Resistive tearing instability in electron MHD: application to neutron star crusts
We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 463; no. 3; p. 3381 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
11.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as ..., where B is the magnetic field and s the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 10 super( 42) erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas. (ProQuest: ... denotes formulae/symbols omitted.) |
---|---|
AbstractList | We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as ..., where B is the magnetic field and s the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 10 super( 42) erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas. (ProQuest: ... denotes formulae/symbols omitted.) We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as ..., where B is the magnetic field and s the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 10^sup 42^ erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Gourgouliatos, Konstantinos N Hollerbach, Rainer |
Author_xml | – sequence: 1 givenname: Konstantinos surname: Gourgouliatos middlename: N fullname: Gourgouliatos, Konstantinos N – sequence: 2 givenname: Rainer surname: Hollerbach fullname: Hollerbach, Rainer |
BookMark | eNqNkb1PwzAQxS1UJNrCyB6JhSXU347ZUPkoUhECwRy5yQW5Sp1gO6D-95i2ExPTne797vROb4JGrnOA0DnBVwRrNts4b8IsxG_KsD5CY8KkyKmWcoTGGDORF4qQEzQJYY0x5ozKMXp5hWBDtF-QRTDeuo_MuhDNyrY2blOfQQtV9J3Lnha315np-9ZWJto0iF3mYNhpacNnlR9CDKfouDFtgLNDnaL3-7u3-SJfPj88zm-WecWZjDmticCaCEa4XjWgBdQcqDKwqgqsecFEwRShBmitRS0oZ4IrCUowJXVTaTZFl_u7ve8-Bwix3NhQQdsaB90QSlJILoSQiv4DFVip5EUk9OIPuu4G79IjiWKaJ2uKJyrfU5XvQvDQlL23G-O3JcHlbxblLovykAX7AZCXfww |
CitedBy_id | crossref_primary_10_1017_S0022377821000726 crossref_primary_10_1093_astrogeo_aty235 crossref_primary_10_3390_sym14010130 crossref_primary_10_52526_25792776_2018_2_2_338 crossref_primary_10_1002_asna_201913644 crossref_primary_10_1088_1538_3873_ab0440 crossref_primary_10_1093_mnras_stz1042 crossref_primary_10_1016_j_ascom_2022_100553 crossref_primary_10_1088_1361_6633_ab3def crossref_primary_10_1093_mnras_staa1295 crossref_primary_10_1134_S1063773717090043 crossref_primary_10_3390_universe7090351 crossref_primary_10_3847_1538_4357_aa9d93 crossref_primary_10_1140_epja_i2018_12624_1 crossref_primary_10_1093_mnras_stae190 crossref_primary_10_1103_PhysRevResearch_1_032049 |
Cites_doi | 10.1017/S0022377809990158 10.1088/0004-637X/780/1/3 10.1086/421324 10.1086/152042 10.1007/BF01337791 10.1051/0004-6361:20034078 10.1086/306652 10.1093/mnras/stu1675 10.1093/mnras/233.4.875 10.1029/2001JA900038 10.1111/j.1365-2966.2005.09932.x 10.1103/PhysRevLett.110.071101 10.1088/0067-0049/212/1/6 10.1111/j.1365-2966.2011.19807.x 10.1051/0004-6361/201527874 10.1088/0004-637X/754/1/27 10.1103/PhysRevLett.112.171101 10.1029/JZ072i001p00143 10.1051/0004-6361:200810281 10.1111/j.1365-2966.2004.07307.x 10.1002/jgra.50248 10.1017/S174392131400266X 10.1111/j.1365-2966.2012.20612.x 10.1088/0004-637X/786/1/62 10.1038/211695a0 10.1093/mnras/stv2860 10.1086/171646 10.1111/j.1365-2966.2006.11152.x 10.1023/A:1019712124366 10.1051/0004-6361:20077874 10.1086/507518 10.1088/0004-637X/770/1/65 10.1063/1.3111033 10.1103/PhysRevLett.88.101103 10.1063/1.4879810 10.1093/mnrasl/slv106 10.1051/0004-6361/201014197 10.1093/mnras/stu2140 10.1088/0004-637X/763/2/82 10.1088/0004-637X/796/2/94 10.1073/pnas.1522363113 10.1051/0004-6361/201423660 10.1088/2041-8205/750/1/L6 10.1088/0034-4885/48/7/002 10.1063/1.1694232 10.1051/0004-6361:20077456 10.1051/0004-6361:200811229 10.1016/j.cpc.2012.04.029 10.1088/2041-8205/794/2/L24 10.1017/S0022377800022996 10.1093/mnras/stw384 10.1063/1.1706904 10.1093/mnras/stt1195 10.1111/j.1365-2966.2012.20509.x 10.1103/PhysRevLett.114.191101 10.1088/0004-637X/761/1/66 10.1063/1.1706761 10.3847/2041-8205/824/2/L21 10.1103/PhysRevE.61.4422 10.1088/0004-637X/800/1/33 10.1088/0004-637X/806/1/131 10.1103/PhysRevLett.76.1264 10.1093/mnras/stt1894 10.1093/mnras/stw1242 10.1086/323256 10.1063/1.864248 10.1046/j.1365-8711.2002.05905.x 10.1093/mnras/stt2300 10.1086/320452 10.1063/1.860880 10.1063/1.865438 10.1088/2041-8205/783/1/L21 10.1093/mnras/stt338 10.1086/345402 10.1007/BF00148536 10.1038/nphys2640 10.1029/2009GL037239 |
ContentType | Journal Article |
Copyright | Copyright Oxford University Press, UK Dec 11, 2016 |
Copyright_xml | – notice: Copyright Oxford University Press, UK Dec 11, 2016 |
DBID | AAYXX CITATION 8FD H8D L7M 7TG KL. |
DOI | 10.1093/mnras/stw2309 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 3381 |
ExternalDocumentID | 4249997531 10_1093_mnras_stw2309 |
Genre | Feature |
GroupedDBID | -DZ -~X .2P .I3 0R~ 123 1OC 1TH 29M 4.4 48X 51W 51X 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8UM AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAYXX ABCQN ABCQX ABEML ABEUO ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABXVV ABZBJ ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFEBI AFFZL AFIYH AFOFC AFXEN AGINJ AGSYK AHXPO AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT AVWKF AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CDBKE CITATION CO8 DAKXR DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD ESX F5P F9B FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC H5~ HAR HF~ HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LP6 LP7 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PEELM PQQKQ Q1. Q11 Q5Y RHF ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX V8K W8V WH7 WRC X5Q X5S YAYTL YKOAZ YXANX 8FD ABEJV H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-c436t-2d1509153149bfe95ed4e27aebc809483583712ae2d95d52435476e753769fc93 |
ISSN | 0035-8711 |
IngestDate | Fri Oct 25 04:06:16 EDT 2024 Fri Oct 25 07:44:20 EDT 2024 Tue Nov 05 18:48:53 EST 2024 Thu Sep 12 18:44:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-2d1509153149bfe95ed4e27aebc809483583712ae2d95d52435476e753769fc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://durham-repository.worktribe.com/file/1340723/1/Published%20Journal%20Article |
PQID | 1839409474 |
PQPubID | 42411 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_1864555672 proquest_miscellaneous_1850771535 proquest_journals_1839409474 crossref_primary_10_1093_mnras_stw2309 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-11 |
PublicationDateYYYYMMDD | 2016-12-11 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Somov (2016100617481809000_463.3.3381.73) 1989; 120 2016100617481809000_463.3.3381.42 2016100617481809000_463.3.3381.43 2016100617481809000_463.3.3381.40 2016100617481809000_463.3.3381.46 2016100617481809000_463.3.3381.47 2016100617481809000_463.3.3381.44 2016100617481809000_463.3.3381.82 2016100617481809000_463.3.3381.83 Marchant (2016100617481809000_463.3.3381.48) 2014; 796 2016100617481809000_463.3.3381.80 2016100617481809000_463.3.3381.81 2016100617481809000_463.3.3381.17 2016100617481809000_463.3.3381.15 Mirin (2016100617481809000_463.3.3381.49) 1986; 29 Potekhin (2016100617481809000_463.3.3381.57) 1999; 351 2016100617481809000_463.3.3381.59 2016100617481809000_463.3.3381.16 Runov (2016100617481809000_463.3.3381.67) 2003; 30 Finn (2016100617481809000_463.3.3381.18) 1983; 26 2016100617481809000_463.3.3381.53 2016100617481809000_463.3.3381.10 2016100617481809000_463.3.3381.54 2016100617481809000_463.3.3381.51 Archibald (2016100617481809000_463.3.3381.2) 2015; 800 Nagai (2016100617481809000_463.3.3381.50) 2001; 106 2016100617481809000_463.3.3381.52 2016100617481809000_463.3.3381.13 2016100617481809000_463.3.3381.14 Fruchtman (2016100617481809000_463.3.3381.19) 1993; 5 2016100617481809000_463.3.3381.55 2016100617481809000_463.3.3381.12 2016100617481809000_463.3.3381.56 Scholz (2016100617481809000_463.3.3381.70) 2014; 786 Rosenbluth (2016100617481809000_463.3.3381.66) 1967; 72 Beloborodov (2016100617481809000_463.3.3381.6) 2014; 794 Liu (2016100617481809000_463.3.3381.45) 2013; 118 2016100617481809000_463.3.3381.28 2016100617481809000_463.3.3381.29 2016100617481809000_463.3.3381.26 2016100617481809000_463.3.3381.27 Priest (2016100617481809000_463.3.3381.60) 1985; 48 2016100617481809000_463.3.3381.8 2016100617481809000_463.3.3381.20 2016100617481809000_463.3.3381.64 2016100617481809000_463.3.3381.9 2016100617481809000_463.3.3381.21 2016100617481809000_463.3.3381.65 2016100617481809000_463.3.3381.62 2016100617481809000_463.3.3381.63 2016100617481809000_463.3.3381.4 2016100617481809000_463.3.3381.24 2016100617481809000_463.3.3381.68 2016100617481809000_463.3.3381.5 2016100617481809000_463.3.3381.25 2016100617481809000_463.3.3381.69 2016100617481809000_463.3.3381.22 2016100617481809000_463.3.3381.7 2016100617481809000_463.3.3381.23 2016100617481809000_463.3.3381.1 2016100617481809000_463.3.3381.3 Bodin (2016100617481809000_463.3.3381.11) 1963; 6 2016100617481809000_463.3.3381.61 Vainshtein (2016100617481809000_463.3.3381.78) 2000; 61 2016100617481809000_463.3.3381.39 2016100617481809000_463.3.3381.37 2016100617481809000_463.3.3381.38 Lander (2016100617481809000_463.3.3381.41) 2016; 824 2016100617481809000_463.3.3381.31 Potekhin (2016100617481809000_463.3.3381.58) 1996; 314 2016100617481809000_463.3.3381.75 2016100617481809000_463.3.3381.32 2016100617481809000_463.3.3381.76 2016100617481809000_463.3.3381.30 Snekvik (2016100617481809000_463.3.3381.72) 2009; 36 2016100617481809000_463.3.3381.74 2016100617481809000_463.3.3381.35 2016100617481809000_463.3.3381.79 2016100617481809000_463.3.3381.36 2016100617481809000_463.3.3381.33 2016100617481809000_463.3.3381.77 2016100617481809000_463.3.3381.34 2016100617481809000_463.3.3381.71 |
References_xml | – ident: 2016100617481809000_463.3.3381.81 doi: 10.1017/S0022377809990158 – ident: 2016100617481809000_463.3.3381.77 doi: 10.1088/0004-637X/780/1/3 – ident: 2016100617481809000_463.3.3381.12 – ident: 2016100617481809000_463.3.3381.14 doi: 10.1086/421324 – ident: 2016100617481809000_463.3.3381.46 doi: 10.1086/152042 – ident: 2016100617481809000_463.3.3381.10 doi: 10.1007/BF01337791 – ident: 2016100617481809000_463.3.3381.65 doi: 10.1051/0004-6361:20034078 – ident: 2016100617481809000_463.3.3381.13 doi: 10.1086/306652 – ident: 2016100617481809000_463.3.3381.22 doi: 10.1093/mnras/stu1675 – ident: 2016100617481809000_463.3.3381.33 doi: 10.1093/mnras/233.4.875 – volume: 106 start-page: 25929 year: 2001 ident: 2016100617481809000_463.3.3381.50 publication-title: J. Geophys. Res. doi: 10.1029/2001JA900038 contributor: fullname: Nagai – ident: 2016100617481809000_463.3.3381.37 doi: 10.1111/j.1365-2966.2005.09932.x – ident: 2016100617481809000_463.3.3381.39 doi: 10.1103/PhysRevLett.110.071101 – ident: 2016100617481809000_463.3.3381.51 doi: 10.1088/0067-0049/212/1/6 – ident: 2016100617481809000_463.3.3381.59 doi: 10.1111/j.1365-2966.2011.19807.x – ident: 2016100617481809000_463.3.3381.8 doi: 10.1051/0004-6361/201527874 – ident: 2016100617481809000_463.3.3381.61 doi: 10.1088/0004-637X/754/1/27 – ident: 2016100617481809000_463.3.3381.24 doi: 10.1103/PhysRevLett.112.171101 – volume: 72 start-page: 143 year: 1967 ident: 2016100617481809000_463.3.3381.66 publication-title: J. Geophys. Res. doi: 10.1029/JZ072i001p00143 contributor: fullname: Rosenbluth – volume: 314 start-page: 341 year: 1996 ident: 2016100617481809000_463.3.3381.58 publication-title: A&A contributor: fullname: Potekhin – ident: 2016100617481809000_463.3.3381.34 doi: 10.1051/0004-6361:200810281 – ident: 2016100617481809000_463.3.3381.32 doi: 10.1111/j.1365-2966.2004.07307.x – volume: 118 start-page: 2087 year: 2013 ident: 2016100617481809000_463.3.3381.45 publication-title: J. Geophys. Res.: Space Phys. doi: 10.1002/jgra.50248 contributor: fullname: Liu – ident: 2016100617481809000_463.3.3381.20 doi: 10.1017/S174392131400266X – ident: 2016100617481809000_463.3.3381.15 doi: 10.1111/j.1365-2966.2012.20612.x – volume: 786 start-page: 62 year: 2014 ident: 2016100617481809000_463.3.3381.70 publication-title: ApJ doi: 10.1088/0004-637X/786/1/62 contributor: fullname: Scholz – ident: 2016100617481809000_463.3.3381.75 doi: 10.1038/211695a0 – ident: 2016100617481809000_463.3.3381.17 doi: 10.1093/mnras/stv2860 – ident: 2016100617481809000_463.3.3381.23 doi: 10.1086/171646 – ident: 2016100617481809000_463.3.3381.44 – ident: 2016100617481809000_463.3.3381.38 doi: 10.1111/j.1365-2966.2006.11152.x – volume: 351 start-page: 787 year: 1999 ident: 2016100617481809000_463.3.3381.57 publication-title: A&A contributor: fullname: Potekhin – ident: 2016100617481809000_463.3.3381.3 doi: 10.1023/A:1019712124366 – ident: 2016100617481809000_463.3.3381.63 doi: 10.1051/0004-6361:20077874 – ident: 2016100617481809000_463.3.3381.74 doi: 10.1086/507518 – ident: 2016100617481809000_463.3.3381.62 doi: 10.1088/0004-637X/770/1/65 – ident: 2016100617481809000_463.3.3381.80 doi: 10.1063/1.3111033 – ident: 2016100617481809000_463.3.3381.64 doi: 10.1103/PhysRevLett.88.101103 – ident: 2016100617481809000_463.3.3381.83 doi: 10.1063/1.4879810 – ident: 2016100617481809000_463.3.3381.28 doi: 10.1093/mnrasl/slv106 – ident: 2016100617481809000_463.3.3381.53 doi: 10.1051/0004-6361/201014197 – ident: 2016100617481809000_463.3.3381.26 doi: 10.1093/mnras/stu2140 – ident: 2016100617481809000_463.3.3381.1 doi: 10.1088/0004-637X/763/2/82 – volume: 796 start-page: 94 year: 2014 ident: 2016100617481809000_463.3.3381.48 publication-title: ApJ doi: 10.1088/0004-637X/796/2/94 contributor: fullname: Marchant – ident: 2016100617481809000_463.3.3381.29 doi: 10.1073/pnas.1522363113 – ident: 2016100617481809000_463.3.3381.43 doi: 10.1051/0004-6361/201423660 – ident: 2016100617481809000_463.3.3381.54 doi: 10.1088/2041-8205/750/1/L6 – volume: 48 start-page: 955 year: 1985 ident: 2016100617481809000_463.3.3381.60 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/48/7/002 contributor: fullname: Priest – ident: 2016100617481809000_463.3.3381.68 doi: 10.1063/1.1694232 – ident: 2016100617481809000_463.3.3381.52 doi: 10.1051/0004-6361:20077456 – ident: 2016100617481809000_463.3.3381.55 doi: 10.1051/0004-6361:200811229 – volume: 30 start-page: 33 year: 2003 ident: 2016100617481809000_463.3.3381.67 publication-title: Geophys. Res. Lett. contributor: fullname: Runov – ident: 2016100617481809000_463.3.3381.79 doi: 10.1016/j.cpc.2012.04.029 – volume: 794 start-page: L24 year: 2014 ident: 2016100617481809000_463.3.3381.6 publication-title: ApJ doi: 10.1088/2041-8205/794/2/L24 contributor: fullname: Beloborodov – ident: 2016100617481809000_463.3.3381.35 doi: 10.1017/S0022377800022996 – ident: 2016100617481809000_463.3.3381.5 doi: 10.1093/mnras/stw384 – volume: 6 start-page: 1338 year: 1963 ident: 2016100617481809000_463.3.3381.11 publication-title: Phys. Fluids doi: 10.1063/1.1706904 contributor: fullname: Bodin – ident: 2016100617481809000_463.3.3381.27 doi: 10.1093/mnras/stt1195 – ident: 2016100617481809000_463.3.3381.36 doi: 10.1111/j.1365-2966.2012.20509.x – ident: 2016100617481809000_463.3.3381.82 doi: 10.1103/PhysRevLett.114.191101 – ident: 2016100617481809000_463.3.3381.69 doi: 10.1088/0004-637X/761/1/66 – ident: 2016100617481809000_463.3.3381.21 doi: 10.1063/1.1706761 – volume: 824 start-page: L21 year: 2016 ident: 2016100617481809000_463.3.3381.41 publication-title: ApJ doi: 10.3847/2041-8205/824/2/L21 contributor: fullname: Lander – volume: 61 start-page: 4422 year: 2000 ident: 2016100617481809000_463.3.3381.78 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.4422 contributor: fullname: Vainshtein – volume: 800 start-page: 33 year: 2015 ident: 2016100617481809000_463.3.3381.2 publication-title: ApJ doi: 10.1088/0004-637X/800/1/33 contributor: fullname: Archibald – ident: 2016100617481809000_463.3.3381.42 doi: 10.1088/0004-637X/806/1/131 – ident: 2016100617481809000_463.3.3381.9 doi: 10.1103/PhysRevLett.76.1264 – ident: 2016100617481809000_463.3.3381.40 doi: 10.1093/mnras/stt1894 – ident: 2016100617481809000_463.3.3381.16 doi: 10.1093/mnras/stw1242 – ident: 2016100617481809000_463.3.3381.76 doi: 10.1086/323256 – volume: 26 start-page: 962 year: 1983 ident: 2016100617481809000_463.3.3381.18 publication-title: Phys. Fluids doi: 10.1063/1.864248 contributor: fullname: Finn – ident: 2016100617481809000_463.3.3381.31 doi: 10.1046/j.1365-8711.2002.05905.x – ident: 2016100617481809000_463.3.3381.25 doi: 10.1093/mnras/stt2300 – ident: 2016100617481809000_463.3.3381.4 doi: 10.1086/320452 – volume: 5 start-page: 1408 year: 1993 ident: 2016100617481809000_463.3.3381.19 publication-title: Phys. Fluids B doi: 10.1063/1.860880 contributor: fullname: Fruchtman – volume: 29 start-page: 512 year: 1986 ident: 2016100617481809000_463.3.3381.49 publication-title: Phys. Fluids doi: 10.1063/1.865438 contributor: fullname: Mirin – ident: 2016100617481809000_463.3.3381.71 doi: 10.1088/2041-8205/783/1/L21 – ident: 2016100617481809000_463.3.3381.30 doi: 10.1093/mnras/stt338 – ident: 2016100617481809000_463.3.3381.47 doi: 10.1086/345402 – volume: 120 start-page: 93 year: 1989 ident: 2016100617481809000_463.3.3381.73 publication-title: Sol. Phys. doi: 10.1007/BF00148536 contributor: fullname: Somov – ident: 2016100617481809000_463.3.3381.7 – ident: 2016100617481809000_463.3.3381.56 doi: 10.1038/nphys2640 – volume: 36 start-page: L08104 year: 2009 ident: 2016100617481809000_463.3.3381.72 publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL037239 contributor: fullname: Snekvik |
SSID | ssj0004326 |
Score | 2.412221 |
Snippet | We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 3381 |
SubjectTerms | Conductivity Crusts Electrons Fluid mechanics Instability Magnetic fields Magnetohydrodynamics Neutron stars Perturbation methods Stability Star & galaxy formation Tearing |
Title | Resistive tearing instability in electron MHD: application to neutron star crusts |
URI | https://www.proquest.com/docview/1839409474 https://search.proquest.com/docview/1850771535 https://search.proquest.com/docview/1864555672 |
Volume | 463 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_WevEiWpWuVhlBelnSmmQms_FWqmVRVrC00FvIx0QXaiJJVqkn_3R_b2aSTWWR6iUkM5mQ5L1583vzvhh7VfqlH5Uy9CIsz54ogtzLtMw8LRXguJ6nMqN45-XHaHEh3l_Ky8nk18hrad1lh_nPrXEl_0NVtIGuFCX7D5QdHooGnIO-OILCON6Kxme6pSn6Xc_IK9dGpwDtGX9XE8_XF7mZLRdvTVjzxlxNoLPSa9OLMc0sp-iLdgxWMd-7L1fXs6omD7m2dyewOw7HLQ2tbbYB5_s5OPPg5T9TqXVo9IZPPlgU2q2qGnL1cOAl2rVostSWoyJTk_MVdtsQvine48SkE62hhGh1TdpKU-NCF9uyKr24FU6grcbquBGe0Jb90UKMy3irkLcJsL5WDYW8nbbdD6hR8WY96234fyxzg_OhNbuHiXlA4obfYXcDShVIsPpsk4BMhKZg3_BxLksrhh-Z4Udu-E1Uc3NRN0jl_AG771QMfmz55SGb6GqX7fX0uuYH3JzbPa12l02XUJzqxthX0HlytYIWY64esU8Di3HHYnzEYjjnPYtxsNgbPmIw3tXcMRgnBuOWwR6zi9N35ycLz1Xh8HIRRp0XFD6BSshqEWelxgQuhA5UqrN8_joWQPDzUPlBqoMiloUMgL-FirSiPEFxmcfhE7ZT1ZXeYxzwN02BMFVR-kIV0GVLf55BoU7RIYpwyg76v5h8s8lWkq3UmrL9_h8nbj62CWF92q1QYspeDt2QlmQCSytdr-ke6D8KHyP_dk8kpJSRCp7e9n2esXubObHPdrpmrZ8DrHbZC8NPvwFLQZ0c |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resistive+tearing+instability+in+electron+MHD%3A+application+to+neutron+star+crusts&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Gourgouliatos%2C+Konstantinos+N.&rft.au=Hollerbach%2C+Rainer&rft.date=2016-12-11&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=463&rft.issue=3&rft.spage=3381&rft.epage=3389&rft_id=info:doi/10.1093%2Fmnras%2Fstw2309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stw2309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |