Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy
Covering: up to 2020 As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could...
Saved in:
Published in | Natural product reports Vol. 38; no. 3; pp. 47 - 488 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covering: up to 2020
As a main bioactive component of the Chinese, Indian, and American
Podophyllum
species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs.
Natural product podophyllotoxin exhibited superior broad spectrum antitumor and antiviral activity. Over past 30 years, scientists devoted continuous efforts to develop druggability strategies and discover new podophyllotoxin-derived drugs. |
---|---|
AbstractList | As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs. Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs. Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs.Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs. Covering: up to 2020 As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs. Natural product podophyllotoxin exhibited superior broad spectrum antitumor and antiviral activity. Over past 30 years, scientists devoted continuous efforts to develop druggability strategies and discover new podophyllotoxin-derived drugs. Covering: up to 2020 As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs. |
Author | Zhao, Wei Zhang, Youming Li, Hong-Mei Cong, Ying Li, Shengying Shen, Yuemao Qi, Qingsheng Tang, Ya-Jie Li, Yue-Zhong |
AuthorAffiliation | State Key Laboratory of Microbial Technology Shandong University |
AuthorAffiliation_xml | – name: Shandong University – name: State Key Laboratory of Microbial Technology |
Author_xml | – sequence: 1 givenname: Wei surname: Zhao fullname: Zhao, Wei – sequence: 2 givenname: Ying surname: Cong fullname: Cong, Ying – sequence: 3 givenname: Hong-Mei surname: Li fullname: Li, Hong-Mei – sequence: 4 givenname: Shengying surname: Li fullname: Li, Shengying – sequence: 5 givenname: Yuemao surname: Shen fullname: Shen, Yuemao – sequence: 6 givenname: Qingsheng surname: Qi fullname: Qi, Qingsheng – sequence: 7 givenname: Youming surname: Zhang fullname: Zhang, Youming – sequence: 8 givenname: Yue-Zhong surname: Li fullname: Li, Yue-Zhong – sequence: 9 givenname: Ya-Jie surname: Tang fullname: Tang, Ya-Jie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32895676$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s9rFTEQB_AgFftavXhXAl6KsJrfu3ssz2qFoh70vGST2bcp2WRNssX337vtqxWK4Fxy-cwXZiYn6CjEAAi9pOQdJbx9b0mYCSGCjk_QhgpFKlFLdoQ2hClZEamaY3SS8zUhlNZKPUPHnDWtVLXaoLgdtfcQdpCxDhbPsUAoTns8xITdNKd448IOlxGwTctup3vnXdnjOKzWxnncex9L_OVCZSG5G7B3LmMXsNHBQMJmhCmuAUnP--fo6aB9hhf37yn68fHi-_ayuvr66fP2_KoygqtScaGN0JZSAabRTVuDAi4s1dJQrq3sOWXMGMNA9mYQoOygmOVN36tmLcNP0dkhdx3g5wK5dJPLBrzXAeKSO6YUaRsuhfg_FYK0hLXylr55RK_jksI6SMckqaWijNeren2vln4C283JTTrtuz9bX8HbAzAp5pxgeCCUdLcn7T6QL9_uTnq5YvIIG1d0cTGUpJ3_d8urQ0vK5iH67y_hvwHOyK41 |
CitedBy_id | crossref_primary_10_1080_07391102_2022_2137241 crossref_primary_10_1002_chem_202302595 crossref_primary_10_1089_can_2023_0284 crossref_primary_10_4062_biomolther_2022_113 crossref_primary_10_1016_S1875_5364_24_60582_0 crossref_primary_10_3390_ijms25115948 crossref_primary_10_1016_j_xjidi_2024_100321 crossref_primary_10_1016_j_cej_2025_159276 crossref_primary_10_1016_j_ejphar_2021_174189 crossref_primary_10_1002_adma_202311500 crossref_primary_10_1016_j_cclet_2022_108121 crossref_primary_10_3390_molecules27155029 crossref_primary_10_1039_D1SC06719B crossref_primary_10_2174_1570180820666230606161639 crossref_primary_10_1039_D4OB01264J crossref_primary_10_3390_ijms23169119 crossref_primary_10_1620_tjem_2022_J069 crossref_primary_10_1002_med_21963 crossref_primary_10_1002_cbic_202200284 crossref_primary_10_4014_jmb_2109_09012 crossref_primary_10_1016_S1875_5364_24_60721_1 crossref_primary_10_1021_acs_chemrev_4c00546 crossref_primary_10_1016_j_indcrop_2025_120730 crossref_primary_10_3390_molecules29071442 crossref_primary_10_3892_ijmm_2023_5306 crossref_primary_10_1136_jnis_2023_021055 crossref_primary_10_1016_j_ajps_2024_100892 crossref_primary_10_1021_acssynbio_2c00032 crossref_primary_10_3389_fonc_2020_624954 crossref_primary_10_1016_j_eurpolymj_2024_113379 crossref_primary_10_1038_s41598_022_12093_9 crossref_primary_10_3390_biomedicines10071632 crossref_primary_10_1002_cbdv_202402375 crossref_primary_10_1016_j_ijbiomac_2024_133678 crossref_primary_10_1038_s44160_024_00564_y crossref_primary_10_1016_j_bioorg_2022_105761 crossref_primary_10_3389_fphar_2023_1136779 crossref_primary_10_1016_j_biopha_2023_114955 crossref_primary_10_1515_ntrev_2021_0119 crossref_primary_10_26599_POM_2025_9140085 crossref_primary_10_1016_j_bcp_2022_115039 crossref_primary_10_15212_AMM_2023_0038 crossref_primary_10_1080_07391102_2022_2139766 crossref_primary_10_1038_s41598_022_26105_1 crossref_primary_10_1016_j_bmc_2023_117483 crossref_primary_10_1016_j_prmcm_2023_100353 crossref_primary_10_1021_acs_orglett_4c00096 crossref_primary_10_31857_S0023291223600463 crossref_primary_10_3390_molecules27010220 crossref_primary_10_1002_adhm_202401616 crossref_primary_10_1016_j_bioorg_2022_105906 crossref_primary_10_1016_j_bmc_2022_116815 crossref_primary_10_1016_j_apsb_2023_08_011 crossref_primary_10_1080_14786419_2024_2410410 crossref_primary_10_3390_plants12102021 crossref_primary_10_1016_j_phrs_2024_107150 crossref_primary_10_1080_10717544_2021_1995076 crossref_primary_10_1016_j_brainres_2024_149099 crossref_primary_10_1021_acs_joc_4c00036 crossref_primary_10_1016_j_ijpharm_2024_124496 crossref_primary_10_1016_j_bioorg_2024_108103 crossref_primary_10_3390_biom11040603 crossref_primary_10_3390_ph18020169 crossref_primary_10_1016_j_bmcl_2024_130031 crossref_primary_10_1002_cbic_202300035 crossref_primary_10_3390_pharmaceutics15122728 |
Cites_doi | 10.1093/annonc/mdx009 10.1093/annonc/mdx533 10.1016/j.ejmech.2018.05.052 10.1371/journal.pone.0215886 10.1111/j.1349-7006.2011.02103.x 10.1089/cbr.2019.3298 10.1016/j.ejmech.2019.03.006 10.1200/JCO.2003.02.153 10.1080/10717544.2020.1787558 10.1016/S0140-6736(19)32222-6 10.1002/slct.201700347 10.1016/j.bioorg.2019.103384 10.1016/j.bmcl.2017.07.047 10.1093/annonc/mdx254 10.3109/10717544.2016.1141258 10.1158/0008-5472.CAN-06-0635 10.1038/sj.onc.1206948 10.1021/np50063a021 10.1126/science.1204117 10.1039/C7MD00273D 10.1016/j.ijbiomac.2016.11.053 10.1021/acs.jmedchem.9b01354 10.1016/j.taap.2011.02.006 10.1182/blood-2005-01-0293 10.1016/j.tig.2017.12.010 10.1021/tx8002356 10.1016/j.bmcl.2017.04.082 10.1016/j.jconrel.2018.07.002 10.1021/acs.jnatprod.9b01285 10.1016/j.canlet.2014.03.013 10.1016/j.bmcl.2019.02.005 10.1016/j.ejps.2013.08.016 10.1016/j.bmcl.2016.07.072 10.1038/srep34064 10.3389/fchem.2019.00434 10.1186/s12874-018-0581-z 10.3390/molecules24071424 10.2217/nnm-2016-0396 10.1042/BCJ20190736 10.1016/j.jconrel.2006.02.014 10.1158/1538-7445.AM2018-1818 10.1016/j.tiv.2016.07.018 10.1016/j.cllc.2016.10.009 10.1021/tx0600595 10.1039/C9NR01068H 10.1021/acsnano.7b07878 10.1016/j.biomaterials.2015.02.041 10.1039/C9BM00344D 10.1016/j.canlet.2004.08.011 10.1038/sj.onc.1208065 10.1016/S1470-2045(18)30349-8 10.1038/s41467-019-11570-6 10.1080/08880018.2017.1360970 10.1038/nature02393 10.1002/ajh.25091 10.1021/jm1007648 10.1016/j.biotechadv.2013.11.009 10.1016/j.msec.2019.110275 10.1007/BF00684865 10.3892/ijmm.2015.2068 10.1515/jbcpp-2018-0108 10.1093/carcin/bgt034 10.1016/j.actbio.2018.04.016 10.1016/j.colsurfb.2017.08.042 10.1016/j.bmcl.2015.11.042 10.1182/blood-2017-06-788349 10.2174/0929867324666170920161922 10.1016/j.ejmech.2018.09.022 10.1021/acsami.7b07091 10.1038/bjc.1996.231 10.1038/cddis.2016.381 10.1007/s00280-010-1315-z 10.1186/s12964-018-0263-9 10.2147/DDDT.S167382 10.1016/j.ejmech.2017.03.011 10.1021/acschembio.6b00842 10.1089/ars.2017.7086 10.1002/jps.21731 10.4155/fmc-2018-0593 10.1166/jbn.2013.1613 10.1016/j.ijpharm.2011.02.021 10.3109/10717544.2015.1048491 10.3390/pharmaceutics12030254 10.1038/sj.bjc.6602772 10.1016/S0006-2952(03)00255-7 10.1039/C9CC07883E 10.2174/1381612003398582 10.1080/14786419.2018.1474467 10.1111/cbdd.13436 10.1016/j.bmcl.2016.05.063 10.1016/j.msec.2019.03.060 10.3389/fchem.2019.00253 10.1177/095632029800900307 10.1158/1078-0432.CCR-08-1587 10.3892/or.2012.2201 10.1016/j.canlet.2020.01.008 10.1039/C9TB00651F 10.1002/9781118682784 10.1038/srep17175 10.1021/acs.molpharmaceut.8b00702 10.1002/asia.201901070 10.1111/j.1365-2141.2010.08236.x 10.1021/acs.bioconjchem.7b00165 10.1073/pnas.88.17.7654 10.1124/dmd.112.046268 10.1016/j.bmcl.2004.02.102 10.1021/tx200025y 10.1039/C8RA06360E 10.1016/j.bmcl.2018.04.019 10.1080/10717544.2020.1716875 10.3390/cells9041010 10.1007/s12032-013-0805-3 10.1158/1078-0432.MECHRES-B61 10.1158/1078-0432.CCR-16-0247 10.1016/j.biomaterials.2017.05.019 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 7TM 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
DOI | 10.1039/d0np00041h |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Genetics Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4752 |
EndPage | 488 |
ExternalDocumentID | 32895676 10_1039_D0NP00041H d0np00041h |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | - 0-7 0R 123 1TJ 29M 2WC 4.4 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ACPRK ADMRA ADSRN AENEX AFRAH AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX CS3 DU5 EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG N9A O9- OK1 R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 X YNT --- -~X 0R~ 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKMSF APEMP CITATION GGIMP H13 HZ~ R56 RAOCF YQT -JG CGR CUY CVF ECM EIF NPM 7QO 7T7 7TM 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-34ac4ad114ec8a897e6e34d1a5c13ad5b3122ccc2e5bcf4e6df62d38bb68888c3 |
ISSN | 0265-0568 1460-4752 |
IngestDate | Fri Jul 11 04:04:07 EDT 2025 Fri Jul 11 07:20:11 EDT 2025 Mon Jun 30 11:59:37 EDT 2025 Wed Feb 19 02:27:51 EST 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Jul 01 00:53:51 EDT 2025 Fri Apr 15 11:43:17 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-34ac4ad114ec8a897e6e34d1a5c13ad5b3122ccc2e5bcf4e6df62d38bb68888c3 |
Notes | Ying Cong started her doctoral study and scientific research under the supervision of Prof. Ya-Jie Tang in 2019. Her doctoral research focuses on the design, synthesis, and discovery of podophyllotoxin leading compounds with high activity and low toxicity by the strategy of specificity-targeting tumor cells or tissues. Since 2005, Prof. Ya-Jie Tang's group has been committed to the discovery of new podophyllotoxin-derived antitumor drugs. A series of candidate drugs with nanomolar-potency antitumor activity were developed, which were superior to the approved tubulin-targeting antitumor drugs. Compared with the approved topoisomerase II-targeting anti-tumor drugs, other candidate drugs exhibited weaker DNA damage and millimolar-potency (low) toxicity. Prof. Ya-Jie Tang's group also focuses on the biomanufacture of podophyllotoxin-derived drugs in order to solve the problems of complex synthetic steps, enantiomers, environmental pollution etc. Associate Prof. Wei Zhao has studied and worked in Prof. Ya-Jie Tang's group to carry out research on the design, synthesis, and druggability of podophyllotoxin-derived drugs based on tubulin, topoisomerase II, or other targets for new drug development since 2007. Based on the study of the drug-tubulin complex crystal structure, a dual-target drug design strategy for podophyllotoxin derivatives was established. A method of tandem biotransformation was designed and developed to modify the molecular structure of podophyllotoxin for the directional synthesis of potential antitumor leading compounds. Wei Zhao is committed to research on druggability of podophyllotoxin derivatives. during chemical synthesis processes. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8342-5201 0000-0002-5244-870X 0000-0002-3881-0135 |
PMID | 32895676 |
PQID | 2507561237 |
PQPubID | 2047500 |
PageCount | 19 |
ParticipantIDs | pubmed_primary_32895676 crossref_primary_10_1039_D0NP00041H proquest_miscellaneous_2660983544 crossref_citationtrail_10_1039_D0NP00041H proquest_journals_2507561237 rsc_primary_d0np00041h proquest_miscellaneous_2440902954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Natural product reports |
PublicationTitleAlternate | Nat Prod Rep |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Tomasi (D0NP00041H-(cit112)/*[position()=1]) 2010; 53 Sudo (D0NP00041H-(cit13)/*[position()=1]) 1998; 9 Zhao (D0NP00041H-(cit47)/*[position()=1]) 2018; 109 Zhuo (D0NP00041H-(cit7)/*[position()=1]) 2004; 32 Messinger (D0NP00041H-(cit59)/*[position()=1]) 2017; 34 Manapov (D0NP00041H-(cit63)/*[position()=1]) 2017; 28 Schacter (D0NP00041H-(cit54)/*[position()=1]) 2009; 34 Sun (D0NP00041H-(cit99)/*[position()=1]) 2017; 27 Zhang (D0NP00041H-(cit96)/*[position()=1]) 2016; 26 Miura (D0NP00041H-(cit39)/*[position()=1]) 2011; 24 Paulsen (D0NP00041H-(cit30)/*[position()=1]) 2018; 34 Zhang (D0NP00041H-(cit81)/*[position()=1]) 2016; 26 Choudhury (D0NP00041H-(cit100)/*[position()=1]) 2020; 106 Mo (D0NP00041H-(cit127)/*[position()=1]) 2011; 409 Zhao (D0NP00041H-(cit52)/*[position()=1]) 2013; 50 Alliot (D0NP00041H-(cit109)/*[position()=1]) 2019; 11 Gerber (D0NP00041H-(cit64)/*[position()=1]) 2017; 18 Lou (D0NP00041H-(cit2)/*[position()=1]) 2018; 25 Brantley-Finley (D0NP00041H-(cit33)/*[position()=1]) 2003; 66 Xu (D0NP00041H-(cit8)/*[position()=1]) 2019; 33 Shi (D0NP00041H-(cit124)/*[position()=1]) 2020; 33 Elizabeth (D0NP00041H-(cit50)/*[position()=1]) 2016; 22 Linder (D0NP00041H-(cit23)/*[position()=1]) 2007; 67 Lee (D0NP00041H-(cit34)/*[position()=1]) 2016; 36 Gunduz (D0NP00041H-(cit38)/*[position()=1]) 2012; 40 Ahmed (D0NP00041H-(cit57)/*[position()=1]) 2000; 83 Zhang (D0NP00041H-(cit95)/*[position()=1]) 2017; 131 Shin (D0NP00041H-(cit32)/*[position()=1]) 2016; 6 Vishnuvardhan (D0NP00041H-(cit91)/*[position()=1]) 2017; 8 Zhao (D0NP00041H-(cit73)/*[position()=1]) 2019; 170 Czyz (D0NP00041H-(cit60)/*[position()=1]) 2018; 93 Duan (D0NP00041H-(cit62)/*[position()=1]) 2017; 159 Chen (D0NP00041H-(cit82)/*[position()=1]) 2012; 103 Wang (D0NP00041H-(cit84)/*[position()=1]) 2018; 16 Zhao (D0NP00041H-(cit79)/*[position()=1]) 2015; 5 Lan (D0NP00041H-(cit67)/*[position()=1]) 2018; 19 Montero-Baladía (D0NP00041H-(cit18)/*[position()=1]) 2020; 81 Ozols (D0NP00041H-(cit66)/*[position()=1]) 2003; 21 Paz-Ares (D0NP00041H-(cit3)/*[position()=1]) 2019; 394 Li (D0NP00041H-(cit89)/*[position()=1]) 2019; 14 Zhang (D0NP00041H-(cit41)/*[position()=1]) 2011; 252 Conlon (D0NP00041H-(cit14)/*[position()=1]) 2020; 35 Zi (D0NP00041H-(cit114)/*[position()=1]) 2019; 7 Rigiracciolo (D0NP00041H-(cit24)/*[position()=1]) 2020; 9 Ravelli (D0NP00041H-(cit71)/*[position()=1]) 2004; 428 Han (D0NP00041H-(cit78)/*[position()=1]) 2016; 26 Bi (D0NP00041H-(cit16)/*[position()=1]) 2017; 28 Fields (D0NP00041H-(cit55)/*[position()=1]) 1995; 1 Ahmad (D0NP00041H-(cit120)/*[position()=1]) 2019; 100 Rebbaa (D0NP00041H-(cit43)/*[position()=1]) 2005; 219 Hou (D0NP00041H-(cit116)/*[position()=1]) 2019; 14 Kang (D0NP00041H-(cit40)/*[position()=1]) 2009; 22 Yavuz (D0NP00041H-(cit125)/*[position()=1]) 2018; 285 Uchino (D0NP00041H-(cit103)/*[position()=1]) 2005; 93 Liu (D0NP00041H-(cit111)/*[position()=1]) 2017; 9 Burke (D0NP00041H-(cit87)/*[position()=1]) 2013; 34 Chen (D0NP00041H-(cit117)/*[position()=1]) 2017; 95 Nerella (D0NP00041H-(cit72)/*[position()=1]) 2020; 94 Wei (D0NP00041H-(cit85)/*[position()=1]) 2019; 7 Liang (D0NP00041H-(cit65)/*[position()=1]) 2017; 28 Zhang (D0NP00041H-(cit97)/*[position()=1]) 2018; 158 Zhao (D0NP00041H-(cit19)/*[position()=1]) 2017; 12 Menu (D0NP00041H-(cit28)/*[position()=1]) 2006; 107 Zi (D0NP00041H-(cit22)/*[position()=1]) 2017; 2 Li (D0NP00041H-(cit115)/*[position()=1]) 2019; 7 Calvo-Flores (D0NP00041H-(cit9)/*[position()=1]) 2015 Wu (D0NP00041H-(cit42)/*[position()=1]) 2014; 347 Pinto (D0NP00041H-(cit69)/*[position()=1]) 2011; 67 Patnaik (D0NP00041H-(cit121)/*[position()=1]) 2019; 30 Zu (D0NP00041H-(cit105)/*[position()=1]) 2020; 27 Roy (D0NP00041H-(cit108)/*[position()=1]) 2017; 137 Liu (D0NP00041H-(cit11)/*[position()=1]) 2014 Huang (D0NP00041H-(cit128)/*[position()=1]) 2020; 12 Seebacher (D0NP00041H-(cit45)/*[position()=1]) 2016; 7 Akhtar (D0NP00041H-(cit53)/*[position()=1]) 2013; 9 Roy (D0NP00041H-(cit106)/*[position()=1]) 2015; 52 Jiang (D0NP00041H-(cit118)/*[position()=1]) 2015; 23 Wu (D0NP00041H-(cit86)/*[position()=1]) 2018; 155 Han (D0NP00041H-(cit83)/*[position()=1]) 2004; 14 Zhang (D0NP00041H-(cit88)/*[position()=1]) 2018; 8 Yano (D0NP00041H-(cit5)/*[position()=1]) 2009; 98 Wu (D0NP00041H-(cit21)/*[position()=1]) 2011; 333 Abad (D0NP00041H-(cit49)/*[position()=1]) 2020; 474 Wen (D0NP00041H-(cit110)/*[position()=1]) 2019; 29 Barker (D0NP00041H-(cit10)/*[position()=1]) 2019; 24 Bergsten (D0NP00041H-(cit68)/*[position()=1]) 2017; 130 Fong (D0NP00041H-(cit27)/*[position()=1]) 2012; 18 Zi (D0NP00041H-(cit90)/*[position()=1]) 2018; 12 Zhou (D0NP00041H-(cit104)/*[position()=1]) 2018; 73 Zhang (D0NP00041H-(cit119)/*[position()=1]) 2016; 23 Commander (D0NP00041H-(cit58)/*[position()=1]) 2010; 150 Ambudkar (D0NP00041H-(cit44)/*[position()=1]) 2003; 22 Wan (D0NP00041H-(cit126)/*[position()=1]) 2018; 12 Gao (D0NP00041H-(cit123)/*[position()=1]) 2018; 17 Newman (D0NP00041H-(cit1)/*[position()=1]) 2020; 83 Asimina (D0NP00041H-(cit31)/*[position()=1]) 2018; 29 Wang (D0NP00041H-(cit75)/*[position()=1]) 2018; 28 Cao (D0NP00041H-(cit74)/*[position()=1]) 2015; 35 Bugg (D0NP00041H-(cit4)/*[position()=1]) 1991; 88 Ou (D0NP00041H-(cit102)/*[position()=1]) 2019; 7 Yang (D0NP00041H-(cit37)/*[position()=1]) 2013; 29 van Hoppe (D0NP00041H-(cit46)/*[position()=1]) 2018; 15 Lusvarghi (D0NP00041H-(cit48)/*[position()=1]) 2019; 476 Alliot (D0NP00041H-(cit113)/*[position()=1]) 2019; 55 Ling (D0NP00041H-(cit122)/*[position()=1]) 2017; 12 Lamprecht (D0NP00041H-(cit61)/*[position()=1]) 2006; 112 Yang (D0NP00041H-(cit107)/*[position()=1]) 2017; 28 Wu (D0NP00041H-(cit129)/*[position()=1]) 2020; 27 Shiozawa (D0NP00041H-(cit70)/*[position()=1]) 2009; 15 Manapov (D0NP00041H-(cit17)/*[position()=1]) 2017; 28 Gordaliza (D0NP00041H-(cit80)/*[position()=1]) 2000; 6 Li (D0NP00041H-(cit25)/*[position()=1]) 2018; 78 Young (D0NP00041H-(cit56)/*[position()=1]) 1995; 86 Singh (D0NP00041H-(cit26)/*[position()=1]) 2014; 31 Xu (D0NP00041H-(cit77)/*[position()=1]) 2017; 27 Cheng (D0NP00041H-(cit98)/*[position()=1]) 2020; 63 Vasilcanu (D0NP00041H-(cit29)/*[position()=1]) 2004; 23 Haim (D0NP00041H-(cit36)/*[position()=1]) 1987; 47 Liu (D0NP00041H-(cit101)/*[position()=1]) 2014; 32 Yasuhiro (D0NP00041H-(cit15)/*[position()=1]) 2020; 111 Hou (D0NP00041H-(cit93)/*[position()=1]) 2019; 93 Lee (D0NP00041H-(cit20)/*[position()=1]) 1989; 52 Fan (D0NP00041H-(cit35)/*[position()=1]) 2006; 19 Broderick (D0NP00041H-(cit51)/*[position()=1]) 2019; 10 Cao (D0NP00041H-(cit76)/*[position()=1]) 2018; 17 Lu (D0NP00041H-(cit94)/*[position()=1]) 2019; 11 Vassetzky (D0NP00041H-(cit6)/*[position()=1]) 1996; 73 Murray (D0NP00041H-(cit12)/*[position()=1]) 2018; 18 Zi (D0NP00041H-(cit92)/*[position()=1]) 2017; 2 |
References_xml | – issn: 2015 publication-title: Lignin and Lignans as Renewable Raw Materials doi: Calvo-Flores Dobado Isac-García Martin-Martinez – volume: 28 start-page: 777 year: 2017 ident: D0NP00041H-(cit65)/*[position()=1] publication-title: Ann. Oncol. doi: 10.1093/annonc/mdx009 – volume: 28 start-page: 3101 year: 2017 ident: D0NP00041H-(cit16)/*[position()=1] publication-title: Ann. Oncol. doi: 10.1093/annonc/mdx533 – volume: 155 start-page: 183 year: 2018 ident: D0NP00041H-(cit86)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.05.052 – volume: 14 start-page: e0215886 year: 2019 ident: D0NP00041H-(cit89)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0215886 – volume: 103 start-page: 80 year: 2012 ident: D0NP00041H-(cit82)/*[position()=1] publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2011.02103.x – volume: 35 start-page: 249 year: 2020 ident: D0NP00041H-(cit14)/*[position()=1] publication-title: Cancer Biother.Radiopharm. doi: 10.1089/cbr.2019.3298 – volume: 33 start-page: 13245 year: 2020 ident: D0NP00041H-(cit124)/*[position()=1] publication-title: Dermatol. Ther. – volume: 170 start-page: 73 year: 2019 ident: D0NP00041H-(cit73)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.03.006 – volume: 21 start-page: 3194 year: 2003 ident: D0NP00041H-(cit66)/*[position()=1] publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2003.02.153 – volume: 81 start-page: 452 year: 2020 ident: D0NP00041H-(cit18)/*[position()=1] publication-title: J. Infect. – volume: 27 start-page: 974 year: 2020 ident: D0NP00041H-(cit129)/*[position()=1] publication-title: Drug Delivery doi: 10.1080/10717544.2020.1787558 – volume: 394 start-page: 1929 year: 2019 ident: D0NP00041H-(cit3)/*[position()=1] publication-title: Lancet doi: 10.1016/S0140-6736(19)32222-6 – volume: 2 start-page: 5038 year: 2017 ident: D0NP00041H-(cit22)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.201700347 – volume: 94 start-page: 103384 year: 2020 ident: D0NP00041H-(cit72)/*[position()=1] publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.103384 – volume: 27 start-page: 4066 year: 2017 ident: D0NP00041H-(cit99)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2017.07.047 – volume: 28 start-page: 2319 year: 2017 ident: D0NP00041H-(cit17)/*[position()=1] publication-title: Ann. Oncol. doi: 10.1093/annonc/mdx254 – volume: 23 start-page: 1838 year: 2016 ident: D0NP00041H-(cit119)/*[position()=1] publication-title: Drug Delivery doi: 10.3109/10717544.2016.1141258 – volume: 67 start-page: 2899 year: 2007 ident: D0NP00041H-(cit23)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-0635 – volume: 22 start-page: 7468 year: 2003 ident: D0NP00041H-(cit44)/*[position()=1] publication-title: Oncogene doi: 10.1038/sj.onc.1206948 – volume: 52 start-page: 606 year: 1989 ident: D0NP00041H-(cit20)/*[position()=1] publication-title: J. Nat. Prod. doi: 10.1021/np50063a021 – volume: 333 start-page: 459 year: 2011 ident: D0NP00041H-(cit21)/*[position()=1] publication-title: Science doi: 10.1126/science.1204117 – volume: 8 start-page: 1817 year: 2017 ident: D0NP00041H-(cit91)/*[position()=1] publication-title: Medchemcomm doi: 10.1039/C7MD00273D – volume: 95 start-page: 451 year: 2017 ident: D0NP00041H-(cit117)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.11.053 – volume: 63 start-page: 2877 year: 2020 ident: D0NP00041H-(cit98)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b01354 – volume: 252 start-page: 62 year: 2011 ident: D0NP00041H-(cit41)/*[position()=1] publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2011.02.006 – volume: 86 start-page: 3885 year: 1995 ident: D0NP00041H-(cit56)/*[position()=1] publication-title: Blood – volume: 107 start-page: 655 year: 2006 ident: D0NP00041H-(cit28)/*[position()=1] publication-title: Blood doi: 10.1182/blood-2005-01-0293 – volume: 34 start-page: 270 year: 2018 ident: D0NP00041H-(cit30)/*[position()=1] publication-title: Trends Genet. doi: 10.1016/j.tig.2017.12.010 – volume: 22 start-page: 106 year: 2009 ident: D0NP00041H-(cit40)/*[position()=1] publication-title: Chem. Res. Toxicol. doi: 10.1021/tx8002356 – volume: 27 start-page: 2890 year: 2017 ident: D0NP00041H-(cit77)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2017.04.082 – volume: 285 start-page: 162 year: 2018 ident: D0NP00041H-(cit125)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2018.07.002 – volume: 83 start-page: 770 year: 2020 ident: D0NP00041H-(cit1)/*[position()=1] publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.9b01285 – volume: 347 start-page: 159 year: 2014 ident: D0NP00041H-(cit42)/*[position()=1] publication-title: Cancer Lett. doi: 10.1016/j.canlet.2014.03.013 – volume: 29 start-page: 1019 year: 2019 ident: D0NP00041H-(cit110)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2019.02.005 – volume: 50 start-page: 429 year: 2013 ident: D0NP00041H-(cit52)/*[position()=1] publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2013.08.016 – volume: 2 start-page: 5038 year: 2017 ident: D0NP00041H-(cit92)/*[position()=1] publication-title: ChemistrySelect doi: 10.1002/slct.201700347 – volume: 26 start-page: 4466 year: 2016 ident: D0NP00041H-(cit81)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2016.07.072 – volume: 6 start-page: 34064 year: 2016 ident: D0NP00041H-(cit32)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep34064 – volume: 7 start-page: 434 year: 2019 ident: D0NP00041H-(cit114)/*[position()=1] publication-title: Front. Chem. doi: 10.3389/fchem.2019.00434 – volume: 18 start-page: 125 year: 2018 ident: D0NP00041H-(cit12)/*[position()=1] publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0581-z – volume: 24 start-page: 1424 year: 2019 ident: D0NP00041H-(cit10)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules24071424 – volume: 12 start-page: 657 year: 2017 ident: D0NP00041H-(cit122)/*[position()=1] publication-title: Nanomedicine doi: 10.2217/nnm-2016-0396 – volume: 476 start-page: 3737 year: 2019 ident: D0NP00041H-(cit48)/*[position()=1] publication-title: Biochem. J. doi: 10.1042/BCJ20190736 – volume: 83 start-page: 79 year: 2000 ident: D0NP00041H-(cit57)/*[position()=1] publication-title: Br. J. Cancer – volume: 112 start-page: 208 year: 2006 ident: D0NP00041H-(cit61)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2006.02.014 – volume: 78 start-page: 1818 year: 2018 ident: D0NP00041H-(cit25)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2018-1818 – volume: 36 start-page: 142 year: 2016 ident: D0NP00041H-(cit34)/*[position()=1] publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2016.07.018 – volume: 18 start-page: 333 year: 2017 ident: D0NP00041H-(cit64)/*[position()=1] publication-title: Clin. Lung Cancer doi: 10.1016/j.cllc.2016.10.009 – volume: 19 start-page: 937 year: 2006 ident: D0NP00041H-(cit35)/*[position()=1] publication-title: Chem. Res. Toxicol. doi: 10.1021/tx0600595 – volume: 11 start-page: 9756 year: 2019 ident: D0NP00041H-(cit109)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR01068H – volume: 12 start-page: 2426 year: 2018 ident: D0NP00041H-(cit126)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b07878 – volume: 17 start-page: 474 year: 2018 ident: D0NP00041H-(cit76)/*[position()=1] publication-title: Mol. Med. Rep. – volume: 52 start-page: 335 year: 2015 ident: D0NP00041H-(cit106)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.041 – volume: 7 start-page: 2491 year: 2019 ident: D0NP00041H-(cit102)/*[position()=1] publication-title: Biomater. Sci. doi: 10.1039/C9BM00344D – volume: 219 start-page: 1 year: 2005 ident: D0NP00041H-(cit43)/*[position()=1] publication-title: Cancer Lett. doi: 10.1016/j.canlet.2004.08.011 – volume: 23 start-page: 7854 year: 2004 ident: D0NP00041H-(cit29)/*[position()=1] publication-title: Oncogene doi: 10.1038/sj.onc.1208065 – volume: 19 start-page: 1239 year: 2018 ident: D0NP00041H-(cit67)/*[position()=1] publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(18)30349-8 – volume: 10 start-page: 3644 year: 2019 ident: D0NP00041H-(cit51)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11570-6 – volume: 34 start-page: 187 year: 2017 ident: D0NP00041H-(cit59)/*[position()=1] publication-title: Pediatr. Hematol. Oncol. doi: 10.1080/08880018.2017.1360970 – volume: 47 start-page: 5835 year: 1987 ident: D0NP00041H-(cit36)/*[position()=1] publication-title: Cancer Res. – volume: 428 start-page: 198 year: 2004 ident: D0NP00041H-(cit71)/*[position()=1] publication-title: Nature doi: 10.1038/nature02393 – volume: 93 start-page: 778 year: 2018 ident: D0NP00041H-(cit60)/*[position()=1] publication-title: Am. J. Hematol. doi: 10.1002/ajh.25091 – volume: 53 start-page: 7647 year: 2010 ident: D0NP00041H-(cit112)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm1007648 – volume: 32 start-page: 693 year: 2014 ident: D0NP00041H-(cit101)/*[position()=1] publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.11.009 – volume: 106 start-page: 110275 year: 2020 ident: D0NP00041H-(cit100)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2019.110275 – volume: 34 start-page: S58 year: 2009 ident: D0NP00041H-(cit54)/*[position()=1] publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/BF00684865 – volume: 35 start-page: 771 year: 2015 ident: D0NP00041H-(cit74)/*[position()=1] publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2015.2068 – volume: 30 start-page: 1 issue: 5 year: 2019 ident: D0NP00041H-(cit121)/*[position()=1] publication-title: J. Basic. Clin. Physiol. Pharmacol. doi: 10.1515/jbcpp-2018-0108 – volume: 34 start-page: 503 year: 2013 ident: D0NP00041H-(cit87)/*[position()=1] publication-title: Carcinogenesis doi: 10.1093/carcin/bgt034 – volume: 73 start-page: 388 year: 2018 ident: D0NP00041H-(cit104)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.04.016 – volume: 159 start-page: 880 year: 2017 ident: D0NP00041H-(cit62)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2017.08.042 – volume: 26 start-page: 38 year: 2016 ident: D0NP00041H-(cit96)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2015.11.042 – volume: 130 start-page: 2728 year: 2017 ident: D0NP00041H-(cit68)/*[position()=1] publication-title: Blood doi: 10.1182/blood-2017-06-788349 – volume: 25 start-page: 5128 year: 2018 ident: D0NP00041H-(cit2)/*[position()=1] publication-title: Curr. Med. Chem. doi: 10.2174/0929867324666170920161922 – volume: 158 start-page: 951 year: 2018 ident: D0NP00041H-(cit97)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.09.022 – volume: 9 start-page: 29496 year: 2017 ident: D0NP00041H-(cit111)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07091 – volume: 17 start-page: 6506 year: 2018 ident: D0NP00041H-(cit123)/*[position()=1] publication-title: Mol. Med. Rep. – volume: 73 start-page: 1201 year: 1996 ident: D0NP00041H-(cit6)/*[position()=1] publication-title: Br. J. Cancer doi: 10.1038/bjc.1996.231 – volume: 7 start-page: e2510 year: 2016 ident: D0NP00041H-(cit45)/*[position()=1] publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.381 – volume: 67 start-page: 275 year: 2011 ident: D0NP00041H-(cit69)/*[position()=1] publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-010-1315-z – volume: 16 start-page: 52 year: 2018 ident: D0NP00041H-(cit84)/*[position()=1] publication-title: Cell Commun. Signaling doi: 10.1186/s12964-018-0263-9 – volume: 28 start-page: 2319 year: 2017 ident: D0NP00041H-(cit63)/*[position()=1] publication-title: Ann. Oncol. doi: 10.1093/annonc/mdx254 – volume: 12 start-page: 3393 year: 2018 ident: D0NP00041H-(cit90)/*[position()=1] publication-title: Drug Des., Dev. Ther. doi: 10.2147/DDDT.S167382 – volume: 131 start-page: 81 year: 2017 ident: D0NP00041H-(cit95)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.03.011 – volume: 111 start-page: 877 year: 2020 ident: D0NP00041H-(cit15)/*[position()=1] publication-title: Clin. Lymphoma, Myeloma Leuk. – volume: 12 start-page: 746 year: 2017 ident: D0NP00041H-(cit19)/*[position()=1] publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00842 – volume: 29 start-page: 1633 year: 2018 ident: D0NP00041H-(cit31)/*[position()=1] publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2017.7086 – volume: 98 start-page: 4402 year: 2009 ident: D0NP00041H-(cit5)/*[position()=1] publication-title: J. Pharm. Sci. doi: 10.1002/jps.21731 – volume: 11 start-page: 3015 year: 2019 ident: D0NP00041H-(cit94)/*[position()=1] publication-title: Future Med. Chem. doi: 10.4155/fmc-2018-0593 – volume: 9 start-page: 1216 year: 2013 ident: D0NP00041H-(cit53)/*[position()=1] publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2013.1613 – start-page: 1 year: 2014 ident: D0NP00041H-(cit11)/*[position()=1] publication-title: Med. Res. Rev. – volume: 409 start-page: 38 year: 2011 ident: D0NP00041H-(cit127)/*[position()=1] publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.02.021 – volume: 23 start-page: 1379 year: 2015 ident: D0NP00041H-(cit118)/*[position()=1] publication-title: Drug Delivery doi: 10.3109/10717544.2015.1048491 – volume: 12 start-page: 254 year: 2020 ident: D0NP00041H-(cit128)/*[position()=1] publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12030254 – volume: 93 start-page: 678 year: 2005 ident: D0NP00041H-(cit103)/*[position()=1] publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6602772 – volume: 66 start-page: 459 year: 2003 ident: D0NP00041H-(cit33)/*[position()=1] publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(03)00255-7 – volume: 55 start-page: 14968 year: 2019 ident: D0NP00041H-(cit113)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC07883E – volume: 6 start-page: 1811 year: 2000 ident: D0NP00041H-(cit80)/*[position()=1] publication-title: Curr. Pharm. Des. doi: 10.2174/1381612003398582 – volume: 33 start-page: 1357 year: 2019 ident: D0NP00041H-(cit8)/*[position()=1] publication-title: Nat. Prod. Res. doi: 10.1080/14786419.2018.1474467 – volume: 32 start-page: 993 year: 2004 ident: D0NP00041H-(cit7)/*[position()=1] publication-title: Drug Metab. Dispos. – volume: 1 start-page: 105 year: 1995 ident: D0NP00041H-(cit55)/*[position()=1] publication-title: Clin. Cancer Res. – volume: 93 start-page: 473 year: 2019 ident: D0NP00041H-(cit93)/*[position()=1] publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.13436 – volume: 26 start-page: 3237 year: 2016 ident: D0NP00041H-(cit78)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2016.05.063 – volume: 100 start-page: 959 year: 2019 ident: D0NP00041H-(cit120)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2019.03.060 – volume: 7 start-page: 253 year: 2019 ident: D0NP00041H-(cit85)/*[position()=1] publication-title: Front. Chem. doi: 10.3389/fchem.2019.00253 – volume: 9 start-page: 263 year: 1998 ident: D0NP00041H-(cit13)/*[position()=1] publication-title: Antiviral Chem. Chemother. doi: 10.1177/095632029800900307 – volume: 15 start-page: 1698 year: 2009 ident: D0NP00041H-(cit70)/*[position()=1] publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-1587 – volume: 29 start-page: 1215 year: 2013 ident: D0NP00041H-(cit37)/*[position()=1] publication-title: Oncol. Rep. doi: 10.3892/or.2012.2201 – volume: 474 start-page: 106 year: 2020 ident: D0NP00041H-(cit49)/*[position()=1] publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.01.008 – volume: 7 start-page: 5814 year: 2019 ident: D0NP00041H-(cit115)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C9TB00651F – volume-title: Lignin and Lignans as Renewable Raw Materials year: 2015 ident: D0NP00041H-(cit9)/*[position()=1] doi: 10.1002/9781118682784 – volume: 5 start-page: 17175 year: 2015 ident: D0NP00041H-(cit79)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep17175 – volume: 15 start-page: 5124 year: 2018 ident: D0NP00041H-(cit46)/*[position()=1] publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.8b00702 – volume: 14 start-page: 3840 year: 2019 ident: D0NP00041H-(cit116)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201901070 – volume: 109 start-page: 224 year: 2018 ident: D0NP00041H-(cit47)/*[position()=1] publication-title: Cancer Sci. – volume: 150 start-page: 345 year: 2010 ident: D0NP00041H-(cit58)/*[position()=1] publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2010.08236.x – volume: 28 start-page: 1505 year: 2017 ident: D0NP00041H-(cit107)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.7b00165 – volume: 88 start-page: 7654 year: 1991 ident: D0NP00041H-(cit4)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.88.17.7654 – volume: 40 start-page: 2074 year: 2012 ident: D0NP00041H-(cit38)/*[position()=1] publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.112.046268 – volume: 14 start-page: 2979 year: 2004 ident: D0NP00041H-(cit83)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2004.02.102 – volume: 24 start-page: 1836 year: 2011 ident: D0NP00041H-(cit39)/*[position()=1] publication-title: Chem. Res. Toxicol. doi: 10.1021/tx200025y – volume: 8 start-page: 34266 year: 2018 ident: D0NP00041H-(cit88)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C8RA06360E – volume: 28 start-page: 1817 year: 2018 ident: D0NP00041H-(cit75)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2018.04.019 – volume: 27 start-page: 248 year: 2020 ident: D0NP00041H-(cit105)/*[position()=1] publication-title: Drug Delivery doi: 10.1080/10717544.2020.1716875 – volume: 9 start-page: 1010 year: 2020 ident: D0NP00041H-(cit24)/*[position()=1] publication-title: Cell doi: 10.3390/cells9041010 – volume: 31 start-page: 805 year: 2014 ident: D0NP00041H-(cit26)/*[position()=1] publication-title: Med. Oncol. doi: 10.1007/s12032-013-0805-3 – volume: 18 start-page: B61 year: 2012 ident: D0NP00041H-(cit27)/*[position()=1] publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.MECHRES-B61 – volume: 22 start-page: 5651 year: 2016 ident: D0NP00041H-(cit50)/*[position()=1] publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-0247 – volume: 137 start-page: 11 year: 2017 ident: D0NP00041H-(cit108)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.05.019 |
SSID | ssj0011766 |
Score | 2.5897963 |
SecondaryResourceType | review_article |
Snippet | Covering: up to 2020
As a main bioactive component of the Chinese, Indian, and American
Podophyllum
species, the herbal medicine, podophyllotoxin (PTOX)... Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX)... As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 47 |
SubjectTerms | Anticancer properties antineoplastic activity Antineoplastic Agents - therapeutic use Antitumor activity bioactive compounds Bioavailability Biocompatibility Cancer therapies cancer therapy Cell cycle Central nervous system Chemotherapy Coronaviruses COVID-19 COVID-19 infection Cytokine storm Cytokines Deoxyribonucleic acid DNA DNA damage DNA topoisomerase (ATP-hydrolysing) Drug Design Drug development Drug resistance drug therapy Drugs Etoposide Growth factors Health services Herbal medicine herbal medicines Humans Insulin insulin-like growth factor I receptor Lung cancer lung neoplasms Neoplasms - drug therapy Podophyllotoxin Podophyllotoxin - therapeutic use Podophyllum RNA Small cell lung carcinoma Teniposide testes Testicular cancer Toxicity Tubulin Viral diseases |
Title | Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32895676 https://www.proquest.com/docview/2507561237 https://www.proquest.com/docview/2440902954 https://www.proquest.com/docview/2660983544 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8AF8TVWGMgILmjKSGzHSY5T6VRQKUi0opyi-KNbpZJEXYqAv57n2ElaNtCgh6iynyzH7xf7Pb8vhF6CyBEIDZoqHHW-xzSlngh86YHooYJIJHyR1dk-J3w0Y-_m4fy36JJKHMufV8aV_A9XoQ34aqJk_4Gz7aDQAP-Bv_AEDsPzWjweNJVQbKLlsqiM748NSTTxj-66wMiWar05O7M5uWubegnqKKzwalVUxfdl7imY7zcQPg1d7SIrDRzWR8DTry5Ia8cAPMlswo7SZoxtbA9b99D1HexnvWytHM7590tzWBo3IFszG3q89x2lbf10Dm_2oyF2FxNkyzPL7aXMcD8KdzZbGm-Bih6VxywCIlvZz-2hzFYSccex67u00_vUJEpVfl4asTQ4786zxoY_-ZCezsbjdDqcT2-iPQJ6BOmhvZPh9O24NTSZ_Jg2AM3OtclgS5PX3di7MsslRQTEknVTLqYWS6Z30R2nT-ATC4576IbO76Nbg6aM3wNUdCDBABLcggQDSHALEgw8xtsgwcUC_wEkNd0FXubYggRvg-Qhmp0Op4OR56pseJJRXnmUZZJlCvRiLeMsTiLNNWUqyEIZ0EyFggaESCmJDoVcMM3VghNFYyF4DD9J91EvL3J9gHCoArWgkoiQREwqEsM6Cp5IrbIsIbHfR6-adUylS0FvKqGs0toVgibpG3_ysV7zUR-9aGlLm3jlSqrDhh2p-zAvUpDqI1P0lUZ99LzthmU3trAs18UGaBgzHslJyP5Cw7mfmItRoHlkWd1OhZI4CXnE-2gfeN82d5h5fI1hn6Db3YdziHrVeqOfgoxbiWcOp78Avn6suw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+potential+for+improving+the+druggability+of+podophyllotoxin-derived+drugs+in+cancer+chemotherapy&rft.jtitle=Natural+product+reports&rft.au=Zhao%2C+Wei&rft.au=Cong%2C+Ying&rft.au=Li%2C+Hong-Mei&rft.au=Li%2C+Shengying&rft.date=2021-03-01&rft.issn=1460-4752&rft.volume=38&rft.issue=3+p.470-488&rft.spage=470&rft.epage=488&rft_id=info:doi/10.1039%2Fd0np00041h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-0568&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-0568&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-0568&client=summon |