Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/β-catenin targets

Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 38; no. 6; pp. 1964 - 1981
Main Authors Weise, Andreas, Bruser, Katja, Elfert, Susanne, Wallmen, Britta, Wittel, Yvonne, Wöhrle, Simon, Hecht, Andreas
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/β-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/β-catenin signalling.
AbstractList Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/β-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/β-catenin signalling.
Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/β-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/β-catenin signalling.
Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of beta-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/beta-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/beta-catenin signalling.
Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of beta-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/beta-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/beta-catenin signalling.Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of beta-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/beta-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/beta-catenin signalling.
Author Wittel, Yvonne
Weise, Andreas
Hecht, Andreas
Elfert, Susanne
Bruser, Katja
Wöhrle, Simon
Wallmen, Britta
AuthorAffiliation 1 Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research (ZBMZ), 2 Faculty of Biology and 3 Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Germany
AuthorAffiliation_xml – name: 1 Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research (ZBMZ), 2 Faculty of Biology and 3 Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Germany
Author_xml – sequence: 1
  fullname: Weise, Andreas
– sequence: 2
  fullname: Bruser, Katja
– sequence: 3
  fullname: Elfert, Susanne
– sequence: 4
  fullname: Wallmen, Britta
– sequence: 5
  fullname: Wittel, Yvonne
– sequence: 6
  fullname: Wöhrle, Simon
– sequence: 7
  fullname: Hecht, Andreas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20044351$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFE3fIrQcU1p-Jc0GqKr6kShxoxdGaOJPUkHWC7V3Ef-LED-E34bBLVZAQJ8uaZ955R_OekCM_eSTkMaPPGW3E2kNYD59mxpr6HlkxUfFSNhU_IisqqCoZlfqYnMT4kVImmZIPyDGnVEqh2Ip8Ox8TBg_J7bCI8-is80Mx9cWV7euRFymAjza4OcViQI8BEsZiDlNC54sdBAc-l764dFN0ru8xoE8OxgXZZCiUrfPdogm-u6PmJp8hsHkuLJ-FnzEkl9UhFR98Wv_4Xto8zec5CcKAKT4k93sYIz46vKfk-tXLq4s35eW7128vzi9LK0WVSmZRNtrSttGUd7pGIbAHS5VsVY0tt5XSinMQFLCtO94jCAWc9oCadlaJU_Jirztv2w12Nq8UYDRzcBsIX80EzvxZ8e7GDNPOcC1rLnUWODsIhOnzFmMyGxctjiN4nLbR1JJXWktZ_Z8UQvGKMpHJJ3dN3br5fcsMPNsDNkwxBuxvEUbNkhSTk2IOSck0-4u2Lv06Rd7Ijf_oebrv6WEyMAQXzfV7ns1RpjmvpBI_AWdG090
CitedBy_id crossref_primary_10_4252_wjsc_v13_i10_1394
crossref_primary_10_1007_s13402_015_0266_0
crossref_primary_10_1093_hmg_ddr454
crossref_primary_10_1093_nar_gku1186
crossref_primary_10_3390_cells12222620
crossref_primary_10_1007_s00125_013_3154_z
crossref_primary_10_1007_s00429_012_0474_6
crossref_primary_10_1016_j_cellsig_2011_01_007
crossref_primary_10_1016_j_celrep_2019_10_110
crossref_primary_10_1016_j_ydbio_2012_05_012
crossref_primary_10_1111_febs_16934
crossref_primary_10_1016_j_dci_2021_104041
crossref_primary_10_1093_hmg_ddu553
crossref_primary_10_1128_MCB_06288_11
crossref_primary_10_1016_j_cels_2020_08_004
crossref_primary_10_1007_s00018_012_0931_7
crossref_primary_10_1073_pnas_2405523121
crossref_primary_10_1186_s12864_017_3764_9
crossref_primary_10_1242_jcs_242297
crossref_primary_10_1002_ajmg_a_62254
crossref_primary_10_2174_1574888X16666211207103628
crossref_primary_10_1038_s41374_019_0204_2
crossref_primary_10_1038_s41419_020_02905_z
crossref_primary_10_1038_cddis_2016_455
crossref_primary_10_1038_s41388_019_0905_4
crossref_primary_10_1159_000518249
crossref_primary_10_1136_jclinpath_2019_205698
crossref_primary_10_3390_cancers8070070
crossref_primary_10_1007_s00125_017_4242_2
crossref_primary_10_1111_dgd_12771
crossref_primary_10_1007_s00438_023_02049_7
crossref_primary_10_1016_j_bbagen_2012_08_010
crossref_primary_10_1016_j_ceb_2012_03_005
crossref_primary_10_1371_journal_pone_0061867
crossref_primary_10_1186_1477_7827_8_154
crossref_primary_10_1186_s12943_016_0579_2
crossref_primary_10_1371_journal_pone_0067694
crossref_primary_10_1007_s11892_010_0149_8
crossref_primary_10_1093_hmg_ddr072
crossref_primary_10_3390_cells9030760
crossref_primary_10_1128_MCB_06769_11
crossref_primary_10_1002_ctm2_1042
crossref_primary_10_1016_j_molmet_2020_101078
crossref_primary_10_2147_CMAR_S305464
crossref_primary_10_1111_obr_13166
crossref_primary_10_1186_s12863_016_0372_7
crossref_primary_10_1016_j_gene_2013_03_089
crossref_primary_10_1186_gb_2012_13_9_r52
crossref_primary_10_1021_jacs_1c00599
crossref_primary_10_1093_jb_mvv117
crossref_primary_10_1016_j_bbrc_2010_07_062
crossref_primary_10_1007_s00125_011_2290_6
crossref_primary_10_1016_j_bbagrm_2016_08_002
crossref_primary_10_1261_rna_066712_118
crossref_primary_10_1371_journal_pone_0086180
crossref_primary_10_1016_j_celrep_2022_111247
crossref_primary_10_1007_s10571_011_9778_y
crossref_primary_10_1038_s41467_019_09289_5
crossref_primary_10_4161_adip_24751
crossref_primary_10_1073_pnas_1309342111
crossref_primary_10_1007_s00018_013_1379_0
crossref_primary_10_1016_j_gene_2012_07_083
crossref_primary_10_3390_cancers8080074
crossref_primary_10_1093_hmg_ddu359
crossref_primary_10_1186_2193_1801_3_41
crossref_primary_10_1038_emboj_2010_195
crossref_primary_10_1111_j_1748_1716_2011_02293_x
crossref_primary_10_1242_dmm_049233
crossref_primary_10_1016_j_gpb_2021_10_004
crossref_primary_10_2337_db12_0239
crossref_primary_10_1523_JNEUROSCI_2386_20_2021
crossref_primary_10_1101_gad_17227011
crossref_primary_10_1371_journal_pone_0233582
crossref_primary_10_1371_journal_pgen_1007109
crossref_primary_10_1074_jbc_M110_132209
crossref_primary_10_1182_blood_2019004664
crossref_primary_10_1038_srep19223
crossref_primary_10_1152_ajpcell_00030_2019
crossref_primary_10_1155_2013_906590
crossref_primary_10_1016_j_yexcr_2011_03_019
crossref_primary_10_1210_er_2015_1146
crossref_primary_10_3390_cells9010034
crossref_primary_10_1152_ajpgi_00241_2014
crossref_primary_10_1016_j_semcancer_2012_04_003
crossref_primary_10_1371_journal_pone_0039981
crossref_primary_10_1210_me_2014_1065
crossref_primary_10_1074_jbc_M111_323311
crossref_primary_10_1016_j_molmet_2020_100992
crossref_primary_10_1016_j_molonc_2014_08_016
crossref_primary_10_1080_21688370_2016_1214038
crossref_primary_10_1007_s11064_013_0980_9
crossref_primary_10_1093_nar_gks690
crossref_primary_10_1007_s00125_012_2693_z
crossref_primary_10_1038_s41598_017_18421_8
crossref_primary_10_1101_gr_220962_117
crossref_primary_10_1371_journal_pone_0016012
crossref_primary_10_7554_eLife_51447
Cites_doi 10.1242/dev.02152
10.1074/jbc.M210081200
10.1038/336684a0
10.1242/jcs.01706
10.1073/pnas.0804709105
10.1128/MCB.02132-06
10.1593/neo.07703
10.1128/MCB.00555-07
10.1101/gad.946501
10.1186/1471-2407-9-159
10.1242/jcs.03363
10.1101/gad.5.4.656
10.1016/j.cell.2006.10.018
10.1242/dev.127.17.3805
10.1101/gad.11.18.2359
10.1101/gad.1642408
10.1128/MCB.00744-08
10.1038/sj.onc.1209470
10.1038/onc.2008.78
10.1016/j.cub.2006.04.019
10.1074/jbc.M007533200
10.1073/pnas.96.10.5522
10.1038/1270
10.1126/science.275.5307.1784
10.1128/MCB.18.3.1248
10.1038/382638a0
10.1074/jbc.M213218200
10.1074/jbc.274.3.1566
10.1038/18884
10.1101/gad.13.6.709
10.1128/MCB.24.11.5028-5038.2004
10.1038/nsmb912
10.1016/S0092-8674(02)01014-0
10.1016/S0960-9822(02)01280-0
10.1016/j.cub.2008.10.047
10.1242/dev.129.9.2087
10.1016/j.ydbio.2005.10.012
10.1093/nar/gkg346
10.1074/jbc.M107055200
10.1016/0092-8674(92)90204-P
10.1016/0925-4773(96)00597-7
10.1101/gad.1385806
10.1016/S0925-4773(98)00131-2
10.1128/MCB.16.3.745
10.1128/MCB.23.15.5366-5375.2003
10.1016/j.yexcr.2006.11.002
10.1002/j.1460-2075.1992.tb05374.x
10.1016/S0925-4773(02)00180-6
10.1242/dev.00935
10.1038/11932
10.1101/gad.5.12b.2567
10.1007/s00335-001-2076-0
10.1002/j.1460-2075.1991.tb07928.x
10.1038/sj.onc.1209471
10.1016/S1534-5807(03)00055-8
10.1038/sj.onc.1210056
10.1002/jnr.21989
10.4161/cbt.3.7.913
10.1101/gad.891401
10.1016/j.cell.2006.07.036
10.1210/me.2003-0225
10.1128/MCB.02175-07
10.1016/S0092-8674(00)80112-9
10.1101/gad.5.5.880
10.1101/gad.8.12.1434
10.1016/S0925-4773(98)00225-1
10.1242/dev.001206
10.1073/pnas.96.1.139
ContentType Journal Article
Copyright The Author(s) 2009. Published by Oxford University Press. 2009
Copyright_xml – notice: The Author(s) 2009. Published by Oxford University Press. 2009
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1093/nar/gkp1197
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 1981
ExternalDocumentID PMC2847248
20044351
10_1093_nar_gkp1197
US201301822645
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AEQTP
AFFNX
AFPKN
AFRAH
AFULF
AFYAG
AGKRT
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FBQ
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OJZSN
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XFK
XSB
XSW
YSK
ZA5
ZKX
ZXP
~91
~D7
~KM
0R~
AAHBH
AAYXX
ABEJV
ABGNP
ABNGD
ABXVV
ACUKT
AGQPQ
AMNDL
CITATION
OVT
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AEHUL
AFSHK
AGMDO
AJDVS
APJGH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c436t-1ce498c0b9802d87e33efac054b57eb2c658522a30aeb7d2fea35a20fae80dc53
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:30:21 EDT 2025
Thu Jul 10 17:10:14 EDT 2025
Thu Jul 10 23:22:42 EDT 2025
Thu Apr 03 06:56:22 EDT 2025
Tue Jul 01 01:40:56 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Wed Dec 27 19:28:26 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-1ce498c0b9802d87e33efac054b57eb2c658522a30aeb7d2fea35a20fae80dc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Andreas Weise, Department of Neuroanatomy, Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, Germany.
Simon Wöhrle, Oncology Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland.
Present addresses
OpenAccessLink http://dx.doi.org/10.1093/nar/gkp1197
PMID 20044351
PQID 733526013
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2847248
proquest_miscellaneous_742688446
proquest_miscellaneous_733526013
pubmed_primary_20044351
crossref_primary_10_1093_nar_gkp1197
crossref_citationtrail_10_1093_nar_gkp1197
fao_agris_US201301822645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2010
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Behrens ( key 20170510124518_B8) 1996; 382
van de Wetering ( key 20170510124518_B62) 2002; 111
Atcha ( key 20170510124518_B19) 2003; 278
Shulewitz ( key 20170510124518_B65) 2006; 25
Liu ( key 20170510124518_B13) 2005; 132
Aoki ( key 20170510124518_B51) 1999; 96
Waterman ( key 20170510124518_B2) 1991; 5
Aulehla ( key 20170510124518_B38) 2003; 4
Bonhomme ( key 20170510124518_B72) 2008; 27
Gradl ( key 20170510124518_B12) 2002; 277
Vleminckx ( key 20170510124518_B52) 1999; 81
Shiina ( key 20170510124518_B27) 2003; 9
Atcha ( key 20170510124518_B24) 2007; 27
Brinkmeier ( key 20170510124518_B54) 2003; 17
Brannon ( key 20170510124518_B40) 1997; 11
Duval ( key 20170510124518_B25) 2000; 60
Sierra ( key 20170510124518_B7) 2006; 20
Kennell ( key 20170510124518_B29) 2003; 23
Korinek ( key 20170510124518_B61) 1998; 19
Lee ( key 20170510124518_B34) 1999; 274
Travis ( key 20170510124518_B3) 1991; 5
Molenaar ( key 20170510124518_B10) 1996; 86
Cho ( key 20170510124518_B32) 1998; 77
Merrill ( key 20170510124518_B56) 2004; 131
Kirmizis ( key 20170510124518_B63) 2003; 2
Huber ( key 20170510124518_B9) 1996; 59
van de Wetering ( key 20170510124518_B75) 1992; 11
Hoppler ( key 20170510124518_B6) 2007; 120
Daniels ( key 20170510124518_B11) 2005; 12
Pukrop ( key 20170510124518_B14) 2001; 276
Nazwar ( key 20170510124518_B30) 2009; 15
Tetsu ( key 20170510124518_B48) 1999; 398
Cole ( key 20170510124518_B17) 2008; 22
Ruckert ( key 20170510124518_B69) 2002; 62
van de Wetering ( key 20170510124518_B1) 1991; 10
Giese ( key 20170510124518_B74) 1991; 5
Merrill ( key 20170510124518_B20) 2001; 15
Hirsch ( key 20170510124518_B43) 2007; 313
Hecht ( key 20170510124518_B18) 2003; 278
Arce ( key 20170510124518_B5) 2006; 25
Tutter ( key 20170510124518_B58) 2001; 15
Crissey ( key 20170510124518_B70) 2008; 10
Standley ( key 20170510124518_B23) 2006; 289
Douglas ( key 20170510124518_B28) 2001; 12
Korinek ( key 20170510124518_B42) 1997; 275
Vadlamudi ( key 20170510124518_B60) 2005; 118
Roel ( key 20170510124518_B22) 2002; 12
Tang ( key 20170510124518_B66) 2008; 105
Lickert ( key 20170510124518_B39) 2000; 127
Cuilliere-Dartigues ( key 20170510124518_B67) 2006; 25
Wohrle ( key 20170510124518_B16) 2007; 27
Hatzis ( key 20170510124518_B15) 2008; 28
Liu ( key 20170510124518_B57) 1999; 22
Clevers ( key 20170510124518_B45) 2006; 127
Stadeli ( key 20170510124518_B4) 2006; 16
Williams ( key 20170510124518_B36) 1988; 336
Van de Wetering ( key 20170510124518_B53) 1996; 16
Yochum ( key 20170510124518_B64) 2008; 28
Duval ( key 20170510124518_B68) 1999; 59
Herber ( key 20170510124518_B41) 1994; 9
Pilon ( key 20170510124518_B49) 2007; 134
Valenta ( key 20170510124518_B31) 2003; 31
Turner ( key 20170510124518_B37) 1994; 8
Megason ( key 20170510124518_B46) 2002; 129
Young ( key 20170510124518_B44) 2002; 117
Chang ( key 20170510124518_B50) 2008; 18
Nguyen ( key 20170510124518_B21) 2006; 127
Galceran ( key 20170510124518_B55) 1999; 13
Howng ( key 20170510124518_B26) 2004; 25
Korinek ( key 20170510124518_B33) 1998; 18
Snyder ( key 20170510124518_B35) 1992; 68
Shtutman ( key 20170510124518_B47) 1999; 96
Beland ( key 20170510124518_B59) 2004; 24
Guo ( key 20170510124518_B71) 2004; 3
Arce ( key 20170510124518_B73) 2009; 9
1827423 - Genes Dev. 1991 May;5(5):880-94
12907761 - Mol Endocrinol. 2003 Nov;17(11):2152-61
10919662 - Cancer Res. 2000 Jul 15;60(14):3872-9
17018284 - Cell. 2006 Oct 6;127(1):171-83
16713950 - Curr Biol. 2006 May 23;16(10):R378-85
11959819 - Development. 2002 May;129(9):2087-98
15768032 - Nat Struct Mol Biol. 2005 Apr;12(4):364-71
19460168 - BMC Cancer. 2009;9:159
9697701 - Nat Genet. 1998 Aug;19(4):379-83
19062282 - Curr Biol. 2008 Dec 9;18(23):1877-81
11124256 - J Biol Chem. 2001 Mar 23;276(12):8968-78
17893322 - Mol Cell Biol. 2007 Dec;27(23):8352-63
12446687 - J Biol Chem. 2003 Feb 7;278(6):3776-85
1989880 - EMBO J. 1991 Jan;10(1):123-32
1752444 - Genes Dev. 1991 Dec;5(12B):2567-78
16532032 - Oncogene. 2006 Jul 20;25(31):4361-9
8622675 - Mol Cell Biol. 1996 Mar;16(3):745-52
10330485 - Mech Dev. 1999 Mar;81(1-2):65-74
12861022 - Mol Cell Biol. 2003 Aug;23(15):5366-75
11751639 - Genes Dev. 2001 Dec 15;15(24):3342-54
9065401 - Science. 1997 Mar 21;275(5307):1784-7
7926743 - Genes Dev. 1994 Jun 15;8(12):1434-47
9784592 - Mech Dev. 1998 Sep;77(1):9-18
17081971 - Cell. 2006 Nov 3;127(3):469-80
15136761 - Cancer Biol Ther. 2004 Jul;3(7):593-601
18621708 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9697-702
17251379 - J Cell Sci. 2007 Feb 1;120(Pt 3):385-93
18852287 - Mol Cell Biol. 2008 Dec;28(24):7368-79
10485457 - Cancer Res. 1999 Sep 1;59(17):4213-5
16291789 - Development. 2005 Dec;132(24):5375-85
12204269 - Mech Dev. 2002 Sep;117(1-2):269-73
8756721 - Cell. 1996 Aug 9;86(3):391-9
17198701 - Exp Cell Res. 2007 Feb 1;313(3):572-87
15728254 - J Cell Sci. 2005 Mar 15;118(Pt 6):1129-37
8757136 - Nature. 1996 Aug 15;382(6592):638-42
18372917 - Oncogene. 2008 Jul 24;27(32):4497-502
9308964 - Genes Dev. 1997 Sep 15;11(18):2359-70
18347094 - Genes Dev. 2008 Mar 15;22(6):746-55
2010090 - Genes Dev. 1991 Apr;5(4):656-69
16547505 - Oncogene. 2006 Jul 27;25(32):4441-8
19125404 - J Neurosci Res. 2009 May 15;87(7):1532-46
12711682 - Nucleic Acids Res. 2003 May 1;31(9):2369-80
3143916 - Nature. 1988 Dec 15;336(6200):684-7
1639073 - EMBO J. 1992 Aug;11(8):3039-44
12036905 - Cancer Res. 2002 Jun 1;62(11):3009-13
17143293 - Oncogene. 2006 Dec 4;25(57):7492-504
10431240 - Nat Genet. 1999 Aug;22(4):361-5
12445388 - Curr Biol. 2002 Nov 19;12(22):1941-5
10318916 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5522-7
18268006 - Mol Cell Biol. 2008 Apr;28(8):2732-44
8892228 - Mech Dev. 1996 Sep;59(1):3-10
9874785 - Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):139-44
12636920 - Dev Cell. 2003 Mar;4(3):395-406
10201372 - Nature. 1999 Apr 1;398(6726):422-6
12582159 - J Biol Chem. 2003 May 2;278(18):16169-75
12408868 - Cell. 2002 Oct 18;111(2):241-50
8134134 - Oncogene. 1994 Apr;9(4):1295-304
1732063 - Cell. 1992 Jan 10;68(1):33-51
11445543 - Genes Dev. 2001 Jul 1;15(13):1688-705
17923689 - Mol Cell Biol. 2007 Dec;27(23):8164-77
10934025 - Development. 2000 Sep;127(17):3805-13
11821382 - J Biol Chem. 2002 Apr 19;277(16):14159-71
16510874 - Genes Dev. 2006 Mar 1;20(5):586-600
11845287 - Mamm Genome. 2001 Nov;12(11):843-51
10090727 - Genes Dev. 1999 Mar 15;13(6):709-17
14668413 - Development. 2004 Jan;131(2):263-74
18231635 - Neoplasia. 2008 Jan;10(1):8-19
9488439 - Mol Cell Biol. 1998 Mar;18(3):1248-56
12796377 - Clin Cancer Res. 2003 Jun;9(6):2121-32
9880534 - J Biol Chem. 1999 Jan 15;274(3):1566-72
12533679 - Mol Cancer Ther. 2003 Jan;2(1):113-21
15143193 - Mol Cell Biol. 2004 Jun;24(11):5028-38
16325796 - Dev Biol. 2006 Jan 15;289(2):318-28
17537796 - Development. 2007 Jun;134(12):2315-23
15547706 - Int J Oncol. 2004 Dec;25(6):1685-92
References_xml – volume: 25
  start-page: 1685
  year: 2004
  ident: key 20170510124518_B26
  article-title: Differential expression and splicing isoform analysis of human Tcf-4 transcription factor in brain tumors
  publication-title: Int. J. Oncol.
– volume: 132
  start-page: 5375
  year: 2005
  ident: key 20170510124518_B13
  article-title: Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/beta-catenin signalling in mesoderm development
  publication-title: Development
  doi: 10.1242/dev.02152
– volume: 278
  start-page: 3776
  year: 2003
  ident: key 20170510124518_B18
  article-title: Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210081200
– volume: 336
  start-page: 684
  year: 1988
  ident: key 20170510124518_B36
  article-title: Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells
  publication-title: Nature
  doi: 10.1038/336684a0
– volume: 118
  start-page: 1129
  year: 2005
  ident: key 20170510124518_B60
  article-title: PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.01706
– volume: 105
  start-page: 9697
  year: 2008
  ident: key 20170510124518_B66
  article-title: A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0804709105
– volume: 60
  start-page: 3872
  year: 2000
  ident: key 20170510124518_B25
  article-title: The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines
  publication-title: Cancer Res.
– volume: 27
  start-page: 8352
  year: 2007
  ident: key 20170510124518_B24
  article-title: A unique DNA binding domain converts T-cell factors into strong Wnt effectors
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02132-06
– volume: 10
  start-page: 8
  year: 2008
  ident: key 20170510124518_B70
  article-title: The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine
  publication-title: Neoplasia
  doi: 10.1593/neo.07703
– volume: 27
  start-page: 8164
  year: 2007
  ident: key 20170510124518_B16
  article-title: Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00555-07
– volume: 15
  start-page: 3342
  year: 2001
  ident: key 20170510124518_B58
  article-title: Chromatin-specific regulation of LEF-1-beta-catenin transcription activation and inhibition in vitro
  publication-title: Genes Dev.
  doi: 10.1101/gad.946501
– volume: 9
  start-page: 159
  year: 2009
  ident: key 20170510124518_B73
  article-title: Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-9-159
– volume: 120
  start-page: 385
  year: 2007
  ident: key 20170510124518_B6
  article-title: Wnt signalling: variety at the core
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.03363
– volume: 59
  start-page: 4213
  year: 1999
  ident: key 20170510124518_B68
  article-title: Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability
  publication-title: Cancer Res.
– volume: 5
  start-page: 656
  year: 1991
  ident: key 20170510124518_B2
  article-title: A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.5.4.656
– volume: 127
  start-page: 469
  year: 2006
  ident: key 20170510124518_B45
  article-title: Wnt/beta-catenin signaling in development and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.018
– volume: 127
  start-page: 3805
  year: 2000
  ident: key 20170510124518_B39
  article-title: Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine
  publication-title: Development
  doi: 10.1242/dev.127.17.3805
– volume: 11
  start-page: 2359
  year: 1997
  ident: key 20170510124518_B40
  article-title: A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus
  publication-title: Genes Dev.
  doi: 10.1101/gad.11.18.2359
– volume: 22
  start-page: 746
  year: 2008
  ident: key 20170510124518_B17
  article-title: Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.1642408
– volume: 28
  start-page: 7368
  year: 2008
  ident: key 20170510124518_B64
  article-title: A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00744-08
– volume: 25
  start-page: 4361
  year: 2006
  ident: key 20170510124518_B65
  article-title: Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209470
– volume: 27
  start-page: 4497
  year: 2008
  ident: key 20170510124518_B72
  article-title: Cdx1, a dispensable homeobox gene for gut development with limited effect in intestinal cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2008.78
– volume: 16
  start-page: R378
  year: 2006
  ident: key 20170510124518_B4
  article-title: Transcription under the control of nuclear Arm/beta-catenin
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.04.019
– volume: 276
  start-page: 8968
  year: 2001
  ident: key 20170510124518_B14
  article-title: Identification of two regulatory elements within the high mobility group box transcription factor XTCF-4
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M007533200
– volume: 96
  start-page: 5522
  year: 1999
  ident: key 20170510124518_B47
  article-title: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.10.5522
– volume: 19
  start-page: 379
  year: 1998
  ident: key 20170510124518_B61
  article-title: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4
  publication-title: Nature Genetics
  doi: 10.1038/1270
– volume: 275
  start-page: 1784
  year: 1997
  ident: key 20170510124518_B42
  article-title: Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma
  publication-title: Science
  doi: 10.1126/science.275.5307.1784
– volume: 18
  start-page: 1248
  year: 1998
  ident: key 20170510124518_B33
  article-title: Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.3.1248
– volume: 382
  start-page: 638
  year: 1996
  ident: key 20170510124518_B8
  article-title: Functional interaction of beta-catenin with the transcription factor LEF-1
  publication-title: Nature
  doi: 10.1038/382638a0
– volume: 278
  start-page: 16169
  year: 2003
  ident: key 20170510124518_B19
  article-title: A new beta-catenin-dependent activation domain in T cell factor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M213218200
– volume: 274
  start-page: 1566
  year: 1999
  ident: key 20170510124518_B34
  article-title: A possible role for the high mobility group box transcription factor Tcf-4 in vertebrate gut epithelial cell differentiation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.3.1566
– volume: 398
  start-page: 422
  year: 1999
  ident: key 20170510124518_B48
  article-title: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells
  publication-title: Nature
  doi: 10.1038/18884
– volume: 13
  start-page: 709
  year: 1999
  ident: key 20170510124518_B55
  article-title: Wnt3a-/–like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.6.709
– volume: 24
  start-page: 5028
  year: 2004
  ident: key 20170510124518_B59
  article-title: Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.11.5028-5038.2004
– volume: 12
  start-page: 364
  year: 2005
  ident: key 20170510124518_B11
  article-title: Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb912
– volume: 111
  start-page: 241
  year: 2002
  ident: key 20170510124518_B62
  article-title: The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01014-0
– volume: 12
  start-page: 1941
  year: 2002
  ident: key 20170510124518_B22
  article-title: Lef-1 and Tcf-3 transcription factors mediate tissue-specific Wnt signaling during Xenopus development
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01280-0
– volume: 18
  start-page: 1877
  year: 2008
  ident: key 20170510124518_B50
  article-title: Activation of wingless targets requires bipartite recognition of DNA by TCF
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.10.047
– volume: 62
  start-page: 3009
  year: 2002
  ident: key 20170510124518_B69
  article-title: T-cell factor-4 frameshift mutations occur frequently in human microsatellite instability-high colorectal carcinomas but do not contribute to carcinogenesis
  publication-title: Cancer Res.
– volume: 129
  start-page: 2087
  year: 2002
  ident: key 20170510124518_B46
  article-title: A mitogen gradient of dorsal midline Wnts organizes growth in the CNS
  publication-title: Development
  doi: 10.1242/dev.129.9.2087
– volume: 289
  start-page: 318
  year: 2006
  ident: key 20170510124518_B23
  article-title: Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.10.012
– volume: 31
  start-page: 2369
  year: 2003
  ident: key 20170510124518_B31
  article-title: HMG box transcription factor TCF-4's interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg346
– volume: 277
  start-page: 14159
  year: 2002
  ident: key 20170510124518_B12
  article-title: Functional diversity of Xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M107055200
– volume: 68
  start-page: 33
  year: 1992
  ident: key 20170510124518_B35
  article-title: Multipotent neural cell lines can engraft and participate in development of mouse cerebellum
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90204-P
– volume: 59
  start-page: 3
  year: 1996
  ident: key 20170510124518_B9
  article-title: Nuclear localization of beta-catenin by interaction with transcription factor LEF-1
  publication-title: Mech. Dev.
  doi: 10.1016/0925-4773(96)00597-7
– volume: 9
  start-page: 2121
  year: 2003
  ident: key 20170510124518_B27
  article-title: The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma
  publication-title: Clin. Cancer Res.
– volume: 20
  start-page: 586
  year: 2006
  ident: key 20170510124518_B7
  article-title: The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes
  publication-title: Genes Dev.
  doi: 10.1101/gad.1385806
– volume: 77
  start-page: 9
  year: 1998
  ident: key 20170510124518_B32
  article-title: TCF-4 binds beta-catenin and is expressed in distinct regions of the embryonic brain and limbs
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(98)00131-2
– volume: 2
  start-page: 113
  year: 2003
  ident: key 20170510124518_B63
  article-title: Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy
  publication-title: Mol. Cancer Therapeutics
– volume: 16
  start-page: 745
  year: 1996
  ident: key 20170510124518_B53
  article-title: Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.3.745
– volume: 23
  start-page: 5366
  year: 2003
  ident: key 20170510124518_B29
  article-title: T-cell factor 4N (TCF-4N), a novel isoform of mouse TCF-4, synergizes with beta-catenin to coactivate C/EBPalpha and steroidogenic factor 1 transcription factors
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.15.5366-5375.2003
– volume: 313
  start-page: 572
  year: 2007
  ident: key 20170510124518_B43
  article-title: Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2006.11.002
– volume: 11
  start-page: 3039
  year: 1992
  ident: key 20170510124518_B75
  article-title: Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05374.x
– volume: 117
  start-page: 269
  year: 2002
  ident: key 20170510124518_B44
  article-title: Expression and splice variant analysis of the zebrafish tcf4 transcription factor
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(02)00180-6
– volume: 131
  start-page: 263
  year: 2004
  ident: key 20170510124518_B56
  article-title: Tcf3: a transcriptional regulator of axis induction in the early embryo
  publication-title: Development
  doi: 10.1242/dev.00935
– volume: 22
  start-page: 361
  year: 1999
  ident: key 20170510124518_B57
  article-title: Requirement for Wnt3 in vertebrate axis formation
  publication-title: Nature Genetics
  doi: 10.1038/11932
– volume: 5
  start-page: 2567
  year: 1991
  ident: key 20170510124518_B74
  article-title: DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1
  publication-title: Genes Dev.
  doi: 10.1101/gad.5.12b.2567
– volume: 12
  start-page: 843
  year: 2001
  ident: key 20170510124518_B28
  article-title: Identification of members of the Wnt signaling pathway in the embryonic pituitary gland
  publication-title: Mamm. Genome
  doi: 10.1007/s00335-001-2076-0
– volume: 9
  start-page: 1295
  year: 1994
  ident: key 20170510124518_B41
  article-title: Inducible regulatory elements in the human cyclin D1 promoter
  publication-title: Oncogene
– volume: 10
  start-page: 123
  year: 1991
  ident: key 20170510124518_B1
  article-title: Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07928.x
– volume: 25
  start-page: 4441
  year: 2006
  ident: key 20170510124518_B67
  article-title: TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209471
– volume: 4
  start-page: 395
  year: 2003
  ident: key 20170510124518_B38
  article-title: Wnt3a plays a major role in the segmentation clock controlling somitogenesis
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(03)00055-8
– volume: 25
  start-page: 7492
  year: 2006
  ident: key 20170510124518_B5
  article-title: Diversity of LEF/TCF action in development and disease
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210056
– volume: 15
  start-page: 1532
  year: 2009
  ident: key 20170510124518_B30
  article-title: Expression and molecular diversity of Tcf7l2 in the developing murine cerebellum and brain
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21989
– volume: 3
  start-page: 593
  year: 2004
  ident: key 20170510124518_B71
  article-title: The role of Cdx proteins in intestinal development and cancer
  publication-title: Can. Biol. Ther.
  doi: 10.4161/cbt.3.7.913
– volume: 15
  start-page: 1688
  year: 2001
  ident: key 20170510124518_B20
  article-title: Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin
  publication-title: Genes & Dev.
  doi: 10.1101/gad.891401
– volume: 127
  start-page: 171
  year: 2006
  ident: key 20170510124518_B21
  article-title: Tcf3 governs stem cell features and represses cell fate determination in skin
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.036
– volume: 17
  start-page: 2152
  year: 2003
  ident: key 20170510124518_B54
  article-title: TCF and Groucho-related genes influence pituitary growth and development
  publication-title: Mol. Endocrinology
  doi: 10.1210/me.2003-0225
– volume: 28
  start-page: 2732
  year: 2008
  ident: key 20170510124518_B15
  article-title: Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02175-07
– volume: 86
  start-page: 391
  year: 1996
  ident: key 20170510124518_B10
  article-title: XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80112-9
– volume: 5
  start-page: 880
  year: 1991
  ident: key 20170510124518_B3
  article-title: LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]
  publication-title: Genes Dev.
  doi: 10.1101/gad.5.5.880
– volume: 8
  start-page: 1434
  year: 1994
  ident: key 20170510124518_B37
  article-title: Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.12.1434
– volume: 81
  start-page: 65
  year: 1999
  ident: key 20170510124518_B52
  article-title: The C-terminal transactivation domain of beta-catenin is necessary and sufficient for signaling by the LEF-1/beta-catenin complex in Xenopus laevis
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(98)00225-1
– volume: 134
  start-page: 2315
  year: 2007
  ident: key 20170510124518_B49
  article-title: Wnt signaling is a key mediator of Cdx1 expression in vivo
  publication-title: Development
  doi: 10.1242/dev.001206
– volume: 96
  start-page: 139
  year: 1999
  ident: key 20170510124518_B51
  article-title: Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.1.139
– reference: 12796377 - Clin Cancer Res. 2003 Jun;9(6):2121-32
– reference: 9874785 - Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):139-44
– reference: 8622675 - Mol Cell Biol. 1996 Mar;16(3):745-52
– reference: 17893322 - Mol Cell Biol. 2007 Dec;27(23):8352-63
– reference: 9880534 - J Biol Chem. 1999 Jan 15;274(3):1566-72
– reference: 12036905 - Cancer Res. 2002 Jun 1;62(11):3009-13
– reference: 12907761 - Mol Endocrinol. 2003 Nov;17(11):2152-61
– reference: 16547505 - Oncogene. 2006 Jul 27;25(32):4441-8
– reference: 17018284 - Cell. 2006 Oct 6;127(1):171-83
– reference: 9488439 - Mol Cell Biol. 1998 Mar;18(3):1248-56
– reference: 10330485 - Mech Dev. 1999 Mar;81(1-2):65-74
– reference: 15547706 - Int J Oncol. 2004 Dec;25(6):1685-92
– reference: 11821382 - J Biol Chem. 2002 Apr 19;277(16):14159-71
– reference: 12533679 - Mol Cancer Ther. 2003 Jan;2(1):113-21
– reference: 10485457 - Cancer Res. 1999 Sep 1;59(17):4213-5
– reference: 17198701 - Exp Cell Res. 2007 Feb 1;313(3):572-87
– reference: 15143193 - Mol Cell Biol. 2004 Jun;24(11):5028-38
– reference: 16713950 - Curr Biol. 2006 May 23;16(10):R378-85
– reference: 12636920 - Dev Cell. 2003 Mar;4(3):395-406
– reference: 1752444 - Genes Dev. 1991 Dec;5(12B):2567-78
– reference: 10090727 - Genes Dev. 1999 Mar 15;13(6):709-17
– reference: 8134134 - Oncogene. 1994 Apr;9(4):1295-304
– reference: 9697701 - Nat Genet. 1998 Aug;19(4):379-83
– reference: 11751639 - Genes Dev. 2001 Dec 15;15(24):3342-54
– reference: 18852287 - Mol Cell Biol. 2008 Dec;28(24):7368-79
– reference: 17923689 - Mol Cell Biol. 2007 Dec;27(23):8164-77
– reference: 3143916 - Nature. 1988 Dec 15;336(6200):684-7
– reference: 11959819 - Development. 2002 May;129(9):2087-98
– reference: 1989880 - EMBO J. 1991 Jan;10(1):123-32
– reference: 9784592 - Mech Dev. 1998 Sep;77(1):9-18
– reference: 1732063 - Cell. 1992 Jan 10;68(1):33-51
– reference: 10318916 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5522-7
– reference: 12204269 - Mech Dev. 2002 Sep;117(1-2):269-73
– reference: 8757136 - Nature. 1996 Aug 15;382(6592):638-42
– reference: 17143293 - Oncogene. 2006 Dec 4;25(57):7492-504
– reference: 18621708 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9697-702
– reference: 10201372 - Nature. 1999 Apr 1;398(6726):422-6
– reference: 12408868 - Cell. 2002 Oct 18;111(2):241-50
– reference: 15728254 - J Cell Sci. 2005 Mar 15;118(Pt 6):1129-37
– reference: 12711682 - Nucleic Acids Res. 2003 May 1;31(9):2369-80
– reference: 18231635 - Neoplasia. 2008 Jan;10(1):8-19
– reference: 18268006 - Mol Cell Biol. 2008 Apr;28(8):2732-44
– reference: 19062282 - Curr Biol. 2008 Dec 9;18(23):1877-81
– reference: 1827423 - Genes Dev. 1991 May;5(5):880-94
– reference: 19460168 - BMC Cancer. 2009;9:159
– reference: 17081971 - Cell. 2006 Nov 3;127(3):469-80
– reference: 11845287 - Mamm Genome. 2001 Nov;12(11):843-51
– reference: 14668413 - Development. 2004 Jan;131(2):263-74
– reference: 8892228 - Mech Dev. 1996 Sep;59(1):3-10
– reference: 16532032 - Oncogene. 2006 Jul 20;25(31):4361-9
– reference: 2010090 - Genes Dev. 1991 Apr;5(4):656-69
– reference: 10934025 - Development. 2000 Sep;127(17):3805-13
– reference: 16510874 - Genes Dev. 2006 Mar 1;20(5):586-600
– reference: 11445543 - Genes Dev. 2001 Jul 1;15(13):1688-705
– reference: 15768032 - Nat Struct Mol Biol. 2005 Apr;12(4):364-71
– reference: 12445388 - Curr Biol. 2002 Nov 19;12(22):1941-5
– reference: 12861022 - Mol Cell Biol. 2003 Aug;23(15):5366-75
– reference: 15136761 - Cancer Biol Ther. 2004 Jul;3(7):593-601
– reference: 19125404 - J Neurosci Res. 2009 May 15;87(7):1532-46
– reference: 17251379 - J Cell Sci. 2007 Feb 1;120(Pt 3):385-93
– reference: 16325796 - Dev Biol. 2006 Jan 15;289(2):318-28
– reference: 1639073 - EMBO J. 1992 Aug;11(8):3039-44
– reference: 10919662 - Cancer Res. 2000 Jul 15;60(14):3872-9
– reference: 17537796 - Development. 2007 Jun;134(12):2315-23
– reference: 12582159 - J Biol Chem. 2003 May 2;278(18):16169-75
– reference: 9308964 - Genes Dev. 1997 Sep 15;11(18):2359-70
– reference: 8756721 - Cell. 1996 Aug 9;86(3):391-9
– reference: 9065401 - Science. 1997 Mar 21;275(5307):1784-7
– reference: 18347094 - Genes Dev. 2008 Mar 15;22(6):746-55
– reference: 18372917 - Oncogene. 2008 Jul 24;27(32):4497-502
– reference: 16291789 - Development. 2005 Dec;132(24):5375-85
– reference: 10431240 - Nat Genet. 1999 Aug;22(4):361-5
– reference: 11124256 - J Biol Chem. 2001 Mar 23;276(12):8968-78
– reference: 7926743 - Genes Dev. 1994 Jun 15;8(12):1434-47
– reference: 12446687 - J Biol Chem. 2003 Feb 7;278(6):3776-85
SSID ssj0014154
Score 2.3470702
Snippet Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative...
Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1964
SubjectTerms Alternative Splicing
Amino Acid Sequence
Animals
beta Catenin - metabolism
Cell Line
complement
DNA
DNA-binding domains
DNA-binding proteins
embryonic stem cells
exons
Genetic Variation
Humans
Mice
Molecular Biology
molecular cloning
Molecular Sequence Data
polymerase chain reaction
Promoter Regions, Genetic
Protein Isoforms - chemistry
Protein Isoforms - genetics
Protein Isoforms - metabolism
protein products
sequence analysis
T-lymphocytes
TCF Transcription Factors - chemistry
TCF Transcription Factors - genetics
TCF Transcription Factors - metabolism
Tissue Distribution
tissues
transcription (genetics)
Transcription Factor 7-Like 2 Protein
Transcriptional Activation
Wnt Proteins - pharmacology
Title Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/β-catenin targets
URI https://www.ncbi.nlm.nih.gov/pubmed/20044351
https://www.proquest.com/docview/733526013
https://www.proquest.com/docview/742688446
https://pubmed.ncbi.nlm.nih.gov/PMC2847248
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l5QAXBC3Q8FPtoeVA5NZeO7F9DFGiColeSERv1np3XQKpEyVOJXgmTjwIT8DDMLO7_kmIUOFiRcmuFWs-7_x9M0PIifSYiHtZ5kSplE4gIuXEimVOoBhoY1AoSo9OeH_Zu5gE7666V63WrwZraV2kZ-LbzrqS_5EqfAdyxSrZf5BsdVP4Aj6DfOEKEobrnWTcn9lw3q3qrDARbSnMY5GFM4bjH3JzKqxwUjK2T1arju7MMM07t-Al86q8rRyUUmAEfaE5emqJbrMsqxjru5noIVZEmHgurl8gPxvuzovOR2xlMDodDE_fMgcJV9i_1TDOV01b-BJbKWO7WDGVmLxoxNV0qmhqZj5qyiWvo_lLjKtYIsjnSqkMZ5mtPtI8o5osgJmCG3O2YiCk4M04B6boK3qMre_SPVNNX84zZY5rXfMVb57nftTAbfNwxt5jDUXvxWZYzB9KxDTYypHgPrr-ssBEa60tS4bAlhKtqI0mqe8nsD2xm_fIPQZODM7XCN1hleMC08k0N7PPZatHYfM5bD63mzfspb2Mz3e5QtuM3oaJNH5EHlrfhvYNUB-TlsoPyGEfADq_-UpfU8021mmcA3J_UE4aPCTfGzimJY7pPKMGx7SBY1rhmFoc0xLHFHFMmzim2zimgGO6hWNa45jWOKa8oIDj858_SgRTi-AnZDIajgcXjp0i4ojA7xWOJ1QQR8JN48hlMgqV76uMC3BV0m6oUibABgcnhPsuV2koWaa43-XMzbiKXCm6_lOyn89zdUSoF8QhDzMPvFI3kH6UBiwLlexJLhkOimiTN6WsEmFb7OOkl1myAxVtclItXpjOMruXHYHQE34NOj-ZfGDINPAiLH_vtgktkZCAxDDTx3M1X6-SECspe7D0L0vANI-iIOi1yTODnepf4BELXpTXJuEGqqoF2JJ-85d8-km3pkdjlwXR87s92wvyoH7TX5L9YrlWr8DGL9Jj_aoc6wjZbxrZDV8
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+splicing+of+Tcf7l2+transcripts+generates+protein+variants+with+differential+promoter-binding+and+transcriptional+activation+properties+at+Wnt%2F%CE%B2-catenin+targets&rft.jtitle=Nucleic+acids+research&rft.au=Weise%2C+Andreas&rft.au=Bruser%2C+Katja&rft.au=Elfert%2C+Susanne&rft.au=Wallmen%2C+Britta&rft.date=2010-04-01&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=38&rft.issue=6&rft.spage=1964&rft.epage=1981&rft_id=info:doi/10.1093%2Fnar%2Fgkp1197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkp1197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon