The CHEOPS view of the climate of WASP-3 b
Context . Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most amenable targets for atmospheric characterization. Aims . In this paper we analyze the photometry collected during the secondary eclipses of the...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 692; p. A129 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
EDP Sciences
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context
. Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most amenable targets for atmospheric characterization.
Aims
. In this paper we analyze the photometry collected during the secondary eclipses of the hot Jupiter WASP-3 b by CHEOPS, TESS, and
Spitzer
. Our aim is to characterize the atmosphere of the planet by measuring the secondary eclipse depth in several passbands and constrain the planetary dayside spectrum.
Methods
. We updated the radius and the ephemeris of WASP-3 b by analyzing the transit photometry collected by CHEOPS and TESS. We also analyzed the CHEOPS, TESS, and
Spitzer
photometry of the occultations of the planet, measuring the eclipse depth at different wavelengths.
Results
. Our update of the stellar and planetary properties is consistent with previous works. The analysis of the occultations returns an eclipse depth of 92±21 ppm in the CHEOPS passband, 83±27 ppm for TESS, and >2000 ppm in the IRAC 1-2-4
Spitzer
passbands. Using the eclipse depths in the
Spitzer
bands, we propose a set of likely emission spectra that constrain the emission contribution in the CHEOPS and TESS passbands to approximately a few dozen parts per million. This allowed us to measure a geometric albedo of 0.21±0.07 in the CHEOPS passband, while the TESS data lead to a 95% upper limit of ∼0.2.
Conclusions
. WASP-3 b belongs to the group of ultra-hot Jupiters that are characterized by a low Bond albedo (<0.3±0.1), as predicted by different atmospheric models. On the other hand, it seems to efficiently recirculate the absorbed stellar energy, which is not typical for similar, highly irradiated planets. To explain this inconsistency, we propose that other energy recirculation mechanisms are at play besides advection (for example, the dissociation and recombination of H
2
). Another possibility is that the observations in different bandpasses probe different atmospheric layers; this would make the atmospheric analysis difficult without an appropriate modeling of the thermal emission spectrum of WASP-3 b, which is not feasible with the limited spectroscopic data available to date. |
---|---|
AbstractList | Context. Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most amenable targets for atmospheric characterization. Aims. In this paper we analyze the photometry collected during the secondary eclipses of the hot Jupiter WASP-3 b by CHEOPS, TESS, and Spitzer. Our aim is to characterize the atmosphere of the planet by measuring the secondary eclipse depth in several passbands and constrain the planetary dayside spectrum. Methods. We updated the radius and the ephemeris of WASP-3 b by analyzing the transit photometry collected by CHEOPS and TESS. We also analyzed the CHEOPS, TESS, and Spitzer photometry of the occultations of the planet, measuring the eclipse depth at different wavelengths. Results. Our update of the stellar and planetary properties is consistent with previous works. The analysis of the occultations returns an eclipse depth of 92±21 ppm in the CHEOPS passband, 83±27 ppm for TESS, and >2000 ppm in the IRAC 1-2-4 Spitzer passbands. Using the eclipse depths in the Spitzer bands, we propose a set of likely emission spectra that constrain the emission contribution in the CHEOPS and TESS passbands to approximately a few dozen parts per million. This allowed us to measure a geometric albedo of 0.21±0.07 in the CHEOPS passband, while the TESS data lead to a 95% upper limit of ∼0.2. Conclusions. WASP-3 b belongs to the group of ultra-hot Jupiters that are characterized by a low Bond albedo (<0.3±0.1), as predicted by different atmospheric models. On the other hand, it seems to efficiently recirculate the absorbed stellar energy, which is not typical for similar, highly irradiated planets. To explain this inconsistency, we propose that other energy recirculation mechanisms are at play besides advection (for example, the dissociation and recombination of H2). Another possibility is that the observations in different bandpasses probe different atmospheric layers; this would make the atmospheric analysis difficult without an appropriate modeling of the thermal emission spectrum of WASP-3 b, which is not feasible with the limited spectroscopic data available to date. Context . Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most amenable targets for atmospheric characterization. Aims . In this paper we analyze the photometry collected during the secondary eclipses of the hot Jupiter WASP-3 b by CHEOPS, TESS, and Spitzer . Our aim is to characterize the atmosphere of the planet by measuring the secondary eclipse depth in several passbands and constrain the planetary dayside spectrum. Methods . We updated the radius and the ephemeris of WASP-3 b by analyzing the transit photometry collected by CHEOPS and TESS. We also analyzed the CHEOPS, TESS, and Spitzer photometry of the occultations of the planet, measuring the eclipse depth at different wavelengths. Results . Our update of the stellar and planetary properties is consistent with previous works. The analysis of the occultations returns an eclipse depth of 92±21 ppm in the CHEOPS passband, 83±27 ppm for TESS, and >2000 ppm in the IRAC 1-2-4 Spitzer passbands. Using the eclipse depths in the Spitzer bands, we propose a set of likely emission spectra that constrain the emission contribution in the CHEOPS and TESS passbands to approximately a few dozen parts per million. This allowed us to measure a geometric albedo of 0.21±0.07 in the CHEOPS passband, while the TESS data lead to a 95% upper limit of ∼0.2. Conclusions . WASP-3 b belongs to the group of ultra-hot Jupiters that are characterized by a low Bond albedo (<0.3±0.1), as predicted by different atmospheric models. On the other hand, it seems to efficiently recirculate the absorbed stellar energy, which is not typical for similar, highly irradiated planets. To explain this inconsistency, we propose that other energy recirculation mechanisms are at play besides advection (for example, the dissociation and recombination of H 2 ). Another possibility is that the observations in different bandpasses probe different atmospheric layers; this would make the atmospheric analysis difficult without an appropriate modeling of the thermal emission spectrum of WASP-3 b, which is not feasible with the limited spectroscopic data available to date. Context. Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most amenable targets for atmospheric characterization. Aims. In this paper we analyze the photometry collected during the secondary eclipses of the hot Jupiter WASP-3 b by CHEOPS, TESS, and Spitzer. Our aim is to characterize the atmosphere of the planet by measuring the secondary eclipse depth in several passbands and constrain the planetary dayside spectrum. Methods. We updated the radius and the ephemeris of WASP-3 b by analyzing the transit photometry collected by CHEOPS and TESS. We also analyzed the CHEOPS, TESS, and Spitzer photometry of the occultations of the planet, measuring the eclipse depth at different wavelengths. Results. Our update of the stellar and planetary properties is consistent with previous works. The analysis of the occultations returns an eclipse depth of 92±21 ppm in the CHEOPS passband, 83±27 ppm for TESS, and >2000 ppm in the IRAC 1-2-4 Spitzer passbands. Using the eclipse depths in the Spitzer bands, we propose a set of likely emission spectra that constrain the emission contribution in the CHEOPS and TESS passbands to approximately a few dozen parts per million. This allowed us to measure a geometric albedo of 0.21±0.07 in the CHEOPS passband, while the TESS data lead to a 95% upper limit of ∼0.2. Conclusions. WASP-3 b belongs to the group of ultra-hot Jupiters that are characterized by a low Bond albedo (<0.3±0.1), as predicted by different atmospheric models. On the other hand, it seems to efficiently recirculate the absorbed stellar energy, which is not typical for similar, highly irradiated planets. To explain this inconsistency, we propose that other energy recirculation mechanisms are at play besides advection (for example, the dissociation and recombination of H2). Another possibility is that the observations in different bandpasses probe different atmospheric layers; this would make the atmospheric analysis difficult without an appropriate modeling of the thermal emission spectrum of WASP-3 b, which is not feasible with the limited spectroscopic data available to date. ★The CHEOPS program IDs are CH_PR100016 and CH_PR100052. Context. Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most amenable targets for atmospheric characterization. Aims. In this paper we analyze the photometry collected during the secondary eclipses of the hot Jupiter WASP-3 b by CHEOPS, TESS, and Spitzer. Our aim is to characterize the atmosphere of the planet by measuring the secondary eclipse depth in several passbands and constrain the planetary dayside spectrum. Methods. We updated the radius and the ephemeris of WASP-3 b by analyzing the transit photometry collected by CHEOPS and TESS. We also analyzed the CHEOPS, TESS, and Spitzer photometry of the occultations of the planet, measuring the eclipse depth at different wavelengths. Results. Our update of the stellar and planetary properties is consistent with previous works. The analysis of the occultations returns an eclipse depth of 92±21 ppm in the CHEOPS passband, 83±27 ppm for TESS, and >2000 ppm in the IRAC 1-2-4 Spitzer passbands. Using the eclipse depths in the Spitzer bands, we propose a set of likely emission spectra that constrain the emission contribution in the CHEOPS and TESS passbands to approximately a few dozen parts per million. This allowed us to measure a geometric albedo of 0.21±0.07 in the CHEOPS passband, while the TESS data lead to a 95% upper limit of ∼0.2. Conclusions. WASP-3 b belongs to the group of ultra-hot Jupiters that are characterized by a low Bond albedo (<0.3±0.1), as predicted by different atmospheric models. On the other hand, it seems to efficiently recirculate the absorbed stellar energy, which is not typical for similar, highly irradiated planets. To explain this inconsistency, we propose that other energy recirculation mechanisms are at play besides advection (for example, the dissociation and recombination of H2). Another possibility is that the observations in different bandpasses probe different atmospheric layers; this would make the atmospheric analysis difficult without an appropriate modeling of the thermal emission spectrum of WASP-3 b, which is not feasible with the limited spectroscopic data available to date. |
Author | Krenn, A. Ragazzoni, R. Buder, M. Ehrenreich, D. Erikson, A. Olofsson, G. Szabó, Gy. M. Ottensamer, R. Santos, N. C. Fortier, A. Alibert, Y. Borsato, L. Gandolfi, D. Bárczy, T. Ribas, I. Korth, J. Carone, L. Magrin, D. Barrado Navascues, D. Fossati, L. Lam, K. W. F. Swayne, M. I. Ségransan, D. Busch, M.-D. Udry, S. Van Grootel, V. Simon, A. E. Bonfanti, A. Delrez, L. Zingales, T. Brandeker, A. Stalport, M. Maxted, P. F. L. Csizmadia, Sz Smith, A. M. S. Meier Valdes, E. Rauer, H. Demory, B.-O. Gazeas, K. Singh, V. Mordasini, C. Edwards, B. Fridlund, M. Correia, A. C. M. Kiss, L. L. Venturini, J. Pagano, I. Güdel, M. Demangeon, O. D. S. Walton, N. A. Pallé, E. Piazza, D. Lecavelier des Etangs, A. Nascimbeni, V. Queloz, D. Sousa, S. G. Bruno, G. Isaak, K. G. Laskar, J. Pollacco, D. Villaver, E. Gillon, M. Deline, A. Heitzmann, A. Helling, Ch Sulis, S. Alonso, R. Barros, S. C. C. Rando, N. Günther, M. N. Billot, N. Scandariato, G. Baumjohann, W. Peter, G. Deleuil, M. Piotto, G. Wilson, T. G. Lendl, M. Collier Cameron, A. Davies, M. B. Broeg, C. Cubillos, P. E. Benz, W. D |
Author_xml | – sequence: 1 givenname: G. orcidid: 0000-0003-2029-0626 surname: Scandariato fullname: Scandariato, G. – sequence: 2 givenname: L. orcidid: 0000-0001-9355-3752 surname: Carone fullname: Carone, L. – sequence: 3 givenname: P. E. surname: Cubillos fullname: Cubillos, P. E. – sequence: 4 givenname: P. F. L. orcidid: 0000-0003-3794-1317 surname: Maxted fullname: Maxted, P. F. L. – sequence: 5 givenname: T. orcidid: 0000-0001-6880-5356 surname: Zingales fullname: Zingales, T. – sequence: 6 givenname: M. N. orcidid: 0000-0002-3164-9086 surname: Günther fullname: Günther, M. N. – sequence: 7 givenname: A. orcidid: 0000-0002-8091-7526 surname: Heitzmann fullname: Heitzmann, A. – sequence: 8 givenname: M. orcidid: 0000-0001-9699-1459 surname: Lendl fullname: Lendl, M. – sequence: 9 givenname: T. G. orcidid: 0000-0001-8749-1962 surname: Wilson fullname: Wilson, T. G. – sequence: 10 givenname: A. orcidid: 0000-0002-1916-5935 surname: Bonfanti fullname: Bonfanti, A. – sequence: 11 givenname: G. orcidid: 0000-0002-3288-0802 surname: Bruno fullname: Bruno, G. – sequence: 12 givenname: A. orcidid: 0000-0003-3615-4725 surname: Krenn fullname: Krenn, A. – sequence: 13 givenname: E. orcidid: 0000-0002-2160-8782 surname: Meier Valdes fullname: Meier Valdes, E. – sequence: 14 givenname: V. orcidid: 0000-0002-7485-6309 surname: Singh fullname: Singh, V. – sequence: 15 givenname: M. I. orcidid: 0000-0002-2609-3159 surname: Swayne fullname: Swayne, M. I. – sequence: 16 givenname: Y. orcidid: 0000-0002-4644-8818 surname: Alibert fullname: Alibert, Y. – sequence: 17 givenname: R. orcidid: 0000-0001-8462-8126 surname: Alonso fullname: Alonso, R. – sequence: 18 givenname: T. orcidid: 0000-0002-7822-4413 surname: Bárczy fullname: Bárczy, T. – sequence: 19 givenname: D. orcidid: 0000-0002-5971-9242 surname: Barrado Navascues fullname: Barrado Navascues, D. – sequence: 20 givenname: S. C. C. orcidid: 0000-0003-2434-3625 surname: Barros fullname: Barros, S. C. C. – sequence: 21 givenname: W. orcidid: 0000-0001-6271-0110 surname: Baumjohann fullname: Baumjohann, W. – sequence: 22 givenname: W. orcidid: 0000-0001-7896-6479 surname: Benz fullname: Benz, W. – sequence: 23 givenname: N. orcidid: 0000-0003-3429-3836 surname: Billot fullname: Billot, N. – sequence: 24 givenname: L. orcidid: 0000-0003-0066-9268 surname: Borsato fullname: Borsato, L. – sequence: 25 givenname: A. orcidid: 0000-0002-7201-7536 surname: Brandeker fullname: Brandeker, A. – sequence: 26 givenname: C. orcidid: 0000-0001-5132-2614 surname: Broeg fullname: Broeg, C. – sequence: 27 givenname: M. orcidid: 0009-0006-9440-236X surname: Buder fullname: Buder, M. – sequence: 28 givenname: M.-D. surname: Busch fullname: Busch, M.-D. – sequence: 29 givenname: A. orcidid: 0000-0002-8863-7828 surname: Collier Cameron fullname: Collier Cameron, A. – sequence: 30 givenname: A. C. M. orcidid: 0000-0002-8946-8579 surname: Correia fullname: Correia, A. C. M. – sequence: 31 givenname: Sz orcidid: 0000-0001-6803-9698 surname: Csizmadia fullname: Csizmadia, Sz – sequence: 32 givenname: M. B. orcidid: 0000-0001-6080-1190 surname: Davies fullname: Davies, M. B. – sequence: 33 givenname: M. orcidid: 0000-0001-6036-0225 surname: Deleuil fullname: Deleuil, M. – sequence: 34 givenname: A. surname: Deline fullname: Deline, A. – sequence: 35 givenname: L. orcidid: 0000-0001-6108-4808 surname: Delrez fullname: Delrez, L. – sequence: 36 givenname: O. D. S. orcidid: 0000-0001-7918-0355 surname: Demangeon fullname: Demangeon, O. D. S. – sequence: 37 givenname: B.-O. orcidid: 0000-0002-9355-5165 surname: Demory fullname: Demory, B.-O. – sequence: 38 givenname: A. orcidid: 0000-0002-6526-9444 surname: Derekas fullname: Derekas, A. – sequence: 39 givenname: B. orcidid: 0000-0002-5494-3237 surname: Edwards fullname: Edwards, B. – sequence: 40 givenname: D. orcidid: 0000-0001-9704-5405 surname: Ehrenreich fullname: Ehrenreich, D. – sequence: 41 givenname: A. surname: Erikson fullname: Erikson, A. – sequence: 42 givenname: J. orcidid: 0000-0002-5840-8362 surname: Farinato fullname: Farinato, J. – sequence: 43 givenname: A. orcidid: 0000-0001-8450-3374 surname: Fortier fullname: Fortier, A. – sequence: 44 givenname: L. orcidid: 0000-0003-4426-9530 surname: Fossati fullname: Fossati, L. – sequence: 45 givenname: M. orcidid: 0000-0002-0855-8426 surname: Fridlund fullname: Fridlund, M. – sequence: 46 givenname: D. orcidid: 0000-0001-8627-9628 surname: Gandolfi fullname: Gandolfi, D. – sequence: 47 givenname: K. surname: Gazeas fullname: Gazeas, K. – sequence: 48 givenname: M. orcidid: 0000-0003-1462-7739 surname: Gillon fullname: Gillon, M. – sequence: 49 givenname: M. surname: Güdel fullname: Güdel, M. – sequence: 50 givenname: Ch surname: Helling fullname: Helling, Ch – sequence: 51 givenname: K. G. orcidid: 0000-0001-8585-1717 surname: Isaak fullname: Isaak, K. G. – sequence: 52 givenname: L. L. orcidid: 0000-0002-3234-1374 surname: Kiss fullname: Kiss, L. L. – sequence: 53 givenname: J. orcidid: 0000-0002-0076-6239 surname: Korth fullname: Korth, J. – sequence: 54 givenname: K. W. F. orcidid: 0000-0002-9910-6088 surname: Lam fullname: Lam, K. W. F. – sequence: 55 givenname: J. orcidid: 0000-0003-2634-789X surname: Laskar fullname: Laskar, J. – sequence: 56 givenname: A. orcidid: 0000-0002-5637-5253 surname: Lecavelier des Etangs fullname: Lecavelier des Etangs, A. – sequence: 57 givenname: D. orcidid: 0000-0003-0312-313X surname: Magrin fullname: Magrin, D. – sequence: 58 givenname: B. orcidid: 0000-0002-8555-3012 surname: Merín fullname: Merín, B. – sequence: 59 givenname: C. orcidid: 0000-0002-1013-2811 surname: Mordasini fullname: Mordasini, C. – sequence: 60 givenname: V. orcidid: 0000-0001-9770-1214 surname: Nascimbeni fullname: Nascimbeni, V. – sequence: 61 givenname: G. orcidid: 0000-0003-3747-7120 surname: Olofsson fullname: Olofsson, G. – sequence: 62 givenname: R. surname: Ottensamer fullname: Ottensamer, R. – sequence: 63 givenname: I. orcidid: 0000-0001-9573-4928 surname: Pagano fullname: Pagano, I. – sequence: 64 givenname: E. orcidid: 0000-0003-0987-1593 surname: Pallé fullname: Pallé, E. – sequence: 65 givenname: G. orcidid: 0000-0001-6101-2513 surname: Peter fullname: Peter, G. – sequence: 66 givenname: D. surname: Piazza fullname: Piazza, D. – sequence: 67 givenname: G. orcidid: 0000-0002-9937-6387 surname: Piotto fullname: Piotto, G. – sequence: 68 givenname: D. surname: Pollacco fullname: Pollacco, D. – sequence: 69 givenname: D. orcidid: 0000-0002-3012-0316 surname: Queloz fullname: Queloz, D. – sequence: 70 givenname: R. orcidid: 0000-0002-7697-5555 surname: Ragazzoni fullname: Ragazzoni, R. – sequence: 71 givenname: N. surname: Rando fullname: Rando, N. – sequence: 72 givenname: H. orcidid: 0000-0002-6510-1828 surname: Rauer fullname: Rauer, H. – sequence: 73 givenname: I. orcidid: 0000-0002-6689-0312 surname: Ribas fullname: Ribas, I. – sequence: 74 givenname: N. C. orcidid: 0000-0003-4422-2919 surname: Santos fullname: Santos, N. C. – sequence: 75 givenname: D. orcidid: 0000-0003-2355-8034 surname: Ségransan fullname: Ségransan, D. – sequence: 76 givenname: A. E. orcidid: 0000-0001-9773-2600 surname: Simon fullname: Simon, A. E. – sequence: 77 givenname: A. M. S. orcidid: 0000-0002-2386-4341 surname: Smith fullname: Smith, A. M. S. – sequence: 78 givenname: S. G. orcidid: 0000-0001-9047-2965 surname: Sousa fullname: Sousa, S. G. – sequence: 79 givenname: M. surname: Stalport fullname: Stalport, M. – sequence: 80 givenname: S. orcidid: 0000-0001-8783-526X surname: Sulis fullname: Sulis, S. – sequence: 81 givenname: Gy. M. orcidid: 0000-0002-0606-7930 surname: Szabó fullname: Szabó, Gy. M. – sequence: 82 givenname: S. orcidid: 0000-0001-7576-6236 surname: Udry fullname: Udry, S. – sequence: 83 givenname: V. orcidid: 0000-0003-2144-4316 surname: Van Grootel fullname: Van Grootel, V. – sequence: 84 givenname: J. orcidid: 0000-0001-9527-2903 surname: Venturini fullname: Venturini, J. – sequence: 85 givenname: E. surname: Villaver fullname: Villaver, E. – sequence: 86 givenname: N. A. orcidid: 0000-0003-3983-8778 surname: Walton fullname: Walton, N. A. |
BackLink | https://insu.hal.science/insu-04846476$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-240711$$DView record from Swedish Publication Index https://research.chalmers.se/publication/544302$$DView record from Swedish Publication Index |
BookMark | eNp1kc1P4zAQxS3EShSWv4BLzojAjL_iHKsCW6RKIJVdjqM4HbdBoUFxP8R_vy5FFXvYkz32e7830jsVx8tuyUJcIFwjGLwBAJ1bZfFGgtQGQZdHYoBayRwKbY_F4KA4EacxvqZRolMDcfm84Gw0vnt8mmabhrdZF7JVeqrb5q1a8W58GU6fcpX5n-JHqNrI51_nmfh9f_c8GueTx18Po-Ekr7Wyq1w6Lj1DlYKVn0ldGlTWSODKGzBqVkBg5wBqcGDZOl9qwNpoLFFzmLE6E9M9N275fe3pvU-r9B_UVQ31HLnq6wXVi6p94z5SZFKKfVASyLiApG3pyDtVUiKHIiAW2s8S9eq_1Nvmz5C6fk5xTVJDgZjkai9vG55z-vQNbeSn-vO-budU1eSZpLSOlCzAmOS63LvSdv8kjIcTapYJD9ppqwu7-RZR912MPYeDA4F2tdKuNNqVRoda1V80apEZ |
Cites_doi | 10.1007/s10509-007-9650-1 10.1093/mnras/stab1310 10.1051/0004-6361/202348270 10.1086/304233 10.1038/nature09013 10.1051/0004-6361/202244223 10.1051/0004-6361/202348502 10.1051/0004-6361/202243974 10.1093/mnras/staa1733 10.1051/0004-6361/201935771 10.1029/2020JE006629 10.1051/0004-6361:20054598 10.1051/0004-6361/202039653 10.1088/0004-637X/744/2/122 10.1515/9781400883073 10.1086/429991 10.1086/422843 10.1088/0004-637X/776/2/134 10.1088/0004-637X/813/1/13 10.1051/0004-6361/201424951 10.1051/0004-6361/202346705 10.1111/j.1365-2966.2007.11987.x 10.1093/biomet/69.1.242 10.1093/mnras/stab3799 10.1051/0004-6361/202038677 10.1051/0004-6361/201834085 10.3847/1538-3881/acb4e3 10.3847/1538-4357/835/1/77 10.1214/aos/1176344136 10.1088/0004-637X/802/2/107 10.1051/0004-6361/200911933 10.1111/j.1365-2966.2008.12939.x 10.1051/0004-6361/202245016 10.1086/498708 10.1093/mnras/180.2.177 10.1088/0004-637X/754/2/136 10.1051/0004-6361/202243082 10.1111/j.1365-2966.2009.14548.x 10.1093/mnras/stac2623 10.1088/0004-637X/755/1/9 10.1086/345520 10.1086/670067 10.1051/0004-6361/201834563 10.1093/mnras/stab1323 10.1088/0004-637X/797/1/42 10.1051/0004-6361/201321132 10.1111/j.1365-2966.2012.21926.x 10.1088/0004-637X/768/1/42 10.1088/0004-637X/727/2/125 10.1093/mnras/staa3418 10.1051/0004-6361/202142728 10.1093/mnras/staa2848 10.1088/0004-6256/140/6/1868 10.1007/s11222-008-9104-9 10.1051/0004-6361/202244117 10.1088/0004-637X/742/1/35 10.1051/0004-6361/202039608 10.1117/1.JATIS.1.1.014003 10.1051/0004-6361/202346117 10.3847/1538-3881/aaa458 10.3847/1538-4357/ac0252 10.1051/0004-6361/202140345 10.1093/mnras/stae984 10.1086/306745 10.1051/0004-6361/202243956 10.1016/j.jqsrt.2020.107228 10.3847/1538-3881/ac0c7d 10.1109/PROC.1966.4634 10.1051/0004-6361/202140913 10.1051/0004-6361/202039037 10.1007/s10686-020-09679-4 10.1051/0004-6361/201527297 10.1051/0004-6361/202348576 10.1017/CBO9780511994852 10.1088/0004-6256/146/6/147 10.3847/1538-4357/aa9567 10.1051/0004-6361/201629882 10.1088/0004-637X/805/2/132 10.1051/0004-6361/202243940 10.3847/2041-8213/ab5b09 10.1088/0004-637X/729/1/54 10.1051/0004-6361/202141645 10.3847/1538-4357/abd549 10.1086/309160 10.1016/0019-1035(86)90123-5 10.1093/mnras/stab3371 10.3847/1538-3881/acb210 10.1093/rasti/rzac004 10.1093/mnras/stv470 10.1093/mnras/stu814 10.3847/0004-637X/821/1/16 10.1051/0004-6361/201832944 10.3847/1538-3881/153/1/3 10.1051/0004-6361/202039699 10.1051/0004-6361/201322971 10.3847/1538-3881/ac0e30 10.3847/1538-4357/ab4a76 10.1051/0004-6361/201936325 10.3847/2041-8213/aabcc8 10.3847/0004-6256/152/2/44 10.1515/9781400835300 |
ContentType | Journal Article Web Resource |
Copyright | Attribution |
Copyright_xml | – notice: Attribution |
DBID | AAYXX CITATION 1XC VOOES Q33 ABAVF ADTPV AOWAS D8T DG7 ZZAVC ABBSD F1S |
DOI | 10.1051/0004-6361/202451049 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text SWEPUB Chalmers tekniska högskola full text SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | oai_research_chalmers_se_33ebf320_58f1_4698_b839_b94f7f1174bd oai_DiVA_org_su_240711 oai_orbi_ulg_ac_be_2268_327055 oai_HAL_insu_04846476v1 10_1051_0004_6361_202451049 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 1XC VOOES Q33 ABAVF ADTPV AOWAS D8T DG7 ZZAVC ABBSD F1S |
ID | FETCH-LOGICAL-c436t-28e9be0a0743bd2495136520eab5053d70fe8800c0806e68b9401c541914efde3 |
ISSN | 0004-6361 1432-0746 |
IngestDate | Thu Aug 21 06:24:59 EDT 2025 Thu Aug 21 06:28:17 EDT 2025 Fri Jul 18 15:27:14 EDT 2025 Wed Aug 20 06:52:26 EDT 2025 Tue Jul 01 02:08:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | planets and satellites: individual: WASP-3b planets and satellites: atmospheres planets and satellites: gaseous planets planets and satellites: detection Astrophysics - Earth and Planetary Astrophysics techniques: photometric |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-28e9be0a0743bd2495136520eab5053d70fe8800c0806e68b9401c541914efde3 |
Notes | scopus-id:2-s2.0-85211570628 |
ORCID | 0000-0002-2609-3159 0000-0001-9773-2600 0000-0002-5971-9242 0000-0002-1916-5935 0000-0002-8091-7526 0000-0003-3429-3836 0000-0003-2144-4316 0000-0003-3983-8778 0000-0001-6271-0110 0000-0003-0066-9268 0000-0001-6108-4808 0000-0001-6880-5356 0000-0002-0606-7930 0000-0002-6689-0312 0000-0001-7576-6236 0000-0002-7697-5555 0000-0002-6510-1828 0000-0002-3288-0802 0000-0001-7896-6479 0000-0001-9770-1214 0000-0002-3012-0316 0000-0001-8450-3374 0000-0002-5494-3237 0000-0002-9355-5165 0000-0002-8555-3012 0000-0003-0987-1593 0000-0001-9047-2965 0000-0002-7201-7536 0009-0006-9440-236X 0000-0003-4422-2919 0000-0002-9910-6088 0000-0001-7918-0355 0000-0003-0312-313X 0000-0003-4426-9530 0000-0001-6080-1190 0000-0002-5637-5253 0000-0002-0855-8426 0000-0001-6036-0225 0000-0001-8585-1717 0000-0002-8946-8579 0000-0001-9704-5405 0000-0002-5840-8362 0000-0001-6101-2513 0000-0002-1013-2811 0000-0001-5132-2614 0000-0002-3234-1374 0000-0002-7822-4413 0000-0002-3164-9086 0000-0001-8749-1962 0000-0002-7485-6309 0000-0003-2355-8034 0000-0001-9355-3752 0000-0003-2029-0626 0000-0003-3747-7120 0000-0002-2160-8782 0000-0001-9699-1459 0000-0002-4644-8818 0000-0003-1462-7739 0000-0001-8627-9628 0000-0003-3615-4725 0000-0002-8863-7828 0000-0001-8462-8126 0000-0002-2386-4341 0000-0002-9937-6387 0000-0003-2434-3625 0000-0001-6803-9698 0000-0001-9573-4928 0000-0003-3794-1317 0000-0002-0076-6239 0000-0001-9527-2903 0000-0003-2634-789X 0000-0002-6526-9444 0000-0001-8783-526X 0000-0002-8275-1371 0000-0001-9818-0588 0000-0003-0996-6402 |
OpenAccessLink | https://research.chalmers.se/publication/544302 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_33ebf320_58f1_4698_b839_b94f7f1174bd swepub_primary_oai_DiVA_org_su_240711 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_327055 hal_primary_oai_HAL_insu_04846476v1 crossref_primary_10_1051_0004_6361_202451049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2024 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Cubillos (R23) 2013; 768 Mandel (R56) 2002; 580 Hooton (R45) 2022; 658 Skrutskie (R91) 2006; 131 Tennyson (R102) 2020; 255 Buldyreva (R15) 2022; 1 Montalto (R63) 2012; 427 Fazio (R29) 2004; 154 Høg (R44) 2000; 355 Charbonneau (R20) 2005; 626 Bonomo (R12) 2017; 602 Tennyson (R101) 2013; 1545 Cubillos (R24) 2014; 797 Vallenari (R34) 2023; 674 Parviainen (R71) 2022; 668 Baeyens (R5) 2021; 505 Maxted (R59) 2018; 616 Stock (R95) 2022; 517 Parmentier (R70) 2021; 501 Deming (R27) 2015; 805 Ricker (R76) 2015; 1 Pollack (R75) 1986; 67 Stevenson (R92) 2010; 464 Mansfield (R57) 2020; 888 Nymeyer (R65) 2011; 742 Buchner (R14) 2014; 564 Helling (R38) 2006; 455 Helling (R40) 2019; 631 Sulis (R98) 2023; 670 Akinsanmi (R1) 2024; 685 Al-Refaie (R2) 2021; 917 Pollacco (R74) 2008; 385 Allard (R4) 2012; 370 Tan (R100) 2019; 886 Waldmann (R105) 2015; 802 Lindegren (R54) 2021; 649 Fortney (R33) 2021; 126 Morris (R64) 2021; 651 R43 Szabó (R99) 2021; 654 Komacek (R49) 2016; 821 Perez-Becker (R72) 2013; 776 Roman (R77) 2021; 908 Stevenson (R93) 2012; 754 Wilson (R106) 2022; 511 Foreman-Mackey (R31) 2013; 125 Hauschildt (R37) 1999; 512 Roth (R79) 2024; 531 Oddo (R66) 2023; 165 R53 Cowan (R22) 2011; 729 Gelman (R35) 1992; 7 Carone (R18) 2020; 496 Feroz (R30) 2009; 398 Waldmann (R104) 2015; 813 Singh (R90) 2022; 658 Lendl (R52) 2020; 643 Marigo (R58) 2017; 835 Zhao (R110) 2012; 744 Bonfanti (R9) 2015; 575 Schwartz (R84) 2015; 449 Helling (R42) 2023; 671 Fortier (R32) 2024; 687 Maciejewski (R55) 2013; 146 Schanche (R81) 2020; 499 Campo (R17) 2011; 727 Demangeon (R26) 2024; 684 R68 Scuflaire (R86) 2008; 316 Street (R96) 2007; 379 Helling (R41) 2021; 648 Brandeker (R13) 2022; 659 Wong (R107) 2021; 162 Léger (R51) 2009; 506 Stevenson (R94) 2012; 755 Scandariato (R80) 2022; 668 Sudarsky (R97) 2000; 538 R73 Maxted (R61) 2022; 514 Wright (R108) 2010; 140 Siegel (R89) 1982; 69 Ingalls (R48) 2016; 152 Hoyer (R46) 2020; 635 Krenn (R50) 2023; 672 Schwarz (R83) 1978; 6 ter Braak (R103) 2008; 18 Castelli (R19) 2003; 210 Hoyer (R47) 2023; 675 Deming (R28) 2023; 165 Helling (R39) 2019; 626 Bell (R6) 2018; 857 Rostron (R78) 2014; 441 Maxted (R60) 2019; 622 May (R62) 2021; 162 Schneider (R82) 2022; 664 R87 Pagano (R67) 2024; 682 R88 Bonfanti (R11) 2021; 646 Blackwell (R8) 1977; 180 Hauschildt (R36) 1997; 483 Cubillos (R25) 2017; 153 Schwartz (R85) 2017; 850 Benz (R7) 2021; 51 Zhang (R109) 2018; 155 Bonfanti (R10) 2016; 585 Allan (R3) 1966; 54 Collier Cameron (R21) 2021; 505 R16 Parmentier (R69) 2013; 558 |
References_xml | – volume: 316 start-page: 83 year: 2008 ident: R86 publication-title: Ap&SS doi: 10.1007/s10509-007-9650-1 – volume: 7 start-page: 457 year: 1992 ident: R35 publication-title: Statist. Sci. – volume: 505 start-page: 5603 year: 2021 ident: R5 publication-title: MNRAS doi: 10.1093/mnras/stab1310 – volume: 684 start-page: A27 year: 2024 ident: R26 publication-title: A&A doi: 10.1051/0004-6361/202348270 – volume: 483 start-page: 390 year: 1997 ident: R36 publication-title: ApJ doi: 10.1086/304233 – volume: 464 start-page: 1161 year: 2010 ident: R92 publication-title: Nature doi: 10.1038/nature09013 – volume: 670 start-page: A24 year: 2023 ident: R98 publication-title: A&A doi: 10.1051/0004-6361/202244223 – ident: R88 – volume: 210 start-page: A20 year: 2003 ident: R19 publication-title: Modelling of Stellar Atmospheres – volume: 685 start-page: A63 year: 2024 ident: R1 publication-title: A&A doi: 10.1051/0004-6361/202348502 – volume: 668 start-page: A17 year: 2022 ident: R80 publication-title: A&A doi: 10.1051/0004-6361/202243974 – volume: 496 start-page: 3582 year: 2020 ident: R18 publication-title: MNRAS doi: 10.1093/mnras/staa1733 – volume: 631 start-page: A79 year: 2019 ident: R40 publication-title: A&A doi: 10.1051/0004-6361/201935771 – volume: 126 start-page: e06629 year: 2021 ident: R33 publication-title: J. Geophys. Res. Planets doi: 10.1029/2020JE006629 – volume: 455 start-page: 325 year: 2006 ident: R38 publication-title: A&A doi: 10.1051/0004-6361:20054598 – volume: 649 start-page: A4 year: 2021 ident: R54 publication-title: A&A doi: 10.1051/0004-6361/202039653 – volume: 744 start-page: 122 year: 2012 ident: R110 publication-title: ApJ doi: 10.1088/0004-637X/744/2/122 – ident: R43 doi: 10.1515/9781400883073 – volume: 626 start-page: 523 year: 2005 ident: R20 publication-title: ApJ doi: 10.1086/429991 – ident: R16 – volume: 154 start-page: 10 year: 2004 ident: R29 publication-title: ApJS doi: 10.1086/422843 – volume: 776 start-page: 134 year: 2013 ident: R72 publication-title: ApJ doi: 10.1088/0004-637X/776/2/134 – volume: 813 start-page: 13 year: 2015 ident: R104 publication-title: ApJ doi: 10.1088/0004-637X/813/1/13 – volume: 575 start-page: A18 year: 2015 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201424951 – ident: R68 – volume: 682 start-page: A102 year: 2024 ident: R67 publication-title: A&A doi: 10.1051/0004-6361/202346705 – volume: 379 start-page: 816 year: 2007 ident: R96 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.11987.x – volume: 69 start-page: 242 year: 1982 ident: R89 publication-title: Biometrika doi: 10.1093/biomet/69.1.242 – volume: 511 start-page: 1043 year: 2022 ident: R106 publication-title: MNRAS doi: 10.1093/mnras/stab3799 – volume: 643 start-page: A94 year: 2020 ident: R52 publication-title: A&A doi: 10.1051/0004-6361/202038677 – volume: 626 start-page: A133 year: 2019 ident: R39 publication-title: A&A doi: 10.1051/0004-6361/201834085 – ident: R53 – volume: 165 start-page: 134 year: 2023 ident: R66 publication-title: AJ doi: 10.3847/1538-3881/acb4e3 – volume: 835 start-page: 77 year: 2017 ident: R58 publication-title: ApJ doi: 10.3847/1538-4357/835/1/77 – volume: 6 start-page: 461 year: 1978 ident: R83 publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – volume: 802 start-page: 107 year: 2015 ident: R105 publication-title: ApJ doi: 10.1088/0004-637X/802/2/107 – volume: 506 start-page: 287 year: 2009 ident: R51 publication-title: A&A doi: 10.1051/0004-6361/200911933 – volume: 385 start-page: 1576 year: 2008 ident: R74 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.12939.x – volume: 672 start-page: A24 year: 2023 ident: R50 publication-title: A&A doi: 10.1051/0004-6361/202245016 – volume: 131 start-page: 1163 year: 2006 ident: R91 publication-title: AJ doi: 10.1086/498708 – volume: 180 start-page: 177 year: 1977 ident: R8 publication-title: MNRAS doi: 10.1093/mnras/180.2.177 – volume: 754 start-page: 136 year: 2012 ident: R93 publication-title: ApJ doi: 10.1088/0004-637X/754/2/136 – volume: 659 start-page: L4 year: 2022 ident: R13 publication-title: A&A doi: 10.1051/0004-6361/202243082 – volume: 398 start-page: 1601 year: 2009 ident: R30 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14548.x – volume: 517 start-page: 4070 year: 2022 ident: R95 publication-title: MNRAS doi: 10.1093/mnras/stac2623 – volume: 755 start-page: 9 year: 2012 ident: R94 publication-title: ApJ doi: 10.1088/0004-637X/755/1/9 – volume: 580 start-page: L171 year: 2002 ident: R56 publication-title: ApJ doi: 10.1086/345520 – volume: 125 start-page: 306 year: 2013 ident: R31 publication-title: PASP doi: 10.1086/670067 – volume: 622 start-page: A33 year: 2019 ident: R60 publication-title: A&A doi: 10.1051/0004-6361/201834563 – volume: 505 start-page: 1699 year: 2021 ident: R21 publication-title: MNRAS doi: 10.1093/mnras/stab1323 – volume: 797 start-page: 42 year: 2014 ident: R24 publication-title: ApJ doi: 10.1088/0004-637X/797/1/42 – volume: 558 start-page: A91 year: 2013 ident: R69 publication-title: A&A doi: 10.1051/0004-6361/201321132 – volume: 427 start-page: 2757 year: 2012 ident: R63 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21926.x – volume: 768 start-page: 42 year: 2013 ident: R23 publication-title: ApJ doi: 10.1088/0004-637X/768/1/42 – volume: 727 start-page: 125 year: 2011 ident: R17 publication-title: ApJ doi: 10.1088/0004-637X/727/2/125 – volume: 501 start-page: 78 year: 2021 ident: R70 publication-title: MNRAS doi: 10.1093/mnras/staa3418 – volume: 664 start-page: A56 year: 2022 ident: R82 publication-title: A&A doi: 10.1051/0004-6361/202142728 – volume: 499 start-page: 428 year: 2020 ident: R81 publication-title: MNRAS doi: 10.1093/mnras/staa2848 – volume: 140 start-page: 1868 year: 2010 ident: R108 publication-title: AJ doi: 10.1088/0004-6256/140/6/1868 – volume: 18 start-page: 435 year: 2008 ident: R103 publication-title: Statist. Comput. doi: 10.1007/s11222-008-9104-9 – volume: 668 start-page: A93 year: 2022 ident: R71 publication-title: A&A doi: 10.1051/0004-6361/202244117 – volume: 742 start-page: 35 year: 2011 ident: R65 publication-title: ApJ doi: 10.1088/0004-637X/742/1/35 – volume: 646 start-page: A157 year: 2021 ident: R11 publication-title: A&A doi: 10.1051/0004-6361/202039608 – volume: 1 start-page: 014003 year: 2015 ident: R76 publication-title: J. Astron. Telesc. Instrum. Syst. doi: 10.1117/1.JATIS.1.1.014003 – volume: 675 start-page: A81 year: 2023 ident: R47 publication-title: A&A doi: 10.1051/0004-6361/202346117 – volume: 155 start-page: 83 year: 2018 ident: R109 publication-title: AJ doi: 10.3847/1538-3881/aaa458 – volume: 917 start-page: 37 year: 2021 ident: R2 publication-title: ApJ doi: 10.3847/1538-4357/ac0252 – volume: 654 start-page: A159 year: 2021 ident: R99 publication-title: A&A doi: 10.1051/0004-6361/202140345 – volume: 370 start-page: 2765 year: 2012 ident: R4 publication-title: Philos. Trans. Roy. Soc. Lond. A – volume: 531 start-page: 1056 year: 2024 ident: R79 publication-title: MNRAS doi: 10.1093/mnras/stae984 – volume: 512 start-page: 377 year: 1999 ident: R37 publication-title: ApJ doi: 10.1086/306745 – volume: 671 start-page: A122 year: 2023 ident: R42 publication-title: A&A doi: 10.1051/0004-6361/202243956 – volume: 255 start-page: 107228 year: 2020 ident: R102 publication-title: J. Quant. Spec. Radiat. Transf. doi: 10.1016/j.jqsrt.2020.107228 – volume: 162 start-page: 127 year: 2021 ident: R107 publication-title: AJ doi: 10.3847/1538-3881/ac0c7d – volume: 54 start-page: 221 year: 1966 ident: R3 publication-title: IEEE Proc. doi: 10.1109/PROC.1966.4634 – volume: 651 start-page: L12 year: 2021 ident: R64 publication-title: A&A doi: 10.1051/0004-6361/202140913 – volume: 658 start-page: A132 year: 2022 ident: R90 publication-title: A&A doi: 10.1051/0004-6361/202039037 – volume: 51 start-page: 109 year: 2021 ident: R7 publication-title: Ex. Astron. doi: 10.1007/s10686-020-09679-4 – volume: 585 start-page: A5 year: 2016 ident: R10 publication-title: A&A doi: 10.1051/0004-6361/201527297 – volume: 687 start-page: A302 year: 2024 ident: R32 publication-title: A&A doi: 10.1051/0004-6361/202348576 – ident: R73 doi: 10.1017/CBO9780511994852 – volume: 146 start-page: 147 year: 2013 ident: R55 publication-title: AJ doi: 10.1088/0004-6256/146/6/147 – volume: 850 start-page: 154 year: 2017 ident: R85 publication-title: ApJ doi: 10.3847/1538-4357/aa9567 – volume: 355 start-page: L27 year: 2000 ident: R44 publication-title: A&A – volume: 602 start-page: A107 year: 2017 ident: R12 publication-title: A&A doi: 10.1051/0004-6361/201629882 – volume: 805 start-page: 132 year: 2015 ident: R27 publication-title: ApJ doi: 10.1088/0004-637X/805/2/132 – volume: 674 start-page: A1 year: 2023 ident: R34 publication-title: A&A doi: 10.1051/0004-6361/202243940 – volume: 888 start-page: L15 year: 2020 ident: R57 publication-title: ApJ doi: 10.3847/2041-8213/ab5b09 – volume: 729 start-page: 54 year: 2011 ident: R22 publication-title: ApJ doi: 10.1088/0004-637X/729/1/54 – volume: 658 start-page: A75 year: 2022 ident: R45 publication-title: A&A doi: 10.1051/0004-6361/202141645 – volume: 908 start-page: 101 year: 2021 ident: R77 publication-title: ApJ doi: 10.3847/1538-4357/abd549 – volume: 538 start-page: 885 year: 2000 ident: R97 publication-title: ApJ doi: 10.1086/309160 – volume: 67 start-page: 409 year: 1986 ident: R75 publication-title: Icarus doi: 10.1016/0019-1035(86)90123-5 – volume: 514 start-page: 77 year: 2022 ident: R61 publication-title: MNRAS doi: 10.1093/mnras/stab3371 – volume: 165 start-page: 104 year: 2023 ident: R28 publication-title: AJ doi: 10.3847/1538-3881/acb210 – volume: 1 start-page: 43 year: 2022 ident: R15 publication-title: RAS Tech. Instrum. doi: 10.1093/rasti/rzac004 – volume: 449 start-page: 4192 year: 2015 ident: R84 publication-title: MNRAS doi: 10.1093/mnras/stv470 – volume: 441 start-page: 3666 year: 2014 ident: R78 publication-title: MNRAS doi: 10.1093/mnras/stu814 – volume: 1545 start-page: 186 year: 2013 ident: R101 publication-title: AIP Conf. Ser. – volume: 821 start-page: 16 year: 2016 ident: R49 publication-title: ApJ doi: 10.3847/0004-637X/821/1/16 – volume: 616 start-page: A39 year: 2018 ident: R59 publication-title: A&A doi: 10.1051/0004-6361/201832944 – volume: 153 start-page: 3 year: 2017 ident: R25 publication-title: AJ doi: 10.3847/1538-3881/153/1/3 – volume: 648 start-page: A80 year: 2021 ident: R41 publication-title: A&A doi: 10.1051/0004-6361/202039699 – volume: 564 start-page: A125 year: 2014 ident: R14 publication-title: A&A doi: 10.1051/0004-6361/201322971 – volume: 162 start-page: 158 year: 2021 ident: R62 publication-title: AJ doi: 10.3847/1538-3881/ac0e30 – volume: 886 start-page: 26 year: 2019 ident: R100 publication-title: ApJ doi: 10.3847/1538-4357/ab4a76 – volume: 635 start-page: A24 year: 2020 ident: R46 publication-title: A&A doi: 10.1051/0004-6361/201936325 – volume: 857 start-page: L20 year: 2018 ident: R6 publication-title: ApJ doi: 10.3847/2041-8213/aabcc8 – volume: 152 start-page: 44 year: 2016 ident: R48 publication-title: AJ doi: 10.3847/0004-6256/152/2/44 – ident: R87 doi: 10.1515/9781400835300 |
RestrictionsOnAccess | open access |
SSID | ssj0002183 |
Score | 2.469104 |
Snippet | Context
. Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most... Context. Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most... |
SourceID | swepub liege hal crossref |
SourceType | Open Access Repository Index Database |
StartPage | A129 |
SubjectTerms | astro-ph.EP Astronomy and Astrophysics Aérospatiale, astronomie & astrophysique Jupiters Pass bands Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre Planet and satellite: gaseous planet Planet and satellite: individual: WASP-3b Planets and satellites planets and satellites: atmospheres planets and satellites: detection Planets and satellites: detections planets and satellites: gaseous planets Planets and satellites: individual planets and satellites: individual: WASP-3b Sciences of the Universe Space and Planetary Science Space science, astronomy & astrophysics Spitzer techniques: photometric |
Title | The CHEOPS view of the climate of WASP-3 b |
URI | https://insu.hal.science/insu-04846476 http://orbi.ulg.ac.be/handle/2268/327055 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-240711 https://research.chalmers.se/publication/544302 |
Volume | 692 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF7RVkhcEBRQw0uWeBwITu3d9etolUBALURKC72tvA83kUyDmqRCHPjtzOzajgM9QMXFWq_XI2tmvP5mPA9CnmuqARYn3M8SE_g8K41fBCX1leHaJFompa1bcPQxHp3wD6fRadPvvs4uWcqB-nFlXsl1pApzIFfMkv0HybZEYQLGIF84goTh-NcyPhgNP40n_SYBBXGkqmaAQ60z4Es-GfusL7sYNF-g-3v-1VVeKvDM-TesA9bVv-o4CCbKOhtAhNar-q4wgCfn638XQMs1ax60cys5qyoXvzce9IfthaPie-1cHQ-67gbKO6EbzRbK_Zi5CurNFhq7fnZ_bMfwxrv4RXcLZp_gr14wAbP192ej0nVd4mgq1NT2j1mIhRGMGVkyGogoLUOBPS-FBGAnZMbLpAzBqJJ6i-xQsBRsvvf7n-3HGBGgs4DcI9hkM4YBtzxuilBF4X57fb99wA2gsjXFMNmdCgMZfisqa4HI8R1yu7YgvNypw11yw5zvkr1WqN5LL--IdJfcHLvRPfIK9MVz-uKhvnjz0gN98Wp9wVOnL568T07eDo8PRn7dK8NXnMVLn6YmkyYoEBFKjQ3FMX6RBqaQgHGZToLSwFYdYGH52MQpsC4IVcSxvJ8ptWEPyPY56Mse8RCza5UUGUc2SJ0ywzNa0KhQqTaa9sjrhjHimyuJImwoQxRiKAMXyEfR8rFHngHz2pUo5FF-KDDVQsDng8c8iS9DIGqZK-YXciYuqV1nx6vqTBRKSCPAUkgFo1j_qUdeOBls0H0z-5zDTWcCSFtPBZA9vGLdtZXs4f8l94jcWr9ij8n28mJlngDGXcqnVot_AUVzmmo |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+CHEOPS+view+of+the+climate+of+WASP-3+b&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Scandariato%2C+Gaetano&rft.au=Carone%2C+L.&rft.au=Cubillos%2C+P.+E.&rft.au=Maxted%2C+P.&rft.date=2024-12-01&rft.issn=0004-6361&rft.volume=692&rft_id=info:doi/10.1051%2F0004-6361%2F202451049&rft.externalDocID=oai_research_chalmers_se_33ebf320_58f1_4698_b839_b94f7f1174bd |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |