Robust remote detection of depressive tendency based on keystroke dynamics and behavioural characteristics
Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals’ kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental s...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 28025 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.11.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-78489-x |
Cover
Loading…
Abstract | Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals’ kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects’ DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations—hold-time and flight-time variables—and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users’ behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild. |
---|---|
AbstractList | Abstract Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals’ kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects’ DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations—hold-time and flight-time variables—and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users’ behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild. Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals’ kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects’ DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations—hold-time and flight-time variables—and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users’ behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild. Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals' kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects' DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations-hold-time and flight-time variables-and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users' behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild.Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient managing. Remarkably, individuals' kinetic activities, including their interaction with touchscreen smartphones, can be a proxy for their mental status. Therefore, studying these typing patterns can assist in developing passive screening tools for detecting even the early stage of DD, i.e., the depressive tendency (DT). Here we extend a previous study by exploring different machine learning models with various feature engineering approaches to detect the subjects' DT, as indicated by the self-administered Patient Health Questionnaire-9 (PHQ-9) score, via keystroke digital biomarkers. The keystroke timing sequences were unobtrusively collected from 24 subjects during routine interaction with touchscreen smartphones, resulting in 23,264 typing sessions. The proposed framework was investigated under two keystroke feature combinations-hold-time and flight-time variables-and validated using nested cross-validation scheme. Different feature selection (FS) techniques were employed to select informative features from the keystroke sequences. The best-performing gradient boosting classifier with features selected by the mutual information FS method achieved an improved Area Under Curve (AUC) of 0.98 [95% confidence interval: 0.91-1.00]. The proposed DT pipeline, which surpasses the state-of-the-art models, could effectively capture DT, considering users' behavioural characteristics. This would potentially provide users with information regarding the evolution of their mental health, simultaneously contributing to improving digital tools for objectively screening mental disorders in-the-wild. |
ArticleNumber | 28025 |
Author | Hadjileontiadis, Leontios AlShehhi, Aamna Fadul, Ruba |
Author_xml | – sequence: 1 givenname: Ruba orcidid: 0000-0002-3443-6756 surname: Fadul fullname: Fadul, Ruba email: ruba.fadul@ku.ac.ae organization: Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology – sequence: 2 givenname: Aamna orcidid: 0000-0003-1868-1003 surname: AlShehhi fullname: AlShehhi, Aamna organization: Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology – sequence: 3 givenname: Leontios orcidid: 0000-0002-9932-9302 surname: Hadjileontiadis fullname: Hadjileontiadis, Leontios organization: Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39543182$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PFTEUhhuDEUT-gAsziRs3o_2caZeGKJKQmBBYN_04A3OZaa9th3D_veUOonFBN23Ped7T0_O-RQchBkDoPcGfCWbyS-ZEKNliyttecqnah1foiGIuWsooPfjnfIhOct7gugRVnKg36JApwRmR9AhtLqNdcmkSzLFA46GAK2MMTRzqZZsg5_EemgLBQ3C7xpoMvqn5O9jlkuJd1eyCmUeXGxN8Y-HW3I9xSWZq3K1JxhVIYy41_w69HsyU4eRpP0bX379dnf5oL36enZ9-vWgdZ11pufWd6qmU3IEQGDtlbUcJtrIHzEBhz4Zh6GuMetX1BGNb52EACzHYzlF2jM7Xuj6ajd6mcTZpp6MZ9T4Q0402qTY0ge6IBa56b6iRnA7KUAFW8l4MivU9yFrr01prm-KvBXLR85gdTJMJEJesGamNUt5JVdGP_6GbOoZQf7qneKdoxyr14Yla7Az-ub0_jlSAroBLMecEwzNCsH50Xq_O6-q83juvH6qIraJc4XAD6e_bL6h-A3LasNM |
Cites_doi | 10.1016/j.eswa.2017.10.016 10.1016/j.compeleceng.2013.11.024 10.1016/j.knosys.2012.06.005 10.1136/bmjhci-2023-100914 10.1016/j.neucom.2018.03.067 10.1007/s11042-018-6083-5 10.1109/TNN.2006.875979 10.1016/j.eswa.2021.115222 10.1093/fampra/cmr092 10.1038/s41598-019-50002-9 10.1613/jair.953 10.4103/0253-7176.70510 10.1109/TAFFC.2022.3216993 10.1016/S1532-0464(03)00034-0 10.1371/journal.pone.0116820 10.4249/scholarpedia.1883 10.1016/j.softx.2020.100456 10.1023/A:1010933404324 10.1214/aos/1013203451 10.1046/j.1525-1497.2001.016009606.x 10.1016/S1874-1029(13)60052-X 10.1016/S2215-0366(21)00395-3 10.1080/08839514.2020.1861407 10.1001/jama.282.18.1737 10.23919/INDIACom54597.2022.9763125 10.1038/srep09678 10.1145/3292500.3330701 10.1037/e517532013-004 10.1155/2013/565183 10.1109/CEC.2019.8789891 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1038/s41598-024-78489-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ : directory of open access journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_61be497da2a842f9a25eb8475f9377e8 39543182 10_1038_s41598_024_78489_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: ASPIRE Award for Research Excellence (AARE-20), Abu Dhabi, UAE grantid: AARE20-293 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION 3V. 88A ACSMW AJTQC M0L NPM 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c436t-4bd6972884ce5500c9bb6210b87e03e90d3fff7b622d967100b038ae055fb6c23 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:13:39 EDT 2025 Fri Jul 11 05:03:06 EDT 2025 Wed Aug 13 07:01:43 EDT 2025 Wed Feb 19 02:16:11 EST 2025 Tue Jul 01 03:23:35 EDT 2025 Mon Jul 21 06:23:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Remote screening Typing Detection Depression disease Keystroke dynamics Machine learning |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-4bd6972884ce5500c9bb6210b87e03e90d3fff7b622d967100b038ae055fb6c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3443-6756 0000-0002-9932-9302 0000-0003-1868-1003 |
OpenAccessLink | https://doaj.org/article/61be497da2a842f9a25eb8475f9377e8 |
PMID | 39543182 |
PQID | 3128469263 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_61be497da2a842f9a25eb8475f9377e8 proquest_miscellaneous_3128824689 proquest_journals_3128469263 pubmed_primary_39543182 crossref_primary_10_1038_s41598_024_78489_x springer_journals_10_1038_s41598_024_78489_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-14 |
PublicationDateYYYYMMDD | 2024-11-14 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Pentland (CR12) 2010 Windeatt (CR34) 2006; 17 CR19 CR18 Christ, Braun, Neuffer, Kempa-Liehr (CR21) 2018; 307 Reddy (CR8) 2010; 32 CR17 Whiteford, Ferrari, Degenhardt, Feigin, Vos (CR2) 2015; 10 CR16 CR15 Chandrashekar, Sahin (CR27) 2014; 40 CR37 CR36 Peterson (CR33) 2009; 4 CR35 Wang (CR3) 2007; 6 Cao, Miao, Liu, Gao (CR30) 2013; 39 Hu, Gao, Zhao, Zhang, Wang (CR25) 2018; 93 Breiman (CR29) 2001; 45 Collaborators (CR1) 2022; 9 Deng, Li, Weng, Zhang (CR23) 2019; 78 Kroenke, Spitzer, Williams (CR10) 2001; 16 CR6 CR5 Macias Alonso, Hirt, Woelfle, Janiaud, Hemkens (CR11) 2024; 31 CR7 Friedman (CR31) 2001; 29 Schumann, Schneider, Kantert, Löwe, Linde (CR9) 2011; 29 Uysal, Gunal (CR26) 2012; 36 Mastoras (CR14) 2019; 9 Wainer, Cawley (CR38) 2021; 182 Too, Mirjalili (CR24) 2021; 35 Hajian-Tilaki (CR39) 2013; 4 Barandas (CR22) 2020; 11 Guilbert (CR4) 2002; 16 Goncalves, Busso (CR13) 2022; 13 Chawla, Bowyer, Hall, Kegelmeyer (CR20) 2002; 16 Song, Lu (CR28) 2015; 27 Dreiseitl, Ohno-Machado (CR32) 2002; 35 G Chandrashekar (78489_CR27) 2014; 40 M Christ (78489_CR21) 2018; 307 78489_CR5 78489_CR6 78489_CR35 78489_CR7 78489_CR36 78489_CR15 J Too (78489_CR24) 2021; 35 78489_CR37 78489_CR16 NV Chawla (78489_CR20) 2002; 16 M Barandas (78489_CR22) 2020; 11 L Hu (78489_CR25) 2018; 93 JH Friedman (78489_CR31) 2001; 29 S Dreiseitl (78489_CR32) 2002; 35 PS Wang (78489_CR3) 2007; 6 GMD Collaborators (78489_CR1) 2022; 9 K Hajian-Tilaki (78489_CR39) 2013; 4 AK Uysal (78489_CR26) 2012; 36 J Wainer (78489_CR38) 2021; 182 R-E Mastoras (78489_CR14) 2019; 9 Y-Y Song (78489_CR28) 2015; 27 HA Whiteford (78489_CR2) 2015; 10 L Goncalves (78489_CR13) 2022; 13 JJ Guilbert (78489_CR4) 2002; 16 T Windeatt (78489_CR34) 2006; 17 L Breiman (78489_CR29) 2001; 45 A Pentland (78489_CR12) 2010 I Schumann (78489_CR9) 2011; 29 MS Reddy (78489_CR8) 2010; 32 K Kroenke (78489_CR10) 2001; 16 78489_CR17 78489_CR18 78489_CR19 LE Peterson (78489_CR33) 2009; 4 AK Macias Alonso (78489_CR11) 2024; 31 Y Cao (78489_CR30) 2013; 39 X Deng (78489_CR23) 2019; 78 |
References_xml | – volume: 93 start-page: 423 year: 2018 end-page: 434 ident: CR25 article-title: Feature selection considering two types of feature relevancy and feature interdependency publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.10.016 – ident: CR18 – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: CR27 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – volume: 36 start-page: 226 year: 2012 end-page: 235 ident: CR26 article-title: A novel probabilistic feature selection method for text classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.06.005 – volume: 31 year: 2024 ident: CR11 article-title: Definitions of digital biomarkers: a systematic mapping of the biomedical literature publication-title: BMJ Health Care Inform doi: 10.1136/bmjhci-2023-100914 – ident: CR16 – ident: CR37 – volume: 16 start-page: 230 year: 2002 ident: CR4 article-title: The world health report 2002 - reducing risks, promoting healthy life publication-title: Educ. Health – volume: 307 start-page: 72 year: 2018 end-page: 77 ident: CR21 article-title: Time series FeatuRe extraction on basis of scalable hypothesis tests (tsfresh-a python package) publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.067 – volume: 78 start-page: 3797 year: 2019 end-page: 3816 ident: CR23 article-title: Feature selection for text classification: A review publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6083-5 – volume: 6 start-page: 177 year: 2007 ident: CR3 article-title: Delay and failure in treatment seeking after first onset of mental disorders in the world health organization’s world mental health survey initiative publication-title: World Psychiatry – volume: 17 start-page: 1194 year: 2006 end-page: 1211 ident: CR34 article-title: Accuracy/diversity and ensemble MLP classifier design publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.875979 – ident: CR35 – ident: CR6 – volume: 182 year: 2021 ident: CR38 article-title: Nested cross-validation when selecting classifiers is overzealous for most practical applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115222 – volume: 29 start-page: 255 year: 2011 end-page: 263 ident: CR9 article-title: Physicians attitudes, diagnostic process and barriers regarding depression diagnosis in primary care: a systematic review of qualitative studies publication-title: Fam. Pract. doi: 10.1093/fampra/cmr092 – volume: 9 start-page: 13414 year: 2019 ident: CR14 article-title: Touchscreen typing pattern analysis for remote detection of the depressive tendency publication-title: Sci. Rep. doi: 10.1038/s41598-019-50002-9 – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR20 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 32 start-page: 1 year: 2010 end-page: 2 ident: CR8 article-title: Depression: The disorder and the burden publication-title: Indian J. Psychol. Med. doi: 10.4103/0253-7176.70510 – volume: 13 start-page: 2156 year: 2022 end-page: 2170 ident: CR13 article-title: Robust audiovisual emotion recognition: Aligning modalities, capturing temporal information, and handling missing features publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3216993 – volume: 35 start-page: 352 year: 2002 end-page: 359 ident: CR32 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(03)00034-0 – volume: 4 start-page: 627 year: 2013 end-page: 635 ident: CR39 article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation publication-title: Caspian J. Intern. Med. – ident: CR19 – volume: 10 year: 2015 ident: CR2 article-title: The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010 publication-title: PLoS ONE doi: 10.1371/journal.pone.0116820 – ident: CR15 – volume: 4 start-page: 1883 year: 2009 ident: CR33 article-title: K-nearest neighbor publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – volume: 11 year: 2020 ident: CR22 article-title: TSFEL: Time series feature extraction library publication-title: SoftwareX doi: 10.1016/j.softx.2020.100456 – ident: CR17 – volume: 27 start-page: 130 year: 2015 end-page: 135 ident: CR28 article-title: Decision tree methods: applications for classification and prediction publication-title: Shanghai Arch. Psychiatry – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR29 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2010 ident: CR12 publication-title: Honest Signals: How they Shape our World – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: CR31 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – ident: CR36 – ident: CR5 – volume: 16 start-page: 606 year: 2001 end-page: 613 ident: CR10 article-title: The PHQ-9 publication-title: J. Gen. Intern. Med. doi: 10.1046/j.1525-1497.2001.016009606.x – volume: 39 start-page: 745 year: 2013 end-page: 758 ident: CR30 article-title: Advance and prospects of AdaBoost algorithm publication-title: Acta Automatica Sinica doi: 10.1016/S1874-1029(13)60052-X – ident: CR7 – volume: 9 start-page: 137 year: 2022 end-page: 150 ident: CR1 article-title: Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(21)00395-3 – volume: 35 start-page: 247 year: 2021 end-page: 263 ident: CR24 article-title: General learning equilibrium optimizer: A new feature selection method for biological data classification publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2020.1861407 – ident: 78489_CR17 – ident: 78489_CR6 – ident: 78489_CR18 doi: 10.1001/jama.282.18.1737 – volume: 45 start-page: 5 year: 2001 ident: 78489_CR29 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 10 year: 2015 ident: 78489_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0116820 – volume: 9 start-page: 13414 year: 2019 ident: 78489_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50002-9 – volume: 6 start-page: 177 year: 2007 ident: 78489_CR3 publication-title: World Psychiatry – volume: 307 start-page: 72 year: 2018 ident: 78489_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.067 – volume: 32 start-page: 1 year: 2010 ident: 78489_CR8 publication-title: Indian J. Psychol. Med. doi: 10.4103/0253-7176.70510 – ident: 78489_CR19 doi: 10.23919/INDIACom54597.2022.9763125 – volume: 35 start-page: 352 year: 2002 ident: 78489_CR32 publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(03)00034-0 – volume-title: Honest Signals: How they Shape our World year: 2010 ident: 78489_CR12 – ident: 78489_CR16 doi: 10.1038/srep09678 – volume: 35 start-page: 247 year: 2021 ident: 78489_CR24 publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2020.1861407 – ident: 78489_CR37 doi: 10.1145/3292500.3330701 – volume: 13 start-page: 2156 year: 2022 ident: 78489_CR13 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3216993 – volume: 29 start-page: 255 year: 2011 ident: 78489_CR9 publication-title: Fam. Pract. doi: 10.1093/fampra/cmr092 – volume: 4 start-page: 627 year: 2013 ident: 78489_CR39 publication-title: Caspian J. Intern. Med. – ident: 78489_CR7 – volume: 39 start-page: 745 year: 2013 ident: 78489_CR30 publication-title: Acta Automatica Sinica doi: 10.1016/S1874-1029(13)60052-X – volume: 40 start-page: 16 year: 2014 ident: 78489_CR27 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – volume: 182 year: 2021 ident: 78489_CR38 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115222 – volume: 16 start-page: 606 year: 2001 ident: 78489_CR10 publication-title: J. Gen. Intern. Med. doi: 10.1046/j.1525-1497.2001.016009606.x – volume: 31 year: 2024 ident: 78489_CR11 publication-title: BMJ Health Care Inform doi: 10.1136/bmjhci-2023-100914 – volume: 16 start-page: 230 year: 2002 ident: 78489_CR4 publication-title: Educ. Health – volume: 9 start-page: 137 year: 2022 ident: 78489_CR1 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(21)00395-3 – volume: 36 start-page: 226 year: 2012 ident: 78489_CR26 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.06.005 – volume: 27 start-page: 130 year: 2015 ident: 78489_CR28 publication-title: Shanghai Arch. Psychiatry – ident: 78489_CR5 doi: 10.1037/e517532013-004 – ident: 78489_CR15 doi: 10.1155/2013/565183 – volume: 11 year: 2020 ident: 78489_CR22 publication-title: SoftwareX doi: 10.1016/j.softx.2020.100456 – volume: 17 start-page: 1194 year: 2006 ident: 78489_CR34 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.875979 – volume: 93 start-page: 423 year: 2018 ident: 78489_CR25 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.10.016 – ident: 78489_CR35 – volume: 78 start-page: 3797 year: 2019 ident: 78489_CR23 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6083-5 – ident: 78489_CR36 doi: 10.1109/CEC.2019.8789891 – volume: 4 start-page: 1883 year: 2009 ident: 78489_CR33 publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – volume: 29 start-page: 1189 year: 2001 ident: 78489_CR31 publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 16 start-page: 321 year: 2002 ident: 78489_CR20 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 |
SSID | ssj0000529419 |
Score | 2.4384985 |
Snippet | Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and efficient... Abstract Depressive Disorder (DD) is a leading cause of disability worldwide. Screening tools for detecting DD symptoms are essential for monitoring and... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 28025 |
SubjectTerms | 631/114/1305 631/114/1386 692/53/2421 692/699/476/1414 Depression disease Detection Humanities and Social Sciences Interactive computer systems Keystroke dynamics Machine learning Mental depression Mental disorders multidisciplinary Remote screening Science Science (multidisciplinary) Smartphones Typing |
SummonAdditionalLinks | – databaseName: DOAJ : directory of open access journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6ysOBF_G11lQjeNGybTtPkqIvL4sGDuLC3kKSTg0Irr32y-9_vJOl77qLixWvSluSbJF-mmXzD2BtiWN_EiEKRpyYAohO-7bxAIK4FSJrnOdriszo7h08X3cWNVF8pJqzIAxfgjlXjEUw_OOk0yGic7NDTktpFItYe8zVf4rwbzlRR9ZYGGrPekqlbfTwTU6XbZBJEr0EbcXmLibJg_592mb-dkGbiOb3P7q07Rv6-tPQBu4PjQ3ZYckhePWLfvkx-Oy98gwQ68gGXHFw18inyXZjrT-T5VzctpDzR1sCpnmbvvGym7_ROyUo_czcOfL23n9Q4eLit5vyYnZ9-_HpyJtYECiIQyIsAPyjTS60hIHkidTDeK_LxvO6xbtHUQxtj7KlMDkYlnR9PUDmsuy56FWT7hB2M04jPGAdXyxDInwoewHXGBagRfDOYhjw2gIq93YFpfxSdDJvPt1ttC_SWoLcZentZsQ8J7_2TSeM6F5Dl7Wp5-y_LV-xoZy27TrzZtolvlZGqrdjrfTVNmXQO4kactuUZLUFpU7Gnxcr7lrQmiQNoWbF3O7P_-vjfO_T8f3ToBbsr0_hMQYZwxA6WzRZf0pZn8a_y6L4GI2n8Eg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6IngRv62uEsGbhm2TaZqcRMVl8eBBXHi3kKSJoNCur32y-9_vJE3fsvhxbdKSzmRmMh_5DSGv0cK6JsbAJHpqDCBa5kTrWAC0tQAJ8zxXW3yRJ6fwedNuSsBtKmWVq07MiroffYqRH4mkSKXmUrw7-8VS16iUXS0tNG6SWwm6LJV0dZtuH2NJWSxodLkrUwt1NKG9SnfKOLBOgdLs_Jo9yrD9fztr_pEnzebn-B65W86N9P3C6PvkRhgekNtLJ8mLh-TH19HtppluA5I-0D7MucRqoGOka7Hr70BzwBvVKU3Gq6c4jjI8zdvxJ76z9KafqB16Wm7vJ0wO6q9jOj8ip8efvn08YaWNAvNI6pmB66XuuFLgA_ojtdfOSfT0nOpCLYKuexFj7PAZ77VMaD8OSWVD3bbRSc_FY3IwjEN4SijYmnuPXpV3ALbV1kMdwDW9btBvA6jIm5WY5mxByzA5yy2UWUhvkPQmk96cV-RDovd-ZkK6zg_G7XdTBMfIxgXQXW-5VcCjtrwNDk1qG_Fg1QVVkcOVW6aI32SuNktFXu2HUXBSNsQOYdwtcxQHqXRFnixc3q9E6AQRoHhF3q5sv_r4v3_o2f_X8pzc4WnnpSJCOCQH83YXXuCRZnYv8769BIJK868 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA_LLoIXcf2srhLBmwbbdJomx92Hy-LBg7iwt5CkE0Ghlde-xf3vnaTtk8X14DUfJf1NkplJZn5h7C1pWF_FiEKRpyYAohO-brxAIF0LkDjPc7TFZ3VxCZ-umqsDJtdcmBy0nykt8za9Rod9GEnRpGQwCaLVoI0gu_EoUbenWb1Rm_25Srq5gsos-TFlre_oeksHZar-u-zLv-5Gs8o5f8geLLYiP51Hd8wOsH_E7s2vR948Zt-_DH43TnyLBDfyDqccVtXzIfI1wPUaeT7kpi2UJ4XVcaqndTtO2-EH9Znfox-56zu-ZOwnHg4ebvM4P2GX5x-_bi7E8nSCCATvJMB3yrRSawhIPkgZjPeKvDuvWyxrNGVXxxhbKpOdUYnhxxNUDsumiV4FWT9lh_3Q43PGwZUyBPKkggdwjXEBSgRfdaYiXw2gYO9WMO3PmSHD5pvtWtsZekvQ2wy9_VWws4T3vmVit84Fw_abXaRtVeURTNs56TTIaJxs0JMabSIZUy3qgp2s0rLLkhttnTStMlLVBXuzr6bFkm5AXI_Dbm6jJShtCvZslvJ-JLVJtABaFuz9KvY_H__3D734v-Yv2X2ZZmIKJIQTdjhtd_iKzJrJv87z-DdKxPIl priority: 102 providerName: Springer Nature |
Title | Robust remote detection of depressive tendency based on keystroke dynamics and behavioural characteristics |
URI | https://link.springer.com/article/10.1038/s41598-024-78489-x https://www.ncbi.nlm.nih.gov/pubmed/39543182 https://www.proquest.com/docview/3128469263 https://www.proquest.com/docview/3128824689 https://doaj.org/article/61be497da2a842f9a25eb8475f9377e8 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIvh99WzyWCbxrtptM0eRDZW-44FjzkdGHfQtImByrt2e3K3X_vJG1XDtcHnwpJGpqZTH8z-fgNIa8RYe3Ue8cERmoMwBtms9wyB4i1AIHzPJ62OBdnS1is8tUeGdMdDQJc7wztQj6pZfvj3fXPm49o8B_6K-Py_RpBKFwU48AKCVIx9CkPEJmKYKifBne_5_rmCmKuj0DCztCZ4MM9mt3d3MKqSOm_yw_9aw81QtPpfXI4-JR01k-CB2TP1Q_J3T7L5M0j8u2isZt1R1uHanG0cl08flXTxtPxIOwvR-NiOP5qaQC2imI92ve6a5vv-E6ft35NTV3R4WZ_4Oug5W2-58dkeXrydX7GhhQLrEQ1dAxsJVTBpYTSYaySlspagVGglYVLM6fSKvPeF1jGKyUCE5BFURmX5rm3ouTZE7JfN7V7RiiYlJclRlylBTC5MiWkDuy0UlOM6QAS8mYUpr7qmTR03AHPpO5Fr1H0OopeXyfkOMh72zKwYMeCpr3Ug1FpMbUOVFEZbiRwrwzPnUW4zT06XYWTCTkataXHmaWzgMhCcZEl5NW2Go0q7JSY2jWbvo3kIKRKyNNey9svyVSgD5A8IW9Htf_p_N8Dev5fw39B7vEwEcN5Qzgi-127cS_R--nshNwpVsWEHMxmiy8LfB6fnH--wNK5mE_iisIkTvrfo-EDEw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgguiHcDBYwEJ7CaOJPEPiBEodWWlhWqWqk3Yzs2gqpJ2WSh-6f4jYzz2Krices1cZxkZjwPz_gbQp6jhTWJ947lGKkxAK-ZSTPDHKCtBQiY5121xTSfHMGH4-x4hfwaz8KEsspRJ3aKuqxt2CPfTIMizSXP0zdn31noGhWyq2MLjV4s9tziJ4Zszevd98jfF5zvbB--m7ChqwCz-OaWgSlzWXAhwDp0z2Mrjckx8DGicHHqZFym3vsCr_FS5gH8xsSp0C7OMm9yG4AOUOWv4VwxKoK1re3pp4Plrk7Im0Eih9M5-NxmgxYynGLjwAoBQrLzSxawaxTwN-_2j8xsZ_B2bpGbg6dK3_aidZusuOoOudb3rlzcJd8OajNvWjpzyGxHS9d2RV0VrT0dy2t_ONptsaMCp8FclhTvo9Zo2ll9gs8sKn361TZUVyUd8AICCgi1l1Gk75GjKyHxfbJa1ZVbJxR0zK3FOM4aAJ1JbSF2YJJSJhgpAkTk5UhMddbjc6gur54K1ZNeIelVR3p1HpGtQO_lyICt3V2oZ1_UsFRVnhgHsig11wK4l5pnzqARzzy6coUTEdkYuaWGBd-oC_GMyLPlbVyqIf-iK1fP-zGCQy5kRB70XF5-SSoDKIHgEXk1sv1i8n__0MP_f8tTcn1y-HFf7e9O9x6RGzxIYShhhA2y2s7m7jE6VK15MkgxJZ-veuH8BkztMPk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxLuBAkaCE1hNnIljHxACyqqlqEKISnsztmMjQCRlk4XuX-PXMc5jq4rHrde85Mx7PONvCHmEHtZmIXgmMFNjAMEwmxeWeUBfCxAxz_tui0OxdwRv5sV8g_yazsLEtsrJJvaGumpc3CPfyaMhFYqLfCeMbRHvdmfPj7-zOEEqVlqncRqDiBz41U9M39pn-7vI68ecz15_eLXHxgkDzOEqOga2EqrkUoLzGKqnTlkrMAmysvRp7lVa5SGEEq_xSokIhGPTXBqfFkWwwkXQAzT_F8q8yKKOlfNyvb8TK2iQqfGcDr6106KvjOfZOLBSglTs5Iwv7EcG_C3O_aNG27u-2VVyZYxZ6YtByK6RDV9fJxeHKZarG-TL-8Yu244uPLLd08p3fXtXTZtAp0bbH572m-1oyml0nBXF-2g_2m7RfMV3VrX59tm11NQVHZEDIh4IdWfxpG-So3Mh8C2yWTe13yIUTMqdw4zOWQBTKOMg9WCzSmWYMwIk5MlETH08IHXovsKeSz2QXiPpdU96fZKQl5He6ycjynZ_oVl80qPSapFZD6qsDDcSeFCGF96iOy8CBnWllwnZnrilR9Vv9amgJuTh-jYqbazEmNo3y-EZyUFIlZDbA5fXK8lVhCeQPCFPJ7affvzfP3Tn_2t5QC6huui3-4cHd8llHoUw9jLCNtnsFkt_DyOrzt7vRZiSj-etM78BP_QzyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+remote+detection+of+depressive+tendency+based+on+keystroke+dynamics+and+behavioural+characteristics&rft.jtitle=Scientific+reports&rft.au=Fadul%2C+Ruba&rft.au=AlShehhi%2C+Aamna&rft.au=Hadjileontiadis%2C+Leontios&rft.date=2024-11-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-78489-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_78489_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |