med.
  doi: 10.4103/0253-7176.70510
– volume: 13
  start-page: 2156
  year: 2022
  end-page: 2170
  ident: CR13
  article-title: Robust audiovisual emotion recognition: Aligning modalities, capturing temporal information, and handling missing features
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3216993
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  ident: CR32
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 4
  start-page: 627
  year: 2013
  end-page: 635
  ident: CR39
  article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation
  publication-title: Caspian J. Intern. Med.
– ident: CR19
– volume: 10
  year: 2015
  ident: CR2
  article-title: The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0116820
– ident: CR15
– volume: 4
  start-page: 1883
  year: 2009
  ident: CR33
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 11
  year: 2020
  ident: CR22
  article-title: TSFEL: Time series feature extraction library
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100456
– ident: CR17
– volume: 27
  start-page: 130
  year: 2015
  end-page: 135
  ident: CR28
  article-title: Decision tree methods: applications for classification and prediction
  publication-title: Shanghai Arch. Psychiatry
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR29
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2010
  ident: CR12
  publication-title: Honest Signals: How they Shape our World
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: CR31
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: CR36
– ident: CR5
– volume: 16
  start-page: 606
  year: 2001
  end-page: 613
  ident: CR10
  article-title: The PHQ-9
  publication-title: J. Gen. Intern. Med.
  doi: 10.1046/j.1525-1497.2001.016009606.x
– volume: 39
  start-page: 745
  year: 2013
  end-page: 758
  ident: CR30
  article-title: Advance and prospects of AdaBoost algorithm
  publication-title: Acta Automatica Sinica
  doi: 10.1016/S1874-1029(13)60052-X
– ident: CR7
– volume: 9
  start-page: 137
  year: 2022
  end-page: 150
  ident: CR1
  article-title: Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(21)00395-3
– volume: 35
  start-page: 247
  year: 2021
  end-page: 263
  ident: CR24
  article-title: General learning equilibrium optimizer: A new feature selection method for biological data classification
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2020.1861407
– ident: 78489_CR17
– ident: 78489_CR6
– ident: 78489_CR18
  doi: 10.1001/jama.282.18.1737
– volume: 45
  start-page: 5
  year: 2001
  ident: 78489_CR29
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 10
  year: 2015
  ident: 78489_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0116820
– volume: 9
  start-page: 13414
  year: 2019
  ident: 78489_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50002-9
– volume: 6
  start-page: 177
  year: 2007
  ident: 78489_CR3
  publication-title: World Psychiatry
– volume: 307
  start-page: 72
  year: 2018
  ident: 78489_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.067
– volume: 32
  start-page: 1
  year: 2010
  ident: 78489_CR8
  publication-title: Indian J. Psychol. Med.
  doi: 10.4103/0253-7176.70510
– ident: 78489_CR19
  doi: 10.23919/INDIACom54597.2022.9763125
– volume: 35
  start-page: 352
  year: 2002
  ident: 78489_CR32
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– volume-title: Honest Signals: How they Shape our World
  year: 2010
  ident: 78489_CR12
– ident: 78489_CR16
  doi: 10.1038/srep09678
– volume: 35
  start-page: 247
  year: 2021
  ident: 78489_CR24
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2020.1861407
– ident: 78489_CR37
  doi: 10.1145/3292500.3330701
– volume: 13
  start-page: 2156
  year: 2022
  ident: 78489_CR13
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3216993
– volume: 29
  start-page: 255
  year: 2011
  ident: 78489_CR9
  publication-title: Fam. Pract.
  doi: 10.1093/fampra/cmr092
– volume: 4
  start-page: 627
  year: 2013
  ident: 78489_CR39
  publication-title: Caspian J. Intern. Med.
– ident: 78489_CR7
– volume: 39
  start-page: 745
  year: 2013
  ident: 78489_CR30
  publication-title: Acta Automatica Sinica
  doi: 10.1016/S1874-1029(13)60052-X
– volume: 40
  start-page: 16
  year: 2014
  ident: 78489_CR27
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 182
  year: 2021
  ident: 78489_CR38
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115222
– volume: 16
  start-page: 606
  year: 2001
  ident: 78489_CR10
  publication-title: J. Gen. Intern. Med.
  doi: 10.1046/j.1525-1497.2001.016009606.x
– volume: 31
  year: 2024
  ident: 78489_CR11
  publication-title: BMJ Health Care Inform
  doi: 10.1136/bmjhci-2023-100914
– volume: 16
  start-page: 230
  year: 2002
  ident: 78489_CR4
  publication-title: Educ. Health
– volume: 9
  start-page: 137
  year: 2022
  ident: 78489_CR1
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(21)00395-3
– volume: 36
  start-page: 226
  year: 2012
  ident: 78489_CR26
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.06.005
– volume: 27
  start-page: 130
  year: 2015
  ident: 78489_CR28
  publication-title: Shanghai Arch. Psychiatry
– ident: 78489_CR5
  doi: 10.1037/e517532013-004
– ident: 78489_CR15
  doi: 10.1155/2013/565183
– volume: 11
  year: 2020
  ident: 78489_CR22
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100456
– volume: 17
  start-page: 1194
  year: 2006
  ident: 78489_CR34
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.875979
– volume: 93
  start-page: 423
  year: 2018
  ident: 78489_CR25
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.016
– ident: 78489_CR35
– volume: 78
  start-page: 3797
  year: 2019
  ident: 78489_CR23
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6083-5
– ident: 78489_CR36
  doi: 10.1109/CEC.2019.8789891
– volume: 4
  start-page: 1883
  year: 2009
  ident: 78489_CR33
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 29
  start-page: 1189
  year: 2001
  ident: 78489_CR31
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 16
  start-page: 321
  year: 2002
  ident: 78489_CR20
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
SSID ssj0000529419
Score 2.4384985
Snippet Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient...
Abstract Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 28025
SubjectTerms 631/114/1305
631/114/1386
692/53/2421
692/699/476/1414
Depression disease
Detection
Humanities and Social Sciences
Interactive computer systems
Keystroke dynamics
Machine learning
Mental depression
Mental disorders
multidisciplinary
Remote screening
Science
Science (multidisciplinary)
Smartphones
Typing
SummonAdditionalLinks – databaseName: DOAJ : directory of open access journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6ysOBF_G11lQjeNGybTtPkqIvL4sGDuLC3kKSTg0Irr32y-9_vJOl77qLixWvSluSbJF-mmXzD2BtiWN_EiEKRpyYAohO-7bxAIK4FSJrnOdriszo7h08X3cWNVF8pJqzIAxfgjlXjEUw_OOk0yGic7NDTktpFItYe8zVf4rwbzlRR9ZYGGrPekqlbfTwTU6XbZBJEr0EbcXmLibJg_592mb-dkGbiOb3P7q07Rv6-tPQBu4PjQ3ZYckhePWLfvkx-Oy98gwQ68gGXHFw18inyXZjrT-T5VzctpDzR1sCpnmbvvGym7_ROyUo_czcOfL23n9Q4eLit5vyYnZ9-_HpyJtYECiIQyIsAPyjTS60hIHkidTDeK_LxvO6xbtHUQxtj7KlMDkYlnR9PUDmsuy56FWT7hB2M04jPGAdXyxDInwoewHXGBagRfDOYhjw2gIq93YFpfxSdDJvPt1ttC_SWoLcZentZsQ8J7_2TSeM6F5Dl7Wp5-y_LV-xoZy27TrzZtolvlZGqrdjrfTVNmXQO4kactuUZLUFpU7Gnxcr7lrQmiQNoWbF3O7P_-vjfO_T8f3ToBbsr0_hMQYZwxA6WzRZf0pZn8a_y6L4GI2n8Eg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6IngRv62uEsGbhm2TaZqcRMVl8eBBXHi3kKSJoNCur32y-9_vJE3fsvhxbdKSzmRmMh_5DSGv0cK6JsbAJHpqDCBa5kTrWAC0tQAJ8zxXW3yRJ6fwedNuSsBtKmWVq07MiroffYqRH4mkSKXmUrw7-8VS16iUXS0tNG6SWwm6LJV0dZtuH2NJWSxodLkrUwt1NKG9SnfKOLBOgdLs_Jo9yrD9fztr_pEnzebn-B65W86N9P3C6PvkRhgekNtLJ8mLh-TH19HtppluA5I-0D7MucRqoGOka7Hr70BzwBvVKU3Gq6c4jjI8zdvxJ76z9KafqB16Wm7vJ0wO6q9jOj8ip8efvn08YaWNAvNI6pmB66XuuFLgA_ojtdfOSfT0nOpCLYKuexFj7PAZ77VMaD8OSWVD3bbRSc_FY3IwjEN4SijYmnuPXpV3ALbV1kMdwDW9btBvA6jIm5WY5mxByzA5yy2UWUhvkPQmk96cV-RDovd-ZkK6zg_G7XdTBMfIxgXQXW-5VcCjtrwNDk1qG_Fg1QVVkcOVW6aI32SuNktFXu2HUXBSNsQOYdwtcxQHqXRFnixc3q9E6AQRoHhF3q5sv_r4v3_o2f_X8pzc4WnnpSJCOCQH83YXXuCRZnYv8769BIJK868
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA_LLoIXcf2srhLBmwbbdJomx92Hy-LBg7iwt5CkE0Ghlde-xf3vnaTtk8X14DUfJf1NkplJZn5h7C1pWF_FiEKRpyYAohO-brxAIF0LkDjPc7TFZ3VxCZ-umqsDJtdcmBy0nykt8za9Rod9GEnRpGQwCaLVoI0gu_EoUbenWb1Rm_25Srq5gsos-TFlre_oeksHZar-u-zLv-5Gs8o5f8geLLYiP51Hd8wOsH_E7s2vR948Zt-_DH43TnyLBDfyDqccVtXzIfI1wPUaeT7kpi2UJ4XVcaqndTtO2-EH9Znfox-56zu-ZOwnHg4ebvM4P2GX5x-_bi7E8nSCCATvJMB3yrRSawhIPkgZjPeKvDuvWyxrNGVXxxhbKpOdUYnhxxNUDsumiV4FWT9lh_3Q43PGwZUyBPKkggdwjXEBSgRfdaYiXw2gYO9WMO3PmSHD5pvtWtsZekvQ2wy9_VWws4T3vmVit84Fw_abXaRtVeURTNs56TTIaJxs0JMabSIZUy3qgp2s0rLLkhttnTStMlLVBXuzr6bFkm5AXI_Dbm6jJShtCvZslvJ-JLVJtABaFuz9KvY_H__3D734v-Yv2X2ZZmIKJIQTdjhtd_iKzJrJv87z-DdKxPIl
  priority: 102
  providerName: Springer Nature
Title Robust remote detection of depressive tendency based on keystroke dynamics and behavioural characteristics
URI https://link.springer.com/article/10.1038/s41598-024-78489-x
https://www.ncbi.nlm.nih.gov/pubmed/39543182
https://www.proquest.com/docview/3128469263
https://www.proquest.com/docview/3128824689
https://doaj.org/article/61be497da2a842f9a25eb8475f9377e8
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIvh99WzyWCbxrtptM0eRDZW-44FjzkdGHfQtImByrt2e3K3X_vJG1XDtcHnwpJGpqZTH8z-fgNIa8RYe3Ue8cERmoMwBtms9wyB4i1AIHzPJ62OBdnS1is8tUeGdMdDQJc7wztQj6pZfvj3fXPm49o8B_6K-Py_RpBKFwU48AKCVIx9CkPEJmKYKifBne_5_rmCmKuj0DCztCZ4MM9mt3d3MKqSOm_yw_9aw81QtPpfXI4-JR01k-CB2TP1Q_J3T7L5M0j8u2isZt1R1uHanG0cl08flXTxtPxIOwvR-NiOP5qaQC2imI92ve6a5vv-E6ft35NTV3R4WZ_4Oug5W2-58dkeXrydX7GhhQLrEQ1dAxsJVTBpYTSYaySlspagVGglYVLM6fSKvPeF1jGKyUCE5BFURmX5rm3ouTZE7JfN7V7RiiYlJclRlylBTC5MiWkDuy0UlOM6QAS8mYUpr7qmTR03AHPpO5Fr1H0OopeXyfkOMh72zKwYMeCpr3Ug1FpMbUOVFEZbiRwrwzPnUW4zT06XYWTCTkataXHmaWzgMhCcZEl5NW2Go0q7JSY2jWbvo3kIKRKyNNey9svyVSgD5A8IW9Htf_p_N8Dev5fw39B7vEwEcN5Qzgi-127cS_R--nshNwpVsWEHMxmiy8LfB6fnH--wNK5mE_iisIkTvrfo-EDEw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgguiHcDBYwEJ7CaOJPEPiBEodWWlhWqWqk3Yzs2gqpJ2WSh-6f4jYzz2Krices1cZxkZjwPz_gbQp6jhTWJ947lGKkxAK-ZSTPDHKCtBQiY5121xTSfHMGH4-x4hfwaz8KEsspRJ3aKuqxt2CPfTIMizSXP0zdn31noGhWyq2MLjV4s9tziJ4Zszevd98jfF5zvbB--m7ChqwCz-OaWgSlzWXAhwDp0z2Mrjckx8DGicHHqZFym3vsCr_FS5gH8xsSp0C7OMm9yG4AOUOWv4VwxKoK1re3pp4Plrk7Im0Eih9M5-NxmgxYynGLjwAoBQrLzSxawaxTwN-_2j8xsZ_B2bpGbg6dK3_aidZusuOoOudb3rlzcJd8OajNvWjpzyGxHS9d2RV0VrT0dy2t_ONptsaMCp8FclhTvo9Zo2ll9gs8sKn361TZUVyUd8AICCgi1l1Gk75GjKyHxfbJa1ZVbJxR0zK3FOM4aAJ1JbSF2YJJSJhgpAkTk5UhMddbjc6gur54K1ZNeIelVR3p1HpGtQO_lyICt3V2oZ1_UsFRVnhgHsig11wK4l5pnzqARzzy6coUTEdkYuaWGBd-oC_GMyLPlbVyqIf-iK1fP-zGCQy5kRB70XF5-SSoDKIHgEXk1sv1i8n__0MP_f8tTcn1y-HFf7e9O9x6RGzxIYShhhA2y2s7m7jE6VK15MkgxJZ-veuH8BkztMPk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxLuBAkaCE1hNnIljHxACyqqlqEKISnsztmMjQCRlk4XuX-PXMc5jq4rHrde85Mx7PONvCHmEHtZmIXgmMFNjAMEwmxeWeUBfCxAxz_tui0OxdwRv5sV8g_yazsLEtsrJJvaGumpc3CPfyaMhFYqLfCeMbRHvdmfPj7-zOEEqVlqncRqDiBz41U9M39pn-7vI68ecz15_eLXHxgkDzOEqOga2EqrkUoLzGKqnTlkrMAmysvRp7lVa5SGEEq_xSokIhGPTXBqfFkWwwkXQAzT_F8q8yKKOlfNyvb8TK2iQqfGcDr6106KvjOfZOLBSglTs5Iwv7EcG_C3O_aNG27u-2VVyZYxZ6YtByK6RDV9fJxeHKZarG-TL-8Yu244uPLLd08p3fXtXTZtAp0bbH572m-1oyml0nBXF-2g_2m7RfMV3VrX59tm11NQVHZEDIh4IdWfxpG-So3Mh8C2yWTe13yIUTMqdw4zOWQBTKOMg9WCzSmWYMwIk5MlETH08IHXovsKeSz2QXiPpdU96fZKQl5He6ycjynZ_oVl80qPSapFZD6qsDDcSeFCGF96iOy8CBnWllwnZnrilR9Vv9amgJuTh-jYqbazEmNo3y-EZyUFIlZDbA5fXK8lVhCeQPCFPJ7affvzfP3Tn_2t5QC6huui3-4cHd8llHoUw9jLCNtnsFkt_DyOrzt7vRZiSj-etM78BP_QzyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+remote+detection+of+depressive+tendency+based+on+keystroke+dynamics+and+behavioural+characteristics&rft.jtitle=Scientific+reports&rft.au=Fadul%2C+Ruba&rft.au=AlShehhi%2C+Aamna&rft.au=Hadjileontiadis%2C+Leontios&rft.date=2024-11-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-78489-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_78489_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon