Resistive tearing instability in electron MHD: application to neutron star crusts

We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 463; no. 3; p. 3381
Main Authors Gourgouliatos, Konstantinos N, Hollerbach, Rainer
Format Journal Article
LanguageEnglish
Published London Oxford University Press 11.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as ..., where B is the magnetic field and s the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 10 super( 42) erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas. (ProQuest: ... denotes formulae/symbols omitted.)
AbstractList We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as ..., where B is the magnetic field and s the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 10 super( 42) erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas. (ProQuest: ... denotes formulae/symbols omitted.)
We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as ..., where B is the magnetic field and s the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 10^sup 42^ erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas. (ProQuest: ... denotes formulae/symbols omitted.)
Author Gourgouliatos, Konstantinos N
Hollerbach, Rainer
Author_xml – sequence: 1
  givenname: Konstantinos
  surname: Gourgouliatos
  middlename: N
  fullname: Gourgouliatos, Konstantinos N
– sequence: 2
  givenname: Rainer
  surname: Hollerbach
  fullname: Hollerbach, Rainer
BookMark eNqNkb1PwzAQxS1UJNrCyB6JhSXU347ZUPkoUhECwRy5yQW5Sp1gO6D-95i2ExPTne797vROb4JGrnOA0DnBVwRrNts4b8IsxG_KsD5CY8KkyKmWcoTGGDORF4qQEzQJYY0x5ozKMXp5hWBDtF-QRTDeuo_MuhDNyrY2blOfQQtV9J3Lnha315np-9ZWJto0iF3mYNhpacNnlR9CDKfouDFtgLNDnaL3-7u3-SJfPj88zm-WecWZjDmticCaCEa4XjWgBdQcqDKwqgqsecFEwRShBmitRS0oZ4IrCUowJXVTaTZFl_u7ve8-Bwix3NhQQdsaB90QSlJILoSQiv4DFVip5EUk9OIPuu4G79IjiWKaJ2uKJyrfU5XvQvDQlL23G-O3JcHlbxblLovykAX7AZCXfww
CitedBy_id crossref_primary_10_1017_S0022377821000726
crossref_primary_10_1093_astrogeo_aty235
crossref_primary_10_3390_sym14010130
crossref_primary_10_52526_25792776_2018_2_2_338
crossref_primary_10_1002_asna_201913644
crossref_primary_10_1088_1538_3873_ab0440
crossref_primary_10_1093_mnras_stz1042
crossref_primary_10_1016_j_ascom_2022_100553
crossref_primary_10_1088_1361_6633_ab3def
crossref_primary_10_1093_mnras_staa1295
crossref_primary_10_1134_S1063773717090043
crossref_primary_10_3390_universe7090351
crossref_primary_10_3847_1538_4357_aa9d93
crossref_primary_10_1140_epja_i2018_12624_1
crossref_primary_10_1093_mnras_stae190
crossref_primary_10_1103_PhysRevResearch_1_032049
Cites_doi 10.1017/S0022377809990158
10.1088/0004-637X/780/1/3
10.1086/421324
10.1086/152042
10.1007/BF01337791
10.1051/0004-6361:20034078
10.1086/306652
10.1093/mnras/stu1675
10.1093/mnras/233.4.875
10.1029/2001JA900038
10.1111/j.1365-2966.2005.09932.x
10.1103/PhysRevLett.110.071101
10.1088/0067-0049/212/1/6
10.1111/j.1365-2966.2011.19807.x
10.1051/0004-6361/201527874
10.1088/0004-637X/754/1/27
10.1103/PhysRevLett.112.171101
10.1029/JZ072i001p00143
10.1051/0004-6361:200810281
10.1111/j.1365-2966.2004.07307.x
10.1002/jgra.50248
10.1017/S174392131400266X
10.1111/j.1365-2966.2012.20612.x
10.1088/0004-637X/786/1/62
10.1038/211695a0
10.1093/mnras/stv2860
10.1086/171646
10.1111/j.1365-2966.2006.11152.x
10.1023/A:1019712124366
10.1051/0004-6361:20077874
10.1086/507518
10.1088/0004-637X/770/1/65
10.1063/1.3111033
10.1103/PhysRevLett.88.101103
10.1063/1.4879810
10.1093/mnrasl/slv106
10.1051/0004-6361/201014197
10.1093/mnras/stu2140
10.1088/0004-637X/763/2/82
10.1088/0004-637X/796/2/94
10.1073/pnas.1522363113
10.1051/0004-6361/201423660
10.1088/2041-8205/750/1/L6
10.1088/0034-4885/48/7/002
10.1063/1.1694232
10.1051/0004-6361:20077456
10.1051/0004-6361:200811229
10.1016/j.cpc.2012.04.029
10.1088/2041-8205/794/2/L24
10.1017/S0022377800022996
10.1093/mnras/stw384
10.1063/1.1706904
10.1093/mnras/stt1195
10.1111/j.1365-2966.2012.20509.x
10.1103/PhysRevLett.114.191101
10.1088/0004-637X/761/1/66
10.1063/1.1706761
10.3847/2041-8205/824/2/L21
10.1103/PhysRevE.61.4422
10.1088/0004-637X/800/1/33
10.1088/0004-637X/806/1/131
10.1103/PhysRevLett.76.1264
10.1093/mnras/stt1894
10.1093/mnras/stw1242
10.1086/323256
10.1063/1.864248
10.1046/j.1365-8711.2002.05905.x
10.1093/mnras/stt2300
10.1086/320452
10.1063/1.860880
10.1063/1.865438
10.1088/2041-8205/783/1/L21
10.1093/mnras/stt338
10.1086/345402
10.1007/BF00148536
10.1038/nphys2640
10.1029/2009GL037239
ContentType Journal Article
Copyright Copyright Oxford University Press, UK Dec 11, 2016
Copyright_xml – notice: Copyright Oxford University Press, UK Dec 11, 2016
DBID AAYXX
CITATION
8FD
H8D
L7M
7TG
KL.
DOI 10.1093/mnras/stw2309
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Technology Research Database
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 3381
ExternalDocumentID 4249997531
10_1093_mnras_stw2309
Genre Feature
GroupedDBID -DZ
-~X
.2P
.I3
0R~
123
1OC
1TH
29M
4.4
48X
51W
51X
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAYXX
ABCQN
ABCQX
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AGINJ
AGSYK
AHXPO
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
AVWKF
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CDBKE
CITATION
CO8
DAKXR
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
ESX
F5P
F9B
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
H5~
HAR
HF~
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LP6
LP7
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PEELM
PQQKQ
Q1.
Q11
Q5Y
RHF
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
V8K
W8V
WH7
WRC
X5Q
X5S
YAYTL
YKOAZ
YXANX
8FD
ABEJV
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-c436t-2d1509153149bfe95ed4e27aebc809483583712ae2d95d52435476e753769fc93
ISSN 0035-8711
IngestDate Fri Oct 25 04:06:16 EDT 2024
Fri Oct 25 07:44:20 EDT 2024
Tue Nov 05 18:48:53 EST 2024
Thu Sep 12 18:44:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-2d1509153149bfe95ed4e27aebc809483583712ae2d95d52435476e753769fc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://durham-repository.worktribe.com/file/1340723/1/Published%20Journal%20Article
PQID 1839409474
PQPubID 42411
PageCount 1
ParticipantIDs proquest_miscellaneous_1864555672
proquest_miscellaneous_1850771535
proquest_journals_1839409474
crossref_primary_10_1093_mnras_stw2309
PublicationCentury 2000
PublicationDate 2016-12-11
PublicationDateYYYYMMDD 2016-12-11
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Somov (2016100617481809000_463.3.3381.73) 1989; 120
2016100617481809000_463.3.3381.42
2016100617481809000_463.3.3381.43
2016100617481809000_463.3.3381.40
2016100617481809000_463.3.3381.46
2016100617481809000_463.3.3381.47
2016100617481809000_463.3.3381.44
2016100617481809000_463.3.3381.82
2016100617481809000_463.3.3381.83
Marchant (2016100617481809000_463.3.3381.48) 2014; 796
2016100617481809000_463.3.3381.80
2016100617481809000_463.3.3381.81
2016100617481809000_463.3.3381.17
2016100617481809000_463.3.3381.15
Mirin (2016100617481809000_463.3.3381.49) 1986; 29
Potekhin (2016100617481809000_463.3.3381.57) 1999; 351
2016100617481809000_463.3.3381.59
2016100617481809000_463.3.3381.16
Runov (2016100617481809000_463.3.3381.67) 2003; 30
Finn (2016100617481809000_463.3.3381.18) 1983; 26
2016100617481809000_463.3.3381.53
2016100617481809000_463.3.3381.10
2016100617481809000_463.3.3381.54
2016100617481809000_463.3.3381.51
Archibald (2016100617481809000_463.3.3381.2) 2015; 800
Nagai (2016100617481809000_463.3.3381.50) 2001; 106
2016100617481809000_463.3.3381.52
2016100617481809000_463.3.3381.13
2016100617481809000_463.3.3381.14
Fruchtman (2016100617481809000_463.3.3381.19) 1993; 5
2016100617481809000_463.3.3381.55
2016100617481809000_463.3.3381.12
2016100617481809000_463.3.3381.56
Scholz (2016100617481809000_463.3.3381.70) 2014; 786
Rosenbluth (2016100617481809000_463.3.3381.66) 1967; 72
Beloborodov (2016100617481809000_463.3.3381.6) 2014; 794
Liu (2016100617481809000_463.3.3381.45) 2013; 118
2016100617481809000_463.3.3381.28
2016100617481809000_463.3.3381.29
2016100617481809000_463.3.3381.26
2016100617481809000_463.3.3381.27
Priest (2016100617481809000_463.3.3381.60) 1985; 48
2016100617481809000_463.3.3381.8
2016100617481809000_463.3.3381.20
2016100617481809000_463.3.3381.64
2016100617481809000_463.3.3381.9
2016100617481809000_463.3.3381.21
2016100617481809000_463.3.3381.65
2016100617481809000_463.3.3381.62
2016100617481809000_463.3.3381.63
2016100617481809000_463.3.3381.4
2016100617481809000_463.3.3381.24
2016100617481809000_463.3.3381.68
2016100617481809000_463.3.3381.5
2016100617481809000_463.3.3381.25
2016100617481809000_463.3.3381.69
2016100617481809000_463.3.3381.22
2016100617481809000_463.3.3381.7
2016100617481809000_463.3.3381.23
2016100617481809000_463.3.3381.1
2016100617481809000_463.3.3381.3
Bodin (2016100617481809000_463.3.3381.11) 1963; 6
2016100617481809000_463.3.3381.61
Vainshtein (2016100617481809000_463.3.3381.78) 2000; 61
2016100617481809000_463.3.3381.39
2016100617481809000_463.3.3381.37
2016100617481809000_463.3.3381.38
Lander (2016100617481809000_463.3.3381.41) 2016; 824
2016100617481809000_463.3.3381.31
Potekhin (2016100617481809000_463.3.3381.58) 1996; 314
2016100617481809000_463.3.3381.75
2016100617481809000_463.3.3381.32
2016100617481809000_463.3.3381.76
2016100617481809000_463.3.3381.30
Snekvik (2016100617481809000_463.3.3381.72) 2009; 36
2016100617481809000_463.3.3381.74
2016100617481809000_463.3.3381.35
2016100617481809000_463.3.3381.79
2016100617481809000_463.3.3381.36
2016100617481809000_463.3.3381.33
2016100617481809000_463.3.3381.77
2016100617481809000_463.3.3381.34
2016100617481809000_463.3.3381.71
References_xml – ident: 2016100617481809000_463.3.3381.81
  doi: 10.1017/S0022377809990158
– ident: 2016100617481809000_463.3.3381.77
  doi: 10.1088/0004-637X/780/1/3
– ident: 2016100617481809000_463.3.3381.12
– ident: 2016100617481809000_463.3.3381.14
  doi: 10.1086/421324
– ident: 2016100617481809000_463.3.3381.46
  doi: 10.1086/152042
– ident: 2016100617481809000_463.3.3381.10
  doi: 10.1007/BF01337791
– ident: 2016100617481809000_463.3.3381.65
  doi: 10.1051/0004-6361:20034078
– ident: 2016100617481809000_463.3.3381.13
  doi: 10.1086/306652
– ident: 2016100617481809000_463.3.3381.22
  doi: 10.1093/mnras/stu1675
– ident: 2016100617481809000_463.3.3381.33
  doi: 10.1093/mnras/233.4.875
– volume: 106
  start-page: 25929
  year: 2001
  ident: 2016100617481809000_463.3.3381.50
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JA900038
  contributor:
    fullname: Nagai
– ident: 2016100617481809000_463.3.3381.37
  doi: 10.1111/j.1365-2966.2005.09932.x
– ident: 2016100617481809000_463.3.3381.39
  doi: 10.1103/PhysRevLett.110.071101
– ident: 2016100617481809000_463.3.3381.51
  doi: 10.1088/0067-0049/212/1/6
– ident: 2016100617481809000_463.3.3381.59
  doi: 10.1111/j.1365-2966.2011.19807.x
– ident: 2016100617481809000_463.3.3381.8
  doi: 10.1051/0004-6361/201527874
– ident: 2016100617481809000_463.3.3381.61
  doi: 10.1088/0004-637X/754/1/27
– ident: 2016100617481809000_463.3.3381.24
  doi: 10.1103/PhysRevLett.112.171101
– volume: 72
  start-page: 143
  year: 1967
  ident: 2016100617481809000_463.3.3381.66
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ072i001p00143
  contributor:
    fullname: Rosenbluth
– volume: 314
  start-page: 341
  year: 1996
  ident: 2016100617481809000_463.3.3381.58
  publication-title: A&A
  contributor:
    fullname: Potekhin
– ident: 2016100617481809000_463.3.3381.34
  doi: 10.1051/0004-6361:200810281
– ident: 2016100617481809000_463.3.3381.32
  doi: 10.1111/j.1365-2966.2004.07307.x
– volume: 118
  start-page: 2087
  year: 2013
  ident: 2016100617481809000_463.3.3381.45
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1002/jgra.50248
  contributor:
    fullname: Liu
– ident: 2016100617481809000_463.3.3381.20
  doi: 10.1017/S174392131400266X
– ident: 2016100617481809000_463.3.3381.15
  doi: 10.1111/j.1365-2966.2012.20612.x
– volume: 786
  start-page: 62
  year: 2014
  ident: 2016100617481809000_463.3.3381.70
  publication-title: ApJ
  doi: 10.1088/0004-637X/786/1/62
  contributor:
    fullname: Scholz
– ident: 2016100617481809000_463.3.3381.75
  doi: 10.1038/211695a0
– ident: 2016100617481809000_463.3.3381.17
  doi: 10.1093/mnras/stv2860
– ident: 2016100617481809000_463.3.3381.23
  doi: 10.1086/171646
– ident: 2016100617481809000_463.3.3381.44
– ident: 2016100617481809000_463.3.3381.38
  doi: 10.1111/j.1365-2966.2006.11152.x
– volume: 351
  start-page: 787
  year: 1999
  ident: 2016100617481809000_463.3.3381.57
  publication-title: A&A
  contributor:
    fullname: Potekhin
– ident: 2016100617481809000_463.3.3381.3
  doi: 10.1023/A:1019712124366
– ident: 2016100617481809000_463.3.3381.63
  doi: 10.1051/0004-6361:20077874
– ident: 2016100617481809000_463.3.3381.74
  doi: 10.1086/507518
– ident: 2016100617481809000_463.3.3381.62
  doi: 10.1088/0004-637X/770/1/65
– ident: 2016100617481809000_463.3.3381.80
  doi: 10.1063/1.3111033
– ident: 2016100617481809000_463.3.3381.64
  doi: 10.1103/PhysRevLett.88.101103
– ident: 2016100617481809000_463.3.3381.83
  doi: 10.1063/1.4879810
– ident: 2016100617481809000_463.3.3381.28
  doi: 10.1093/mnrasl/slv106
– ident: 2016100617481809000_463.3.3381.53
  doi: 10.1051/0004-6361/201014197
– ident: 2016100617481809000_463.3.3381.26
  doi: 10.1093/mnras/stu2140
– ident: 2016100617481809000_463.3.3381.1
  doi: 10.1088/0004-637X/763/2/82
– volume: 796
  start-page: 94
  year: 2014
  ident: 2016100617481809000_463.3.3381.48
  publication-title: ApJ
  doi: 10.1088/0004-637X/796/2/94
  contributor:
    fullname: Marchant
– ident: 2016100617481809000_463.3.3381.29
  doi: 10.1073/pnas.1522363113
– ident: 2016100617481809000_463.3.3381.43
  doi: 10.1051/0004-6361/201423660
– ident: 2016100617481809000_463.3.3381.54
  doi: 10.1088/2041-8205/750/1/L6
– volume: 48
  start-page: 955
  year: 1985
  ident: 2016100617481809000_463.3.3381.60
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/48/7/002
  contributor:
    fullname: Priest
– ident: 2016100617481809000_463.3.3381.68
  doi: 10.1063/1.1694232
– ident: 2016100617481809000_463.3.3381.52
  doi: 10.1051/0004-6361:20077456
– ident: 2016100617481809000_463.3.3381.55
  doi: 10.1051/0004-6361:200811229
– volume: 30
  start-page: 33
  year: 2003
  ident: 2016100617481809000_463.3.3381.67
  publication-title: Geophys. Res. Lett.
  contributor:
    fullname: Runov
– ident: 2016100617481809000_463.3.3381.79
  doi: 10.1016/j.cpc.2012.04.029
– volume: 794
  start-page: L24
  year: 2014
  ident: 2016100617481809000_463.3.3381.6
  publication-title: ApJ
  doi: 10.1088/2041-8205/794/2/L24
  contributor:
    fullname: Beloborodov
– ident: 2016100617481809000_463.3.3381.35
  doi: 10.1017/S0022377800022996
– ident: 2016100617481809000_463.3.3381.5
  doi: 10.1093/mnras/stw384
– volume: 6
  start-page: 1338
  year: 1963
  ident: 2016100617481809000_463.3.3381.11
  publication-title: Phys. Fluids
  doi: 10.1063/1.1706904
  contributor:
    fullname: Bodin
– ident: 2016100617481809000_463.3.3381.27
  doi: 10.1093/mnras/stt1195
– ident: 2016100617481809000_463.3.3381.36
  doi: 10.1111/j.1365-2966.2012.20509.x
– ident: 2016100617481809000_463.3.3381.82
  doi: 10.1103/PhysRevLett.114.191101
– ident: 2016100617481809000_463.3.3381.69
  doi: 10.1088/0004-637X/761/1/66
– ident: 2016100617481809000_463.3.3381.21
  doi: 10.1063/1.1706761
– volume: 824
  start-page: L21
  year: 2016
  ident: 2016100617481809000_463.3.3381.41
  publication-title: ApJ
  doi: 10.3847/2041-8205/824/2/L21
  contributor:
    fullname: Lander
– volume: 61
  start-page: 4422
  year: 2000
  ident: 2016100617481809000_463.3.3381.78
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.4422
  contributor:
    fullname: Vainshtein
– volume: 800
  start-page: 33
  year: 2015
  ident: 2016100617481809000_463.3.3381.2
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/1/33
  contributor:
    fullname: Archibald
– ident: 2016100617481809000_463.3.3381.42
  doi: 10.1088/0004-637X/806/1/131
– ident: 2016100617481809000_463.3.3381.9
  doi: 10.1103/PhysRevLett.76.1264
– ident: 2016100617481809000_463.3.3381.40
  doi: 10.1093/mnras/stt1894
– ident: 2016100617481809000_463.3.3381.16
  doi: 10.1093/mnras/stw1242
– ident: 2016100617481809000_463.3.3381.76
  doi: 10.1086/323256
– volume: 26
  start-page: 962
  year: 1983
  ident: 2016100617481809000_463.3.3381.18
  publication-title: Phys. Fluids
  doi: 10.1063/1.864248
  contributor:
    fullname: Finn
– ident: 2016100617481809000_463.3.3381.31
  doi: 10.1046/j.1365-8711.2002.05905.x
– ident: 2016100617481809000_463.3.3381.25
  doi: 10.1093/mnras/stt2300
– ident: 2016100617481809000_463.3.3381.4
  doi: 10.1086/320452
– volume: 5
  start-page: 1408
  year: 1993
  ident: 2016100617481809000_463.3.3381.19
  publication-title: Phys. Fluids B
  doi: 10.1063/1.860880
  contributor:
    fullname: Fruchtman
– volume: 29
  start-page: 512
  year: 1986
  ident: 2016100617481809000_463.3.3381.49
  publication-title: Phys. Fluids
  doi: 10.1063/1.865438
  contributor:
    fullname: Mirin
– ident: 2016100617481809000_463.3.3381.71
  doi: 10.1088/2041-8205/783/1/L21
– ident: 2016100617481809000_463.3.3381.30
  doi: 10.1093/mnras/stt338
– ident: 2016100617481809000_463.3.3381.47
  doi: 10.1086/345402
– volume: 120
  start-page: 93
  year: 1989
  ident: 2016100617481809000_463.3.3381.73
  publication-title: Sol. Phys.
  doi: 10.1007/BF00148536
  contributor:
    fullname: Somov
– ident: 2016100617481809000_463.3.3381.7
– ident: 2016100617481809000_463.3.3381.56
  doi: 10.1038/nphys2640
– volume: 36
  start-page: L08104
  year: 2009
  ident: 2016100617481809000_463.3.3381.72
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL037239
  contributor:
    fullname: Snekvik
SSID ssj0004326
Score 2.412221
Snippet We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 3381
SubjectTerms Conductivity
Crusts
Electrons
Fluid mechanics
Instability
Magnetic fields
Magnetohydrodynamics
Neutron stars
Perturbation methods
Stability
Star & galaxy formation
Tearing
Title Resistive tearing instability in electron MHD: application to neutron star crusts
URI https://www.proquest.com/docview/1839409474
https://search.proquest.com/docview/1850771535
https://search.proquest.com/docview/1864555672
Volume 463
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_WevEiWpWuVhlBelnSmmQms_FWqmVRVrC00FvIx0QXaiJJVqkn_3R_b2aSTWWR6iUkM5mQ5L1583vzvhh7VfqlH5Uy9CIsz54ogtzLtMw8LRXguJ6nMqN45-XHaHEh3l_Ky8nk18hrad1lh_nPrXEl_0NVtIGuFCX7D5QdHooGnIO-OILCON6Kxme6pSn6Xc_IK9dGpwDtGX9XE8_XF7mZLRdvTVjzxlxNoLPSa9OLMc0sp-iLdgxWMd-7L1fXs6omD7m2dyewOw7HLQ2tbbYB5_s5OPPg5T9TqXVo9IZPPlgU2q2qGnL1cOAl2rVostSWoyJTk_MVdtsQvine48SkE62hhGh1TdpKU-NCF9uyKr24FU6grcbquBGe0Jb90UKMy3irkLcJsL5WDYW8nbbdD6hR8WY96234fyxzg_OhNbuHiXlA4obfYXcDShVIsPpsk4BMhKZg3_BxLksrhh-Z4Udu-E1Uc3NRN0jl_AG771QMfmz55SGb6GqX7fX0uuYH3JzbPa12l02XUJzqxthX0HlytYIWY64esU8Di3HHYnzEYjjnPYtxsNgbPmIw3tXcMRgnBuOWwR6zi9N35ycLz1Xh8HIRRp0XFD6BSshqEWelxgQuhA5UqrN8_joWQPDzUPlBqoMiloUMgL-FirSiPEFxmcfhE7ZT1ZXeYxzwN02BMFVR-kIV0GVLf55BoU7RIYpwyg76v5h8s8lWkq3UmrL9_h8nbj62CWF92q1QYspeDt2QlmQCSytdr-ke6D8KHyP_dk8kpJSRCp7e9n2esXubObHPdrpmrZ8DrHbZC8NPvwFLQZ0c
link.rule.ids 315,783,787,27937,27938
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resistive+tearing+instability+in+electron+MHD%3A+application+to+neutron+star+crusts&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Gourgouliatos%2C+Konstantinos+N.&rft.au=Hollerbach%2C+Rainer&rft.date=2016-12-11&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=463&rft.issue=3&rft.spage=3381&rft.epage=3389&rft_id=info:doi/10.1093%2Fmnras%2Fstw2309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stw2309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon