Hypothalamic atrophy in primary lateral sclerosis, assessed by convolutional neural network-based automatic segmentation

Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding on...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 1551 - 6
Main Authors Kassubek, Jan, Roselli, Francesco, Witzel, Simon, Dorst, Johannes, Ludolph, Albert C., Rasche, Volker, Vernikouskaya, Ina, Müller, Hans-Peter
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-85786-6

Cover

Loading…
Abstract Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy. Very limited weight loss is observed in patients with PLS, which raises the question of whether there are also less hypothalamic alterations. The purpose of this study was to quantitatively investigate the hypothalamic volume in a group of PLS patients and to compare it with ALS and controls. Recently, we have introduced automatic hypothalamic quantification method based on the use of convolutional neural network (CNN) to reduce human variability and enhance analysis robustness. This CNN of U-Net architecture was applied for automatic segmentation of the hypothalamus and intracranial volume (ICV) to allow adjustments of the hypothalamic volume between subjects with different head sizes respectively. Automatic segmentation and volumetric analysis were performed in high resolution T1 weighted MRI volumes (acquired on a 1.5 T MRI scanner) of 46 PLS patients in comparison to 107 healthy controls and 411 `classical` ALS patients, respectively. Significant hypothalamic volume reduction was observed in PLS (818 ± 73 mm 3 ) when compared to controls (852 ± 77 mm 3 ); significant hypothalamic volume reduction was also confirmed in ALS (823 ± 84 mm 3 ), in support of previous studies. No significant differences were found in normalized hypothalamic volumes between ALS patients and PLS patients at the group level. This unbiased CNN-based hypothalamus volume quantification study demonstrated similarly reduced hypothalamus volume in PLS and ALS patients, despite the clinical phenotypic differences.
AbstractList Abstract Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy. Very limited weight loss is observed in patients with PLS, which raises the question of whether there are also less hypothalamic alterations. The purpose of this study was to quantitatively investigate the hypothalamic volume in a group of PLS patients and to compare it with ALS and controls. Recently, we have introduced automatic hypothalamic quantification method based on the use of convolutional neural network (CNN) to reduce human variability and enhance analysis robustness. This CNN of U-Net architecture was applied for automatic segmentation of the hypothalamus and intracranial volume (ICV) to allow adjustments of the hypothalamic volume between subjects with different head sizes respectively. Automatic segmentation and volumetric analysis were performed in high resolution T1 weighted MRI volumes (acquired on a 1.5 T MRI scanner) of 46 PLS patients in comparison to 107 healthy controls and 411 `classical` ALS patients, respectively. Significant hypothalamic volume reduction was observed in PLS (818 ± 73 mm3) when compared to controls (852 ± 77 mm3); significant hypothalamic volume reduction was also confirmed in ALS (823 ± 84 mm3), in support of previous studies. No significant differences were found in normalized hypothalamic volumes between ALS patients and PLS patients at the group level. This unbiased CNN-based hypothalamus volume quantification study demonstrated similarly reduced hypothalamus volume in PLS and ALS patients, despite the clinical phenotypic differences.
Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy. Very limited weight loss is observed in patients with PLS, which raises the question of whether there are also less hypothalamic alterations. The purpose of this study was to quantitatively investigate the hypothalamic volume in a group of PLS patients and to compare it with ALS and controls. Recently, we have introduced automatic hypothalamic quantification method based on the use of convolutional neural network (CNN) to reduce human variability and enhance analysis robustness. This CNN of U-Net architecture was applied for automatic segmentation of the hypothalamus and intracranial volume (ICV) to allow adjustments of the hypothalamic volume between subjects with different head sizes respectively. Automatic segmentation and volumetric analysis were performed in high resolution T1 weighted MRI volumes (acquired on a 1.5 T MRI scanner) of 46 PLS patients in comparison to 107 healthy controls and 411 `classical` ALS patients, respectively. Significant hypothalamic volume reduction was observed in PLS (818 ± 73 mm3) when compared to controls (852 ± 77 mm3); significant hypothalamic volume reduction was also confirmed in ALS (823 ± 84 mm3), in support of previous studies. No significant differences were found in normalized hypothalamic volumes between ALS patients and PLS patients at the group level. This unbiased CNN-based hypothalamus volume quantification study demonstrated similarly reduced hypothalamus volume in PLS and ALS patients, despite the clinical phenotypic differences.
Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy. Very limited weight loss is observed in patients with PLS, which raises the question of whether there are also less hypothalamic alterations. The purpose of this study was to quantitatively investigate the hypothalamic volume in a group of PLS patients and to compare it with ALS and controls. Recently, we have introduced automatic hypothalamic quantification method based on the use of convolutional neural network (CNN) to reduce human variability and enhance analysis robustness. This CNN of U-Net architecture was applied for automatic segmentation of the hypothalamus and intracranial volume (ICV) to allow adjustments of the hypothalamic volume between subjects with different head sizes respectively. Automatic segmentation and volumetric analysis were performed in high resolution T1 weighted MRI volumes (acquired on a 1.5 T MRI scanner) of 46 PLS patients in comparison to 107 healthy controls and 411 `classical` ALS patients, respectively. Significant hypothalamic volume reduction was observed in PLS (818 ± 73 mm ) when compared to controls (852 ± 77 mm ); significant hypothalamic volume reduction was also confirmed in ALS (823 ± 84 mm ), in support of previous studies. No significant differences were found in normalized hypothalamic volumes between ALS patients and PLS patients at the group level. This unbiased CNN-based hypothalamus volume quantification study demonstrated similarly reduced hypothalamus volume in PLS and ALS patients, despite the clinical phenotypic differences.
Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy. Very limited weight loss is observed in patients with PLS, which raises the question of whether there are also less hypothalamic alterations. The purpose of this study was to quantitatively investigate the hypothalamic volume in a group of PLS patients and to compare it with ALS and controls. Recently, we have introduced automatic hypothalamic quantification method based on the use of convolutional neural network (CNN) to reduce human variability and enhance analysis robustness. This CNN of U-Net architecture was applied for automatic segmentation of the hypothalamus and intracranial volume (ICV) to allow adjustments of the hypothalamic volume between subjects with different head sizes respectively. Automatic segmentation and volumetric analysis were performed in high resolution T1 weighted MRI volumes (acquired on a 1.5 T MRI scanner) of 46 PLS patients in comparison to 107 healthy controls and 411 `classical` ALS patients, respectively. Significant hypothalamic volume reduction was observed in PLS (818 ± 73 mm3) when compared to controls (852 ± 77 mm3); significant hypothalamic volume reduction was also confirmed in ALS (823 ± 84 mm3), in support of previous studies. No significant differences were found in normalized hypothalamic volumes between ALS patients and PLS patients at the group level. This unbiased CNN-based hypothalamus volume quantification study demonstrated similarly reduced hypothalamus volume in PLS and ALS patients, despite the clinical phenotypic differences.Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy. Very limited weight loss is observed in patients with PLS, which raises the question of whether there are also less hypothalamic alterations. The purpose of this study was to quantitatively investigate the hypothalamic volume in a group of PLS patients and to compare it with ALS and controls. Recently, we have introduced automatic hypothalamic quantification method based on the use of convolutional neural network (CNN) to reduce human variability and enhance analysis robustness. This CNN of U-Net architecture was applied for automatic segmentation of the hypothalamus and intracranial volume (ICV) to allow adjustments of the hypothalamic volume between subjects with different head sizes respectively. Automatic segmentation and volumetric analysis were performed in high resolution T1 weighted MRI volumes (acquired on a 1.5 T MRI scanner) of 46 PLS patients in comparison to 107 healthy controls and 411 `classical` ALS patients, respectively. Significant hypothalamic volume reduction was observed in PLS (818 ± 73 mm3) when compared to controls (852 ± 77 mm3); significant hypothalamic volume reduction was also confirmed in ALS (823 ± 84 mm3), in support of previous studies. No significant differences were found in normalized hypothalamic volumes between ALS patients and PLS patients at the group level. This unbiased CNN-based hypothalamus volume quantification study demonstrated similarly reduced hypothalamus volume in PLS and ALS patients, despite the clinical phenotypic differences.
Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy. Very limited weight loss is observed in patients with PLS, which raises the question of whether there are also less hypothalamic alterations. The purpose of this study was to quantitatively investigate the hypothalamic volume in a group of PLS patients and to compare it with ALS and controls. Recently, we have introduced automatic hypothalamic quantification method based on the use of convolutional neural network (CNN) to reduce human variability and enhance analysis robustness. This CNN of U-Net architecture was applied for automatic segmentation of the hypothalamus and intracranial volume (ICV) to allow adjustments of the hypothalamic volume between subjects with different head sizes respectively. Automatic segmentation and volumetric analysis were performed in high resolution T1 weighted MRI volumes (acquired on a 1.5 T MRI scanner) of 46 PLS patients in comparison to 107 healthy controls and 411 `classical` ALS patients, respectively. Significant hypothalamic volume reduction was observed in PLS (818 ± 73 mm 3 ) when compared to controls (852 ± 77 mm 3 ); significant hypothalamic volume reduction was also confirmed in ALS (823 ± 84 mm 3 ), in support of previous studies. No significant differences were found in normalized hypothalamic volumes between ALS patients and PLS patients at the group level. This unbiased CNN-based hypothalamus volume quantification study demonstrated similarly reduced hypothalamus volume in PLS and ALS patients, despite the clinical phenotypic differences.
ArticleNumber 1551
Author Witzel, Simon
Vernikouskaya, Ina
Müller, Hans-Peter
Kassubek, Jan
Ludolph, Albert C.
Rasche, Volker
Dorst, Johannes
Roselli, Francesco
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0002-7106-9270
  surname: Kassubek
  fullname: Kassubek, Jan
  organization: Dept. of Neurology, University of Ulm
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0001-9935-6899
  surname: Roselli
  fullname: Roselli, Francesco
  organization: Dept. of Neurology, University of Ulm, German Center for Neurodegenerative Diseases (DZNE)
– sequence: 3
  givenname: Simon
  surname: Witzel
  fullname: Witzel, Simon
  organization: Dept. of Neurology, University of Ulm
– sequence: 4
  givenname: Johannes
  surname: Dorst
  fullname: Dorst, Johannes
  organization: Dept. of Neurology, University of Ulm, German Center for Neurodegenerative Diseases (DZNE)
– sequence: 5
  givenname: Albert C.
  surname: Ludolph
  fullname: Ludolph, Albert C.
  organization: Dept. of Neurology, University of Ulm, German Center for Neurodegenerative Diseases (DZNE)
– sequence: 6
  givenname: Volker
  surname: Rasche
  fullname: Rasche, Volker
  organization: Department of Internal Medicine II, Ulm University Medical Center, Core Facility Small Animal MRI, University of Ulm
– sequence: 7
  givenname: Ina
  surname: Vernikouskaya
  fullname: Vernikouskaya, Ina
  organization: Department of Internal Medicine II, Ulm University Medical Center
– sequence: 8
  givenname: Hans-Peter
  surname: Müller
  fullname: Müller, Hans-Peter
  email: hans-peter.mueller@uni-ulm.de
  organization: Dept. of Neurology, University of Ulm
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39789167$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInHhQCD-jH1EFdBKlbjA2Ronk20WJ15sB9h_j3ezFMQB29JYo2feGY_nKTmbw4yEPKfNG9pw_TYJKo2uGyZrLVutavWIXLBGyJpxxs7-up-Tq5S2TVmSGUHNE3LOTasNVe0F-Xmz34V8Dx6msasgx7C731fjXO3iOEHcVx4yRvBV6jzGkMb0uoKUsJy-cvuqC_P34Jc8hrlAMy7xaPKPEL_WDg4ULDlMkIt8ws2Ec4YD_Yw8HsAnvDrZS_Llw_vP1zf13aePt9fv7upOcJVr0QKC5n2DaCRSYwSoxuiWUqmRK-U4urK5aIeW6YZSgYPrB4dK9a0Tml-S21W3D7C1p1fZAKM9OkLcWIilOI_Wadf2JYkYUAqDSouiZLQc2NFBi9arVWsXw7cFU7bTmDr0HmYMS7KcSl7aquQh7ct_0G1YYunRSnGuGReFenGiFjdh_1De7_8pAFuBrvQ-RRweENrYwxzYdQ5smQN7nAOrShBfg1KB5w3GP7n_E_ULnoC29w
Cites_doi 10.1136/jnnp-2017-315795
10.1088/0031-9155/52/6/N01
10.1016/j.nicl.2018.03.018
10.1038/s41598-022-09518-w
10.1212/WNL.0000000000209603
10.3389/fnagi.2021.610332
10.1016/j.nicl.2023.103400
10.1136/jnnp-2019-322541
10.1136/jnnp-2023-333023
10.1212/WNL.0b013e3181a8269b
10.1002/ana.25661
10.1111/ene.15589
10.1111/cns.14801
10.1016/S0022-510X(99)00210-5
10.1016/j.nicl.2022.103281
10.3109/21678421.2015.1049183
10.1016/j.physbeh.2006.12.016
10.3109/17482968.2011.580849
10.3109/21678421.2014.959451
10.1080/21678421.2020.1790607
10.1007/s00415-021-10900-3
10.1371/journal.pone.0067783
10.1038/s41598-023-48649-6
10.1016/j.neuroimage.2009.10.066
10.1038/nrneurol.2018.23
10.1016/j.nicl.2018.10.005
10.1080/21678421.2020.1837173
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-85786-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 6
ExternalDocumentID oai_doaj_org_article_b8b7d5e14fe549e684bdf985f2fe5491
39789167
10_1038_s41598_025_85786_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Universität Ulm (1055)
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c436t-47aea83d0ee95e1994a609871158e366b3ebebe347f7280114efbdfbe66d7b483
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:36 EDT 2025
Fri Jul 11 01:14:02 EDT 2025
Wed Aug 13 08:43:12 EDT 2025
Mon Jul 21 06:04:37 EDT 2025
Tue Jul 01 02:06:43 EDT 2025
Fri Feb 21 02:34:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Magnetic Resonance Imaging
Neuronal Networks
Amyotrophic Lateral Sclerosis
Volumetry
Primary Lateral Sclerosis
Hypothalamus
Metabolism
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-47aea83d0ee95e1994a609871158e366b3ebebe347f7280114efbdfbe66d7b483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7106-9270
0000-0001-9935-6899
OpenAccessLink https://www.proquest.com/docview/3153338234?pq-origsite=%requestingapplication%
PMID 39789167
PQID 3153338234
PQPubID 2041939
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_b8b7d5e14fe549e684bdf985f2fe5491
proquest_miscellaneous_3153916658
proquest_journals_3153338234
pubmed_primary_39789167
crossref_primary_10_1038_s41598_025_85786_6
springer_journals_10_1038_s41598_025_85786_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-10
PublicationDateYYYYMMDD 2025-01-10
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References HR Berthoud (85786_CR7) 2007; 91
HJ Huppertz (85786_CR27) 2010; 49
A Ludolph (85786_CR3) 2015; 16
I Vernikouskaya (85786_CR22) 2020; 12
IRA Mackenzie (85786_CR19) 2020; 21
NY Tse (85786_CR9) 2023; 37
JM Cedarbaum (85786_CR25) 1999; 169
S Ye (85786_CR12) 2022; 13
J Chang (85786_CR13) 2023; 30
MR Turner (85786_CR1) 2020; 91
HP Müller (85786_CR26) 2007; 52
HP Müller (85786_CR4) 2018; 18
E Lindauer (85786_CR21) 2013; 8
A Nigri (85786_CR17) 2023; 38
M Sabatelli (85786_CR18) 2011; 12
M Gorges (85786_CR8) 2017; 88
D Lulé (85786_CR24) 2015; 16
HP Müller (85786_CR5) 2018; 20
RM Ahmed (85786_CR6) 2018; 14
IRA Mackenzie (85786_CR20) 2020; 21
AC Ludolph (85786_CR23) 2020; 87
A Michielsen (85786_CR16) 2024; 103
S Witzel (85786_CR2) 2024; 95
S Liu (85786_CR11) 2022; 269
S Ghaderi (85786_CR10) 2024; 30
I Vernikouskaya (85786_CR15) 2023; 13
PH Gordon (85786_CR14) 2009; 72
References_xml – volume: 88
  start-page: 1033
  year: 2017
  ident: 85786_CR8
  publication-title: J. Neurol. Neurosurg. Psychiatry.
  doi: 10.1136/jnnp-2017-315795
– volume: 52
  start-page: N99
  year: 2007
  ident: 85786_CR26
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/6/N01
– volume: 18
  start-page: 762
  year: 2018
  ident: 85786_CR4
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.03.018
– volume: 12
  start-page: 5513
  year: 2020
  ident: 85786_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09518-w
– volume: 103
  start-page: e209603
  year: 2024
  ident: 85786_CR16
  publication-title: Neurology.
  doi: 10.1212/WNL.0000000000209603
– volume: 13
  start-page: 610332
  year: 2022
  ident: 85786_CR12
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2021.610332
– volume: 38
  start-page: 103400
  year: 2023
  ident: 85786_CR17
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2023.103400
– volume: 91
  start-page: 373
  year: 2020
  ident: 85786_CR1
  publication-title: J. Neurol. Neurosurg. Psychiatry.
  doi: 10.1136/jnnp-2019-322541
– volume: 95
  start-page: 737
  year: 2024
  ident: 85786_CR2
  publication-title: J. Neurol. Neurosurg. Psychiatry.
  doi: 10.1136/jnnp-2023-333023
– volume: 72
  start-page: 1948
  year: 2009
  ident: 85786_CR14
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181a8269b
– volume: 87
  start-page: 206
  year: 2020
  ident: 85786_CR23
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25661
– volume: 30
  start-page: 57
  year: 2023
  ident: 85786_CR13
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.15589
– volume: 30
  start-page: e14801
  year: 2024
  ident: 85786_CR10
  publication-title: CNS Neurosci. Ther.
  doi: 10.1111/cns.14801
– volume: 169
  start-page: 13
  year: 1999
  ident: 85786_CR25
  publication-title: J. Neurol. Sci.
  doi: 10.1016/S0022-510X(99)00210-5
– volume: 37
  start-page: 103281
  year: 2023
  ident: 85786_CR9
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2022.103281
– volume: 16
  start-page: 291
  year: 2015
  ident: 85786_CR3
  publication-title: Amyotroph. Later. Scler. Frontotemporal Degener.
  doi: 10.3109/21678421.2015.1049183
– volume: 91
  start-page: 486
  year: 2007
  ident: 85786_CR7
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2006.12.016
– volume: 12
  start-page: 278
  year: 2011
  ident: 85786_CR18
  publication-title: Amyotroph. Later. Scler.
  doi: 10.3109/17482968.2011.580849
– volume: 16
  start-page: 16
  year: 2015
  ident: 85786_CR24
  publication-title: Amyotroph. Later. Scler. Frontotemporal Degener.
  doi: 10.3109/21678421.2014.959451
– volume: 21
  start-page: 52
  year: 2020
  ident: 85786_CR20
  publication-title: Amyotroph. Later. Scler. Frontotemporal Degener.
  doi: 10.1080/21678421.2020.1790607
– volume: 269
  start-page: 2980
  year: 2022
  ident: 85786_CR11
  publication-title: J. Neurol.
  doi: 10.1007/s00415-021-10900-3
– volume: 8
  start-page: e67783
  year: 2013
  ident: 85786_CR21
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0067783
– volume: 13
  start-page: 21505
  year: 2023
  ident: 85786_CR15
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-48649-6
– volume: 49
  start-page: 2216
  year: 2010
  ident: 85786_CR27
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2009.10.066
– volume: 14
  start-page: 259
  year: 2018
  ident: 85786_CR6
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2018.23
– volume: 20
  start-page: 1062
  year: 2018
  ident: 85786_CR5
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.10.005
– volume: 21
  start-page: 47
  year: 2020
  ident: 85786_CR19
  publication-title: Amyotroph. Later. Scler. Frontotemporal Degener.
  doi: 10.1080/21678421.2020.1837173
SSID ssj0000529419
Score 2.4374464
Snippet Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly...
Abstract Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1551
SubjectTerms 692/617/375/1917/1285
692/617/375/365/1917/1285
Adult
Aged
Amyotrophic Lateral Sclerosis
Amyotrophic Lateral Sclerosis - diagnostic imaging
Amyotrophic Lateral Sclerosis - pathology
Atrophy
Atrophy - pathology
Case-Control Studies
Energy metabolism
Female
Humanities and Social Sciences
Humans
Hypothalamus
Hypothalamus - diagnostic imaging
Hypothalamus - pathology
Image processing
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging
Magnetic Resonance Imaging - methods
Male
Metabolism
Middle Aged
Motor Neuron Disease - diagnostic imaging
Motor Neuron Disease - pathology
Motor neuron diseases
multidisciplinary
Neural networks
Neural Networks, Computer
Neuronal Networks
Science
Science (multidisciplinary)
Segmentation
Volumetric analysis
Volumetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDBelMOjL2Ee3ZeuGB31rTZPYsZ3HrbQche6phb4ZO7FH4ZYrzR3s_vtJdu7aso297CngL2xJRj9FlgRwWHahilq3vI5ecImInnvhOi61rwTOMcJQgPPlNzW7lhc3zc2jUl_0JiynB86EO_HG674JlYwBTZmgjPR9bE0T69SQDB_UeY-MqZzVu25l1U5RMqUwJyNqKoomqxtuUEoVV080UUrY_yeU-ZuHNCme8xfwfEKM7Eve6UvYCcMreJZrSK5fw8_Z-g6p7eZUWJ7Rn20kHLsd2F3OI8HmjoKM52zE2biR2_GYueTpDT3za0bPzifxw0GU3jJ90uNwTjquZ261XKTMrmwM339MwUrDPlyfn12dzvhUToF3Uqglkt8FZ0RfhtAiQdtWOlW2aDBVjQlCKS-QoT4IqSPVrEJDKUSktQ9K9dpLI97A7rAYwjtgjWi6vtKOKlhJrSgPFeISHaum0xEXKuBoQ1o7ndYmb7cwNjPCIiNsYoRVBXwl6m9HUsbr1IByYCc5sP-SgwIONryz0zUcrSA0S55OWcDnbTdeIPKKuCEsVnkMYmREYgW8zTzf7gTBmsE-XcDxRggeFv_7gd7_jwN9gL2apLWkJ4cHsLu8X4WPCICW_lOS9V93QwLN
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED66jsFeyn7PbTc02NuqLbZkSX4YpRsrYdA9LdA3IdlyKaROFyfQ_Pe9k-WMsWxPBlkyJ30n7pNPdwfwflKHvNW64kXrBZfI6LkXruZS-1zgGCMMBThf_FDTmfx-WV7uwVjuKC1gv_NoR_WkZsv5x7tfm1Pc8J-HkHHzqUcjRIFiRckNKqDi6gE8RMukqZTDRaL7Q67vopJ5lWJndg_9wz7FNP67uOdfftNojs6fwEHikexsAP4p7IXuGTwaKktunsPddHOLGLg5lZtn9L8bl5Ndd-x2yC7B5o5Cj-esx9EoyHV_wlz0_4aG-Q2jy-hJKbETJb2Mj3hlnJPla5hbrxYx3yvrw9VNCmHqXsDs_NvPr1OeiizwWgq1QlBccEY0kxCqMlCmYKcmFR6j8tIEoZQXCLMPQuqWKlnh8Sm0vml9UKrRXhrxEva7RRdeAytFWTe5dlTXSmpF2amQreg2L2vd4ocy-DAurU2ztdEHLowdgLAIhI1AWJXBF1r9bU_Kgx0bFssrm7aV9cbrBsWWbcCDblBGomyVKdsiNuQZHI_Y2VG3rCCOS_5PmcG77WvcVuQrcV1YrIc-yJyRn2XwasB8KwlSOIPvdAYnoxL8_vi_J3T4f1mO4HFBejihK4bHsL9arsMbJDwr_zZq8T22C_zB
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3ShEIvIUm_3CZFhd4SUduSJfmYLg1LITk1kJuQbCkEtt4Q70L332dGtjeUpoeeDLZkxjNj68kz8wbgS96EImpd8zJ6wSUieu6Fa7jUvhA4xwhDBc6XV2p-LX_cVDc7UE61MClpP1Faps_0lB32tceFhorByoobdDLF1QvYI-p2SuObqdn2vwpFrmRRj_UxuTDPTP1jDUpU_c_hy79io2nJuTiA_RErsvNBukPYCd0RvBy6R25ew-_55h717BbUUp7RP21UGbvr2P3AIMEWjsqLF6zH2SjIXX_GXIrxhpb5DaOE89HxcBARW6ZDSgvntLq1zK1Xy8Tpyvpw-2ssU-rewPXF95-zOR8bKfBGCrVCxbvgjGjzEOoqEBuwU3mNW6WiMkEo5QWa0gchdaRuVbhFCtG30QelWu2lEW9ht1t24T2wSlRNW2hHvaukVsRAhYhEx6JqdMQbZXA6qdaOT2tTnFsYOxjCoiFsMoRVGXwj7W9HEtd1OrF8uLWj7a03XrcotowBN7NBGYmy1aaKZTpRZHA82c6OL2BvBeFYinHKDD5vL-OrQ_EQ14XlehiD6BgxWAbvBptvJUGYZvCazuBscoKnm__7gT783_CP8Kokv8wprfAYdlcP63CCIGflPyWvfgTop_d8
  priority: 102
  providerName: Springer Nature
Title Hypothalamic atrophy in primary lateral sclerosis, assessed by convolutional neural network-based automatic segmentation
URI https://link.springer.com/article/10.1038/s41598-025-85786-6
https://www.ncbi.nlm.nih.gov/pubmed/39789167
https://www.proquest.com/docview/3153338234
https://www.proquest.com/docview/3153916658
https://doaj.org/article/b8b7d5e14fe549e684bdf985f2fe5491
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUN9raK2pEsyU8jDS0h0DK2FfImJFsqhdTO6gSW_353spIy9vFigyyZk-4k_XSnuyPkY177IihVsXFwnAlA9MxxWzOhXMGhjeYaHZwvLuXsSswX5SIp3Pp0rXK3JsaFuulq1JGfcAQmaLQSn1c_GGaNQutqSqHxkBxi6DI8fKmF2utY0Ioliir5yuRcn_SwX6FP2bhkGmRVMvnbfhTD9v8Na_5hJ43bz_lT8iThRjoZGP2MPPDtc_JoyCS5fUF-zrYrGHO7xPTyFPXbMHz0pqWrIZoEXVp0NV7SHloDITf9MbXR3usb6rYUL58nIYRKGOQyvuIVcYY7XUPtZt3F-K6099e3yWWpfUmuzs--T2csJVVgteByDUyw3mre5N5XpcfIwFbmFRybilJ7LqXjwFbnuVABM1fBcckH1wTnpWyUE5q_Igdt1_o3hJa8rJtCWcxjJZTEaFSATlQoyloF-FFGPu2G1qTemmjz5toMjDDACBMZYWRGTnH09zUx7nUs6O6uTZpGxmmnGiBbBA8HWy-1ANoqXYZxLCgycrTjnUmTsTf3opORD_vPMI3QNmJb322GOoCUAY9l5PXA8z0lANk0fFMZOd4Jwf3P_92ht_-n5R15PEY5zPFK4RE5WN9t_HsAOGs3ilI8IoeTyfzbHN6nZ5dfvkLpVE5HUWkAzwuhfwFWWP9M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJxo1iR3be0CIQqstbVcItVJvxk6cqtI2u212Bfun-I3MOMlWiMetp0iObY09M_Znj2cG4HVS-LRSahhnleOxQEQfO26LWCiXcmyjuSYH58OxHB2Lzyf5yRr87H1h6FllvyaGhbqcFnRHvsUJmJDRSryfXcSUNYqsq30KjVYs9v3yOx7Zmnd7n5C_b7Jsd-fo4yjusgrEheByjlRYbzUvE--HuafQuFYmePJGaKQ9l9JxHJfzXKiKUjfhecFXrqycl7JUTmiO_d6AdewrSQawvr0z_vJ1datDdjORDjvvnITrrQZ3SPJiy_JYo3bIWP62A4ZEAX9Dt39YZsOGt3sX7nRIlX1oReserPn6Ptxsc1cuH8CP0XKGXLYTSmjP6EYdGcbOajZr41ewiSXn5glrsDUSctZsMhsszL5kbsnouXsn9liJwmqGT3iUHtPeWjK7mE9DRFnW-NPzzkmqfgjH1zLhj2BQT2v_BFjO86JMlaXMWUJJin-FeEhVaV6oCjuK4G0_taYbrQlWdq5NywiDjDCBEUZGsE2zv6pJkbZDwfTy1HSKa5x2qkSyReXxKO2lFkjbUOdVFgrSCDZ63plO_RtzJawRvFr9RsUla4yt_XTR1kFsjggwgsctz1eUIEjU-E9FsNkLwVXn_x7Q0__T8hJujY4OD8zB3nj_GdzOSCYTetC4AYP55cI_R3g1dy86mWbw7brV6Bd4Rjgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJuUAkaCE402iR3be0AIKKsthYoDlfZm7MSpKi3JttkV7F_j1zHjJFshHreeIiWONfbM2J89L4DnSeHTSqlxnFWOxwIRfey4LWKhXMrxH801BTh_OpLTY_Fhls-24OcQC0NulcOaGBbqsinojnzECZiQ0UqMqt4t4vP-5PXiLKYKUmRpHcppdCJy6Nff8fjWvjrYR16_yLLJ-y_vpnFfYSAuBJdLpMh6q3mZeD_OPaXJtTLBUzjCJO25lI7jGJ3nQlVUxgnPDr5yZeW8lKVyQnPs9wpcVRy3TdQlNVOb-x2yoIl03MfpJFyPWtwrKZ4ty2ONeiJj-dteGEoG_A3n_mGjDVvf5Bbc7DEre9MJ2W3Y8vUduNZVsVzfhR_T9QL5bedU2p7R3Tqyjp3WbNFlsmBzS2HOc9bi30jIabvHbLA1-5K5NSPH914BsBEl2AyP4J4e0y5bMrtaNiG3LGv9ybc-XKq-B8eXMt33Ybtuav8QWM7zokyVpRpaQknKhIXISFVpXqgKO4rg5TC1ph-tCfZ2rk3HCIOMMIERRkbwlmZ_05JybocXzfmJ6VXYOO1UiWSLyuOh2kstkLaxzqssvEgj2B14Z_qFoDUXYhvBs81nVGGyy9jaN6uuDaJ0xIIRPOh4vqEE4aLGbyqCvUEILjr_94B2_k_LU7iOymM-HhwdPoIbGYlkQp6Nu7C9PF_5x4izlu5JEGgGXy9bg34BkO468A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypothalamic+atrophy+in+primary+lateral+sclerosis%2C+assessed+by+convolutional+neural+network-based+automatic+segmentation&rft.jtitle=Scientific+reports&rft.date=2025-01-10&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1551&rft_id=info:doi/10.1038%2Fs41598-025-85786-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon