Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers

Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate—with implications for our understanding of their phys...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 11; no. 4; pp. 351 - 358
Main Authors Inkpen, Michael S., Liu, Zhen–Fei, Li, Haixing, Campos, Luis M., Neaton, Jeffrey B., Venkataraman, Latha
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1755-4330
1755-4349
1755-4349
DOI10.1038/s41557-019-0216-y

Cover

Loading…
Abstract Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate—with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule–electrode contact, we demonstrate here that the nature of the gold–sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold–sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained. Gold–thiol contacts are ubiquitous across the physical and biological sciences, connecting organic molecules to surfaces. Now, conductance measurements of different sulfur-bound single-molecule junctions show that thiols—in contrast to the prevailing view—are not chemisorbed on gold, which strongly suggests that the thiol hydrogen is retained.
AbstractList Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate-with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule-electrode contact, we demonstrate here that the nature of the gold-sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold-sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained.
Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate—with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule–electrode contact, we demonstrate here that the nature of the gold–sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold–sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained. Gold–thiol contacts are ubiquitous across the physical and biological sciences, connecting organic molecules to surfaces. Now, conductance measurements of different sulfur-bound single-molecule junctions show that thiols—in contrast to the prevailing view—are not chemisorbed on gold, which strongly suggests that the thiol hydrogen is retained.
Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate—with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule–electrode contact, we demonstrate here that the nature of the gold–sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold–sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained.Gold–thiol contacts are ubiquitous across the physical and biological sciences, connecting organic molecules to surfaces. Now, conductance measurements of different sulfur-bound single-molecule junctions show that thiols—in contrast to the prevailing view—are not chemisorbed on gold, which strongly suggests that the thiol hydrogen is retained.
Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate-with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule-electrode contact, we demonstrate here that the nature of the gold-sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold-sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained.Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in self-assembled monolayers (SAMs) the fate of the hydrogen remains a subject of profound debate-with implications for our understanding of their physical properties, spectroscopic features and formation mechanism(s). Exploiting measurements of the transmission through a molecular junction, which is highly sensitive to the nature of the molecule-electrode contact, we demonstrate here that the nature of the gold-sulfur bond in SAMs can be probed via single-molecule conductance measurements. Critically, we find that SAM measurements of dithiol-terminated molecular junctions yield a significantly lower conductance than solution measurements of the same molecule. Through numerous control experiments, conductance noise analysis and transport calculations based on density functional theory, we show that the gold-sulfur bond in SAMs prepared from the solution deposition of dithiols does not have chemisorbed character, which strongly suggests that under these widely used preparation conditions the hydrogen is retained.
Author Campos, Luis M.
Venkataraman, Latha
Li, Haixing
Neaton, Jeffrey B.
Inkpen, Michael S.
Liu, Zhen–Fei
Author_xml – sequence: 1
  givenname: Michael S.
  orcidid: 0000-0001-7339-8812
  surname: Inkpen
  fullname: Inkpen, Michael S.
  email: inkpen@usc.edu
  organization: Department of Applied Physics, Columbia University
– sequence: 2
  givenname: Zhen–Fei
  orcidid: 0000-0002-2423-8430
  surname: Liu
  fullname: Liu, Zhen–Fei
  organization: Molecular Foundry, Lawrence Berkeley National Laboratory and Department of Physics, University of California, Berkeley
– sequence: 3
  givenname: Haixing
  orcidid: 0000-0002-1383-4907
  surname: Li
  fullname: Li, Haixing
  organization: Department of Applied Physics, Columbia University
– sequence: 4
  givenname: Luis M.
  surname: Campos
  fullname: Campos, Luis M.
  organization: Department of Chemistry, Columbia University
– sequence: 5
  givenname: Jeffrey B.
  surname: Neaton
  fullname: Neaton, Jeffrey B.
  organization: Molecular Foundry, Lawrence Berkeley National Laboratory and Department of Physics, University of California, Berkeley
– sequence: 6
  givenname: Latha
  orcidid: 0000-0002-6957-6089
  surname: Venkataraman
  fullname: Venkataraman, Latha
  email: lv2117@columbia.edu
  organization: Department of Applied Physics, Columbia University, Department of Chemistry, Columbia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30833721$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1529926$$D View this record in Osti.gov
BookMark eNp9kctu1TAQhi1URC_wAGxQBBs2Bl9ix16iipuoYANry3Emp6kc--BJKp0d78Ab8iS4SgtSJVjZi-8bzfz_KTlKOQEhTzl7xZk0r7HlSnWUcUuZ4JoeHpAT3ilFW9naoz9_yY7JKeIVY1pJrh-RY8mMlJ3gJ-TT55xouIR5wlx6GJpdjsOvHz9xjeNamn5Kw5R2zb7AtZ8iNlNqEOJIPSLMfazCnFOO_gAFH5OHo48IT27fM_Lt3duv5x_oxZf3H8_fXNDQSr1QEdhghOisldyPMlhjuTWdGjTT0Gulg2ajGhgDE4L2bFBet4pJ3gYbQBt5Rp5vczMuk8MwLRAuQ04JwuK4EtYKXaGXG7Qv-fsKuLh6YoAYfYK8ohPcGMEM72xFX9xDr_JaUj2hUlZZoWpulXp2S639DIPbl2n25eDusqxAtwGhZMQCo6ub-WXKaSk1O8eZu2nNba252pq7ac0dqsnvmXfD_-eIzcHKph2Uv0v_W_oN0WGo-Q
CitedBy_id crossref_primary_10_1021_acs_analchem_9b04000
crossref_primary_10_1002_cmdc_202100623
crossref_primary_10_1016_j_tsf_2023_139875
crossref_primary_10_1021_acs_jpcc_0c08957
crossref_primary_10_1021_acs_inorgchem_0c02185
crossref_primary_10_1016_j_bbagen_2025_130793
crossref_primary_10_1039_D3TB01255G
crossref_primary_10_1021_acs_analchem_3c04656
crossref_primary_10_1007_s12274_021_4020_9
crossref_primary_10_1016_j_mtchem_2022_101259
crossref_primary_10_1021_acs_nanolett_1c02915
crossref_primary_10_1002_mame_202400445
crossref_primary_10_1002_adfm_202402972
crossref_primary_10_53941_mi_2025_100007
crossref_primary_10_1002_aoc_7128
crossref_primary_10_1063_1_5090457
crossref_primary_10_1039_D2NR05448E
crossref_primary_10_1039_D3CC01113E
crossref_primary_10_1021_acs_nanolett_0c02015
crossref_primary_10_1038_s41557_021_00721_2
crossref_primary_10_1038_s41578_019_0094_3
crossref_primary_10_1002_jcc_26801
crossref_primary_10_1016_j_sbsr_2021_100449
crossref_primary_10_1016_j_xcrp_2024_101801
crossref_primary_10_1039_D2NH00241H
crossref_primary_10_1016_j_foodchem_2021_131254
crossref_primary_10_1038_s41467_022_29483_2
crossref_primary_10_1002_chem_202400115
crossref_primary_10_1016_j_ijpharm_2024_124920
crossref_primary_10_3390_nano10061237
crossref_primary_10_1021_acs_analchem_3c02338
crossref_primary_10_1002_pssa_201900589
crossref_primary_10_1039_D1AY01570B
crossref_primary_10_1166_jbt_2022_2934
crossref_primary_10_1002_ange_202102887
crossref_primary_10_1021_acs_nanolett_3c04058
crossref_primary_10_1002_aenm_202302970
crossref_primary_10_1002_smll_202004345
crossref_primary_10_1021_acs_nanolett_3c00250
crossref_primary_10_1002_anie_202009435
crossref_primary_10_1021_acs_analchem_1c04707
crossref_primary_10_1080_10402004_2024_2313605
crossref_primary_10_1021_acs_jpcc_9b11515
crossref_primary_10_3390_photonics8120568
crossref_primary_10_1021_acs_langmuir_4c03975
crossref_primary_10_1021_acs_nanolett_4c02665
crossref_primary_10_1021_acs_nanolett_4c02786
crossref_primary_10_1002_anie_201907966
crossref_primary_10_1088_2631_7990_ad65a0
crossref_primary_10_1021_jacs_0c01466
crossref_primary_10_1021_jacs_4c16218
crossref_primary_10_1002_anie_202102587
crossref_primary_10_1039_D3NA00500C
crossref_primary_10_1021_jacs_3c13752
crossref_primary_10_1016_j_scitotenv_2020_143660
crossref_primary_10_1021_jacs_0c06508
crossref_primary_10_1016_j_susc_2020_121760
crossref_primary_10_1039_D3CC00277B
crossref_primary_10_1088_1402_4896_ad385d
crossref_primary_10_1021_acs_jpclett_3c03470
crossref_primary_10_1002_anie_202312975
crossref_primary_10_1007_s00604_019_4035_z
crossref_primary_10_1021_acs_jpcc_2c00416
crossref_primary_10_1002_adma_202406432
crossref_primary_10_3390_s20010274
crossref_primary_10_1021_acsnano_2c08630
crossref_primary_10_1021_acs_jpcc_0c03612
crossref_primary_10_1039_D3LC00709J
crossref_primary_10_1021_acsanm_2c03042
crossref_primary_10_1021_acs_jpcc_9b08206
crossref_primary_10_1002_smll_202004720
crossref_primary_10_1063_5_0250879
crossref_primary_10_1039_D3DT00955F
crossref_primary_10_1002_smll_202103189
crossref_primary_10_1007_s00216_022_04015_5
crossref_primary_10_1002_elps_201900071
crossref_primary_10_1002_masy_201900206
crossref_primary_10_1039_D4TC04233F
crossref_primary_10_1021_jacs_4c14176
crossref_primary_10_1021_acssuschemeng_1c02160
crossref_primary_10_1021_jacs_2c05856
crossref_primary_10_1039_D1RA04917H
crossref_primary_10_1002_ange_202009435
crossref_primary_10_1002_anie_202102887
crossref_primary_10_3390_app11020802
crossref_primary_10_1021_acs_jpcc_0c07768
crossref_primary_10_1007_s12598_024_03212_8
crossref_primary_10_1039_D3CE00877K
crossref_primary_10_1021_acs_jpcc_0c02078
crossref_primary_10_1039_D4NR00856A
crossref_primary_10_1021_jacs_3c14079
crossref_primary_10_1063_5_0018784
crossref_primary_10_1021_acsami_4c02185
crossref_primary_10_1016_j_nantod_2020_101005
crossref_primary_10_1063_5_0210670
crossref_primary_10_1039_D0QM00612B
crossref_primary_10_1007_s13204_022_02645_w
crossref_primary_10_1038_s41378_023_00488_1
crossref_primary_10_3390_bios14080393
crossref_primary_10_1021_acs_langmuir_9b03601
crossref_primary_10_1002_anie_202214963
crossref_primary_10_1021_acs_jpcc_0c08721
crossref_primary_10_1186_s12645_022_00138_7
crossref_primary_10_1016_j_apsusc_2023_156985
crossref_primary_10_1016_j_aca_2020_09_062
crossref_primary_10_1038_s41467_020_19703_y
crossref_primary_10_1016_j_surfin_2022_102228
crossref_primary_10_1021_acsapm_3c01925
crossref_primary_10_1016_j_seppur_2025_132424
crossref_primary_10_3390_bios12030145
crossref_primary_10_3390_molecules26195788
crossref_primary_10_1002_chem_202100029
crossref_primary_10_1039_D3TC03618A
crossref_primary_10_1021_jacs_4c11241
crossref_primary_10_1021_acs_nanolett_9b03528
crossref_primary_10_1002_mame_202400017
crossref_primary_10_1080_08927022_2019_1663844
crossref_primary_10_1039_C9EE03251G
crossref_primary_10_1021_acssensors_2c01990
crossref_primary_10_3390_coatings14030327
crossref_primary_10_1021_acsanm_3c02482
crossref_primary_10_1002_admt_202301701
crossref_primary_10_1021_acs_jpcc_1c07550
crossref_primary_10_1021_jacs_4c09504
crossref_primary_10_1021_jacs_2c12059
crossref_primary_10_1002_adma_202000866
crossref_primary_10_1016_j_jhazmat_2023_132122
crossref_primary_10_1073_pnas_2403324121
crossref_primary_10_1007_s10800_021_01577_7
crossref_primary_10_3390_ma16083230
crossref_primary_10_1021_acsnano_3c09452
crossref_primary_10_1002_ange_202102587
crossref_primary_10_1016_j_nantod_2022_101660
crossref_primary_10_1016_j_coelec_2020_100670
crossref_primary_10_3390_ani13193141
crossref_primary_10_1021_jacs_1c12880
crossref_primary_10_1021_acs_jpcc_3c06096
crossref_primary_10_1002_anie_201913327
crossref_primary_10_1039_D3TC02652C
crossref_primary_10_1002_asia_202300181
crossref_primary_10_1021_acsnano_4c14460
crossref_primary_10_1039_D2CP03103E
crossref_primary_10_1002_adfm_202405608
crossref_primary_10_1021_acs_langmuir_4c03675
crossref_primary_10_1088_1674_1056_ab90f2
crossref_primary_10_1039_D1DT02616J
crossref_primary_10_1039_D4RA04506H
crossref_primary_10_1186_s12951_024_02318_6
crossref_primary_10_1021_acsnano_0c00108
crossref_primary_10_1093_nsr_nwae351
crossref_primary_10_1039_D1MH01326B
crossref_primary_10_1002_adma_202304172
crossref_primary_10_1002_ange_202214963
crossref_primary_10_1039_D2SC06492H
crossref_primary_10_1016_j_snb_2022_132272
crossref_primary_10_1021_acs_analchem_9b03332
crossref_primary_10_1002_anie_202012216
crossref_primary_10_1016_j_coco_2021_100702
crossref_primary_10_1039_D4CP03709J
crossref_primary_10_1016_j_carbpol_2024_123038
crossref_primary_10_1088_1361_648X_ac89c4
crossref_primary_10_2147_IJN_S304953
crossref_primary_10_1021_acs_jpclett_4c03299
crossref_primary_10_1021_acs_analchem_4c04368
crossref_primary_10_1039_C9TC06897J
crossref_primary_10_1016_j_isci_2024_109292
crossref_primary_10_3390_ma16031254
crossref_primary_10_1039_D3RA07421H
crossref_primary_10_1063_5_0050667
crossref_primary_10_1021_jacs_4c10521
crossref_primary_10_1021_acs_langmuir_2c02014
crossref_primary_10_1002_ange_202312975
crossref_primary_10_1039_D3CP06176K
crossref_primary_10_1002_advs_202400752
crossref_primary_10_1002_ange_202012216
crossref_primary_10_1021_acsnano_3c11982
crossref_primary_10_1021_acs_analchem_4c03033
crossref_primary_10_1002_ange_202014194
crossref_primary_10_1002_anie_202014194
crossref_primary_10_1109_LED_2022_3208856
crossref_primary_10_1021_acs_langmuir_1c01184
crossref_primary_10_1016_j_jcis_2023_07_108
crossref_primary_10_1021_acs_langmuir_3c03104
crossref_primary_10_1360_TB_2023_0480
crossref_primary_10_3390_coatings13081400
crossref_primary_10_1021_acssensors_4c01205
crossref_primary_10_1021_acs_langmuir_0c03414
crossref_primary_10_1002_ange_201913327
crossref_primary_10_1021_jacs_2c04233
crossref_primary_10_1039_D0TC04364H
crossref_primary_10_1002_anie_202415978
crossref_primary_10_1016_j_aca_2023_341575
crossref_primary_10_3390_pharmaceutics16020255
crossref_primary_10_1021_acs_jchemed_2c00094
crossref_primary_10_1007_s40843_021_1942_6
crossref_primary_10_1016_j_cclet_2023_108165
crossref_primary_10_1021_acs_jpcc_9b02628
crossref_primary_10_1039_C9CC02998B
crossref_primary_10_1002_ange_201907966
crossref_primary_10_1016_j_matt_2019_08_008
crossref_primary_10_1021_jacs_3c12183
crossref_primary_10_1002_slct_202204101
crossref_primary_10_1039_D4CP01322K
crossref_primary_10_1002_adsr_202400002
crossref_primary_10_1039_D2TB01528E
crossref_primary_10_3390_app10176064
crossref_primary_10_1021_acsnano_3c08045
crossref_primary_10_1021_acs_jpcc_9b11908
crossref_primary_10_1016_j_chempr_2020_07_024
crossref_primary_10_1016_j_surfrep_2023_100596
crossref_primary_10_1039_D0CP05801G
crossref_primary_10_1002_smll_202310175
crossref_primary_10_1038_s41929_022_00746_x
crossref_primary_10_1515_nanoph_2024_0222
crossref_primary_10_1021_acs_analchem_9b05549
crossref_primary_10_1021_acs_jpcc_3c07646
crossref_primary_10_1021_acs_langmuir_4c00644
crossref_primary_10_1002_adhm_202401677
crossref_primary_10_1016_j_apsusc_2021_149794
crossref_primary_10_1016_j_joule_2024_02_019
crossref_primary_10_1016_j_coelec_2023_101279
crossref_primary_10_1021_acsomega_4c10450
crossref_primary_10_1002_aic_18588
crossref_primary_10_1109_JSEN_2024_3431081
crossref_primary_10_1021_acs_jpcc_1c10627
crossref_primary_10_1021_acs_jpclett_0c03248
crossref_primary_10_1002_smll_202107220
crossref_primary_10_1021_acs_jpcb_4c01294
crossref_primary_10_1038_s41467_022_34749_w
crossref_primary_10_3390_bios12010025
crossref_primary_10_1016_j_matlet_2021_129675
crossref_primary_10_1002_ange_202415978
crossref_primary_10_1021_acsanm_3c05726
crossref_primary_10_1021_acs_jpcc_0c00729
crossref_primary_10_3390_ma17246135
crossref_primary_10_1016_j_ccr_2024_215872
crossref_primary_10_1016_j_ijbiomac_2022_10_216
crossref_primary_10_1016_j_ccr_2023_215211
crossref_primary_10_1002_adfm_202109472
crossref_primary_10_1039_D1AN00765C
crossref_primary_10_1016_j_electacta_2019_134996
crossref_primary_10_3390_bios12080565
crossref_primary_10_1021_jacs_0c12664
crossref_primary_10_1088_1361_6633_ac7401
Cites_doi 10.1103/PhysRevB.73.121403
10.1039/C5RA14318G
10.1021/ja00237a017
10.1103/PhysRevB.65.165401
10.1038/nchem.1352
10.1021/ja057316x
10.1038/s41570-017-0017
10.1021/ar200260p
10.1021/acsnano.5b01629
10.1055/s-2007-990800
10.1021/ja0120577
10.1088/0953-8984/14/11/302
10.1021/jp020482w
10.1016/0022-0728(91)85271-P
10.1039/B508434M
10.1021/ic00129a019
10.1126/science.278.5336.252
10.1039/C7SC00599G
10.1039/C5NR03497C
10.1021/ja038214e
10.1021/cr0300789
10.1103/PhysRevLett.78.1396
10.1021/acs.accounts.6b00004
10.1088/0953-8984/20/37/374115
10.1039/b907301a
10.1126/science.1148624
10.1021/la304600s
10.1021/ja512523r
10.1021/ja00351a063
10.1021/jacs.7b08370
10.1038/nchem.1891
10.1021/ja0762386
10.1126/science.240.4848.62
10.1126/science.1087481
10.1016/0022-0728(95)04056-T
10.1021/la00087a027
10.1021/jp811142d
10.1038/nmat4216
10.1038/nature05037
10.1021/ja0773857
10.1021/jacs.7b05599
10.1038/nnano.2011.66
10.1126/science.272.5265.1145
10.1126/science.1158532
10.1039/b910194b
10.1021/nl072058i
10.1021/nl802643h
10.1021/nl9021336
10.1021/acs.nanolett.5b01270
10.1021/jp980047v
10.1039/c3dt53530d
10.1021/la980901+
10.1021/jacs.5b05693
10.1021/jacs.7b03393
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
2019© The Author(s), under exclusive licence to Springer Nature Limited 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: 2019© The Author(s), under exclusive licence to Springer Nature Limited 2019
CorporateAuthor Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)
DBID AAYXX
CITATION
NPM
3V.
7QR
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
OTOTI
DOI 10.1038/s41557-019-0216-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1755-4349
EndPage 358
ExternalDocumentID 1529926
30833721
10_1038_s41557_019_0216_y
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
29M
39C
4.4
53G
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABFSG
ABJCF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACSTC
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFSHS
AFWHJ
AGAYW
AGGDT
AGQPQ
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
AIYXT
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NFIDA
NNMJJ
O9-
ODYON
P2P
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYXX
ALIPV
CITATION
NPM
3V.
7QR
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
7X8
5BI
AADEA
AADWK
AAEEF
AAEXX
AAJMP
AAPBV
AAYJO
AAZLF
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AGHTU
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c436t-2c0d82279931af3c98919875d606eb656c60f5d00e8cc6a0d5a6450314c9ce683
IEDL.DBID BENPR
ISSN 1755-4330
1755-4349
IngestDate Fri May 19 02:17:11 EDT 2023
Fri Sep 05 08:26:00 EDT 2025
Fri Jul 25 09:00:15 EDT 2025
Mon Jul 21 05:46:49 EDT 2025
Thu Apr 24 23:02:09 EDT 2025
Tue Jul 01 03:02:10 EDT 2025
Sun Aug 31 08:58:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-2c0d82279931af3c98919875d606eb656c60f5d00e8cc6a0d5a6450314c9ce683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02–05CH11231
USDOE
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
ORCID 0000-0002-2423-8430
0000-0002-6957-6089
0000-0001-7339-8812
0000-0002-1383-4907
0000000269576089
0000000224238430
0000000213834907
0000000173398812
PMID 30833721
PQID 2195925653
PQPubID 536302
PageCount 8
ParticipantIDs osti_scitechconnect_1529926
proquest_miscellaneous_2188208179
proquest_journals_2195925653
pubmed_primary_30833721
crossref_citationtrail_10_1038_s41557_019_0216_y
crossref_primary_10_1038_s41557_019_0216_y
springer_journals_10_1038_s41557_019_0216_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nat. Chem
PublicationTitleAlternate Nat Chem
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Reimers, Ford, Marcuccio, Ulstrup, Hush (CR12) 2017; 1
Piotrowski (CR39) 2015; 5
Zang (CR23) 2017; 139
Widrig, Chung, Porter (CR37) 1991; 310
Bain, Whitesides (CR2) 1988; 240
Kirihara (CR52) 2007; 2007
Walczak, Alves, Lamp, Porter (CR7) 1995; 396
Quek (CR27) 2007; 7
Pensa (CR11) 2012; 45
Inkpen, Leroux, Hapiot, Campos, Venkataraman (CR21) 2017; 8
Adak (CR31) 2015; 15
Nuzzo, Allara (CR1) 1983; 105
Zhou, Muller, Burgin, Tour, Reed (CR15) 1997; 278
Perdew, Burke, Ernzerhof (CR56) 1997; 78
Inkpen (CR18) 2015; 137
Hasan, Bethell, Brust (CR46) 2002; 124
Li (CR17) 2008; 130
Jadzinsky, Calero, Ackerson, Bushnell, Kornberg (CR13) 2007; 318
Hybertsen (CR36) 2008; 20
Bain, Biebuyck, Whitesides (CR5) 1989; 5
Xie, Bâldea, Smith, Wu, Frisbie (CR49) 2015; 9
Angelova (CR38) 2013; 29
Rascón-Ramos, Artés, Li, Hihath (CR30) 2015; 14
Monzittu (CR54) 2014; 43
Haiss (CR16) 2003; 125
Li (CR50) 2017; 139
Atsushi (CR55) 2010; 39
Crudden (CR47) 2014; 6
Venkataraman, Klare, Nuckolls, Hybertsen, Steigerwald (CR20) 2006; 442
Everret (CR22) 1972; 31
Koentopp, Burke, Evers (CR33) 2006; 73
Zhong, Brush, Anderegg, Porter (CR41) 1998; 15
Park (CR24) 2007; 129
Brandbyge, Mozos, Ordejón, Taylor, Stokbro (CR32) 2002; 65
Noh (CR40) 2002; 106
Cheng (CR25) 2011; 6
Haiss (CR19) 2009; 11
Burgi (CR45) 2015; 7
Hybertsen, Venkataraman (CR26) 2016; 49
Hakkinen (CR4) 2012; 4
He (CR42) 2006; 131
Poirier, Pylant (CR8) 1996; 272
Li (CR51) 2015; 137
Li (CR44) 2006; 128
Paulsson, Krag, Frederiksen, Brandbyge (CR28) 2009; 9
Forward, Bohmann, Fackler, Staples (CR53) 1995; 34
Vericat, Vela, Benitez, Carro, Salvarezza (CR10) 2010; 39
Quek, Choi, Louie, Neaton (CR35) 2009; 9
Xu, Tao (CR14) 2003; 301
José (CR57) 2002; 14
Haiss (CR43) 2009; 113
Love, Estroff, Kriebel, Nuzzo, Whitesides (CR3) 2005; 105
Lavrich, Wetterer, Bernasek, Scoles (CR48) 1998; 102
Nuzzo, Zegarski, Dubois (CR9) 1987; 109
Quek (CR34) 2007; 7
Kim, Kim, Lee, Tsutsui, Kawai (CR29) 2017; 139
Cossaro (CR6) 2008; 321
C Zhou (216_CR15) 1997; 278
SY Quek (216_CR35) 2009; 9
W Haiss (216_CR43) 2009; 113
C Vericat (216_CR10) 2010; 39
SY Quek (216_CR27) 2007; 7
JP Perdew (216_CR56) 1997; 78
X Li (216_CR44) 2006; 128
H Rascón-Ramos (216_CR30) 2015; 14
DJ Lavrich (216_CR48) 1998; 102
MS Hybertsen (216_CR26) 2016; 49
DH Everret (216_CR22) 1972; 31
JR Reimers (216_CR12) 2017; 1
MS Hybertsen (216_CR36) 2008; 20
FM Monzittu (216_CR54) 2014; 43
Y Zang (216_CR23) 2017; 139
P Piotrowski (216_CR39) 2015; 5
H Li (216_CR51) 2015; 137
YS Park (216_CR24) 2007; 129
CM Crudden (216_CR47) 2014; 6
M Brandbyge (216_CR32) 2002; 65
JM Forward (216_CR53) 1995; 34
M Hasan (216_CR46) 2002; 124
YH Kim (216_CR29) 2017; 139
RG Nuzzo (216_CR9) 1987; 109
Z Xie (216_CR49) 2015; 9
CD Bain (216_CR2) 1988; 240
B Xu (216_CR14) 2003; 301
CD Bain (216_CR5) 1989; 5
PD Jadzinsky (216_CR13) 2007; 318
CA Widrig (216_CR37) 1991; 310
SY Quek (216_CR34) 2007; 7
E Pensa (216_CR11) 2012; 45
M Koentopp (216_CR33) 2006; 73
J Noh (216_CR40) 2002; 106
JC Love (216_CR3) 2005; 105
T Burgi (216_CR45) 2015; 7
M Kirihara (216_CR52) 2007; 2007
H Hakkinen (216_CR4) 2012; 4
W Haiss (216_CR16) 2003; 125
M Paulsson (216_CR28) 2009; 9
MS José (216_CR57) 2002; 14
RG Nuzzo (216_CR1) 1983; 105
MM Walczak (216_CR7) 1995; 396
J He (216_CR42) 2006; 131
P Angelova (216_CR38) 2013; 29
A Cossaro (216_CR6) 2008; 321
MS Inkpen (216_CR18) 2015; 137
S Atsushi (216_CR55) 2010; 39
W Haiss (216_CR19) 2009; 11
MS Inkpen (216_CR21) 2017; 8
C Li (216_CR17) 2008; 130
O Adak (216_CR31) 2015; 15
L Venkataraman (216_CR20) 2006; 442
CJ Zhong (216_CR41) 1998; 15
GE Poirier (216_CR8) 1996; 272
H Li (216_CR50) 2017; 139
ZL Cheng (216_CR25) 2011; 6
References_xml – volume: 73
  start-page: 121403
  year: 2006
  ident: CR33
  article-title: Zero-bias molecular electronics: exchange-correlation corrections to Landauer’s formula
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.121403
– volume: 5
  start-page: 86771
  year: 2015
  end-page: 86778
  ident: CR39
  article-title: Self-assembly of thioether functionalized fullerenes on gold and their activity in electropolymerization of styrene
  publication-title: RSC Adv.
  doi: 10.1039/C5RA14318G
– volume: 109
  start-page: 733
  year: 1987
  end-page: 740
  ident: CR9
  article-title: Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00237a017
– volume: 65
  start-page: 165401
  year: 2002
  ident: CR32
  article-title: Density-functional method for nonequilibrium electron transport
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.165401
– volume: 4
  start-page: 443
  year: 2012
  end-page: 455
  ident: CR4
  article-title: The gold–sulfur interface at the nanoscale
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1352
– volume: 128
  start-page: 2135
  year: 2006
  end-page: 2141
  ident: CR44
  article-title: Conductance of single alkanedithiols: conduction mechanism and effect of molecule−electrode contacts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057316x
– volume: 1
  start-page: 0017
  year: 2017
  ident: CR12
  article-title: Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0017
– volume: 45
  start-page: 1183
  year: 2012
  end-page: 1192
  ident: CR11
  article-title: The chemistry of the sulfur–gold interface: in search of a unified model
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200260p
– volume: 9
  start-page: 8022
  year: 2015
  end-page: 8036
  ident: CR49
  article-title: Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01629
– volume: 2007
  start-page: 3286
  year: 2007
  end-page: 3289
  ident: CR52
  article-title: A mild and environmentally benign oxidation of thiols to disulfides
  publication-title: Synthesis
  doi: 10.1055/s-2007-990800
– volume: 124
  start-page: 1132
  year: 2002
  end-page: 1133
  ident: CR46
  article-title: The fate of sulfur-bound hydrogen on formation of self-assembled thiol monolayers on gold:  H NMR spectroscopic evidence from solutions of gold clusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0120577
– volume: 14
  start-page: 2745
  year: 2002
  end-page: 2779
  ident: CR57
  article-title: The SIESTA method for order-N materials simulation
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 106
  start-page: 7139
  year: 2002
  end-page: 7141
  ident: CR40
  article-title: High-resolution STM and XPS studies of thiophene self-assembled monolayers on Au(111)
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp020482w
– volume: 310
  start-page: 335
  year: 1991
  end-page: 359
  ident: CR37
  article-title: The electrochemical desorption of -alkanethiol monolayers from polycrystalline Au and Ag electrodes
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(91)85271-P
– volume: 131
  start-page: 145
  year: 2006
  end-page: 154
  ident: CR42
  article-title: Measuring single molecule conductance with break junctions
  publication-title: Faraday Discuss.
  doi: 10.1039/B508434M
– volume: 34
  start-page: 6330
  year: 1995
  end-page: 6336
  ident: CR53
  article-title: Luminescence studies of gold( ) thiolate complexes
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00129a019
– volume: 278
  start-page: 252
  year: 1997
  end-page: 254
  ident: CR15
  article-title: Conductance of a molecular junction
  publication-title: Science
  doi: 10.1126/science.278.5336.252
– volume: 8
  start-page: 4340
  year: 2017
  end-page: 4346
  ident: CR21
  article-title: Reversible on-surface wiring of resistive circuits
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00599G
– volume: 7
  start-page: 15553
  year: 2015
  end-page: 15567
  ident: CR45
  article-title: Properties of the gold–sulphur interface: from self-assembled monolayers to clusters
  publication-title: Nanoscale
  doi: 10.1039/C5NR03497C
– volume: 125
  start-page: 15294
  year: 2003
  end-page: 15295
  ident: CR16
  article-title: Redox state dependence of single molecule conductivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038214e
– volume: 105
  start-page: 1103
  year: 2005
  end-page: 1170
  ident: CR3
  article-title: Self-assembled monolayers of thiolates on metals as a form of nanotechnology
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
– volume: 78
  start-page: 1396
  year: 1997
  end-page: 1396
  ident: CR56
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
– volume: 49
  start-page: 452
  year: 2016
  end-page: 460
  ident: CR26
  article-title: Structure–property relationships in atomic-scale junctions: histograms and beyond
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00004
– volume: 20
  start-page: 374115
  year: 2008
  ident: CR36
  article-title: Amine-linked single-molecule circuits: systematic trends across molecular families
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/37/374115
– volume: 39
  start-page: 1805
  year: 2010
  end-page: 1834
  ident: CR10
  article-title: Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b907301a
– volume: 318
  start-page: 430
  year: 2007
  end-page: 433
  ident: CR13
  article-title: Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution
  publication-title: Science
  doi: 10.1126/science.1148624
– volume: 29
  start-page: 2217
  year: 2013
  end-page: 2223
  ident: CR38
  article-title: Chemisorbed monolayers of corannulene penta-thioethers on gold
  publication-title: Langmuir
  doi: 10.1021/la304600s
– volume: 137
  start-page: 5028
  year: 2015
  end-page: 5033
  ident: CR51
  article-title: Electric field breakdown in single molecule junctions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512523r
– volume: 105
  start-page: 4481
  year: 1983
  end-page: 4483
  ident: CR1
  article-title: Adsorption of bifunctional organic disulfides on gold surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00351a063
– volume: 139
  start-page: 14845
  year: 2017
  end-page: 14848
  ident: CR23
  article-title: Electronically transparent Au–N bonds for molecular junctions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08370
– volume: 6
  start-page: 409
  year: 2014
  end-page: 414
  ident: CR47
  article-title: Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1891
– volume: 130
  start-page: 318
  year: 2008
  end-page: 326
  ident: CR17
  article-title: Charge transport in single Au | alkanedithiol | Au junctions: coordination geometries and conformational degrees of freedom
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0762386
– volume: 240
  start-page: 62
  year: 1988
  end-page: 63
  ident: CR2
  article-title: Molecular-level control over surface order in self-assembled monolayer films of thiols on gold
  publication-title: Science
  doi: 10.1126/science.240.4848.62
– volume: 301
  start-page: 1221
  year: 2003
  end-page: 1223
  ident: CR14
  article-title: Measurement of single-molecule resistance by repeated formation of molecular junctions
  publication-title: Science
  doi: 10.1126/science.1087481
– volume: 396
  start-page: 103
  year: 1995
  end-page: 114
  ident: CR7
  article-title: Electrochemical and X-ray photoelectron spectroscopic evidence for differences in the binding sites of alkanethiolate monolayers chemisorbed at gold
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(95)04056-T
– volume: 5
  start-page: 723
  year: 1989
  end-page: 727
  ident: CR5
  article-title: Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides
  publication-title: Langmuir
  doi: 10.1021/la00087a027
– volume: 113
  start-page: 5823
  year: 2009
  end-page: 5833
  ident: CR43
  article-title: Impact of junction formation method and surface roughness on single molecule conductance
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp811142d
– volume: 14
  start-page: 517
  year: 2015
  end-page: 522
  ident: CR30
  article-title: Binding configurations and intramolecular strain in single-molecule devices
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4216
– volume: 442
  start-page: 904
  year: 2006
  end-page: 907
  ident: CR20
  article-title: Dependence of single-molecule junction conductance on molecular conformation
  publication-title: Nature
  doi: 10.1038/nature05037
– volume: 129
  start-page: 15768
  year: 2007
  end-page: 15769
  ident: CR24
  article-title: Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0773857
– volume: 139
  start-page: 10212
  year: 2017
  end-page: 10215
  ident: CR50
  article-title: Extreme conductance suppression in molecular siloxanes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05599
– volume: 6
  start-page: 353
  year: 2011
  end-page: 357
  ident: CR25
  article-title: In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.66
– volume: 272
  start-page: 1145
  year: 1996
  end-page: 1148
  ident: CR8
  article-title: The self-assembly mechanism of alkanethiols on Au(111)
  publication-title: Science
  doi: 10.1126/science.272.5265.1145
– volume: 321
  start-page: 943
  year: 2008
  end-page: 946
  ident: CR6
  article-title: X-ray diffraction and computation yield the structure of alkanethiols on gold(111)
  publication-title: Science
  doi: 10.1126/science.1158532
– volume: 11
  start-page: 10831
  year: 2009
  end-page: 10838
  ident: CR19
  article-title: Anomalous length and voltage dependence of single molecule conductance
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b910194b
– volume: 39
  start-page: 319319
  year: 2010
  end-page: 319321
  ident: CR55
  article-title: Solvent diversity in the preparation of alkanethiol-capped gold nanoparticles. An approach with a gold( ) thiolate complex
  publication-title: Chem. Lett.
– volume: 7
  start-page: 3477
  year: 2007
  end-page: 3482
  ident: CR27
  article-title: Amine−gold linked single-molecule circuits: experiment and theory
  publication-title: Nano Lett.
  doi: 10.1021/nl072058i
– volume: 9
  start-page: 117
  year: 2009
  end-page: 121
  ident: CR28
  article-title: Conductance of alkanedithiol single-molecule junctions: a molecular dynamics study
  publication-title: Nano Lett.
  doi: 10.1021/nl802643h
– volume: 31
  start-page: 579
  year: 1972
  end-page: 638
  ident: CR22
  article-title: Definitions, terminology and symbols in colloid and surface chemistry
  publication-title: Pure Appl. Chem.
– volume: 9
  start-page: 3949
  year: 2009
  end-page: 3953
  ident: CR35
  article-title: Length dependence of conductance in aromatic single-molecule junctions
  publication-title: Nano Lett.
  doi: 10.1021/nl9021336
– volume: 15
  start-page: 4143
  year: 2015
  end-page: 4149
  ident: CR31
  article-title: Flicker noise as a probe of electronic interaction at metal–single molecule interfaces
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01270
– volume: 102
  start-page: 3456
  year: 1998
  end-page: 3465
  ident: CR48
  article-title: Physisorption and chemisorption of alkanethiols and alkyl sulfides on Au(111)
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980047v
– volume: 43
  start-page: 6212
  year: 2014
  end-page: 6220
  ident: CR54
  article-title: Different emissive properties in dithiolate gold( ) complexes as a function of the presence of phenylene spacers
  publication-title: Dalton. Trans.
  doi: 10.1039/c3dt53530d
– volume: 15
  start-page: 518
  year: 1998
  end-page: 525
  ident: CR41
  article-title: Organosulfur monolayers at gold surfaces: reexamination of the case for sulfide adsorption and implications to the formation of monolayers from thiols and disulfides
  publication-title: Langmuir
  doi: 10.1021/la980901+
– volume: 137
  start-page: 9971
  year: 2015
  end-page: 9981
  ident: CR18
  article-title: New insights into single-molecule junctions using a robust, unsupervised approach to data collection and analysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05693
– volume: 139
  start-page: 8286
  year: 2017
  end-page: 8294
  ident: CR29
  article-title: Stretching-induced conductance variations as fingerprints of contact configurations in single-molecule junctions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03393
– volume: 7
  start-page: 3477
  year: 2007
  end-page: 3482
  ident: CR34
  article-title: Amine–gold linked single-molecule circuits: experiment and theory
  publication-title: Nano Lett.
  doi: 10.1021/nl072058i
– volume: 14
  start-page: 2745
  year: 2002
  ident: 216_CR57
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 137
  start-page: 9971
  year: 2015
  ident: 216_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05693
– volume: 7
  start-page: 3477
  year: 2007
  ident: 216_CR34
  publication-title: Nano Lett.
  doi: 10.1021/nl072058i
– volume: 65
  start-page: 165401
  year: 2002
  ident: 216_CR32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.165401
– volume: 113
  start-page: 5823
  year: 2009
  ident: 216_CR43
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp811142d
– volume: 4
  start-page: 443
  year: 2012
  ident: 216_CR4
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1352
– volume: 240
  start-page: 62
  year: 1988
  ident: 216_CR2
  publication-title: Science
  doi: 10.1126/science.240.4848.62
– volume: 39
  start-page: 1805
  year: 2010
  ident: 216_CR10
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b907301a
– volume: 301
  start-page: 1221
  year: 2003
  ident: 216_CR14
  publication-title: Science
  doi: 10.1126/science.1087481
– volume: 49
  start-page: 452
  year: 2016
  ident: 216_CR26
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00004
– volume: 278
  start-page: 252
  year: 1997
  ident: 216_CR15
  publication-title: Science
  doi: 10.1126/science.278.5336.252
– volume: 1
  start-page: 0017
  year: 2017
  ident: 216_CR12
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0017
– volume: 15
  start-page: 518
  year: 1998
  ident: 216_CR41
  publication-title: Langmuir
  doi: 10.1021/la980901+
– volume: 125
  start-page: 15294
  year: 2003
  ident: 216_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038214e
– volume: 78
  start-page: 1396
  year: 1997
  ident: 216_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
– volume: 396
  start-page: 103
  year: 1995
  ident: 216_CR7
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(95)04056-T
– volume: 5
  start-page: 723
  year: 1989
  ident: 216_CR5
  publication-title: Langmuir
  doi: 10.1021/la00087a027
– volume: 31
  start-page: 579
  year: 1972
  ident: 216_CR22
  publication-title: Pure Appl. Chem.
– volume: 73
  start-page: 121403
  year: 2006
  ident: 216_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.121403
– volume: 5
  start-page: 86771
  year: 2015
  ident: 216_CR39
  publication-title: RSC Adv.
  doi: 10.1039/C5RA14318G
– volume: 109
  start-page: 733
  year: 1987
  ident: 216_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00237a017
– volume: 7
  start-page: 15553
  year: 2015
  ident: 216_CR45
  publication-title: Nanoscale
  doi: 10.1039/C5NR03497C
– volume: 310
  start-page: 335
  year: 1991
  ident: 216_CR37
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(91)85271-P
– volume: 139
  start-page: 10212
  year: 2017
  ident: 216_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05599
– volume: 105
  start-page: 1103
  year: 2005
  ident: 216_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
– volume: 318
  start-page: 430
  year: 2007
  ident: 216_CR13
  publication-title: Science
  doi: 10.1126/science.1148624
– volume: 130
  start-page: 318
  year: 2008
  ident: 216_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0762386
– volume: 6
  start-page: 409
  year: 2014
  ident: 216_CR47
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1891
– volume: 321
  start-page: 943
  year: 2008
  ident: 216_CR6
  publication-title: Science
  doi: 10.1126/science.1158532
– volume: 6
  start-page: 353
  year: 2011
  ident: 216_CR25
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.66
– volume: 124
  start-page: 1132
  year: 2002
  ident: 216_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0120577
– volume: 105
  start-page: 4481
  year: 1983
  ident: 216_CR1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00351a063
– volume: 131
  start-page: 145
  year: 2006
  ident: 216_CR42
  publication-title: Faraday Discuss.
  doi: 10.1039/B508434M
– volume: 11
  start-page: 10831
  year: 2009
  ident: 216_CR19
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b910194b
– volume: 2007
  start-page: 3286
  year: 2007
  ident: 216_CR52
  publication-title: Synthesis
  doi: 10.1055/s-2007-990800
– volume: 45
  start-page: 1183
  year: 2012
  ident: 216_CR11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200260p
– volume: 39
  start-page: 319319
  year: 2010
  ident: 216_CR55
  publication-title: Chem. Lett.
– volume: 9
  start-page: 3949
  year: 2009
  ident: 216_CR35
  publication-title: Nano Lett.
  doi: 10.1021/nl9021336
– volume: 34
  start-page: 6330
  year: 1995
  ident: 216_CR53
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00129a019
– volume: 272
  start-page: 1145
  year: 1996
  ident: 216_CR8
  publication-title: Science
  doi: 10.1126/science.272.5265.1145
– volume: 9
  start-page: 8022
  year: 2015
  ident: 216_CR49
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01629
– volume: 20
  start-page: 374115
  year: 2008
  ident: 216_CR36
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/37/374115
– volume: 139
  start-page: 14845
  year: 2017
  ident: 216_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08370
– volume: 139
  start-page: 8286
  year: 2017
  ident: 216_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03393
– volume: 137
  start-page: 5028
  year: 2015
  ident: 216_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512523r
– volume: 14
  start-page: 517
  year: 2015
  ident: 216_CR30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4216
– volume: 7
  start-page: 3477
  year: 2007
  ident: 216_CR27
  publication-title: Nano Lett.
  doi: 10.1021/nl072058i
– volume: 8
  start-page: 4340
  year: 2017
  ident: 216_CR21
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00599G
– volume: 9
  start-page: 117
  year: 2009
  ident: 216_CR28
  publication-title: Nano Lett.
  doi: 10.1021/nl802643h
– volume: 442
  start-page: 904
  year: 2006
  ident: 216_CR20
  publication-title: Nature
  doi: 10.1038/nature05037
– volume: 43
  start-page: 6212
  year: 2014
  ident: 216_CR54
  publication-title: Dalton. Trans.
  doi: 10.1039/c3dt53530d
– volume: 129
  start-page: 15768
  year: 2007
  ident: 216_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0773857
– volume: 128
  start-page: 2135
  year: 2006
  ident: 216_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057316x
– volume: 106
  start-page: 7139
  year: 2002
  ident: 216_CR40
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp020482w
– volume: 29
  start-page: 2217
  year: 2013
  ident: 216_CR38
  publication-title: Langmuir
  doi: 10.1021/la304600s
– volume: 102
  start-page: 3456
  year: 1998
  ident: 216_CR48
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980047v
– volume: 15
  start-page: 4143
  year: 2015
  ident: 216_CR31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01270
SSID ssj0065316
Score 2.6487157
Snippet Gold–thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in...
Gold-thiol contacts are ubiquitous across the physical and biological sciences in connecting organic molecules to surfaces. When thiols bind to gold in...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms 639/638
639/638/440
639/638/542
639/925
639/925/927
Analytical Chemistry
Biochemistry
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Conductance
Density functional theory
Gold
Hydrogen
Inorganic Chemistry
Monolayers
Noise control
Organic Chemistry
Physical Chemistry
Physical properties
Resistance
Self-assembled monolayers
Self-assembly
Sulfur
Thiols
Title Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers
URI https://link.springer.com/article/10.1038/s41557-019-0216-y
https://www.ncbi.nlm.nih.gov/pubmed/30833721
https://www.proquest.com/docview/2195925653
https://www.proquest.com/docview/2188208179
https://www.osti.gov/biblio/1529926
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9swED_W5GF7Gd1_r13wYE8bonZkydLTaEqzsrEwxgp5E7Isj4BnZ3FS6Fu_Q79hP0nvHDtlbOuLwVgS8p109zvd6Q7gnUqzKM18zlyqNUtyLpj1ccxSSlauSGNGdMH560yenSef52LeHbg1XVhlLxNbQZ3Xjs7Ij8aUBQX1s-Afl78ZVY0i72pXQmMPhiiClRjAcHI6-_a9l8XYui1-ijpS0N2gnV-Tq6OGVCmFXWqGek6yyz8006DGHfYv1PmXx7RVRNN9eNwhyPB4y_In8MBXT-HhSV-47Rl8mdUVc-17vUIChT_rMr-5um42ZbFZhdmivcgSLlf-wi7KJlxUYePLgiGM9r-yEjvgv6LFS2D8OZxPT3-cnLGuZgJzCZdrNnZRrigroOaxLbjTStOxgsjRUPEZgjcno0LkUeSVc9JGubAyEZTD3mnnpeIvYFDVlX8FobUqLqgUh9A8STwOk8nUK4sgsShimwYQ9fQyrksoTnUtStM6trkyWxIbJLEhEpvLAN7vuiy32TTua3xATDAIBSifraPAH7c2CDi0HssADnvemG7bNeZukQTwdvcZyU1eEFv5ekNt0KhAIJTqAF5uebqbC0dAytEmDuBDz-S7wf870df3T-UAHo3bVUbhPocwWK82_g0imXU2gr10nuJTTT-NYHg8nUxmo24J3wKOgfEn
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7aFcEOXV0AJBggvIahLnYR8QKqXVlm1XCLVSb8ZxHLRSSJbNLmhv_Af-Bz-qv6QzeWyFgN56jBJb1jw832ReAC9EknpJajNmEilZmPGIaev7LKFm5YIspkcFzifjeHgWfjiPztfgd18LQ2mV_Z3YXNRZZegf-W5AXVDQPkf87fQbo6lRFF3tR2i0YjGyyx_ostVvjt4jf18GweHB6f6QdVMFmAl5PGeB8TJBffMk93XOjRSSHO8oQyhvU4Q3JvbyKPM8K4yJtZdFOg4j6vJupLGx4LjvLVhHmCFRi9bfHYw_furvfjxdM2wVbXJEtUirOCoXuzWZbkrzlAztasyWf1jCQYUa_S-U-1eEtjF8h3fhTodY3b1WxDZhzZb3YGO_HxR3H0bjqmSmea5myBD3S1VkFz9_1YsiX8zcdNIUzrjTmf2uJ0XtTkq3tkXOELbbr2mBC5C26GET-H8AZzdCzYcwKKvSboGrtfBzGv0RSR6GFrdJ48QKjaA0z32dOOD19FKma2BOczQK1QTSuVAtiRWSWBGJ1dKBV6sl07Z7x3UfbxMTFEIP6p9rKNHIzBUCHCmD2IGdnjeqU_NaXQmlA89Xr5HcFHXRpa0W9A06MQi8EunAo5anq7NwBMAcfXAHXvdMvtr8vwd9fP1RnsHG8PTkWB0fjUfbcDtoJI5SjXZgMJ8t7BNEUfP0aSe6Lny-aW25BCpaKUI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEOWvoaUECS4ga5M4P_YBIWi7allYVYhKvRnHcaqVQrJsdkF74x14Gx6HJ2EmP1shoLceo8SWNTP2901mPAPwVCSpl6Q2YyaRkoUZj5i2vs8SKlYuCDE9uuD8fhIfnYZvz6KzDfjZ34WhtMr-TGwO6qwy9I98GFAVFMTniA_zLi3i5GD0avaFUQcpirT27TRaExnb1Td03-qXxweo62dBMDr8uH_Eug4DzIQ8XrDAeJmgGnqS-zrnRgpJTniUIa23KVIdE3t5lHmeFcbE2ssiHYcRVXw30thYcJz3GmwmiIpiAJtvDicnH3ocwJU2jVcRnyO6l7SOqXIxrAnGKeVTMsTYmK3-QMVBhbv7X4z3r2htA4Kj23CrY6_u69bctmDDlnfgxn7fNO4ujCdVyUzzXM1ROe55VWS_vv-ol0W-nLvptLlE487m9queFrU7Ld3aFjlDCm8_pwUOQNmit02OwD04vRJp3odBWZV2G1ythZ9TG5BI8jC0OE0aJ1ZoJKh57uvEAa-XlzJdMXPqqVGoJqjOhWpFrFDEikSsVg48Xw-ZtZU8Lvt4h5SgkIZQLV1DSUdmoZDsSBnEDuz2ulHdlq_VhYE68GT9GsVNERhd2mpJ36BDgyQskQ48aHW6XgtHMszRH3fgRa_ki8n_u9CHly_lMVzHXaLeHU_GO3AzaAyOso52YbCYL-0jJFSLdK-zXBc-XfVm-Q0SUC1u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-chemisorbed+gold%E2%80%93sulfur+binding+prevails+in+self-assembled+monolayers&rft.jtitle=Nature+chemistry&rft.au=Inkpen%2C+Michael+S&rft.au=Liu+Zhen%E2%80%93Fei&rft.au=Li+Haixing&rft.au=Campos%2C+Luis+M&rft.date=2019-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=11&rft.issue=4&rft.spage=351&rft.epage=358&rft_id=info:doi/10.1038%2Fs41557-019-0216-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon