Organic and hybrid resistive switching materials and devices

The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications....

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 48; no. 6; pp. 1531 - 1565
Main Authors Gao, Shuang, Yi, Xiaohui, Shang, Jie, Liu, Gang, Li, Run-Wei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications. Among various candidates for the next-generation information storage technology, resistive switching memories distinguish themselves with low power consumption, excellent downscaling potential, easy 3D stacking, and high CMOS compatibility, fulfilling key requirements for high-performance data storage. Employing organic and hybrid switching media in addition allows light weight and flexible integration of molecules with tunable device performance via molecular design-cum-synthesis strategy. In this review, we present a timely and comprehensive review of the recent advances in organic and hybrid resistive switching materials and devices, with particular attention on their design principles for electronic property tuning and flexible device performance. The current challenges posed with development of organic and hybrid resistive switching materials and flexible memory devices, together with their future perspectives, are also discussed. This review presents a timely and comprehensive summary of organic and hybrid materials for nonvolatile resistive switching memory applications in the "More than Moore" era, with particular attention on their designing principles for electronic property tuning and flexible memory performance.
AbstractList The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications. Among various candidates for the next-generation information storage technology, resistive switching memories distinguish themselves with low power consumption, excellent downscaling potential, easy 3D stacking, and high CMOS compatibility, fulfilling key requirements for high-performance data storage. Employing organic and hybrid switching media in addition allows light weight and flexible integration of molecules with tunable device performance via molecular design-cum-synthesis strategy. In this review, we present a timely and comprehensive review of the recent advances in organic and hybrid resistive switching materials and devices, with particular attention on their design principles for electronic property tuning and flexible device performance. The current challenges posed with development of organic and hybrid resistive switching materials and flexible memory devices, together with their future perspectives, are also discussed. This review presents a timely and comprehensive summary of organic and hybrid materials for nonvolatile resistive switching memory applications in the "More than Moore" era, with particular attention on their designing principles for electronic property tuning and flexible memory performance.
The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications. Among various candidates for the next-generation information storage technology, resistive switching memories distinguish themselves with low power consumption, excellent downscaling potential, easy 3D stacking, and high CMOS compatibility, fulfilling key requirements for high-performance data storage. Employing organic and hybrid switching media in addition allows light weight and flexible integration of molecules with tunable device performance via molecular design-cum-synthesis strategy. In this review, we present a timely and comprehensive review of the recent advances in organic and hybrid resistive switching materials and devices, with particular attention on their design principles for electronic property tuning and flexible device performance. The current challenges posed with development of organic and hybrid resistive switching materials and flexible memory devices, together with their future perspectives, are also discussed.
The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications. Among various candidates for the next-generation information storage technology, resistive switching memories distinguish themselves with low power consumption, excellent downscaling potential, easy 3D stacking, and high CMOS compatibility, fulfilling key requirements for high-performance data storage. Employing organic and hybrid switching media in addition allows light weight and flexible integration of molecules with tunable device performance via molecular design-cum-synthesis strategy. In this review, we present a timely and comprehensive review of the recent advances in organic and hybrid resistive switching materials and devices, with particular attention on their design principles for electronic property tuning and flexible device performance. The current challenges posed with development of organic and hybrid resistive switching materials and flexible memory devices, together with their future perspectives, are also discussed.The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications. Among various candidates for the next-generation information storage technology, resistive switching memories distinguish themselves with low power consumption, excellent downscaling potential, easy 3D stacking, and high CMOS compatibility, fulfilling key requirements for high-performance data storage. Employing organic and hybrid switching media in addition allows light weight and flexible integration of molecules with tunable device performance via molecular design-cum-synthesis strategy. In this review, we present a timely and comprehensive review of the recent advances in organic and hybrid resistive switching materials and devices, with particular attention on their design principles for electronic property tuning and flexible device performance. The current challenges posed with development of organic and hybrid resistive switching materials and flexible memory devices, together with their future perspectives, are also discussed.
The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications. Among various candidates for the next-generation information storage technology, resistive switching memories distinguish themselves with low power consumption, excellent downscaling potential, easy 3D stacking, and high CMOS compatibility, fulfilling key requirements for high-performance data storage. Employing organic and hybrid switching media in addition allows light weight and flexible integration of molecules with tunable device performance via molecular design-cum-synthesis strategy. In this review, we present a timely and comprehensive review of the recent advances in organic and hybrid resistive switching materials and devices, with particular attention on their design principles for electronic property tuning and flexible device performance. The current challenges posed with development of organic and hybrid resistive switching materials and flexible memory devices, together with their future perspectives, are also discussed.
Author Liu, Gang
Gao, Shuang
Shang, Jie
Yi, Xiaohui
Li, Run-Wei
AuthorAffiliation CAS Key Laboratory of Magnetic Materials and Devices
Ningbo Institute of Materials Technology and Engineering
Chinese Academy of Sciences
Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
AuthorAffiliation_xml – sequence: 0
  name: CAS Key Laboratory of Magnetic Materials and Devices
– sequence: 0
  name: Ningbo Institute of Materials Technology and Engineering
– sequence: 0
  name: Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
– sequence: 0
  name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Shuang
  surname: Gao
  fullname: Gao, Shuang
– sequence: 2
  givenname: Xiaohui
  surname: Yi
  fullname: Yi, Xiaohui
– sequence: 3
  givenname: Jie
  surname: Shang
  fullname: Shang, Jie
– sequence: 4
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
– sequence: 5
  givenname: Run-Wei
  surname: Li
  fullname: Li, Run-Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30398508$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LwzAUB_AgE_dDL96VghcRqi9NmrbgRYY6YbCDei5p-rpl9MdMusn-e-N-KAzBQ0h4fN6Dl2-fdOqmRkLOKdxSYMmdipUFEJTPjkiPcgE-jzjvkB4wED4ADbqkb-3cvWgkghPSZa4tDiHukfuJmcpaK0_WuTdbZ0bnnkGrbatX6NlP3aqZrqdeJVs0WpZ2A3NcaYX2lBwXroRnu3tA3p8e34Yjfzx5fhk-jH3FmWh9Fme0UMgzFHnBoiACGicyzDJJY1ctKC8yiTQrhChABhjJBENMeM4UT1ACG5Dr7dyFaT6WaNu00lZhWcoam6VNg4BFIQ0F0P8pdbsDZ7Fw9OqAzpulqd0iTiXMHQ6RU5c7tcwqzNOF0ZU063T_hQ7AFijTWGuwSJVuZaubujVSlymF9DuldBgPXzcpjVzLzUHLfuqf-GKLjVU_7jdy9gUW4ppg
CitedBy_id crossref_primary_10_1016_j_nanoen_2023_108274
crossref_primary_10_1016_j_orgel_2021_106364
crossref_primary_10_1021_acs_joc_9b02156
crossref_primary_10_3390_molecules28217371
crossref_primary_10_1021_acs_chemmater_1c00090
crossref_primary_10_1021_acs_inorgchem_3c03787
crossref_primary_10_1021_acsomega_3c06229
crossref_primary_10_1002_anie_202205796
crossref_primary_10_1016_j_apmt_2022_101395
crossref_primary_10_1039_D0TC04655H
crossref_primary_10_1039_D4TC00440J
crossref_primary_10_1002_anie_202112924
crossref_primary_10_1016_j_jallcom_2021_162141
crossref_primary_10_1016_j_jcis_2019_06_076
crossref_primary_10_1039_D1RA00762A
crossref_primary_10_1016_j_jorganchem_2022_122563
crossref_primary_10_1016_j_apmt_2020_100626
crossref_primary_10_1038_s41598_020_76093_3
crossref_primary_10_1039_C9NR08943H
crossref_primary_10_1039_D0TC03800H
crossref_primary_10_1016_j_fmre_2022_06_022
crossref_primary_10_1016_j_jallcom_2023_170459
crossref_primary_10_1039_D0NJ05427E
crossref_primary_10_1039_D2CC03097G
crossref_primary_10_1002_aelm_202200537
crossref_primary_10_1002_pssr_202100199
crossref_primary_10_1016_j_jcis_2023_12_084
crossref_primary_10_1007_s00170_022_10487_7
crossref_primary_10_1039_D3RA05685F
crossref_primary_10_1002_chem_202101496
crossref_primary_10_1016_j_jallcom_2022_164171
crossref_primary_10_1016_j_jallcom_2024_178207
crossref_primary_10_1002_ange_202320173
crossref_primary_10_1039_C9TC05843E
crossref_primary_10_1016_j_matpr_2022_06_201
crossref_primary_10_1002_adma_202100066
crossref_primary_10_1016_j_dyepig_2022_110570
crossref_primary_10_1016_j_orgel_2021_106136
crossref_primary_10_1002_adma_202004370
crossref_primary_10_1088_1361_6641_ab92d1
crossref_primary_10_1039_D1TC00965F
crossref_primary_10_3390_chemistry1010005
crossref_primary_10_1039_D3MA00453H
crossref_primary_10_34133_2021_9760729
crossref_primary_10_1149_2162_8777_ac31d0
crossref_primary_10_3390_electronics10202525
crossref_primary_10_1016_j_jcis_2021_10_126
crossref_primary_10_1002_advs_201902864
crossref_primary_10_1016_j_apsusc_2022_155161
crossref_primary_10_1016_j_cap_2024_05_005
crossref_primary_10_1002_pssa_202400801
crossref_primary_10_1016_j_polymertesting_2019_106245
crossref_primary_10_1039_D0TC00765J
crossref_primary_10_1088_1361_6641_abaa5c
crossref_primary_10_1002_inf2_12350
crossref_primary_10_3389_fnano_2021_821687
crossref_primary_10_1002_aelm_201901290
crossref_primary_10_1002_smm2_1135
crossref_primary_10_1021_acsaelm_2c00201
crossref_primary_10_1016_j_cclet_2024_110495
crossref_primary_10_1016_j_mtchem_2022_100941
crossref_primary_10_1021_acsami_3c13980
crossref_primary_10_1002_adfm_202002948
crossref_primary_10_1002_advs_202205694
crossref_primary_10_1039_D1TC00695A
crossref_primary_10_1007_s10854_020_03753_5
crossref_primary_10_1021_acsanm_2c05497
crossref_primary_10_7498_aps_72_20221507
crossref_primary_10_1016_j_sse_2023_108831
crossref_primary_10_1126_sciadv_aaw4515
crossref_primary_10_1002_aelm_201900756
crossref_primary_10_1007_s40843_024_3244_8
crossref_primary_10_1063_5_0045257
crossref_primary_10_1002_adfm_202306593
crossref_primary_10_1039_D1TC01283E
crossref_primary_10_1039_D4NH00211C
crossref_primary_10_1021_acsami_2c11960
crossref_primary_10_1002_inf2_12120
crossref_primary_10_1002_marc_202400172
crossref_primary_10_1002_adfm_201909114
crossref_primary_10_1002_smm2_1266
crossref_primary_10_1002_smm2_1022
crossref_primary_10_1039_D0TC03639K
crossref_primary_10_7498_aps_70_20201961
crossref_primary_10_1016_j_orgel_2024_107017
crossref_primary_10_1002_asia_202100897
crossref_primary_10_1039_D1NR00960E
crossref_primary_10_1088_1361_6528_ab5eb7
crossref_primary_10_1016_j_jallcom_2023_169934
crossref_primary_10_1039_D4SC02756F
crossref_primary_10_1007_s10854_024_11952_7
crossref_primary_10_1021_acs_accounts_3c00620
crossref_primary_10_1038_s41598_020_71631_5
crossref_primary_10_1063_5_0208254
crossref_primary_10_1021_acsomega_1c05678
crossref_primary_10_1039_D3QI01761C
crossref_primary_10_1016_j_scriptamat_2022_115050
crossref_primary_10_1016_j_orgel_2024_107013
crossref_primary_10_1126_sciadv_adp0778
crossref_primary_10_1002_aelm_202001097
crossref_primary_10_1021_acsaelm_0c00193
crossref_primary_10_1038_s41598_023_32860_6
crossref_primary_10_1039_D1TC06005H
crossref_primary_10_1039_D0TC04052E
crossref_primary_10_1039_D1TC00071C
crossref_primary_10_1016_j_orgel_2019_105584
crossref_primary_10_1002_aelm_202000439
crossref_primary_10_1002_adma_202305344
crossref_primary_10_1021_acsami_9b16778
crossref_primary_10_3740_MRSK_2024_34_3_152
crossref_primary_10_1002_pssa_201900392
crossref_primary_10_1021_acsaelm_1c00750
crossref_primary_10_1016_j_cap_2021_05_002
crossref_primary_10_1002_pol_20230207
crossref_primary_10_1016_j_ceramint_2022_06_328
crossref_primary_10_1002_smll_202100102
crossref_primary_10_1016_j_apsusc_2022_154034
crossref_primary_10_1016_j_jallcom_2019_07_217
crossref_primary_10_1039_D2TC05238E
crossref_primary_10_1016_j_chempr_2024_03_021
crossref_primary_10_1039_D2TC03867F
crossref_primary_10_1002_ange_202112924
crossref_primary_10_1007_s40242_023_2352_6
crossref_primary_10_1021_acsaelm_4c01921
crossref_primary_10_1021_acsanm_2c03025
crossref_primary_10_1002_adfm_202004514
crossref_primary_10_3390_nano12061029
crossref_primary_10_1002_advs_202305075
crossref_primary_10_1021_acsaelm_2c00085
crossref_primary_10_1016_j_materresbull_2020_111195
crossref_primary_10_1002_aelm_202001079
crossref_primary_10_1002_adfm_202315267
crossref_primary_10_1002_aelm_202000780
crossref_primary_10_1007_s11664_024_11393_2
crossref_primary_10_1021_acsomega_1c07395
crossref_primary_10_1039_D4CP02025A
crossref_primary_10_1039_C9TC02233C
crossref_primary_10_1021_acs_jpclett_0c01571
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1016_j_mssp_2020_105110
crossref_primary_10_1021_acsaelm_3c00062
crossref_primary_10_1016_j_ccr_2019_05_010
crossref_primary_10_1021_acsanm_2c01894
crossref_primary_10_1016_j_matchemphys_2022_127292
crossref_primary_10_1039_C9TC06230K
crossref_primary_10_1039_D2TC00771A
crossref_primary_10_1002_aelm_202200821
crossref_primary_10_3390_nano12234117
crossref_primary_10_1109_TNANO_2019_2949759
crossref_primary_10_1039_D4MH00574K
crossref_primary_10_1016_j_cartre_2020_100023
crossref_primary_10_1002_aisy_202000007
crossref_primary_10_1002_apxr_202300123
crossref_primary_10_1002_adma_202204551
crossref_primary_10_3390_coatings11030318
crossref_primary_10_1016_j_eml_2020_101052
crossref_primary_10_1002_anie_202104333
crossref_primary_10_1007_s10854_022_09100_0
crossref_primary_10_1002_adfm_202004733
crossref_primary_10_1002_admt_202200205
crossref_primary_10_1039_C9RA10101B
crossref_primary_10_1039_D3RA03869F
crossref_primary_10_1039_D3DT00539A
crossref_primary_10_1063_5_0073085
crossref_primary_10_1039_D0CS00569J
crossref_primary_10_1088_1361_6528_ac9286
crossref_primary_10_1021_acs_jpcc_9b11370
crossref_primary_10_1246_bcsj_20220034
crossref_primary_10_1002_smll_202206824
crossref_primary_10_1039_D4CP03313B
crossref_primary_10_1021_acsami_1c16332
crossref_primary_10_1002_smll_202106442
crossref_primary_10_1016_j_apmt_2022_101569
crossref_primary_10_1039_C9NA00285E
crossref_primary_10_1016_j_reactfunctpolym_2023_105742
crossref_primary_10_1021_acsami_1c23654
crossref_primary_10_1002_adma_202309182
crossref_primary_10_1002_chem_202101772
crossref_primary_10_1088_1361_6528_abba5a
crossref_primary_10_2139_ssrn_4198970
crossref_primary_10_2139_ssrn_4074319
crossref_primary_10_1038_s41467_021_22243_8
crossref_primary_10_1002_adfm_201904602
crossref_primary_10_1016_j_jmst_2020_10_046
crossref_primary_10_1088_1361_6528_ab3606
crossref_primary_10_1109_TNS_2021_3074139
crossref_primary_10_1021_acsami_2c05744
crossref_primary_10_1016_j_jallcom_2020_153697
crossref_primary_10_1002_aelm_202100432
crossref_primary_10_1038_s41598_019_44607_3
crossref_primary_10_1039_C9TC03840J
crossref_primary_10_1016_j_synthmet_2020_116431
crossref_primary_10_1002_anie_202320173
crossref_primary_10_1039_D4MA00068D
crossref_primary_10_1103_PhysRevMaterials_8_104605
crossref_primary_10_1016_j_jsamd_2022_100528
crossref_primary_10_1039_D3TC02348F
crossref_primary_10_1002_adma_202413020
crossref_primary_10_1360_nso_20220020
crossref_primary_10_1002_admi_202201005
crossref_primary_10_1038_s41598_023_36784_z
crossref_primary_10_1002_sstr_202000109
crossref_primary_10_1177_09506608251318108
crossref_primary_10_1002_ange_202205796
crossref_primary_10_7498_aps_70_20210608
crossref_primary_10_1039_D2NR06773K
crossref_primary_10_1039_D3NH00345K
crossref_primary_10_1002_aisy_201900052
crossref_primary_10_1039_D0TC03907A
crossref_primary_10_1007_s11664_024_11206_6
crossref_primary_10_1002_adfm_202408583
crossref_primary_10_1063_5_0235922
crossref_primary_10_1039_D0TC02494E
crossref_primary_10_1021_acsami_9b13401
crossref_primary_10_1002_adfm_202103291
crossref_primary_10_1039_D1MH01929E
crossref_primary_10_1016_j_sse_2019_107735
crossref_primary_10_1021_acsami_0c16556
crossref_primary_10_1002_adts_202100011
crossref_primary_10_1016_j_mtsust_2019_100029
crossref_primary_10_1021_acs_jpclett_3c01711
crossref_primary_10_1088_1361_6528_ad321c
crossref_primary_10_1039_C9CS00504H
crossref_primary_10_1002_asia_201901234
crossref_primary_10_1021_acssuschemeng_9b07168
crossref_primary_10_1002_cplu_202000395
crossref_primary_10_1016_j_jallcom_2019_07_280
crossref_primary_10_1002_adma_202205459
crossref_primary_10_1002_smll_202410914
crossref_primary_10_1016_j_orgel_2020_105757
crossref_primary_10_1016_j_jallcom_2024_173889
crossref_primary_10_1016_j_mtcomm_2022_105026
crossref_primary_10_1021_acsami_1c22094
crossref_primary_10_1038_s41467_023_43542_2
crossref_primary_10_1016_j_sna_2024_115599
crossref_primary_10_1021_acs_nanolett_2c02765
crossref_primary_10_1016_j_diamond_2024_111229
crossref_primary_10_1016_j_orgel_2021_106322
crossref_primary_10_1016_j_tet_2020_131471
crossref_primary_10_1039_C9TC06948H
crossref_primary_10_1038_s41467_024_46372_y
crossref_primary_10_1016_j_apmt_2023_102032
crossref_primary_10_1021_acsaelm_9b00191
crossref_primary_10_1002_eng2_12617
crossref_primary_10_1016_j_xcrp_2023_101656
crossref_primary_10_1002_admi_202000718
crossref_primary_10_1016_j_orgel_2020_105628
crossref_primary_10_1016_j_synthmet_2020_116524
crossref_primary_10_1016_j_cap_2021_10_006
crossref_primary_10_1016_j_cap_2020_02_002
crossref_primary_10_1002_admi_202200461
crossref_primary_10_1007_s42452_020_03658_2
crossref_primary_10_1021_acsami_9b17000
crossref_primary_10_1039_D0TC01660H
crossref_primary_10_3390_electronics11030316
crossref_primary_10_3390_polym15224374
crossref_primary_10_1088_1361_6528_abc782
crossref_primary_10_1016_j_jssc_2020_121850
crossref_primary_10_1016_j_trechm_2022_06_004
crossref_primary_10_1002_asia_202100152
crossref_primary_10_1088_2399_7532_ab4f9d
crossref_primary_10_1002_advs_202310263
crossref_primary_10_1038_s41378_021_00261_2
crossref_primary_10_1039_D0NR03242E
crossref_primary_10_1002_slct_202300771
crossref_primary_10_1002_smtd_202300040
crossref_primary_10_1002_pssr_202100222
crossref_primary_10_1002_adfm_202308336
crossref_primary_10_1016_j_ceramint_2024_04_156
crossref_primary_10_1002_aelm_202000948
crossref_primary_10_3390_mi10070446
crossref_primary_10_1016_j_apsusc_2024_160681
crossref_primary_10_1016_j_matlet_2021_129317
crossref_primary_10_1016_j_saa_2024_124704
crossref_primary_10_1088_1361_6641_ac25c8
crossref_primary_10_1007_s10751_024_02118_2
crossref_primary_10_1002_pssa_201900780
crossref_primary_10_1039_D4TC04848B
crossref_primary_10_1002_aisy_202000180
crossref_primary_10_1039_C9NR07470H
crossref_primary_10_1186_s11671_021_03636_6
crossref_primary_10_1021_acs_langmuir_0c03629
crossref_primary_10_1002_aelm_202200432
crossref_primary_10_1016_j_optmat_2020_110333
crossref_primary_10_1039_D4DT01640H
crossref_primary_10_1016_j_cap_2021_03_002
crossref_primary_10_1088_1402_4896_ad69dc
crossref_primary_10_1016_j_cej_2024_158077
crossref_primary_10_1021_acsaelm_3c00225
crossref_primary_10_1038_s41467_023_44214_x
crossref_primary_10_1039_D4CP03303E
crossref_primary_10_1039_C9NR08001E
crossref_primary_10_1039_D3NR04682F
crossref_primary_10_1002_ange_202104333
crossref_primary_10_1038_s41467_024_49670_7
crossref_primary_10_1063_5_0094892
crossref_primary_10_1039_C9SC04213J
crossref_primary_10_1039_D4CE01147C
crossref_primary_10_1016_j_mtnano_2023_100439
crossref_primary_10_1002_advs_202308610
crossref_primary_10_1021_acs_chemrev_9b00730
Cites_doi 10.1016/j.orgel.2016.01.019
10.1002/aelm.201500298
10.1038/nature06932
10.1021/nl900006g
10.1039/C5CP05481H
10.1002/anie.201602499
10.1002/adma.200602564
10.1002/aelm.201600090
10.1016/j.ins.2014.01.015
10.1002/chem.201203940
10.1039/C4CC05233A
10.1063/1.1473234
10.1021/jp110030x
10.1039/c3tc30359d
10.1016/j.orgel.2015.07.002
10.1021/jp305482c
10.1021/ja076720o
10.1039/C6TC04345C
10.1002/marc.201200614
10.1021/ja508592f
10.1021/nn900319q
10.1021/acsami.7b19586
10.1088/2058-8585/aa64be
10.1016/j.carbon.2015.01.011
10.1021/acsami.7b08197
10.1063/1.322361
10.1021/ja304458s
10.1002/adma.201502274
10.1002/smll.201503827
10.1021/ja106945v
10.1002/asia.201601317
10.1039/C4CS00458B
10.1039/C4CC04696J
10.1016/j.mee.2016.10.004
10.1038/nmat1269
10.1021/acs.nanolett.5b04296
10.1063/1.1829166
10.1039/c2jm16287c
10.1002/adfm.201606161
10.1039/c3ra45359f
10.1002/adma.201700527
10.1039/C5TC03042K
10.1002/smll.201200999
10.1126/science.283.5405.1148
10.1002/adma.201302637
10.1021/nn401212p
10.1016/j.mser.2014.06.002
10.1002/celc.201300158
10.1016/j.synthmet.2017.05.001
10.1063/1.2234541
10.1039/C6TC00496B
10.1021/acsnano.7b07317
10.1063/1.3276556
10.1002/asia.201402899
10.1021/nn201770s
10.1039/C7TC01093A
10.1002/adma.201704002
10.1002/adfm.200500130
10.1063/1.2358309
10.1038/nmat5009
10.1002/adma.200305309
10.1039/C4RA16563B
10.1021/cr300115g
10.1039/c2jm32992a
10.1016/j.carbon.2011.04.071
10.1063/1.3271177
10.1002/adfm.201500449
10.1002/anie.201409400
10.1038/nature20102
10.1002/ange.201501071
10.1002/adma.200903469
10.1038/am.2012.32
10.1126/science.aah4496
10.1088/0957-4484/24/33/335201
10.1021/acs.jpcc.5b05337
10.1021/acsami.6b01937
10.1038/nature02070
10.3390/mi6111453
10.1002/adma.201301361
10.1016/j.orgel.2013.11.013
10.1038/ncomms3707
10.1002/ange.201306770
10.1002/adfm.200500429
10.1002/chem.201100807
10.1039/C4MH00067F
10.1016/j.orgel.2012.04.012
10.1021/acsnano.5b02199
10.1021/ja910243f
10.1002/adfm.201602748
10.1088/0268-1242/21/8/024
10.1038/530144a
10.1016/j.orgel.2009.02.001
10.1038/nnano.2012.240
10.1039/c2cc34257j
10.1088/0957-4484/17/1/023
10.1021/acsnano.6b01643
10.1002/adfm.201101210
10.1016/j.orgel.2008.11.015
10.1002/adma.201203349
10.1063/1.2338513
10.1002/adma.201201506
10.1021/nl904092h
10.1002/asia.201600304
10.1021/ja307933t
10.1063/1.322063
10.1039/c3tc30826j
10.1002/aelm.201500474
10.1016/j.apsusc.2018.03.008
10.1038/nnano.2015.29
10.1016/j.orgel.2017.09.005
10.1002/adfm.201605104
10.1038/am.2016.112
10.1002/adfm.201100686
10.1109/JPROC.2011.2158284
10.1039/C6RA10503C
10.1039/c2jm33852a
10.1021/jp305556u
10.1002/asia.201301547
10.1002/adfm.201503493
10.3390/s18020367
10.1039/c3cc44704a
10.1021/nl900429h
10.1063/1.1992653
10.1016/j.progpolymsci.2008.08.001
10.1063/1.1643547
10.1063/1.4802092
10.1088/0957-4484/27/27/275206
10.1016/j.orgel.2015.06.040
10.1038/nature25494
10.1002/anie.201309642
10.1021/acsami.6b09616
10.1002/advs.201600435
10.1038/nmat3070
10.1021/nn800335f
10.1002/adfm.201001383
10.1063/1.3453661
10.1063/1.2355465
10.1039/C5RA21699K
10.1039/C7CP07887K
10.1039/C6CC00989A
10.1063/1.1556555
10.1039/c1py00189b
10.1021/acs.jpcc.7b02981
10.1002/adma.201104307
10.1021/nl204039q
10.1002/adma.201202319
10.1002/adfm.201501271
10.1002/adma.201504202
10.1021/am4006594
10.1002/adma.201600859
10.1002/ajoc.201500087
10.1109/LED.2012.2220953
10.1039/C4MH00022F
10.1002/adma.201701333
10.1038/srep36195
10.1039/C5TC02274F
10.1002/adfm.201800080
10.1039/C6RA28361F
10.1126/science.1230444
10.1021/ja0717459
10.1126/science.1153909
10.3390/electronics4030424
10.1038/nature08940
10.1002/adma.201701048
10.1016/j.cap.2013.03.018
10.1021/nl101902k
10.1021/la061504z
10.1002/adma.200900375
10.1002/adfm.201800568
10.1021/nn403873c
10.1039/c2cs35043b
10.1002/adma.201502889
10.1002/smll.201202038
10.1016/j.orgel.2014.03.024
10.1039/c2jm31963b
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c8cs00614h
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 1565
ExternalDocumentID 30398508
10_1039_C8CS00614H
c8cs00614h
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c436t-38b1fce4be6df37270189a5bba18e4bf14fbae1bf66f0a2e7a9e5e94d3c49ea03
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 01:32:07 EDT 2025
Fri Jul 11 07:22:28 EDT 2025
Sun Jun 29 16:57:48 EDT 2025
Thu Apr 03 07:00:05 EDT 2025
Tue Jul 01 04:18:42 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Tue Dec 17 21:00:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-38b1fce4be6df37270189a5bba18e4bf14fbae1bf66f0a2e7a9e5e94d3c49ea03
Notes Shuang Gao is currently an Assistant Professor at the Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS). He received the BS degree from University of Science and Technology Beijing (USTB) in 2011 and then the PhD degree from Tsinghua University in 2016. His current research interests are mainly memristive materials and devices for wearable electronics and novel logic-in-memory as well as neuromorphic computing applications.
Gang Liu is currently a full professor at the Ningbo Institute of Materials Technology and Engineering (NIMTE), CAS. After receiving his PhD degree from the National University of Singapore in 2010, he worked as a research associate at the Nanyang Technological University and then as a research fellow at the National University of Singapore from January 2010 to August 2012. In August 2012, he joined the CAS Key Laboratory of Magnetic Materials and Devices of NIMTE. His research interests include the design, preparation and engineering of polymer-based nanocomposite materials, as well as their applications in electronics and optoelectronics.
Xiaohui Yi is currently an Associate Professor at the Ningbo Institute of Materials Technology and Engineering (NIMTE), CAS. He obtained his PhD degree from L'Institut National des Sciences Appliquées de Rennes, France at 2014. He then joined Prof. Run-Wei Li's group at the CAS Key Laboratory of Magnetic Materials and Devices of NIMTE as a postdoctoral researcher. His current research interests are focused on the electric, luminescent and magnetic properties on the basis of ligand-metal complex and their application for flexible memory.
Run-Wei Li is currently a full professor at the Ningbo Institute of Materials Technology and Engineering (NIMTE), the Chinese Academy of Sciences (CAS) and the director of CAS Key Laboratory of Magnetic Materials and Devices. After receiving his PhD degree from the Institute of Physics, CAS in July 2002, he worked as a JSPS research fellow at the Osaka University. In September 2003, he moved to the Kaiserslautern University as an Alexander von Humboldt research fellow. Since March 2008, he has been "One Hundred Talents" professor of CAS. His research work is mainly focused on the functional materials and devices for new types of storage and sensors.
Jie Shang is currently a Professor at Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS). After receiving the PhD degree from Kunming University of Science and Technology in 2010, he joined the CAS Key Laboratory of Magnetic Materials and Devices of NIMTE. His research work is focused on the design, preparation and engineering of flexible and elastic functional materials, as well as their applications in wearable devices.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4007-5181
0000-0002-3142-9323
0000-0003-3879-9834
0000-0003-0996-1038
0000-0001-6600-0474
PMID 30398508
PQID 2193219407
PQPubID 2047503
PageCount 35
ParticipantIDs proquest_miscellaneous_2130304386
crossref_citationtrail_10_1039_C8CS00614H
proquest_miscellaneous_2237515601
crossref_primary_10_1039_C8CS00614H
rsc_primary_c8cs00614h
proquest_journals_2193219407
pubmed_primary_30398508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190318
PublicationDateYYYYMMDD 2019-03-18
PublicationDate_xml – month: 3
  year: 2019
  text: 20190318
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yang (C8CS00614H-(cit68)/*[position()=1]) 2006; 16
Zhang (C8CS00614H-(cit91)/*[position()=1]) 2014; 50
Onlaor (C8CS00614H-(cit130)/*[position()=1]) 2016; 31
Jung (C8CS00614H-(cit124)/*[position()=1]) 2006; 89
Zhou (C8CS00614H-(cit174)/*[position()=1]) 2018; 28
Pan (C8CS00614H-(cit165)/*[position()=1]) 2015; 25
Liu (C8CS00614H-(cit136)/*[position()=1]) 2009; 3
Ma (C8CS00614H-(cit13)/*[position()=1]) 2002; 80
Rajan (C8CS00614H-(cit27)/*[position()=1]) 2018; 18
Rajan (C8CS00614H-(cit119)/*[position()=1]) 2017; 168
Laurenti (C8CS00614H-(cit28)/*[position()=1]) 2015; 6
Das (C8CS00614H-(cit128)/*[position()=1]) 2008; 2
Nandakumar (C8CS00614H-(cit179)/*[position()=1]) 2016; 16
Segui (C8CS00614H-(cit32)/*[position()=1]) 1976; 47
Gu (C8CS00614H-(cit77)/*[position()=1]) 2015; 27
Zhang (C8CS00614H-(cit49)/*[position()=1]) 2016; 26
Liu (C8CS00614H-(cit155)/*[position()=1]) 2009; 95
Strukov (C8CS00614H-(cit19)/*[position()=1]) 2008; 453
Sun (C8CS00614H-(cit112)/*[position()=1]) 2015; 119
Chen (C8CS00614H-(cit160)/*[position()=1]) 2012; 41
Chen (C8CS00614H-(cit71)/*[position()=1]) 2006; 100
Ali (C8CS00614H-(cit131)/*[position()=1]) 2015; 25
Borghetti (C8CS00614H-(cit22)/*[position()=1]) 2010; 464
Wang (C8CS00614H-(cit75)/*[position()=1]) 2015; 10
Zhang (C8CS00614H-(cit142)/*[position()=1]) 2012; 13
Onlaor (C8CS00614H-(cit126)/*[position()=1]) 2014; 15
Zhao (C8CS00614H-(cit162)/*[position()=1]) 2016; 45
Ko (C8CS00614H-(cit122)/*[position()=1]) 2013; 34
Zhang (C8CS00614H-(cit158)/*[position()=1]) 2013; 19
Kim (C8CS00614H-(cit25)/*[position()=1]) 2012; 4
Zhu (C8CS00614H-(cit178)/*[position()=1]) 2012; 24
Rajan (C8CS00614H-(cit118)/*[position()=1]) 2017; 2
Xu (C8CS00614H-(cit61)/*[position()=1]) 2017; 355
Ling (C8CS00614H-(cit104)/*[position()=1]) 2017; 29
Xu (C8CS00614H-(cit107)/*[position()=1]) 2006; 89
Zhang (C8CS00614H-(cit44)/*[position()=1]) 2015; 54
Wang (C8CS00614H-(cit87)/*[position()=1]) 2013; 49
Liu (C8CS00614H-(cit21)/*[position()=1]) 2016; 2
Wang (C8CS00614H-(cit97)/*[position()=1]) 2014; 15
Goswami (C8CS00614H-(cit17)/*[position()=1]) 2017; 16
Bandyopadhyay (C8CS00614H-(cit58)/*[position()=1]) 2011; 133
Cho (C8CS00614H-(cit34)/*[position()=1]) 2011; 21
Oh (C8CS00614H-(cit60)/*[position()=1]) 2016; 539
Gu (C8CS00614H-(cit80)/*[position()=1]) 2014; 1
Yoo (C8CS00614H-(cit169)/*[position()=1]) 2015; 27
Park (C8CS00614H-(cit65)/*[position()=1]) 2009; 9
Yu (C8CS00614H-(cit96)/*[position()=1]) 2012; 22
Choi (C8CS00614H-(cit24)/*[position()=1]) 2018; 30
Jang (C8CS00614H-(cit141)/*[position()=1]) 2013; 13
Liu (C8CS00614H-(cit159)/*[position()=1]) 2014; 1
Meijer (C8CS00614H-(cit3)/*[position()=1]) 2008; 319
Pan (C8CS00614H-(cit12)/*[position()=1]) 2014; 83
Wu (C8CS00614H-(cit92)/*[position()=1]) 2012; 48
Wong (C8CS00614H-(cit4)/*[position()=1]) 2015; 10
Zhang (C8CS00614H-(cit53)/*[position()=1]) 2016; 52
Liu (C8CS00614H-(cit55)/*[position()=1]) 2012; 24
Meng (C8CS00614H-(cit129)/*[position()=1]) 2015; 5
Lee (C8CS00614H-(cit16)/*[position()=1]) 2011; 10
Cai (C8CS00614H-(cit101)/*[position()=1]) 2016; 27
Chiolerio (C8CS00614H-(cit105)/*[position()=1]) 2017; 229
Yu (C8CS00614H-(cit111)/*[position()=1]) 2013; 5
Liu (C8CS00614H-(cit153)/*[position()=1]) 2013; 25
Park (C8CS00614H-(cit166)/*[position()=1]) 2017; 7
Zhu (C8CS00614H-(cit173)/*[position()=1]) 2018; 12
Cheng (C8CS00614H-(cit83)/*[position()=1]) 2017; 12
Jang (C8CS00614H-(cit100)/*[position()=1]) 2016; 8
Zhu (C8CS00614H-(cit39)/*[position()=1]) 2017; 29
Choi (C8CS00614H-(cit171)/*[position()=1]) 2017; 9
Lin (C8CS00614H-(cit10)/*[position()=1]) 2014; 26
Philip Chen (C8CS00614H-(cit1)/*[position()=1]) 2014; 275
Zhang (C8CS00614H-(cit88)/*[position()=1]) 2018; 28
Pan (C8CS00614H-(cit48)/*[position()=1]) 2013; 1
Zhuge (C8CS00614H-(cit151)/*[position()=1]) 2011; 49
Ma (C8CS00614H-(cit63)/*[position()=1]) 2003; 82
Liu (C8CS00614H-(cit143)/*[position()=1]) 2012; 8
Chen (C8CS00614H-(cit72)/*[position()=1]) 2006; 21
Roppolo (C8CS00614H-(cit116)/*[position()=1]) 2017; 121
Hu (C8CS00614H-(cit113)/*[position()=1]) 2012; 134
Kim (C8CS00614H-(cit133)/*[position()=1]) 2017; 51
Son (C8CS00614H-(cit43)/*[position()=1]) 2011; 115
Pender (C8CS00614H-(cit31)/*[position()=1]) 1975; 46
Zhang (C8CS00614H-(cit45)/*[position()=1]) 2016; 8
Cho (C8CS00614H-(cit9)/*[position()=1]) 2011; 21
Choi (C8CS00614H-(cit50)/*[position()=1]) 2007; 129
Liu (C8CS00614H-(cit109)/*[position()=1]) 2013; 1
Han (C8CS00614H-(cit134)/*[position()=1]) 2017; 4
Kim (C8CS00614H-(cit42)/*[position()=1]) 2010; 96
Liu (C8CS00614H-(cit82)/*[position()=1]) 2015; 3
Zhang (C8CS00614H-(cit147)/*[position()=1]) 2016; 12
Gergel-Hackett (C8CS00614H-(cit26)/*[position()=1]) 2012; 100
Gao (C8CS00614H-(cit23)/*[position()=1]) 2018; 10
Chen (C8CS00614H-(cit70)/*[position()=1]) 2006; 89
Sun (C8CS00614H-(cit154)/*[position()=1]) 2013; 125
Ling (C8CS00614H-(cit7)/*[position()=1]) 2008; 33
Porro (C8CS00614H-(cit149)/*[position()=1]) 2015; 85
Yang (C8CS00614H-(cit180)/*[position()=1]) 2013; 8
Ji (C8CS00614H-(cit121)/*[position()=1]) 2011; 5
Gu (C8CS00614H-(cit170)/*[position()=1]) 2016; 10
Xiang (C8CS00614H-(cit95)/*[position()=1]) 2016; 4
Yang (C8CS00614H-(cit14)/*[position()=1]) 2009; 9
Liu (C8CS00614H-(cit81)/*[position()=1]) 2016; 2
Wang (C8CS00614H-(cit74)/*[position()=1]) 2014; 9
Chiolerio (C8CS00614H-(cit41)/*[position()=1]) 2016; 6
Zhang (C8CS00614H-(cit157)/*[position()=1]) 2011; 17
Tsai (C8CS00614H-(cit15)/*[position()=1]) 2013; 7
Chen (C8CS00614H-(cit148)/*[position()=1]) 2012; 112
Jeong (C8CS00614H-(cit152)/*[position()=1]) 2010; 10
Waser (C8CS00614H-(cit8)/*[position()=1]) 2009; 21
Li (C8CS00614H-(cit84)/*[position()=1]) 2015; 25
Liu (C8CS00614H-(cit94)/*[position()=1]) 2012; 22
Chui (C8CS00614H-(cit163)/*[position()=1]) 1999; 283
Liu (C8CS00614H-(cit167)/*[position()=1]) 2016; 55
Miao (C8CS00614H-(cit79)/*[position()=1]) 2012; 24
Lee (C8CS00614H-(cit33)/*[position()=1]) 2015; 9
Krishnan (C8CS00614H-(cit103)/*[position()=1]) 2017; 27
Bozano (C8CS00614H-(cit67)/*[position()=1]) 2005; 15
Miao (C8CS00614H-(cit85)/*[position()=1]) 2012; 22
Waldrop (C8CS00614H-(cit175)/*[position()=1]) 2016; 530
Kim (C8CS00614H-(cit38)/*[position()=1]) 2016; 26
ChandraKishore (C8CS00614H-(cit139)/*[position()=1]) 2014; 4
Choi (C8CS00614H-(cit168)/*[position()=1]) 2016; 28
Paul (C8CS00614H-(cit120)/*[position()=1]) 2006; 17
Furukawa (C8CS00614H-(cit161)/*[position()=1]) 2013; 341
Han (C8CS00614H-(cit29)/*[position()=1]) 2013; 25
Zhuang (C8CS00614H-(cit156)/*[position()=1]) 2010; 22
Wang (C8CS00614H-(cit30)/*[position()=1]) 2018; 555
Bhansali (C8CS00614H-(cit108)/*[position()=1]) 2013; 7
Hwang (C8CS00614H-(cit172)/*[position()=1]) 2017; 29
Rajan (C8CS00614H-(cit117)/*[position()=1]) 2017; 5
Xie (C8CS00614H-(cit54)/*[position()=1]) 2008; 130
Krishnan (C8CS00614H-(cit37)/*[position()=1]) 2016; 28
Zhang (C8CS00614H-(cit89)/*[position()=1]) 2012; 116
Zhang (C8CS00614H-(cit135)/*[position()=1]) 2015; 127
Tondelier (C8CS00614H-(cit66)/*[position()=1]) 2004; 85
Gao (C8CS00614H-(cit35)/*[position()=1]) 2012; 116
C8CS00614H-(cit177)/*[position()=1]
Rehman (C8CS00614H-(cit145)/*[position()=1]) 2016; 6
Yoon (C8CS00614H-(cit40)/*[position()=1]) 2014; 53
Wang (C8CS00614H-(cit76)/*[position()=1]) 2015; 4
Liu (C8CS00614H-(cit90)/*[position()=1]) 2011; 2
Gao (C8CS00614H-(cit36)/*[position()=1]) 2013; 102
Gao (C8CS00614H-(cit102)/*[position()=1]) 2013; 24
Scott (C8CS00614H-(cit62)/*[position()=1]) 2007; 19
Kumar (C8CS00614H-(cit59)/*[position()=1]) 2012; 134
Jo (C8CS00614H-(cit20)/*[position()=1]) 2010; 10
Li (C8CS00614H-(cit78)/*[position()=1]) 2010; 132
Möller (C8CS00614H-(cit106)/*[position()=1]) 2003; 426
White (C8CS00614H-(cit140)/*[position()=1]) 2011; 21
Siddiqui (C8CS00614H-(cit146)/*[position()=1]) 2017; 5
Pan (C8CS00614H-(cit164)/*[position()=1]) 2014; 136
Ouyang (C8CS00614H-(cit46)/*[position()=1]) 2004; 3
Jeong (C8CS00614H-(cit176)/*[position()=1]) 2016; 2
Chen (C8CS00614H-(cit18)/*[position()=1]) 2012; 33
Sun (C8CS00614H-(cit127)/*[position()=1]) 2018; 20
Zhang (C8CS00614H-(cit114)/*[position()=1]) 2016; 4
Lin (C8CS00614H-(cit73)/*[position()=1]) 2009; 10
Chen (C8CS00614H-(cit11)/*[position()=1]) 2014; 1
Gantz (C8CS00614H-(cit2)/*[position()=1])
Liu (C8CS00614H-(cit52)/*[position()=1]) 2015; 2
Ling (C8CS00614H-(cit47)/*[position()=1]) 2007; 23
Sun (C8CS00614H-(cit57)/*[position()=1]) 2015; 17
Chen (C8CS00614H-(cit69)/*[position()=1]) 2005; 87
Rajan (C8CS00614H-(cit115)/*[position()=1]) 2018; 443
Ali (C8CS00614H-(cit132)/*[position()=1]) 2016; 6
Hung (C8CS00614H-(cit99)/*[position()=1]) 2017; 27
Cho (C8CS00614H-(cit125)/*[position()=1]) 2009; 10
Hwang (C8CS00614H-(cit138)/*[position()=1]) 2013; 9
Bandyopadhyay (C8CS00614H-(cit110)/*[position()=1]) 2003; 15
Bozano (C8CS00614H-(cit64)/*[position()=1]) 2004; 84
Wang (C8CS00614H-(cit93)/*[position()=1]) 2012; 22
C8CS00614H-(cit6)/*[position()=1]
Ji (C8CS00614H-(cit123)/*[position()=1]) 2013; 4
Hwang (C8CS00614H-(cit137)/*[position()=1]) 2012; 12
He (C8CS00614H-(cit150)/*[position()=1]) 2009; 95
Wang (C8CS00614H-(cit98)/*[position()=1]) 2016; 8
Ghoneim (C8CS00614H-(cit5)/*[position()=1]) 2015; 4
Zhang (C8CS00614H-(cit144)/*[position()=1]) 2016; 12
Sun (C8CS00614H-(cit56)/*[position()=1]) 2015; 25
Zhang (C8CS00614H-(cit51)/*[position()=1]) 2014; 50
Zhang (C8CS00614H-(cit86)/*[position()=1]) 2016; 11
References_xml – doi: Gantz Reinsel
– volume: 31
  start-page: 19
  year: 2016
  ident: C8CS00614H-(cit130)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.01.019
– volume: 2
  start-page: 1500298
  year: 2016
  ident: C8CS00614H-(cit21)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500298
– volume: 453
  start-page: 80
  year: 2008
  ident: C8CS00614H-(cit19)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06932
– volume: 9
  start-page: 1636
  year: 2009
  ident: C8CS00614H-(cit14)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl900006g
– volume: 17
  start-page: 29978
  year: 2015
  ident: C8CS00614H-(cit57)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP05481H
– volume: 55
  start-page: 8884
  year: 2016
  ident: C8CS00614H-(cit167)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602499
– volume: 19
  start-page: 1452
  year: 2007
  ident: C8CS00614H-(cit62)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602564
– volume: 2
  start-page: 1600090
  year: 2016
  ident: C8CS00614H-(cit176)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600090
– volume: 275
  start-page: 314
  year: 2014
  ident: C8CS00614H-(cit1)/*[position()=1]
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.01.015
– volume: 19
  start-page: 6265
  year: 2013
  ident: C8CS00614H-(cit158)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201203940
– volume: 50
  start-page: 11496
  year: 2014
  ident: C8CS00614H-(cit91)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05233A
– volume: 80
  start-page: 2997
  year: 2002
  ident: C8CS00614H-(cit13)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1473234
– volume: 115
  start-page: 2341
  year: 2011
  ident: C8CS00614H-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110030x
– volume: 1
  start-page: 3947
  year: 2013
  ident: C8CS00614H-(cit109)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc30359d
– volume: 25
  start-page: 283
  year: 2015
  ident: C8CS00614H-(cit56)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2015.07.002
– volume: 116
  start-page: 17955
  year: 2012
  ident: C8CS00614H-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp305482c
– volume: 130
  start-page: 2120
  year: 2008
  ident: C8CS00614H-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076720o
– volume: 5
  start-page: 862
  year: 2017
  ident: C8CS00614H-(cit146)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04345C
– volume: 34
  start-page: 355
  year: 2013
  ident: C8CS00614H-(cit122)/*[position()=1]
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201200614
– volume: 136
  start-page: 17477
  year: 2014
  ident: C8CS00614H-(cit164)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508592f
– volume: 3
  start-page: 1929
  year: 2009
  ident: C8CS00614H-(cit136)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900319q
– volume: 10
  start-page: 6453
  year: 2018
  ident: C8CS00614H-(cit23)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19586
– volume: 2
  start-page: 024002
  year: 2017
  ident: C8CS00614H-(cit118)/*[position()=1]
  publication-title: Flexible Printed Electron.
  doi: 10.1088/2058-8585/aa64be
– volume: 85
  start-page: 383
  year: 2015
  ident: C8CS00614H-(cit149)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.01.011
– volume: 9
  start-page: 30764
  year: 2017
  ident: C8CS00614H-(cit171)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08197
– volume: 47
  start-page: 140
  year: 1976
  ident: C8CS00614H-(cit32)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.322361
– volume: 134
  start-page: 14869
  year: 2012
  ident: C8CS00614H-(cit59)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304458s
– volume: 27
  start-page: 5968
  year: 2015
  ident: C8CS00614H-(cit77)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502274
– volume: 12
  start-page: 2077
  year: 2016
  ident: C8CS00614H-(cit144)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201503827
– volume: 133
  start-page: 1168
  year: 2011
  ident: C8CS00614H-(cit58)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106945v
– volume: 12
  start-page: 45
  year: 2017
  ident: C8CS00614H-(cit83)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201601317
– volume: 45
  start-page: 655
  year: 2016
  ident: C8CS00614H-(cit162)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00458B
– volume: 50
  start-page: 11856
  year: 2014
  ident: C8CS00614H-(cit51)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04696J
– volume: 168
  start-page: 27
  year: 2017
  ident: C8CS00614H-(cit119)/*[position()=1]
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2016.10.004
– volume: 3
  start-page: 918
  year: 2004
  ident: C8CS00614H-(cit46)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1269
– volume: 16
  start-page: 1602
  year: 2016
  ident: C8CS00614H-(cit179)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04296
– volume: 85
  start-page: 5763
  year: 2004
  ident: C8CS00614H-(cit66)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1829166
– volume: 22
  start-page: 9576
  year: 2012
  ident: C8CS00614H-(cit93)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16287c
– volume: 27
  start-page: 1606161
  year: 2017
  ident: C8CS00614H-(cit99)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606161
– volume: 2
  start-page: 1500298
  year: 2015
  ident: C8CS00614H-(cit52)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500298
– volume: 4
  start-page: 9905
  year: 2014
  ident: C8CS00614H-(cit139)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c3ra45359f
– volume: 29
  start-page: 1700527
  year: 2017
  ident: C8CS00614H-(cit39)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700527
– volume: 4
  start-page: 921
  year: 2016
  ident: C8CS00614H-(cit95)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC03042K
– volume: 8
  start-page: 3517
  year: 2012
  ident: C8CS00614H-(cit143)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201200999
– volume: 283
  start-page: 1148
  year: 1999
  ident: C8CS00614H-(cit163)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.283.5405.1148
– volume: 26
  start-page: 570
  year: 2014
  ident: C8CS00614H-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302637
– volume: 7
  start-page: 5360
  year: 2013
  ident: C8CS00614H-(cit15)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn401212p
– volume: 83
  start-page: 1
  year: 2014
  ident: C8CS00614H-(cit12)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2014.06.002
– volume: 1
  start-page: 514
  year: 2014
  ident: C8CS00614H-(cit159)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201300158
– volume: 229
  start-page: 72
  year: 2017
  ident: C8CS00614H-(cit105)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2017.05.001
– volume: 100
  start-page: 034512
  year: 2006
  ident: C8CS00614H-(cit71)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2234541
– volume: 4
  start-page: 3217
  year: 2016
  ident: C8CS00614H-(cit114)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC00496B
– volume: 12
  start-page: 1242
  year: 2018
  ident: C8CS00614H-(cit173)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07317
– volume: 95
  start-page: 253301
  year: 2009
  ident: C8CS00614H-(cit155)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3276556
– volume: 10
  start-page: 116
  year: 2015
  ident: C8CS00614H-(cit75)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201402899
– volume: 5
  start-page: 5995
  year: 2011
  ident: C8CS00614H-(cit121)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn201770s
– volume: 5
  start-page: 6144
  year: 2017
  ident: C8CS00614H-(cit117)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01093A
– volume: 30
  start-page: 1704002
  year: 2018
  ident: C8CS00614H-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704002
– volume: 15
  start-page: 1933
  year: 2005
  ident: C8CS00614H-(cit67)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500130
– volume: 89
  start-page: 142109
  year: 2006
  ident: C8CS00614H-(cit107)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2358309
– volume: 16
  start-page: 1216
  year: 2017
  ident: C8CS00614H-(cit17)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5009
– volume: 15
  start-page: 1949
  year: 2003
  ident: C8CS00614H-(cit110)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305309
– volume: 5
  start-page: 26886
  year: 2015
  ident: C8CS00614H-(cit129)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16563B
– volume: 112
  start-page: 6027
  year: 2012
  ident: C8CS00614H-(cit148)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300115g
– volume: 22
  start-page: 16582
  year: 2012
  ident: C8CS00614H-(cit85)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32992a
– volume: 49
  start-page: 3796
  year: 2011
  ident: C8CS00614H-(cit151)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.04.071
– volume: 95
  start-page: 232101
  year: 2009
  ident: C8CS00614H-(cit150)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3271177
– volume: 25
  start-page: 2677
  year: 2015
  ident: C8CS00614H-(cit165)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500449
– volume: 54
  start-page: 3653
  year: 2015
  ident: C8CS00614H-(cit44)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409400
– volume: 539
  start-page: 411
  year: 2016
  ident: C8CS00614H-(cit60)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature20102
– volume: 127
  start-page: 5515
  year: 2015
  ident: C8CS00614H-(cit135)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201501071
– volume: 22
  start-page: 1731
  year: 2010
  ident: C8CS00614H-(cit156)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903469
– volume: 4
  start-page: e18
  year: 2012
  ident: C8CS00614H-(cit25)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2012.32
– volume: 355
  start-page: 59
  year: 2017
  ident: C8CS00614H-(cit61)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aah4496
– volume: 24
  start-page: 335201
  year: 2013
  ident: C8CS00614H-(cit102)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/33/335201
– volume: 119
  start-page: 19520
  year: 2015
  ident: C8CS00614H-(cit112)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05337
– volume: 8
  start-page: 12951
  year: 2016
  ident: C8CS00614H-(cit100)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01937
– volume: 426
  start-page: 166
  year: 2003
  ident: C8CS00614H-(cit106)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature02070
– volume: 6
  start-page: 1729
  year: 2015
  ident: C8CS00614H-(cit28)/*[position()=1]
  publication-title: Micromachines
  doi: 10.3390/mi6111453
– volume: 25
  start-page: 5425
  year: 2013
  ident: C8CS00614H-(cit29)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301361
– volume: 15
  start-page: 322
  year: 2014
  ident: C8CS00614H-(cit97)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2013.11.013
– volume: 4
  start-page: 2707
  year: 2013
  ident: C8CS00614H-(cit123)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3707
– volume: 125
  start-page: 13593
  year: 2013
  ident: C8CS00614H-(cit154)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201306770
– ident: C8CS00614H-(cit2)/*[position()=1]
– volume: 16
  start-page: 1001
  year: 2006
  ident: C8CS00614H-(cit68)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500429
– volume: 17
  start-page: 10304
  year: 2011
  ident: C8CS00614H-(cit157)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201100807
– volume: 1
  start-page: 489
  year: 2014
  ident: C8CS00614H-(cit11)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00067F
– volume: 13
  start-page: 1289
  year: 2012
  ident: C8CS00614H-(cit142)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2012.04.012
– volume: 9
  start-page: 7306
  year: 2015
  ident: C8CS00614H-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02199
– volume: 132
  start-page: 5542
  year: 2010
  ident: C8CS00614H-(cit78)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja910243f
– volume: 26
  start-page: 7406
  year: 2016
  ident: C8CS00614H-(cit38)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602748
– volume: 21
  start-page: 1121
  year: 2006
  ident: C8CS00614H-(cit72)/*[position()=1]
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/21/8/024
– volume: 530
  start-page: 144
  year: 2016
  ident: C8CS00614H-(cit175)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/530144a
– volume: 10
  start-page: 473
  year: 2009
  ident: C8CS00614H-(cit125)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2009.02.001
– volume: 8
  start-page: 13
  year: 2013
  ident: C8CS00614H-(cit180)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.240
– volume: 48
  start-page: 9135
  year: 2012
  ident: C8CS00614H-(cit92)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc34257j
– volume: 17
  start-page: 145
  year: 2006
  ident: C8CS00614H-(cit120)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/1/023
– volume: 10
  start-page: 5413
  year: 2016
  ident: C8CS00614H-(cit170)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01643
– volume: 21
  start-page: 3976
  year: 2011
  ident: C8CS00614H-(cit34)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101210
– volume: 10
  start-page: 275
  year: 2009
  ident: C8CS00614H-(cit73)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2008.11.015
– volume: 25
  start-page: 233
  year: 2013
  ident: C8CS00614H-(cit153)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203349
– volume: 89
  start-page: 083514
  year: 2006
  ident: C8CS00614H-(cit70)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2338513
– volume: 24
  start-page: 3941
  year: 2012
  ident: C8CS00614H-(cit178)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201506
– volume: 10
  start-page: 1297
  year: 2010
  ident: C8CS00614H-(cit20)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl904092h
– volume: 11
  start-page: 1624
  year: 2016
  ident: C8CS00614H-(cit86)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201600304
– volume: 134
  start-page: 17408
  year: 2012
  ident: C8CS00614H-(cit113)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307933t
– volume: 46
  start-page: 3426
  year: 1975
  ident: C8CS00614H-(cit31)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.322063
– volume: 1
  start-page: 4556
  year: 2013
  ident: C8CS00614H-(cit48)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc30826j
– volume: 2
  start-page: 1500474
  year: 2016
  ident: C8CS00614H-(cit81)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500474
– volume: 443
  start-page: 475
  year: 2018
  ident: C8CS00614H-(cit115)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.008
– volume: 10
  start-page: 191
  year: 2015
  ident: C8CS00614H-(cit4)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.29
– volume: 51
  start-page: 156
  year: 2017
  ident: C8CS00614H-(cit133)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.09.005
– volume: 27
  start-page: 1605104
  year: 2017
  ident: C8CS00614H-(cit103)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605104
– volume: 8
  start-page: e298
  year: 2016
  ident: C8CS00614H-(cit98)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.112
– volume: 21
  start-page: 2806
  year: 2011
  ident: C8CS00614H-(cit9)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100686
– volume: 100
  start-page: 1971
  year: 2012
  ident: C8CS00614H-(cit26)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2011.2158284
– volume: 6
  start-page: 56661
  year: 2016
  ident: C8CS00614H-(cit41)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA10503C
– volume: 22
  start-page: 20754
  year: 2012
  ident: C8CS00614H-(cit96)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33852a
– volume: 116
  start-page: 22832
  year: 2012
  ident: C8CS00614H-(cit89)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp305556u
– volume: 9
  start-page: 779
  year: 2014
  ident: C8CS00614H-(cit74)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201301547
– volume: 26
  start-page: 146
  year: 2016
  ident: C8CS00614H-(cit49)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503493
– volume: 18
  start-page: 367
  year: 2018
  ident: C8CS00614H-(cit27)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s18020367
– volume: 49
  start-page: 9470
  year: 2013
  ident: C8CS00614H-(cit87)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc44704a
– volume: 9
  start-page: 1713
  year: 2009
  ident: C8CS00614H-(cit65)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl900429h
– volume: 87
  start-page: 023505
  year: 2005
  ident: C8CS00614H-(cit69)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1992653
– volume: 33
  start-page: 917
  year: 2008
  ident: C8CS00614H-(cit7)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.08.001
– volume: 84
  start-page: 607
  year: 2004
  ident: C8CS00614H-(cit64)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1643547
– volume: 102
  start-page: 141606
  year: 2013
  ident: C8CS00614H-(cit36)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802092
– volume: 27
  start-page: 275206
  year: 2016
  ident: C8CS00614H-(cit101)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/27/275206
– volume: 25
  start-page: 225
  year: 2015
  ident: C8CS00614H-(cit131)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2015.06.040
– volume: 555
  start-page: 83
  year: 2018
  ident: C8CS00614H-(cit30)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature25494
– volume: 53
  start-page: 4437
  year: 2014
  ident: C8CS00614H-(cit40)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309642
– volume: 8
  start-page: 30336
  year: 2016
  ident: C8CS00614H-(cit45)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09616
– volume: 12
  start-page: 2077
  year: 2016
  ident: C8CS00614H-(cit147)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201503827
– volume: 4
  start-page: 1600435
  year: 2017
  ident: C8CS00614H-(cit134)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600435
– volume: 10
  start-page: 625
  year: 2011
  ident: C8CS00614H-(cit16)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3070
– volume: 2
  start-page: 1930
  year: 2008
  ident: C8CS00614H-(cit128)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn800335f
– volume: 21
  start-page: 233
  year: 2011
  ident: C8CS00614H-(cit140)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201001383
– volume: 96
  start-page: 253301
  year: 2010
  ident: C8CS00614H-(cit42)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3453661
– volume: 89
  start-page: 122110
  year: 2006
  ident: C8CS00614H-(cit124)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2355465
– volume: 6
  start-page: 5068
  year: 2016
  ident: C8CS00614H-(cit132)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA21699K
– volume: 20
  start-page: 5771
  year: 2018
  ident: C8CS00614H-(cit127)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP07887K
– volume: 52
  start-page: 4828
  year: 2016
  ident: C8CS00614H-(cit53)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00989A
– volume: 82
  start-page: 1419
  year: 2003
  ident: C8CS00614H-(cit63)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1556555
– ident: C8CS00614H-(cit177)/*[position()=1]
– volume: 2
  start-page: 2169
  year: 2011
  ident: C8CS00614H-(cit90)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c1py00189b
– volume: 121
  start-page: 14285
  year: 2017
  ident: C8CS00614H-(cit116)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b02981
– volume: 24
  start-page: 2901
  year: 2012
  ident: C8CS00614H-(cit55)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104307
– volume: 12
  start-page: 2217
  year: 2012
  ident: C8CS00614H-(cit137)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl204039q
– volume: 24
  start-page: 6210
  year: 2012
  ident: C8CS00614H-(cit79)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202319
– volume: 25
  start-page: 4246
  year: 2015
  ident: C8CS00614H-(cit84)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501271
– volume: 28
  start-page: 640
  year: 2016
  ident: C8CS00614H-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504202
– ident: C8CS00614H-(cit6)/*[position()=1]
– volume: 5
  start-page: 4921
  year: 2013
  ident: C8CS00614H-(cit111)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4006594
– volume: 28
  start-page: 6562
  year: 2016
  ident: C8CS00614H-(cit168)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600859
– volume: 4
  start-page: 646
  year: 2015
  ident: C8CS00614H-(cit76)/*[position()=1]
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201500087
– volume: 33
  start-page: 1711
  year: 2012
  ident: C8CS00614H-(cit18)/*[position()=1]
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2012.2220953
– volume: 1
  start-page: 446
  year: 2014
  ident: C8CS00614H-(cit80)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00022F
– volume: 29
  start-page: 1701333
  year: 2017
  ident: C8CS00614H-(cit104)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701333
– volume: 6
  start-page: 36195
  year: 2016
  ident: C8CS00614H-(cit145)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep36195
– volume: 3
  start-page: 9145
  year: 2015
  ident: C8CS00614H-(cit82)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02274F
– volume: 28
  start-page: 1800080
  year: 2018
  ident: C8CS00614H-(cit174)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800080
– volume: 7
  start-page: 21045
  year: 2017
  ident: C8CS00614H-(cit166)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28361F
– volume: 341
  start-page: 1230444
  year: 2013
  ident: C8CS00614H-(cit161)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 129
  start-page: 9842
  year: 2007
  ident: C8CS00614H-(cit50)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0717459
– volume: 319
  start-page: 1625
  year: 2008
  ident: C8CS00614H-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1153909
– volume: 4
  start-page: 424
  year: 2015
  ident: C8CS00614H-(cit5)/*[position()=1]
  publication-title: Electronics
  doi: 10.3390/electronics4030424
– volume: 464
  start-page: 873
  year: 2010
  ident: C8CS00614H-(cit22)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08940
– volume: 29
  start-page: 1701048
  year: 2017
  ident: C8CS00614H-(cit172)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701048
– volume: 13
  start-page: 1237
  year: 2013
  ident: C8CS00614H-(cit141)/*[position()=1]
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2013.03.018
– volume: 10
  start-page: 4381
  year: 2010
  ident: C8CS00614H-(cit152)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101902k
– volume: 23
  start-page: 312
  year: 2007
  ident: C8CS00614H-(cit47)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la061504z
– volume: 21
  start-page: 2632
  year: 2009
  ident: C8CS00614H-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900375
– volume: 28
  start-page: 1800568
  year: 2018
  ident: C8CS00614H-(cit88)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800568
– volume: 7
  start-page: 10518
  year: 2013
  ident: C8CS00614H-(cit108)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn403873c
– volume: 41
  start-page: 4688
  year: 2012
  ident: C8CS00614H-(cit160)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35043b
– volume: 27
  start-page: 6170
  year: 2015
  ident: C8CS00614H-(cit169)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502889
– volume: 9
  start-page: 831
  year: 2013
  ident: C8CS00614H-(cit138)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201202038
– volume: 15
  start-page: 1254
  year: 2014
  ident: C8CS00614H-(cit126)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2014.03.024
– volume: 22
  start-page: 22964
  year: 2012
  ident: C8CS00614H-(cit94)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31963b
SSID ssj0011762
Score 2.6729927
SecondaryResourceType review_article
Snippet The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1531
SubjectTerms Chemical synthesis
CMOS
computer hardware
Data management
Data storage
energy use and consumption
Information storage
Internet
Memory devices
Power consumption
storage technology
Switching
Weight reduction
Title Organic and hybrid resistive switching materials and devices
URI https://www.ncbi.nlm.nih.gov/pubmed/30398508
https://www.proquest.com/docview/2193219407
https://www.proquest.com/docview/2130304386
https://www.proquest.com/docview/2237515601
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1ILuABfE1yBjoCC4oCmQxE7sSFymaqhMg8s6qbfKdmw10tSiNWGCX89z_JHAKjS4RJH7XDl-z-_7PSP0loua87zSCS1InZCa64RJmiaKUUV4nkquTe3wl6_l7IKcLorFUK7YV5e04r38ubOu5H-wCmOAV1Ml-w-YDX8KA_AO-IUnYBiet8KxLaS0DVdXP0zt1RFYz-bUfldH2-umtYmSoJTa1fSAteqZw1grDV0DfA6n61EaknN471A9X3XcCTrDJ_o8gEXDN6uuCY4a738-bQLFnDVd7333c52PwZQ14WTMFo1hkRjNyEoNyypJmSaE2u6NnpcSNqKZMWMExpqNhCxYjcVOBp5i0_90yqbnRrkis0FM-dD8H9Ir5BT20XRcLYe5d9FeDsZDPkF7xyfzz2chupTR0kWX7Ff5trW4-jDM_l1RuWF9gC5y5e-I6XWR-UP0wBkR8bGliEfojlo_Rvem_u6-J-ijo4wYEB5byogDZcSBMuJAGT2go4yn6OLTyXw6S9w9GYkkuGwTzESmpSJClbXGoJCmGat4IQTPGIzqjGjBVSZ0WeqU54ryShWqIjWWpFI8xftost6s1XMUMyJkzbGiApvXTJRaayzrQlAiQdmJ0Du_KUvpmsibu0wulze3P0JvAuw32zplJ9Sh39ulO1rbZW7MiqwiKY3Q6_Az7KGJZvG12nQGBpuwPmblX2ByTAvTKyCL0DOLt7AUmF0xME8itA-IDMOSyW2_stXBrdb_At0fTswhmrRXnXoJemorXjmy-wX6o5Gd
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+and+hybrid+resistive+switching+materials+and+devices&rft.jtitle=Chemical+Society+reviews&rft.au=Gao%2C+Shuang&rft.au=Yi%2C+Xiaohui&rft.au=Shang%2C+Jie&rft.au=Liu%2C+Gang&rft.date=2019-03-18&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=48&rft.issue=6&rft.spage=1531&rft.epage=1565&rft_id=info:doi/10.1039%2FC8CS00614H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8CS00614H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon