Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers
Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate—with implications for our understanding of their phys...
Saved in:
Published in | Nature chemistry Vol. 11; no. 4; pp. 351 - 358 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1755-4330 1755-4349 1755-4349 |
DOI | 10.1038/s41557-019-0216-y |
Cover
Loading…
Abstract | Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate—with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule–electrode contact, we demonstrate here that the nature of the gold–sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold–sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained.
Gold–thiol contacts are ubiquitous across the physical and biological sciences, connecting organic molecules to surfaces. Now, conductance measurements of different sulfur-bound single-molecule junctions show that thiols—in contrast to the prevailing view—are not chemisorbed on gold, which strongly suggests that the thiol hydrogen is retained. |
---|---|
AbstractList | Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate-with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule-electrode contact, we demonstrate here that the nature of the gold-sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold-sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained. Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate—with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule–electrode contact, we demonstrate here that the nature of the gold–sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold–sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained. Gold–thiol contacts are ubiquitous across the physical and biological sciences, connecting organic molecules to surfaces. Now, conductance measurements of different sulfur-bound single-molecule junctions show that thiols—in contrast to the prevailing view—are not chemisorbed on gold, which strongly suggests that the thiol hydrogen is retained. Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate—with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule–electrode contact, we demonstrate here that the nature of the gold–sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold–sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained.Gold–thiol contacts are ubiquitous across the physical and biological sciences, connecting organic molecules to surfaces. Now, conductance measurements of different sulfur-bound single-molecule junctions show that thiols—in contrast to the prevailing view—are not chemisorbed on gold, which strongly suggests that the thiol hydrogen is retained. Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate-with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule-electrode contact, we demonstrate here that the nature of the gold-sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold-sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained.Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate-with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule-electrode contact, we demonstrate here that the nature of the gold-sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold-sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained. |
Author | Campos, Luis M. Venkataraman, Latha Li, Haixing Neaton, Jeffrey B. Inkpen, Michael S. Liu, Zhen–Fei |
Author_xml | – sequence: 1 givenname: Michael S. orcidid: 0000-0001-7339-8812 surname: Inkpen fullname: Inkpen, Michael S. email: inkpen@usc.edu organization: Department of Applied Physics, Columbia University – sequence: 2 givenname: Zhen–Fei orcidid: 0000-0002-2423-8430 surname: Liu fullname: Liu, Zhen–Fei organization: Molecular Foundry, Lawrence Berkeley National Laboratory and Department of Physics, University of California, Berkeley – sequence: 3 givenname: Haixing orcidid: 0000-0002-1383-4907 surname: Li fullname: Li, Haixing organization: Department of Applied Physics, Columbia University – sequence: 4 givenname: Luis M. surname: Campos fullname: Campos, Luis M. organization: Department of Chemistry, Columbia University – sequence: 5 givenname: Jeffrey B. surname: Neaton fullname: Neaton, Jeffrey B. organization: Molecular Foundry, Lawrence Berkeley National Laboratory and Department of Physics, University of California, Berkeley – sequence: 6 givenname: Latha orcidid: 0000-0002-6957-6089 surname: Venkataraman fullname: Venkataraman, Latha email: lv2117@columbia.edu organization: Department of Applied Physics, Columbia University, Department of Chemistry, Columbia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30833721$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1529926$$D View this record in Osti.gov |
BookMark | eNp9kctu1TAQhi1URC_wAGxQBBs2Bl9ix16iipuoYANry3Emp6kc--BJKp0d78Ab8iS4SgtSJVjZi-8bzfz_KTlKOQEhTzl7xZk0r7HlSnWUcUuZ4JoeHpAT3ilFW9naoz9_yY7JKeIVY1pJrh-RY8mMlJ3gJ-TT55xouIR5wlx6GJpdjsOvHz9xjeNamn5Kw5R2zb7AtZ8iNlNqEOJIPSLMfazCnFOO_gAFH5OHo48IT27fM_Lt3duv5x_oxZf3H8_fXNDQSr1QEdhghOisldyPMlhjuTWdGjTT0Gulg2ajGhgDE4L2bFBet4pJ3gYbQBt5Rp5vczMuk8MwLRAuQ04JwuK4EtYKXaGXG7Qv-fsKuLh6YoAYfYK8ohPcGMEM72xFX9xDr_JaUj2hUlZZoWpulXp2S639DIPbl2n25eDusqxAtwGhZMQCo6ub-WXKaSk1O8eZu2nNba252pq7ac0dqsnvmXfD_-eIzcHKph2Uv0v_W_oN0WGo-Q |
CitedBy_id | crossref_primary_10_1021_acs_analchem_9b04000 crossref_primary_10_1002_cmdc_202100623 crossref_primary_10_1016_j_tsf_2023_139875 crossref_primary_10_1021_acs_jpcc_0c08957 crossref_primary_10_1021_acs_inorgchem_0c02185 crossref_primary_10_1016_j_bbagen_2025_130793 crossref_primary_10_1039_D3TB01255G crossref_primary_10_1021_acs_analchem_3c04656 crossref_primary_10_1007_s12274_021_4020_9 crossref_primary_10_1016_j_mtchem_2022_101259 crossref_primary_10_1021_acs_nanolett_1c02915 crossref_primary_10_1002_mame_202400445 crossref_primary_10_1002_adfm_202402972 crossref_primary_10_53941_mi_2025_100007 crossref_primary_10_1002_aoc_7128 crossref_primary_10_1063_1_5090457 crossref_primary_10_1039_D2NR05448E crossref_primary_10_1039_D3CC01113E crossref_primary_10_1021_acs_nanolett_0c02015 crossref_primary_10_1038_s41557_021_00721_2 crossref_primary_10_1038_s41578_019_0094_3 crossref_primary_10_1002_jcc_26801 crossref_primary_10_1016_j_sbsr_2021_100449 crossref_primary_10_1016_j_xcrp_2024_101801 crossref_primary_10_1039_D2NH00241H crossref_primary_10_1016_j_foodchem_2021_131254 crossref_primary_10_1038_s41467_022_29483_2 crossref_primary_10_1002_chem_202400115 crossref_primary_10_1016_j_ijpharm_2024_124920 crossref_primary_10_3390_nano10061237 crossref_primary_10_1021_acs_analchem_3c02338 crossref_primary_10_1002_pssa_201900589 crossref_primary_10_1039_D1AY01570B crossref_primary_10_1166_jbt_2022_2934 crossref_primary_10_1002_ange_202102887 crossref_primary_10_1021_acs_nanolett_3c04058 crossref_primary_10_1002_aenm_202302970 crossref_primary_10_1002_smll_202004345 crossref_primary_10_1021_acs_nanolett_3c00250 crossref_primary_10_1002_anie_202009435 crossref_primary_10_1021_acs_analchem_1c04707 crossref_primary_10_1080_10402004_2024_2313605 crossref_primary_10_1021_acs_jpcc_9b11515 crossref_primary_10_3390_photonics8120568 crossref_primary_10_1021_acs_langmuir_4c03975 crossref_primary_10_1021_acs_nanolett_4c02665 crossref_primary_10_1021_acs_nanolett_4c02786 crossref_primary_10_1002_anie_201907966 crossref_primary_10_1088_2631_7990_ad65a0 crossref_primary_10_1021_jacs_0c01466 crossref_primary_10_1021_jacs_4c16218 crossref_primary_10_1002_anie_202102587 crossref_primary_10_1039_D3NA00500C crossref_primary_10_1021_jacs_3c13752 crossref_primary_10_1016_j_scitotenv_2020_143660 crossref_primary_10_1021_jacs_0c06508 crossref_primary_10_1016_j_susc_2020_121760 crossref_primary_10_1039_D3CC00277B crossref_primary_10_1088_1402_4896_ad385d crossref_primary_10_1021_acs_jpclett_3c03470 crossref_primary_10_1002_anie_202312975 crossref_primary_10_1007_s00604_019_4035_z crossref_primary_10_1021_acs_jpcc_2c00416 crossref_primary_10_1002_adma_202406432 crossref_primary_10_3390_s20010274 crossref_primary_10_1021_acsnano_2c08630 crossref_primary_10_1021_acs_jpcc_0c03612 crossref_primary_10_1039_D3LC00709J crossref_primary_10_1021_acsanm_2c03042 crossref_primary_10_1021_acs_jpcc_9b08206 crossref_primary_10_1002_smll_202004720 crossref_primary_10_1063_5_0250879 crossref_primary_10_1039_D3DT00955F crossref_primary_10_1002_smll_202103189 crossref_primary_10_1007_s00216_022_04015_5 crossref_primary_10_1002_elps_201900071 crossref_primary_10_1002_masy_201900206 crossref_primary_10_1039_D4TC04233F crossref_primary_10_1021_jacs_4c14176 crossref_primary_10_1021_acssuschemeng_1c02160 crossref_primary_10_1021_jacs_2c05856 crossref_primary_10_1039_D1RA04917H crossref_primary_10_1002_ange_202009435 crossref_primary_10_1002_anie_202102887 crossref_primary_10_3390_app11020802 crossref_primary_10_1021_acs_jpcc_0c07768 crossref_primary_10_1007_s12598_024_03212_8 crossref_primary_10_1039_D3CE00877K crossref_primary_10_1021_acs_jpcc_0c02078 crossref_primary_10_1039_D4NR00856A crossref_primary_10_1021_jacs_3c14079 crossref_primary_10_1063_5_0018784 crossref_primary_10_1021_acsami_4c02185 crossref_primary_10_1016_j_nantod_2020_101005 crossref_primary_10_1063_5_0210670 crossref_primary_10_1039_D0QM00612B crossref_primary_10_1007_s13204_022_02645_w crossref_primary_10_1038_s41378_023_00488_1 crossref_primary_10_3390_bios14080393 crossref_primary_10_1021_acs_langmuir_9b03601 crossref_primary_10_1002_anie_202214963 crossref_primary_10_1021_acs_jpcc_0c08721 crossref_primary_10_1186_s12645_022_00138_7 crossref_primary_10_1016_j_apsusc_2023_156985 crossref_primary_10_1016_j_aca_2020_09_062 crossref_primary_10_1038_s41467_020_19703_y crossref_primary_10_1016_j_surfin_2022_102228 crossref_primary_10_1021_acsapm_3c01925 crossref_primary_10_1016_j_seppur_2025_132424 crossref_primary_10_3390_bios12030145 crossref_primary_10_3390_molecules26195788 crossref_primary_10_1002_chem_202100029 crossref_primary_10_1039_D3TC03618A crossref_primary_10_1021_jacs_4c11241 crossref_primary_10_1021_acs_nanolett_9b03528 crossref_primary_10_1002_mame_202400017 crossref_primary_10_1080_08927022_2019_1663844 crossref_primary_10_1039_C9EE03251G crossref_primary_10_1021_acssensors_2c01990 crossref_primary_10_3390_coatings14030327 crossref_primary_10_1021_acsanm_3c02482 crossref_primary_10_1002_admt_202301701 crossref_primary_10_1021_acs_jpcc_1c07550 crossref_primary_10_1021_jacs_4c09504 crossref_primary_10_1021_jacs_2c12059 crossref_primary_10_1002_adma_202000866 crossref_primary_10_1016_j_jhazmat_2023_132122 crossref_primary_10_1073_pnas_2403324121 crossref_primary_10_1007_s10800_021_01577_7 crossref_primary_10_3390_ma16083230 crossref_primary_10_1021_acsnano_3c09452 crossref_primary_10_1002_ange_202102587 crossref_primary_10_1016_j_nantod_2022_101660 crossref_primary_10_1016_j_coelec_2020_100670 crossref_primary_10_3390_ani13193141 crossref_primary_10_1021_jacs_1c12880 crossref_primary_10_1021_acs_jpcc_3c06096 crossref_primary_10_1002_anie_201913327 crossref_primary_10_1039_D3TC02652C crossref_primary_10_1002_asia_202300181 crossref_primary_10_1021_acsnano_4c14460 crossref_primary_10_1039_D2CP03103E crossref_primary_10_1002_adfm_202405608 crossref_primary_10_1021_acs_langmuir_4c03675 crossref_primary_10_1088_1674_1056_ab90f2 crossref_primary_10_1039_D1DT02616J crossref_primary_10_1039_D4RA04506H crossref_primary_10_1186_s12951_024_02318_6 crossref_primary_10_1021_acsnano_0c00108 crossref_primary_10_1093_nsr_nwae351 crossref_primary_10_1039_D1MH01326B crossref_primary_10_1002_adma_202304172 crossref_primary_10_1002_ange_202214963 crossref_primary_10_1039_D2SC06492H crossref_primary_10_1016_j_snb_2022_132272 crossref_primary_10_1021_acs_analchem_9b03332 crossref_primary_10_1002_anie_202012216 crossref_primary_10_1016_j_coco_2021_100702 crossref_primary_10_1039_D4CP03709J crossref_primary_10_1016_j_carbpol_2024_123038 crossref_primary_10_1088_1361_648X_ac89c4 crossref_primary_10_2147_IJN_S304953 crossref_primary_10_1021_acs_jpclett_4c03299 crossref_primary_10_1021_acs_analchem_4c04368 crossref_primary_10_1039_C9TC06897J crossref_primary_10_1016_j_isci_2024_109292 crossref_primary_10_3390_ma16031254 crossref_primary_10_1039_D3RA07421H crossref_primary_10_1063_5_0050667 crossref_primary_10_1021_jacs_4c10521 crossref_primary_10_1021_acs_langmuir_2c02014 crossref_primary_10_1002_ange_202312975 crossref_primary_10_1039_D3CP06176K crossref_primary_10_1002_advs_202400752 crossref_primary_10_1002_ange_202012216 crossref_primary_10_1021_acsnano_3c11982 crossref_primary_10_1021_acs_analchem_4c03033 crossref_primary_10_1002_ange_202014194 crossref_primary_10_1002_anie_202014194 crossref_primary_10_1109_LED_2022_3208856 crossref_primary_10_1021_acs_langmuir_1c01184 crossref_primary_10_1016_j_jcis_2023_07_108 crossref_primary_10_1021_acs_langmuir_3c03104 crossref_primary_10_1360_TB_2023_0480 crossref_primary_10_3390_coatings13081400 crossref_primary_10_1021_acssensors_4c01205 crossref_primary_10_1021_acs_langmuir_0c03414 crossref_primary_10_1002_ange_201913327 crossref_primary_10_1021_jacs_2c04233 crossref_primary_10_1039_D0TC04364H crossref_primary_10_1002_anie_202415978 crossref_primary_10_1016_j_aca_2023_341575 crossref_primary_10_3390_pharmaceutics16020255 crossref_primary_10_1021_acs_jchemed_2c00094 crossref_primary_10_1007_s40843_021_1942_6 crossref_primary_10_1016_j_cclet_2023_108165 crossref_primary_10_1021_acs_jpcc_9b02628 crossref_primary_10_1039_C9CC02998B crossref_primary_10_1002_ange_201907966 crossref_primary_10_1016_j_matt_2019_08_008 crossref_primary_10_1021_jacs_3c12183 crossref_primary_10_1002_slct_202204101 crossref_primary_10_1039_D4CP01322K crossref_primary_10_1002_adsr_202400002 crossref_primary_10_1039_D2TB01528E crossref_primary_10_3390_app10176064 crossref_primary_10_1021_acsnano_3c08045 crossref_primary_10_1021_acs_jpcc_9b11908 crossref_primary_10_1016_j_chempr_2020_07_024 crossref_primary_10_1016_j_surfrep_2023_100596 crossref_primary_10_1039_D0CP05801G crossref_primary_10_1002_smll_202310175 crossref_primary_10_1038_s41929_022_00746_x crossref_primary_10_1515_nanoph_2024_0222 crossref_primary_10_1021_acs_analchem_9b05549 crossref_primary_10_1021_acs_jpcc_3c07646 crossref_primary_10_1021_acs_langmuir_4c00644 crossref_primary_10_1002_adhm_202401677 crossref_primary_10_1016_j_apsusc_2021_149794 crossref_primary_10_1016_j_joule_2024_02_019 crossref_primary_10_1016_j_coelec_2023_101279 crossref_primary_10_1021_acsomega_4c10450 crossref_primary_10_1002_aic_18588 crossref_primary_10_1109_JSEN_2024_3431081 crossref_primary_10_1021_acs_jpcc_1c10627 crossref_primary_10_1021_acs_jpclett_0c03248 crossref_primary_10_1002_smll_202107220 crossref_primary_10_1021_acs_jpcb_4c01294 crossref_primary_10_1038_s41467_022_34749_w crossref_primary_10_3390_bios12010025 crossref_primary_10_1016_j_matlet_2021_129675 crossref_primary_10_1002_ange_202415978 crossref_primary_10_1021_acsanm_3c05726 crossref_primary_10_1021_acs_jpcc_0c00729 crossref_primary_10_3390_ma17246135 crossref_primary_10_1016_j_ccr_2024_215872 crossref_primary_10_1016_j_ijbiomac_2022_10_216 crossref_primary_10_1016_j_ccr_2023_215211 crossref_primary_10_1002_adfm_202109472 crossref_primary_10_1039_D1AN00765C crossref_primary_10_1016_j_electacta_2019_134996 crossref_primary_10_3390_bios12080565 crossref_primary_10_1021_jacs_0c12664 crossref_primary_10_1088_1361_6633_ac7401 |
Cites_doi | 10.1103/PhysRevB.73.121403 10.1039/C5RA14318G 10.1021/ja00237a017 10.1103/PhysRevB.65.165401 10.1038/nchem.1352 10.1021/ja057316x 10.1038/s41570-017-0017 10.1021/ar200260p 10.1021/acsnano.5b01629 10.1055/s-2007-990800 10.1021/ja0120577 10.1088/0953-8984/14/11/302 10.1021/jp020482w 10.1016/0022-0728(91)85271-P 10.1039/B508434M 10.1021/ic00129a019 10.1126/science.278.5336.252 10.1039/C7SC00599G 10.1039/C5NR03497C 10.1021/ja038214e 10.1021/cr0300789 10.1103/PhysRevLett.78.1396 10.1021/acs.accounts.6b00004 10.1088/0953-8984/20/37/374115 10.1039/b907301a 10.1126/science.1148624 10.1021/la304600s 10.1021/ja512523r 10.1021/ja00351a063 10.1021/jacs.7b08370 10.1038/nchem.1891 10.1021/ja0762386 10.1126/science.240.4848.62 10.1126/science.1087481 10.1016/0022-0728(95)04056-T 10.1021/la00087a027 10.1021/jp811142d 10.1038/nmat4216 10.1038/nature05037 10.1021/ja0773857 10.1021/jacs.7b05599 10.1038/nnano.2011.66 10.1126/science.272.5265.1145 10.1126/science.1158532 10.1039/b910194b 10.1021/nl072058i 10.1021/nl802643h 10.1021/nl9021336 10.1021/acs.nanolett.5b01270 10.1021/jp980047v 10.1039/c3dt53530d 10.1021/la980901+ 10.1021/jacs.5b05693 10.1021/jacs.7b03393 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 2019© The Author(s), under exclusive licence to Springer Nature Limited 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: 2019© The Author(s), under exclusive licence to Springer Nature Limited 2019 |
CorporateAuthor | Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC) |
DBID | AAYXX CITATION NPM 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 OTOTI |
DOI | 10.1038/s41557-019-0216-y |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Chemoreception Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1755-4349 |
EndPage | 358 |
ExternalDocumentID | 1529926 30833721 10_1038_s41557_019_0216_y |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 123 29M 39C 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJCF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACSTC ACUHS ADBBV ADNMO AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFSHS AFWHJ AGAYW AGGDT AGQPQ AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP AIYXT ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NFIDA NNMJJ O9- ODYON P2P PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYXX ALIPV CITATION NPM 3V. 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI 7X8 5BI AADEA AADWK AAEEF AAEXX AAJMP AAPBV AAYJO AAZLF ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AGHTU AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c436t-2c0d82279931af3c98919875d606eb656c60f5d00e8cc6a0d5a6450314c9ce683 |
IEDL.DBID | BENPR |
ISSN | 1755-4330 1755-4349 |
IngestDate | Fri May 19 02:17:11 EDT 2023 Fri Sep 05 08:26:00 EDT 2025 Fri Jul 25 09:00:15 EDT 2025 Mon Jul 21 05:46:49 EDT 2025 Thu Apr 24 23:02:09 EDT 2025 Tue Jul 01 03:02:10 EDT 2025 Sun Aug 31 08:58:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-2c0d82279931af3c98919875d606eb656c60f5d00e8cc6a0d5a6450314c9ce683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02–05CH11231 USDOE USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division |
ORCID | 0000-0002-2423-8430 0000-0002-6957-6089 0000-0001-7339-8812 0000-0002-1383-4907 0000000269576089 0000000224238430 0000000213834907 0000000173398812 |
PMID | 30833721 |
PQID | 2195925653 |
PQPubID | 536302 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1529926 proquest_miscellaneous_2188208179 proquest_journals_2195925653 pubmed_primary_30833721 crossref_citationtrail_10_1038_s41557_019_0216_y crossref_primary_10_1038_s41557_019_0216_y springer_journals_10_1038_s41557_019_0216_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nat. Chem |
PublicationTitleAlternate | Nat Chem |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Reimers, Ford, Marcuccio, Ulstrup, Hush (CR12) 2017; 1 Piotrowski (CR39) 2015; 5 Zang (CR23) 2017; 139 Widrig, Chung, Porter (CR37) 1991; 310 Bain, Whitesides (CR2) 1988; 240 Kirihara (CR52) 2007; 2007 Walczak, Alves, Lamp, Porter (CR7) 1995; 396 Quek (CR27) 2007; 7 Pensa (CR11) 2012; 45 Inkpen, Leroux, Hapiot, Campos, Venkataraman (CR21) 2017; 8 Adak (CR31) 2015; 15 Nuzzo, Allara (CR1) 1983; 105 Zhou, Muller, Burgin, Tour, Reed (CR15) 1997; 278 Perdew, Burke, Ernzerhof (CR56) 1997; 78 Inkpen (CR18) 2015; 137 Hasan, Bethell, Brust (CR46) 2002; 124 Li (CR17) 2008; 130 Jadzinsky, Calero, Ackerson, Bushnell, Kornberg (CR13) 2007; 318 Hybertsen (CR36) 2008; 20 Bain, Biebuyck, Whitesides (CR5) 1989; 5 Xie, Bâldea, Smith, Wu, Frisbie (CR49) 2015; 9 Angelova (CR38) 2013; 29 Rascón-Ramos, Artés, Li, Hihath (CR30) 2015; 14 Monzittu (CR54) 2014; 43 Haiss (CR16) 2003; 125 Li (CR50) 2017; 139 Atsushi (CR55) 2010; 39 Crudden (CR47) 2014; 6 Venkataraman, Klare, Nuckolls, Hybertsen, Steigerwald (CR20) 2006; 442 Everret (CR22) 1972; 31 Koentopp, Burke, Evers (CR33) 2006; 73 Zhong, Brush, Anderegg, Porter (CR41) 1998; 15 Park (CR24) 2007; 129 Brandbyge, Mozos, Ordejón, Taylor, Stokbro (CR32) 2002; 65 Noh (CR40) 2002; 106 Cheng (CR25) 2011; 6 Haiss (CR19) 2009; 11 Burgi (CR45) 2015; 7 Hybertsen, Venkataraman (CR26) 2016; 49 Hakkinen (CR4) 2012; 4 He (CR42) 2006; 131 Poirier, Pylant (CR8) 1996; 272 Li (CR51) 2015; 137 Li (CR44) 2006; 128 Paulsson, Krag, Frederiksen, Brandbyge (CR28) 2009; 9 Forward, Bohmann, Fackler, Staples (CR53) 1995; 34 Vericat, Vela, Benitez, Carro, Salvarezza (CR10) 2010; 39 Quek, Choi, Louie, Neaton (CR35) 2009; 9 Xu, Tao (CR14) 2003; 301 José (CR57) 2002; 14 Haiss (CR43) 2009; 113 Love, Estroff, Kriebel, Nuzzo, Whitesides (CR3) 2005; 105 Lavrich, Wetterer, Bernasek, Scoles (CR48) 1998; 102 Nuzzo, Zegarski, Dubois (CR9) 1987; 109 Quek (CR34) 2007; 7 Kim, Kim, Lee, Tsutsui, Kawai (CR29) 2017; 139 Cossaro (CR6) 2008; 321 C Zhou (216_CR15) 1997; 278 SY Quek (216_CR35) 2009; 9 W Haiss (216_CR43) 2009; 113 C Vericat (216_CR10) 2010; 39 SY Quek (216_CR27) 2007; 7 JP Perdew (216_CR56) 1997; 78 X Li (216_CR44) 2006; 128 H Rascón-Ramos (216_CR30) 2015; 14 DJ Lavrich (216_CR48) 1998; 102 MS Hybertsen (216_CR26) 2016; 49 DH Everret (216_CR22) 1972; 31 JR Reimers (216_CR12) 2017; 1 MS Hybertsen (216_CR36) 2008; 20 FM Monzittu (216_CR54) 2014; 43 Y Zang (216_CR23) 2017; 139 P Piotrowski (216_CR39) 2015; 5 H Li (216_CR51) 2015; 137 YS Park (216_CR24) 2007; 129 CM Crudden (216_CR47) 2014; 6 M Brandbyge (216_CR32) 2002; 65 JM Forward (216_CR53) 1995; 34 M Hasan (216_CR46) 2002; 124 YH Kim (216_CR29) 2017; 139 RG Nuzzo (216_CR9) 1987; 109 Z Xie (216_CR49) 2015; 9 CD Bain (216_CR2) 1988; 240 B Xu (216_CR14) 2003; 301 CD Bain (216_CR5) 1989; 5 PD Jadzinsky (216_CR13) 2007; 318 CA Widrig (216_CR37) 1991; 310 SY Quek (216_CR34) 2007; 7 E Pensa (216_CR11) 2012; 45 M Koentopp (216_CR33) 2006; 73 J Noh (216_CR40) 2002; 106 JC Love (216_CR3) 2005; 105 T Burgi (216_CR45) 2015; 7 M Kirihara (216_CR52) 2007; 2007 H Hakkinen (216_CR4) 2012; 4 W Haiss (216_CR16) 2003; 125 M Paulsson (216_CR28) 2009; 9 MS José (216_CR57) 2002; 14 RG Nuzzo (216_CR1) 1983; 105 MM Walczak (216_CR7) 1995; 396 J He (216_CR42) 2006; 131 P Angelova (216_CR38) 2013; 29 A Cossaro (216_CR6) 2008; 321 MS Inkpen (216_CR18) 2015; 137 S Atsushi (216_CR55) 2010; 39 W Haiss (216_CR19) 2009; 11 MS Inkpen (216_CR21) 2017; 8 C Li (216_CR17) 2008; 130 O Adak (216_CR31) 2015; 15 L Venkataraman (216_CR20) 2006; 442 CJ Zhong (216_CR41) 1998; 15 GE Poirier (216_CR8) 1996; 272 H Li (216_CR50) 2017; 139 ZL Cheng (216_CR25) 2011; 6 |
References_xml | – volume: 73 start-page: 121403 year: 2006 ident: CR33 article-title: Zero-bias molecular electronics: exchange-correlation corrections to Landauer’s formula publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.121403 – volume: 5 start-page: 86771 year: 2015 end-page: 86778 ident: CR39 article-title: Self-assembly of thioether functionalized fullerenes on gold and their activity in electropolymerization of styrene publication-title: RSC Adv. doi: 10.1039/C5RA14318G – volume: 109 start-page: 733 year: 1987 end-page: 740 ident: CR9 article-title: Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00237a017 – volume: 65 start-page: 165401 year: 2002 ident: CR32 article-title: Density-functional method for nonequilibrium electron transport publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.165401 – volume: 4 start-page: 443 year: 2012 end-page: 455 ident: CR4 article-title: The gold–sulfur interface at the nanoscale publication-title: Nat. Chem. doi: 10.1038/nchem.1352 – volume: 128 start-page: 2135 year: 2006 end-page: 2141 ident: CR44 article-title: Conductance of single alkanedithiols: conduction mechanism and effect of molecule−electrode contacts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057316x – volume: 1 start-page: 0017 year: 2017 ident: CR12 article-title: Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0017 – volume: 45 start-page: 1183 year: 2012 end-page: 1192 ident: CR11 article-title: The chemistry of the sulfur–gold interface: in search of a unified model publication-title: Acc. Chem. Res. doi: 10.1021/ar200260p – volume: 9 start-page: 8022 year: 2015 end-page: 8036 ident: CR49 article-title: Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function publication-title: ACS Nano doi: 10.1021/acsnano.5b01629 – volume: 2007 start-page: 3286 year: 2007 end-page: 3289 ident: CR52 article-title: A mild and environmentally benign oxidation of thiols to disulfides publication-title: Synthesis doi: 10.1055/s-2007-990800 – volume: 124 start-page: 1132 year: 2002 end-page: 1133 ident: CR46 article-title: The fate of sulfur-bound hydrogen on formation of self-assembled thiol monolayers on gold: H NMR spectroscopic evidence from solutions of gold clusters publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0120577 – volume: 14 start-page: 2745 year: 2002 end-page: 2779 ident: CR57 article-title: The SIESTA method for order-N materials simulation publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 106 start-page: 7139 year: 2002 end-page: 7141 ident: CR40 article-title: High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au(111) publication-title: J. Phys. Chem. B doi: 10.1021/jp020482w – volume: 310 start-page: 335 year: 1991 end-page: 359 ident: CR37 article-title: The electrochemical desorption of -alkanethiol monolayers from polycrystalline Au and Ag electrodes publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(91)85271-P – volume: 131 start-page: 145 year: 2006 end-page: 154 ident: CR42 article-title: Measuring single molecule conductance with break junctions publication-title: Faraday Discuss. doi: 10.1039/B508434M – volume: 34 start-page: 6330 year: 1995 end-page: 6336 ident: CR53 article-title: Luminescence studies of gold( ) thiolate complexes publication-title: Inorg. Chem. doi: 10.1021/ic00129a019 – volume: 278 start-page: 252 year: 1997 end-page: 254 ident: CR15 article-title: Conductance of a molecular junction publication-title: Science doi: 10.1126/science.278.5336.252 – volume: 8 start-page: 4340 year: 2017 end-page: 4346 ident: CR21 article-title: Reversible on-surface wiring of resistive circuits publication-title: Chem. Sci. doi: 10.1039/C7SC00599G – volume: 7 start-page: 15553 year: 2015 end-page: 15567 ident: CR45 article-title: Properties of the gold–sulphur interface: from self-assembled monolayers to clusters publication-title: Nanoscale doi: 10.1039/C5NR03497C – volume: 125 start-page: 15294 year: 2003 end-page: 15295 ident: CR16 article-title: Redox state dependence of single molecule conductivity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038214e – volume: 105 start-page: 1103 year: 2005 end-page: 1170 ident: CR3 article-title: Self-assembled monolayers of thiolates on metals as a form of nanotechnology publication-title: Chem. Rev. doi: 10.1021/cr0300789 – volume: 78 start-page: 1396 year: 1997 end-page: 1396 ident: CR56 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 – volume: 49 start-page: 452 year: 2016 end-page: 460 ident: CR26 article-title: Structure–property relationships in atomic-scale junctions: histograms and beyond publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00004 – volume: 20 start-page: 374115 year: 2008 ident: CR36 article-title: Amine-linked single-molecule circuits: systematic trends across molecular families publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/37/374115 – volume: 39 start-page: 1805 year: 2010 end-page: 1834 ident: CR10 article-title: Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system publication-title: Chem. Soc. Rev. doi: 10.1039/b907301a – volume: 318 start-page: 430 year: 2007 end-page: 433 ident: CR13 article-title: Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution publication-title: Science doi: 10.1126/science.1148624 – volume: 29 start-page: 2217 year: 2013 end-page: 2223 ident: CR38 article-title: Chemisorbed monolayers of corannulene penta-thioethers on gold publication-title: Langmuir doi: 10.1021/la304600s – volume: 137 start-page: 5028 year: 2015 end-page: 5033 ident: CR51 article-title: Electric field breakdown in single molecule junctions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512523r – volume: 105 start-page: 4481 year: 1983 end-page: 4483 ident: CR1 article-title: Adsorption of bifunctional organic disulfides on gold surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00351a063 – volume: 139 start-page: 14845 year: 2017 end-page: 14848 ident: CR23 article-title: Electronically transparent Au–N bonds for molecular junctions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08370 – volume: 6 start-page: 409 year: 2014 end-page: 414 ident: CR47 article-title: Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold publication-title: Nat. Chem. doi: 10.1038/nchem.1891 – volume: 130 start-page: 318 year: 2008 end-page: 326 ident: CR17 article-title: Charge transport in single Au | alkanedithiol | Au junctions: coordination geometries and conformational degrees of freedom publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0762386 – volume: 240 start-page: 62 year: 1988 end-page: 63 ident: CR2 article-title: Molecular-level control over surface order in self-assembled monolayer films of thiols on gold publication-title: Science doi: 10.1126/science.240.4848.62 – volume: 301 start-page: 1221 year: 2003 end-page: 1223 ident: CR14 article-title: Measurement of single-molecule resistance by repeated formation of molecular junctions publication-title: Science doi: 10.1126/science.1087481 – volume: 396 start-page: 103 year: 1995 end-page: 114 ident: CR7 article-title: Electrochemical and X-ray photoelectron spectroscopic evidence for differences in the binding sites of alkanethiolate monolayers chemisorbed at gold publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(95)04056-T – volume: 5 start-page: 723 year: 1989 end-page: 727 ident: CR5 article-title: Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides publication-title: Langmuir doi: 10.1021/la00087a027 – volume: 113 start-page: 5823 year: 2009 end-page: 5833 ident: CR43 article-title: Impact of junction formation method and surface roughness on single molecule conductance publication-title: J. Phys. Chem. C doi: 10.1021/jp811142d – volume: 14 start-page: 517 year: 2015 end-page: 522 ident: CR30 article-title: Binding configurations and intramolecular strain in single-molecule devices publication-title: Nat. Mater. doi: 10.1038/nmat4216 – volume: 442 start-page: 904 year: 2006 end-page: 907 ident: CR20 article-title: Dependence of single-molecule junction conductance on molecular conformation publication-title: Nature doi: 10.1038/nature05037 – volume: 129 start-page: 15768 year: 2007 end-page: 15769 ident: CR24 article-title: Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0773857 – volume: 139 start-page: 10212 year: 2017 end-page: 10215 ident: CR50 article-title: Extreme conductance suppression in molecular siloxanes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05599 – volume: 6 start-page: 353 year: 2011 end-page: 357 ident: CR25 article-title: In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.66 – volume: 272 start-page: 1145 year: 1996 end-page: 1148 ident: CR8 article-title: The self-assembly mechanism of alkanethiols on Au(111) publication-title: Science doi: 10.1126/science.272.5265.1145 – volume: 321 start-page: 943 year: 2008 end-page: 946 ident: CR6 article-title: X-ray diffraction and computation yield the structure of alkanethiols on gold(111) publication-title: Science doi: 10.1126/science.1158532 – volume: 11 start-page: 10831 year: 2009 end-page: 10838 ident: CR19 article-title: Anomalous length and voltage dependence of single molecule conductance publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b910194b – volume: 39 start-page: 319319 year: 2010 end-page: 319321 ident: CR55 article-title: Solvent diversity in the preparation of alkanethiol-capped gold nanoparticles. An approach with a gold( ) thiolate complex publication-title: Chem. Lett. – volume: 7 start-page: 3477 year: 2007 end-page: 3482 ident: CR27 article-title: Amine−gold linked single-molecule circuits: experiment and theory publication-title: Nano Lett. doi: 10.1021/nl072058i – volume: 9 start-page: 117 year: 2009 end-page: 121 ident: CR28 article-title: Conductance of alkanedithiol single-molecule junctions: a molecular dynamics study publication-title: Nano Lett. doi: 10.1021/nl802643h – volume: 31 start-page: 579 year: 1972 end-page: 638 ident: CR22 article-title: Definitions, terminology and symbols in colloid and surface chemistry publication-title: Pure Appl. Chem. – volume: 9 start-page: 3949 year: 2009 end-page: 3953 ident: CR35 article-title: Length dependence of conductance in aromatic single-molecule junctions publication-title: Nano Lett. doi: 10.1021/nl9021336 – volume: 15 start-page: 4143 year: 2015 end-page: 4149 ident: CR31 article-title: Flicker noise as a probe of electronic interaction at metal–single molecule interfaces publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01270 – volume: 102 start-page: 3456 year: 1998 end-page: 3465 ident: CR48 article-title: Physisorption and chemisorption of alkanethiols and alkyl sulfides on Au(111) publication-title: J. Phys. Chem. B doi: 10.1021/jp980047v – volume: 43 start-page: 6212 year: 2014 end-page: 6220 ident: CR54 article-title: Different emissive properties in dithiolate gold( ) complexes as a function of the presence of phenylene spacers publication-title: Dalton. Trans. doi: 10.1039/c3dt53530d – volume: 15 start-page: 518 year: 1998 end-page: 525 ident: CR41 article-title: Organosulfur monolayers at gold surfaces: reexamination of the case for sulfide adsorption and implications to the formation of monolayers from thiols and disulfides publication-title: Langmuir doi: 10.1021/la980901+ – volume: 137 start-page: 9971 year: 2015 end-page: 9981 ident: CR18 article-title: New insights into single-molecule junctions using a robust, unsupervised approach to data collection and analysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05693 – volume: 139 start-page: 8286 year: 2017 end-page: 8294 ident: CR29 article-title: Stretching-induced conductance variations as fingerprints of contact configurations in single-molecule junctions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03393 – volume: 7 start-page: 3477 year: 2007 end-page: 3482 ident: CR34 article-title: Amine–gold linked single-molecule circuits: experiment and theory publication-title: Nano Lett. doi: 10.1021/nl072058i – volume: 14 start-page: 2745 year: 2002 ident: 216_CR57 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 137 start-page: 9971 year: 2015 ident: 216_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05693 – volume: 7 start-page: 3477 year: 2007 ident: 216_CR34 publication-title: Nano Lett. doi: 10.1021/nl072058i – volume: 65 start-page: 165401 year: 2002 ident: 216_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.165401 – volume: 113 start-page: 5823 year: 2009 ident: 216_CR43 publication-title: J. Phys. Chem. C doi: 10.1021/jp811142d – volume: 4 start-page: 443 year: 2012 ident: 216_CR4 publication-title: Nat. Chem. doi: 10.1038/nchem.1352 – volume: 240 start-page: 62 year: 1988 ident: 216_CR2 publication-title: Science doi: 10.1126/science.240.4848.62 – volume: 39 start-page: 1805 year: 2010 ident: 216_CR10 publication-title: Chem. Soc. Rev. doi: 10.1039/b907301a – volume: 301 start-page: 1221 year: 2003 ident: 216_CR14 publication-title: Science doi: 10.1126/science.1087481 – volume: 49 start-page: 452 year: 2016 ident: 216_CR26 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00004 – volume: 278 start-page: 252 year: 1997 ident: 216_CR15 publication-title: Science doi: 10.1126/science.278.5336.252 – volume: 1 start-page: 0017 year: 2017 ident: 216_CR12 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0017 – volume: 15 start-page: 518 year: 1998 ident: 216_CR41 publication-title: Langmuir doi: 10.1021/la980901+ – volume: 125 start-page: 15294 year: 2003 ident: 216_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038214e – volume: 78 start-page: 1396 year: 1997 ident: 216_CR56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 – volume: 396 start-page: 103 year: 1995 ident: 216_CR7 publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(95)04056-T – volume: 5 start-page: 723 year: 1989 ident: 216_CR5 publication-title: Langmuir doi: 10.1021/la00087a027 – volume: 31 start-page: 579 year: 1972 ident: 216_CR22 publication-title: Pure Appl. Chem. – volume: 73 start-page: 121403 year: 2006 ident: 216_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.121403 – volume: 5 start-page: 86771 year: 2015 ident: 216_CR39 publication-title: RSC Adv. doi: 10.1039/C5RA14318G – volume: 109 start-page: 733 year: 1987 ident: 216_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00237a017 – volume: 7 start-page: 15553 year: 2015 ident: 216_CR45 publication-title: Nanoscale doi: 10.1039/C5NR03497C – volume: 310 start-page: 335 year: 1991 ident: 216_CR37 publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(91)85271-P – volume: 139 start-page: 10212 year: 2017 ident: 216_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05599 – volume: 105 start-page: 1103 year: 2005 ident: 216_CR3 publication-title: Chem. Rev. doi: 10.1021/cr0300789 – volume: 318 start-page: 430 year: 2007 ident: 216_CR13 publication-title: Science doi: 10.1126/science.1148624 – volume: 130 start-page: 318 year: 2008 ident: 216_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0762386 – volume: 6 start-page: 409 year: 2014 ident: 216_CR47 publication-title: Nat. Chem. doi: 10.1038/nchem.1891 – volume: 321 start-page: 943 year: 2008 ident: 216_CR6 publication-title: Science doi: 10.1126/science.1158532 – volume: 6 start-page: 353 year: 2011 ident: 216_CR25 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.66 – volume: 124 start-page: 1132 year: 2002 ident: 216_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0120577 – volume: 105 start-page: 4481 year: 1983 ident: 216_CR1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00351a063 – volume: 131 start-page: 145 year: 2006 ident: 216_CR42 publication-title: Faraday Discuss. doi: 10.1039/B508434M – volume: 11 start-page: 10831 year: 2009 ident: 216_CR19 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b910194b – volume: 2007 start-page: 3286 year: 2007 ident: 216_CR52 publication-title: Synthesis doi: 10.1055/s-2007-990800 – volume: 45 start-page: 1183 year: 2012 ident: 216_CR11 publication-title: Acc. Chem. Res. doi: 10.1021/ar200260p – volume: 39 start-page: 319319 year: 2010 ident: 216_CR55 publication-title: Chem. Lett. – volume: 9 start-page: 3949 year: 2009 ident: 216_CR35 publication-title: Nano Lett. doi: 10.1021/nl9021336 – volume: 34 start-page: 6330 year: 1995 ident: 216_CR53 publication-title: Inorg. Chem. doi: 10.1021/ic00129a019 – volume: 272 start-page: 1145 year: 1996 ident: 216_CR8 publication-title: Science doi: 10.1126/science.272.5265.1145 – volume: 9 start-page: 8022 year: 2015 ident: 216_CR49 publication-title: ACS Nano doi: 10.1021/acsnano.5b01629 – volume: 20 start-page: 374115 year: 2008 ident: 216_CR36 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/37/374115 – volume: 139 start-page: 14845 year: 2017 ident: 216_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08370 – volume: 139 start-page: 8286 year: 2017 ident: 216_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03393 – volume: 137 start-page: 5028 year: 2015 ident: 216_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512523r – volume: 14 start-page: 517 year: 2015 ident: 216_CR30 publication-title: Nat. Mater. doi: 10.1038/nmat4216 – volume: 7 start-page: 3477 year: 2007 ident: 216_CR27 publication-title: Nano Lett. doi: 10.1021/nl072058i – volume: 8 start-page: 4340 year: 2017 ident: 216_CR21 publication-title: Chem. Sci. doi: 10.1039/C7SC00599G – volume: 9 start-page: 117 year: 2009 ident: 216_CR28 publication-title: Nano Lett. doi: 10.1021/nl802643h – volume: 442 start-page: 904 year: 2006 ident: 216_CR20 publication-title: Nature doi: 10.1038/nature05037 – volume: 43 start-page: 6212 year: 2014 ident: 216_CR54 publication-title: Dalton. Trans. doi: 10.1039/c3dt53530d – volume: 129 start-page: 15768 year: 2007 ident: 216_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0773857 – volume: 128 start-page: 2135 year: 2006 ident: 216_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057316x – volume: 106 start-page: 7139 year: 2002 ident: 216_CR40 publication-title: J. Phys. Chem. B doi: 10.1021/jp020482w – volume: 29 start-page: 2217 year: 2013 ident: 216_CR38 publication-title: Langmuir doi: 10.1021/la304600s – volume: 102 start-page: 3456 year: 1998 ident: 216_CR48 publication-title: J. Phys. Chem. B doi: 10.1021/jp980047v – volume: 15 start-page: 4143 year: 2015 ident: 216_CR31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01270 |
SSID | ssj0065316 |
Score | 2.6487157 |
Snippet | Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in... Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in... |
SourceID | osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 351 |
SubjectTerms | 639/638 639/638/440 639/638/542 639/925 639/925/927 Analytical Chemistry Biochemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Conductance Density functional theory Gold Hydrogen Inorganic Chemistry Monolayers Noise control Organic Chemistry Physical Chemistry Physical properties Resistance Self-assembled monolayers Self-assembly Sulfur Thiols |
Title | Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers |
URI | https://link.springer.com/article/10.1038/s41557-019-0216-y https://www.ncbi.nlm.nih.gov/pubmed/30833721 https://www.proquest.com/docview/2195925653 https://www.proquest.com/docview/2188208179 https://www.osti.gov/biblio/1529926 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9swED_W5GF7Gd1_r13wYE8bonZkydLTaEqzsrEwxgp5E7Isj4BnZ3FS6Fu_Q79hP0nvHDtlbOuLwVgS8p109zvd6Q7gnUqzKM18zlyqNUtyLpj1ccxSSlauSGNGdMH560yenSef52LeHbg1XVhlLxNbQZ3Xjs7Ij8aUBQX1s-Afl78ZVY0i72pXQmMPhiiClRjAcHI6-_a9l8XYui1-ijpS0N2gnV-Tq6OGVCmFXWqGek6yyz8006DGHfYv1PmXx7RVRNN9eNwhyPB4y_In8MBXT-HhSV-47Rl8mdUVc-17vUIChT_rMr-5um42ZbFZhdmivcgSLlf-wi7KJlxUYePLgiGM9r-yEjvgv6LFS2D8OZxPT3-cnLGuZgJzCZdrNnZRrigroOaxLbjTStOxgsjRUPEZgjcno0LkUeSVc9JGubAyEZTD3mnnpeIvYFDVlX8FobUqLqgUh9A8STwOk8nUK4sgsShimwYQ9fQyrksoTnUtStM6trkyWxIbJLEhEpvLAN7vuiy32TTua3xATDAIBSifraPAH7c2CDi0HssADnvemG7bNeZukQTwdvcZyU1eEFv5ekNt0KhAIJTqAF5uebqbC0dAytEmDuBDz-S7wf870df3T-UAHo3bVUbhPocwWK82_g0imXU2gr10nuJTTT-NYHg8nUxmo24J3wKOgfEn |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7aFcEOXV0AJBggvIahLnYR8QKqXVlm1XCLVSb8ZxHLRSSJbNLmhv_Af-Bz-qv6QzeWyFgN56jBJb1jw832ReAC9EknpJajNmEilZmPGIaev7LKFm5YIspkcFzifjeHgWfjiPztfgd18LQ2mV_Z3YXNRZZegf-W5AXVDQPkf87fQbo6lRFF3tR2i0YjGyyx_ostVvjt4jf18GweHB6f6QdVMFmAl5PGeB8TJBffMk93XOjRSSHO8oQyhvU4Q3JvbyKPM8K4yJtZdFOg4j6vJupLGx4LjvLVhHmCFRi9bfHYw_furvfjxdM2wVbXJEtUirOCoXuzWZbkrzlAztasyWf1jCQYUa_S-U-1eEtjF8h3fhTodY3b1WxDZhzZb3YGO_HxR3H0bjqmSmea5myBD3S1VkFz9_1YsiX8zcdNIUzrjTmf2uJ0XtTkq3tkXOELbbr2mBC5C26GET-H8AZzdCzYcwKKvSboGrtfBzGv0RSR6GFrdJ48QKjaA0z32dOOD19FKma2BOczQK1QTSuVAtiRWSWBGJ1dKBV6sl07Z7x3UfbxMTFEIP6p9rKNHIzBUCHCmD2IGdnjeqU_NaXQmlA89Xr5HcFHXRpa0W9A06MQi8EunAo5anq7NwBMAcfXAHXvdMvtr8vwd9fP1RnsHG8PTkWB0fjUfbcDtoJI5SjXZgMJ8t7BNEUfP0aSe6Lny-aW25BCpaKUI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEOWvoaUECS4ga5M4P_YBIWi7allYVYhKvRnHcaqVQrJsdkF74x14Gx6HJ2EmP1shoLceo8SWNTP2901mPAPwVCSpl6Q2YyaRkoUZj5i2vs8SKlYuCDE9uuD8fhIfnYZvz6KzDfjZ34WhtMr-TGwO6qwy9I98GFAVFMTniA_zLi3i5GD0avaFUQcpirT27TRaExnb1Td03-qXxweo62dBMDr8uH_Eug4DzIQ8XrDAeJmgGnqS-zrnRgpJTniUIa23KVIdE3t5lHmeFcbE2ssiHYcRVXw30thYcJz3GmwmiIpiAJtvDicnH3ocwJU2jVcRnyO6l7SOqXIxrAnGKeVTMsTYmK3-QMVBhbv7X4z3r2htA4Kj23CrY6_u69bctmDDlnfgxn7fNO4ujCdVyUzzXM1ROe55VWS_vv-ol0W-nLvptLlE487m9queFrU7Ld3aFjlDCm8_pwUOQNmit02OwD04vRJp3odBWZV2G1ythZ9TG5BI8jC0OE0aJ1ZoJKh57uvEAa-XlzJdMXPqqVGoJqjOhWpFrFDEikSsVg48Xw-ZtZU8Lvt4h5SgkIZQLV1DSUdmoZDsSBnEDuz2ulHdlq_VhYE68GT9GsVNERhd2mpJ36BDgyQskQ48aHW6XgtHMszRH3fgRa_ki8n_u9CHly_lMVzHXaLeHU_GO3AzaAyOso52YbCYL-0jJFSLdK-zXBc-XfVm-Q0SUC1u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-chemisorbed+gold%E2%80%93sulfur+binding+prevails+in+self-assembled+monolayers&rft.jtitle=Nature+chemistry&rft.au=Inkpen%2C+Michael+S&rft.au=Liu+Zhen%E2%80%93Fei&rft.au=Li+Haixing&rft.au=Campos%2C+Luis+M&rft.date=2019-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=11&rft.issue=4&rft.spage=351&rft.epage=358&rft_id=info:doi/10.1038%2Fs41557-019-0216-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |