Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/β-catenin targets
Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin...
Saved in:
Published in | Nucleic acids research Vol. 38; no. 6; pp. 1964 - 1981 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.04.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/β-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/β-catenin signalling. |
---|---|
AbstractList | Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/β-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/β-catenin signalling. Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/β-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/β-catenin signalling. Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of beta-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/beta-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/beta-catenin signalling. Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of beta-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/beta-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/beta-catenin signalling.Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of beta-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/beta-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/beta-catenin signalling. |
Author | Wittel, Yvonne Weise, Andreas Hecht, Andreas Elfert, Susanne Bruser, Katja Wöhrle, Simon Wallmen, Britta |
AuthorAffiliation | 1 Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research (ZBMZ), 2 Faculty of Biology and 3 Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Germany |
AuthorAffiliation_xml | – name: 1 Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research (ZBMZ), 2 Faculty of Biology and 3 Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Germany |
Author_xml | – sequence: 1 fullname: Weise, Andreas – sequence: 2 fullname: Bruser, Katja – sequence: 3 fullname: Elfert, Susanne – sequence: 4 fullname: Wallmen, Britta – sequence: 5 fullname: Wittel, Yvonne – sequence: 6 fullname: Wöhrle, Simon – sequence: 7 fullname: Hecht, Andreas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20044351$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFE3fIrQcU1p-Jc0GqKr6kShxoxdGaOJPUkHWC7V3Ef-LED-E34bBLVZAQJ8uaZ955R_OekCM_eSTkMaPPGW3E2kNYD59mxpr6HlkxUfFSNhU_IisqqCoZlfqYnMT4kVImmZIPyDGnVEqh2Ip8Ox8TBg_J7bCI8-is80Mx9cWV7euRFymAjza4OcViQI8BEsZiDlNC54sdBAc-l764dFN0ru8xoE8OxgXZZCiUrfPdogm-u6PmJp8hsHkuLJ-FnzEkl9UhFR98Wv_4Xto8zec5CcKAKT4k93sYIz46vKfk-tXLq4s35eW7128vzi9LK0WVSmZRNtrSttGUd7pGIbAHS5VsVY0tt5XSinMQFLCtO94jCAWc9oCadlaJU_Jirztv2w12Nq8UYDRzcBsIX80EzvxZ8e7GDNPOcC1rLnUWODsIhOnzFmMyGxctjiN4nLbR1JJXWktZ_Z8UQvGKMpHJJ3dN3br5fcsMPNsDNkwxBuxvEUbNkhSTk2IOSck0-4u2Lv06Rd7Ijf_oebrv6WEyMAQXzfV7ns1RpjmvpBI_AWdG090 |
CitedBy_id | crossref_primary_10_4252_wjsc_v13_i10_1394 crossref_primary_10_1007_s13402_015_0266_0 crossref_primary_10_1093_hmg_ddr454 crossref_primary_10_1093_nar_gku1186 crossref_primary_10_3390_cells12222620 crossref_primary_10_1007_s00125_013_3154_z crossref_primary_10_1007_s00429_012_0474_6 crossref_primary_10_1016_j_cellsig_2011_01_007 crossref_primary_10_1016_j_celrep_2019_10_110 crossref_primary_10_1016_j_ydbio_2012_05_012 crossref_primary_10_1111_febs_16934 crossref_primary_10_1016_j_dci_2021_104041 crossref_primary_10_1093_hmg_ddu553 crossref_primary_10_1128_MCB_06288_11 crossref_primary_10_1016_j_cels_2020_08_004 crossref_primary_10_1007_s00018_012_0931_7 crossref_primary_10_1073_pnas_2405523121 crossref_primary_10_1186_s12864_017_3764_9 crossref_primary_10_1242_jcs_242297 crossref_primary_10_1002_ajmg_a_62254 crossref_primary_10_2174_1574888X16666211207103628 crossref_primary_10_1038_s41374_019_0204_2 crossref_primary_10_1038_s41419_020_02905_z crossref_primary_10_1038_cddis_2016_455 crossref_primary_10_1038_s41388_019_0905_4 crossref_primary_10_1159_000518249 crossref_primary_10_1136_jclinpath_2019_205698 crossref_primary_10_3390_cancers8070070 crossref_primary_10_1007_s00125_017_4242_2 crossref_primary_10_1111_dgd_12771 crossref_primary_10_1007_s00438_023_02049_7 crossref_primary_10_1016_j_bbagen_2012_08_010 crossref_primary_10_1016_j_ceb_2012_03_005 crossref_primary_10_1371_journal_pone_0061867 crossref_primary_10_1186_1477_7827_8_154 crossref_primary_10_1186_s12943_016_0579_2 crossref_primary_10_1371_journal_pone_0067694 crossref_primary_10_1007_s11892_010_0149_8 crossref_primary_10_1093_hmg_ddr072 crossref_primary_10_3390_cells9030760 crossref_primary_10_1128_MCB_06769_11 crossref_primary_10_1002_ctm2_1042 crossref_primary_10_1016_j_molmet_2020_101078 crossref_primary_10_2147_CMAR_S305464 crossref_primary_10_1111_obr_13166 crossref_primary_10_1186_s12863_016_0372_7 crossref_primary_10_1016_j_gene_2013_03_089 crossref_primary_10_1186_gb_2012_13_9_r52 crossref_primary_10_1021_jacs_1c00599 crossref_primary_10_1093_jb_mvv117 crossref_primary_10_1016_j_bbrc_2010_07_062 crossref_primary_10_1007_s00125_011_2290_6 crossref_primary_10_1016_j_bbagrm_2016_08_002 crossref_primary_10_1261_rna_066712_118 crossref_primary_10_1371_journal_pone_0086180 crossref_primary_10_1016_j_celrep_2022_111247 crossref_primary_10_1007_s10571_011_9778_y crossref_primary_10_1038_s41467_019_09289_5 crossref_primary_10_4161_adip_24751 crossref_primary_10_1073_pnas_1309342111 crossref_primary_10_1007_s00018_013_1379_0 crossref_primary_10_1016_j_gene_2012_07_083 crossref_primary_10_3390_cancers8080074 crossref_primary_10_1093_hmg_ddu359 crossref_primary_10_1186_2193_1801_3_41 crossref_primary_10_1038_emboj_2010_195 crossref_primary_10_1111_j_1748_1716_2011_02293_x crossref_primary_10_1242_dmm_049233 crossref_primary_10_1016_j_gpb_2021_10_004 crossref_primary_10_2337_db12_0239 crossref_primary_10_1523_JNEUROSCI_2386_20_2021 crossref_primary_10_1101_gad_17227011 crossref_primary_10_1371_journal_pone_0233582 crossref_primary_10_1371_journal_pgen_1007109 crossref_primary_10_1074_jbc_M110_132209 crossref_primary_10_1182_blood_2019004664 crossref_primary_10_1038_srep19223 crossref_primary_10_1152_ajpcell_00030_2019 crossref_primary_10_1155_2013_906590 crossref_primary_10_1016_j_yexcr_2011_03_019 crossref_primary_10_1210_er_2015_1146 crossref_primary_10_3390_cells9010034 crossref_primary_10_1152_ajpgi_00241_2014 crossref_primary_10_1016_j_semcancer_2012_04_003 crossref_primary_10_1371_journal_pone_0039981 crossref_primary_10_1210_me_2014_1065 crossref_primary_10_1074_jbc_M111_323311 crossref_primary_10_1016_j_molmet_2020_100992 crossref_primary_10_1016_j_molonc_2014_08_016 crossref_primary_10_1080_21688370_2016_1214038 crossref_primary_10_1007_s11064_013_0980_9 crossref_primary_10_1093_nar_gks690 crossref_primary_10_1007_s00125_012_2693_z crossref_primary_10_1038_s41598_017_18421_8 crossref_primary_10_1101_gr_220962_117 crossref_primary_10_1371_journal_pone_0016012 crossref_primary_10_7554_eLife_51447 |
Cites_doi | 10.1242/dev.02152 10.1074/jbc.M210081200 10.1038/336684a0 10.1242/jcs.01706 10.1073/pnas.0804709105 10.1128/MCB.02132-06 10.1593/neo.07703 10.1128/MCB.00555-07 10.1101/gad.946501 10.1186/1471-2407-9-159 10.1242/jcs.03363 10.1101/gad.5.4.656 10.1016/j.cell.2006.10.018 10.1242/dev.127.17.3805 10.1101/gad.11.18.2359 10.1101/gad.1642408 10.1128/MCB.00744-08 10.1038/sj.onc.1209470 10.1038/onc.2008.78 10.1016/j.cub.2006.04.019 10.1074/jbc.M007533200 10.1073/pnas.96.10.5522 10.1038/1270 10.1126/science.275.5307.1784 10.1128/MCB.18.3.1248 10.1038/382638a0 10.1074/jbc.M213218200 10.1074/jbc.274.3.1566 10.1038/18884 10.1101/gad.13.6.709 10.1128/MCB.24.11.5028-5038.2004 10.1038/nsmb912 10.1016/S0092-8674(02)01014-0 10.1016/S0960-9822(02)01280-0 10.1016/j.cub.2008.10.047 10.1242/dev.129.9.2087 10.1016/j.ydbio.2005.10.012 10.1093/nar/gkg346 10.1074/jbc.M107055200 10.1016/0092-8674(92)90204-P 10.1016/0925-4773(96)00597-7 10.1101/gad.1385806 10.1016/S0925-4773(98)00131-2 10.1128/MCB.16.3.745 10.1128/MCB.23.15.5366-5375.2003 10.1016/j.yexcr.2006.11.002 10.1002/j.1460-2075.1992.tb05374.x 10.1016/S0925-4773(02)00180-6 10.1242/dev.00935 10.1038/11932 10.1101/gad.5.12b.2567 10.1007/s00335-001-2076-0 10.1002/j.1460-2075.1991.tb07928.x 10.1038/sj.onc.1209471 10.1016/S1534-5807(03)00055-8 10.1038/sj.onc.1210056 10.1002/jnr.21989 10.4161/cbt.3.7.913 10.1101/gad.891401 10.1016/j.cell.2006.07.036 10.1210/me.2003-0225 10.1128/MCB.02175-07 10.1016/S0092-8674(00)80112-9 10.1101/gad.5.5.880 10.1101/gad.8.12.1434 10.1016/S0925-4773(98)00225-1 10.1242/dev.001206 10.1073/pnas.96.1.139 |
ContentType | Journal Article |
Copyright | The Author(s) 2009. Published by Oxford University Press. 2009 |
Copyright_xml | – notice: The Author(s) 2009. Published by Oxford University Press. 2009 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1093/nar/gkp1197 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 1981 |
ExternalDocumentID | PMC2847248 20044351 10_1093_nar_gkp1197 US201301822645 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUTJ ADBBV ADHZD AEGXH AEKPW AENEX AENZO AEQTP AFFNX AFPKN AFRAH AFULF AFYAG AGKRT AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FBQ FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OJZSN OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XFK XSB XSW YSK ZA5 ZKX ZXP ~91 ~D7 ~KM 0R~ AAHBH AAYXX ABEJV ABGNP ABNGD ABXVV ACUKT AGQPQ AMNDL CITATION OVT ABIME ABPIB ABZEO ACVCV ACZBC AEHUL AFSHK AGMDO AJDVS APJGH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c436t-1ce498c0b9802d87e33efac054b57eb2c658522a30aeb7d2fea35a20fae80dc53 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:30:21 EDT 2025 Thu Jul 10 17:10:14 EDT 2025 Thu Jul 10 23:22:42 EDT 2025 Thu Apr 03 06:56:22 EDT 2025 Tue Jul 01 01:40:56 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Wed Dec 27 19:28:26 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/2.0/uk This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-1ce498c0b9802d87e33efac054b57eb2c658522a30aeb7d2fea35a20fae80dc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Andreas Weise, Department of Neuroanatomy, Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, Germany. Simon Wöhrle, Oncology Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland. Present addresses |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkp1197 |
PMID | 20044351 |
PQID | 733526013 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2847248 proquest_miscellaneous_742688446 proquest_miscellaneous_733526013 pubmed_primary_20044351 crossref_primary_10_1093_nar_gkp1197 crossref_citationtrail_10_1093_nar_gkp1197 fao_agris_US201301822645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2010 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Behrens ( key 20170510124518_B8) 1996; 382 van de Wetering ( key 20170510124518_B62) 2002; 111 Atcha ( key 20170510124518_B19) 2003; 278 Shulewitz ( key 20170510124518_B65) 2006; 25 Liu ( key 20170510124518_B13) 2005; 132 Aoki ( key 20170510124518_B51) 1999; 96 Waterman ( key 20170510124518_B2) 1991; 5 Aulehla ( key 20170510124518_B38) 2003; 4 Bonhomme ( key 20170510124518_B72) 2008; 27 Gradl ( key 20170510124518_B12) 2002; 277 Vleminckx ( key 20170510124518_B52) 1999; 81 Shiina ( key 20170510124518_B27) 2003; 9 Atcha ( key 20170510124518_B24) 2007; 27 Brinkmeier ( key 20170510124518_B54) 2003; 17 Brannon ( key 20170510124518_B40) 1997; 11 Duval ( key 20170510124518_B25) 2000; 60 Sierra ( key 20170510124518_B7) 2006; 20 Kennell ( key 20170510124518_B29) 2003; 23 Korinek ( key 20170510124518_B61) 1998; 19 Lee ( key 20170510124518_B34) 1999; 274 Travis ( key 20170510124518_B3) 1991; 5 Molenaar ( key 20170510124518_B10) 1996; 86 Cho ( key 20170510124518_B32) 1998; 77 Merrill ( key 20170510124518_B56) 2004; 131 Kirmizis ( key 20170510124518_B63) 2003; 2 Huber ( key 20170510124518_B9) 1996; 59 van de Wetering ( key 20170510124518_B75) 1992; 11 Hoppler ( key 20170510124518_B6) 2007; 120 Daniels ( key 20170510124518_B11) 2005; 12 Pukrop ( key 20170510124518_B14) 2001; 276 Nazwar ( key 20170510124518_B30) 2009; 15 Tetsu ( key 20170510124518_B48) 1999; 398 Cole ( key 20170510124518_B17) 2008; 22 Ruckert ( key 20170510124518_B69) 2002; 62 van de Wetering ( key 20170510124518_B1) 1991; 10 Giese ( key 20170510124518_B74) 1991; 5 Merrill ( key 20170510124518_B20) 2001; 15 Hirsch ( key 20170510124518_B43) 2007; 313 Hecht ( key 20170510124518_B18) 2003; 278 Arce ( key 20170510124518_B5) 2006; 25 Tutter ( key 20170510124518_B58) 2001; 15 Crissey ( key 20170510124518_B70) 2008; 10 Standley ( key 20170510124518_B23) 2006; 289 Douglas ( key 20170510124518_B28) 2001; 12 Korinek ( key 20170510124518_B42) 1997; 275 Vadlamudi ( key 20170510124518_B60) 2005; 118 Roel ( key 20170510124518_B22) 2002; 12 Tang ( key 20170510124518_B66) 2008; 105 Lickert ( key 20170510124518_B39) 2000; 127 Cuilliere-Dartigues ( key 20170510124518_B67) 2006; 25 Wohrle ( key 20170510124518_B16) 2007; 27 Hatzis ( key 20170510124518_B15) 2008; 28 Liu ( key 20170510124518_B57) 1999; 22 Clevers ( key 20170510124518_B45) 2006; 127 Stadeli ( key 20170510124518_B4) 2006; 16 Williams ( key 20170510124518_B36) 1988; 336 Van de Wetering ( key 20170510124518_B53) 1996; 16 Yochum ( key 20170510124518_B64) 2008; 28 Duval ( key 20170510124518_B68) 1999; 59 Herber ( key 20170510124518_B41) 1994; 9 Pilon ( key 20170510124518_B49) 2007; 134 Valenta ( key 20170510124518_B31) 2003; 31 Turner ( key 20170510124518_B37) 1994; 8 Megason ( key 20170510124518_B46) 2002; 129 Young ( key 20170510124518_B44) 2002; 117 Chang ( key 20170510124518_B50) 2008; 18 Nguyen ( key 20170510124518_B21) 2006; 127 Galceran ( key 20170510124518_B55) 1999; 13 Howng ( key 20170510124518_B26) 2004; 25 Korinek ( key 20170510124518_B33) 1998; 18 Snyder ( key 20170510124518_B35) 1992; 68 Shtutman ( key 20170510124518_B47) 1999; 96 Beland ( key 20170510124518_B59) 2004; 24 Guo ( key 20170510124518_B71) 2004; 3 Arce ( key 20170510124518_B73) 2009; 9 1827423 - Genes Dev. 1991 May;5(5):880-94 12907761 - Mol Endocrinol. 2003 Nov;17(11):2152-61 10919662 - Cancer Res. 2000 Jul 15;60(14):3872-9 17018284 - Cell. 2006 Oct 6;127(1):171-83 16713950 - Curr Biol. 2006 May 23;16(10):R378-85 11959819 - Development. 2002 May;129(9):2087-98 15768032 - Nat Struct Mol Biol. 2005 Apr;12(4):364-71 19460168 - BMC Cancer. 2009;9:159 9697701 - Nat Genet. 1998 Aug;19(4):379-83 19062282 - Curr Biol. 2008 Dec 9;18(23):1877-81 11124256 - J Biol Chem. 2001 Mar 23;276(12):8968-78 17893322 - Mol Cell Biol. 2007 Dec;27(23):8352-63 12446687 - J Biol Chem. 2003 Feb 7;278(6):3776-85 1989880 - EMBO J. 1991 Jan;10(1):123-32 1752444 - Genes Dev. 1991 Dec;5(12B):2567-78 16532032 - Oncogene. 2006 Jul 20;25(31):4361-9 8622675 - Mol Cell Biol. 1996 Mar;16(3):745-52 10330485 - Mech Dev. 1999 Mar;81(1-2):65-74 12861022 - Mol Cell Biol. 2003 Aug;23(15):5366-75 11751639 - Genes Dev. 2001 Dec 15;15(24):3342-54 9065401 - Science. 1997 Mar 21;275(5307):1784-7 7926743 - Genes Dev. 1994 Jun 15;8(12):1434-47 9784592 - Mech Dev. 1998 Sep;77(1):9-18 17081971 - Cell. 2006 Nov 3;127(3):469-80 15136761 - Cancer Biol Ther. 2004 Jul;3(7):593-601 18621708 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9697-702 17251379 - J Cell Sci. 2007 Feb 1;120(Pt 3):385-93 18852287 - Mol Cell Biol. 2008 Dec;28(24):7368-79 10485457 - Cancer Res. 1999 Sep 1;59(17):4213-5 16291789 - Development. 2005 Dec;132(24):5375-85 12204269 - Mech Dev. 2002 Sep;117(1-2):269-73 8756721 - Cell. 1996 Aug 9;86(3):391-9 17198701 - Exp Cell Res. 2007 Feb 1;313(3):572-87 15728254 - J Cell Sci. 2005 Mar 15;118(Pt 6):1129-37 8757136 - Nature. 1996 Aug 15;382(6592):638-42 18372917 - Oncogene. 2008 Jul 24;27(32):4497-502 9308964 - Genes Dev. 1997 Sep 15;11(18):2359-70 18347094 - Genes Dev. 2008 Mar 15;22(6):746-55 2010090 - Genes Dev. 1991 Apr;5(4):656-69 16547505 - Oncogene. 2006 Jul 27;25(32):4441-8 19125404 - J Neurosci Res. 2009 May 15;87(7):1532-46 12711682 - Nucleic Acids Res. 2003 May 1;31(9):2369-80 3143916 - Nature. 1988 Dec 15;336(6200):684-7 1639073 - EMBO J. 1992 Aug;11(8):3039-44 12036905 - Cancer Res. 2002 Jun 1;62(11):3009-13 17143293 - Oncogene. 2006 Dec 4;25(57):7492-504 10431240 - Nat Genet. 1999 Aug;22(4):361-5 12445388 - Curr Biol. 2002 Nov 19;12(22):1941-5 10318916 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5522-7 18268006 - Mol Cell Biol. 2008 Apr;28(8):2732-44 8892228 - Mech Dev. 1996 Sep;59(1):3-10 9874785 - Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):139-44 12636920 - Dev Cell. 2003 Mar;4(3):395-406 10201372 - Nature. 1999 Apr 1;398(6726):422-6 12582159 - J Biol Chem. 2003 May 2;278(18):16169-75 12408868 - Cell. 2002 Oct 18;111(2):241-50 8134134 - Oncogene. 1994 Apr;9(4):1295-304 1732063 - Cell. 1992 Jan 10;68(1):33-51 11445543 - Genes Dev. 2001 Jul 1;15(13):1688-705 17923689 - Mol Cell Biol. 2007 Dec;27(23):8164-77 10934025 - Development. 2000 Sep;127(17):3805-13 11821382 - J Biol Chem. 2002 Apr 19;277(16):14159-71 16510874 - Genes Dev. 2006 Mar 1;20(5):586-600 11845287 - Mamm Genome. 2001 Nov;12(11):843-51 10090727 - Genes Dev. 1999 Mar 15;13(6):709-17 14668413 - Development. 2004 Jan;131(2):263-74 18231635 - Neoplasia. 2008 Jan;10(1):8-19 9488439 - Mol Cell Biol. 1998 Mar;18(3):1248-56 12796377 - Clin Cancer Res. 2003 Jun;9(6):2121-32 9880534 - J Biol Chem. 1999 Jan 15;274(3):1566-72 12533679 - Mol Cancer Ther. 2003 Jan;2(1):113-21 15143193 - Mol Cell Biol. 2004 Jun;24(11):5028-38 16325796 - Dev Biol. 2006 Jan 15;289(2):318-28 17537796 - Development. 2007 Jun;134(12):2315-23 15547706 - Int J Oncol. 2004 Dec;25(6):1685-92 |
References_xml | – volume: 25 start-page: 1685 year: 2004 ident: key 20170510124518_B26 article-title: Differential expression and splicing isoform analysis of human Tcf-4 transcription factor in brain tumors publication-title: Int. J. Oncol. – volume: 132 start-page: 5375 year: 2005 ident: key 20170510124518_B13 article-title: Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/beta-catenin signalling in mesoderm development publication-title: Development doi: 10.1242/dev.02152 – volume: 278 start-page: 3776 year: 2003 ident: key 20170510124518_B18 article-title: Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210081200 – volume: 336 start-page: 684 year: 1988 ident: key 20170510124518_B36 article-title: Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells publication-title: Nature doi: 10.1038/336684a0 – volume: 118 start-page: 1129 year: 2005 ident: key 20170510124518_B60 article-title: PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter publication-title: J. Cell. Sci. doi: 10.1242/jcs.01706 – volume: 105 start-page: 9697 year: 2008 ident: key 20170510124518_B66 article-title: A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0804709105 – volume: 60 start-page: 3872 year: 2000 ident: key 20170510124518_B25 article-title: The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines publication-title: Cancer Res. – volume: 27 start-page: 8352 year: 2007 ident: key 20170510124518_B24 article-title: A unique DNA binding domain converts T-cell factors into strong Wnt effectors publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02132-06 – volume: 10 start-page: 8 year: 2008 ident: key 20170510124518_B70 article-title: The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine publication-title: Neoplasia doi: 10.1593/neo.07703 – volume: 27 start-page: 8164 year: 2007 ident: key 20170510124518_B16 article-title: Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00555-07 – volume: 15 start-page: 3342 year: 2001 ident: key 20170510124518_B58 article-title: Chromatin-specific regulation of LEF-1-beta-catenin transcription activation and inhibition in vitro publication-title: Genes Dev. doi: 10.1101/gad.946501 – volume: 9 start-page: 159 year: 2009 ident: key 20170510124518_B73 article-title: Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression publication-title: BMC Cancer doi: 10.1186/1471-2407-9-159 – volume: 120 start-page: 385 year: 2007 ident: key 20170510124518_B6 article-title: Wnt signalling: variety at the core publication-title: J. Cell. Sci. doi: 10.1242/jcs.03363 – volume: 59 start-page: 4213 year: 1999 ident: key 20170510124518_B68 article-title: Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability publication-title: Cancer Res. – volume: 5 start-page: 656 year: 1991 ident: key 20170510124518_B2 article-title: A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer publication-title: Genes Dev. doi: 10.1101/gad.5.4.656 – volume: 127 start-page: 469 year: 2006 ident: key 20170510124518_B45 article-title: Wnt/beta-catenin signaling in development and disease publication-title: Cell doi: 10.1016/j.cell.2006.10.018 – volume: 127 start-page: 3805 year: 2000 ident: key 20170510124518_B39 article-title: Wnt/(beta)-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine publication-title: Development doi: 10.1242/dev.127.17.3805 – volume: 11 start-page: 2359 year: 1997 ident: key 20170510124518_B40 article-title: A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus publication-title: Genes Dev. doi: 10.1101/gad.11.18.2359 – volume: 22 start-page: 746 year: 2008 ident: key 20170510124518_B17 article-title: Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells publication-title: Genes Dev. doi: 10.1101/gad.1642408 – volume: 28 start-page: 7368 year: 2008 ident: key 20170510124518_B64 article-title: A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00744-08 – volume: 25 start-page: 4361 year: 2006 ident: key 20170510124518_B65 article-title: Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer publication-title: Oncogene doi: 10.1038/sj.onc.1209470 – volume: 27 start-page: 4497 year: 2008 ident: key 20170510124518_B72 article-title: Cdx1, a dispensable homeobox gene for gut development with limited effect in intestinal cancer publication-title: Oncogene doi: 10.1038/onc.2008.78 – volume: 16 start-page: R378 year: 2006 ident: key 20170510124518_B4 article-title: Transcription under the control of nuclear Arm/beta-catenin publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.04.019 – volume: 276 start-page: 8968 year: 2001 ident: key 20170510124518_B14 article-title: Identification of two regulatory elements within the high mobility group box transcription factor XTCF-4 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M007533200 – volume: 96 start-page: 5522 year: 1999 ident: key 20170510124518_B47 article-title: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.10.5522 – volume: 19 start-page: 379 year: 1998 ident: key 20170510124518_B61 article-title: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 publication-title: Nature Genetics doi: 10.1038/1270 – volume: 275 start-page: 1784 year: 1997 ident: key 20170510124518_B42 article-title: Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma publication-title: Science doi: 10.1126/science.275.5307.1784 – volume: 18 start-page: 1248 year: 1998 ident: key 20170510124518_B33 article-title: Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.3.1248 – volume: 382 start-page: 638 year: 1996 ident: key 20170510124518_B8 article-title: Functional interaction of beta-catenin with the transcription factor LEF-1 publication-title: Nature doi: 10.1038/382638a0 – volume: 278 start-page: 16169 year: 2003 ident: key 20170510124518_B19 article-title: A new beta-catenin-dependent activation domain in T cell factor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M213218200 – volume: 274 start-page: 1566 year: 1999 ident: key 20170510124518_B34 article-title: A possible role for the high mobility group box transcription factor Tcf-4 in vertebrate gut epithelial cell differentiation publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.3.1566 – volume: 398 start-page: 422 year: 1999 ident: key 20170510124518_B48 article-title: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells publication-title: Nature doi: 10.1038/18884 – volume: 13 start-page: 709 year: 1999 ident: key 20170510124518_B55 article-title: Wnt3a-/–like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice publication-title: Genes Dev. doi: 10.1101/gad.13.6.709 – volume: 24 start-page: 5028 year: 2004 ident: key 20170510124518_B59 article-title: Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.11.5028-5038.2004 – volume: 12 start-page: 364 year: 2005 ident: key 20170510124518_B11 article-title: Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb912 – volume: 111 start-page: 241 year: 2002 ident: key 20170510124518_B62 article-title: The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells publication-title: Cell doi: 10.1016/S0092-8674(02)01014-0 – volume: 12 start-page: 1941 year: 2002 ident: key 20170510124518_B22 article-title: Lef-1 and Tcf-3 transcription factors mediate tissue-specific Wnt signaling during Xenopus development publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01280-0 – volume: 18 start-page: 1877 year: 2008 ident: key 20170510124518_B50 article-title: Activation of wingless targets requires bipartite recognition of DNA by TCF publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.10.047 – volume: 62 start-page: 3009 year: 2002 ident: key 20170510124518_B69 article-title: T-cell factor-4 frameshift mutations occur frequently in human microsatellite instability-high colorectal carcinomas but do not contribute to carcinogenesis publication-title: Cancer Res. – volume: 129 start-page: 2087 year: 2002 ident: key 20170510124518_B46 article-title: A mitogen gradient of dorsal midline Wnts organizes growth in the CNS publication-title: Development doi: 10.1242/dev.129.9.2087 – volume: 289 start-page: 318 year: 2006 ident: key 20170510124518_B23 article-title: Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.10.012 – volume: 31 start-page: 2369 year: 2003 ident: key 20170510124518_B31 article-title: HMG box transcription factor TCF-4's interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg346 – volume: 277 start-page: 14159 year: 2002 ident: key 20170510124518_B12 article-title: Functional diversity of Xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements publication-title: J. Biol. Chem. doi: 10.1074/jbc.M107055200 – volume: 68 start-page: 33 year: 1992 ident: key 20170510124518_B35 article-title: Multipotent neural cell lines can engraft and participate in development of mouse cerebellum publication-title: Cell doi: 10.1016/0092-8674(92)90204-P – volume: 59 start-page: 3 year: 1996 ident: key 20170510124518_B9 article-title: Nuclear localization of beta-catenin by interaction with transcription factor LEF-1 publication-title: Mech. Dev. doi: 10.1016/0925-4773(96)00597-7 – volume: 9 start-page: 2121 year: 2003 ident: key 20170510124518_B27 article-title: The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma publication-title: Clin. Cancer Res. – volume: 20 start-page: 586 year: 2006 ident: key 20170510124518_B7 article-title: The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes publication-title: Genes Dev. doi: 10.1101/gad.1385806 – volume: 77 start-page: 9 year: 1998 ident: key 20170510124518_B32 article-title: TCF-4 binds beta-catenin and is expressed in distinct regions of the embryonic brain and limbs publication-title: Mech. Dev. doi: 10.1016/S0925-4773(98)00131-2 – volume: 2 start-page: 113 year: 2003 ident: key 20170510124518_B63 article-title: Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy publication-title: Mol. Cancer Therapeutics – volume: 16 start-page: 745 year: 1996 ident: key 20170510124518_B53 article-title: Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.3.745 – volume: 23 start-page: 5366 year: 2003 ident: key 20170510124518_B29 article-title: T-cell factor 4N (TCF-4N), a novel isoform of mouse TCF-4, synergizes with beta-catenin to coactivate C/EBPalpha and steroidogenic factor 1 transcription factors publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.15.5366-5375.2003 – volume: 313 start-page: 572 year: 2007 ident: key 20170510124518_B43 article-title: Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2006.11.002 – volume: 11 start-page: 3039 year: 1992 ident: key 20170510124518_B75 article-title: Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05374.x – volume: 117 start-page: 269 year: 2002 ident: key 20170510124518_B44 article-title: Expression and splice variant analysis of the zebrafish tcf4 transcription factor publication-title: Mech. Dev. doi: 10.1016/S0925-4773(02)00180-6 – volume: 131 start-page: 263 year: 2004 ident: key 20170510124518_B56 article-title: Tcf3: a transcriptional regulator of axis induction in the early embryo publication-title: Development doi: 10.1242/dev.00935 – volume: 22 start-page: 361 year: 1999 ident: key 20170510124518_B57 article-title: Requirement for Wnt3 in vertebrate axis formation publication-title: Nature Genetics doi: 10.1038/11932 – volume: 5 start-page: 2567 year: 1991 ident: key 20170510124518_B74 article-title: DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1 publication-title: Genes Dev. doi: 10.1101/gad.5.12b.2567 – volume: 12 start-page: 843 year: 2001 ident: key 20170510124518_B28 article-title: Identification of members of the Wnt signaling pathway in the embryonic pituitary gland publication-title: Mamm. Genome doi: 10.1007/s00335-001-2076-0 – volume: 9 start-page: 1295 year: 1994 ident: key 20170510124518_B41 article-title: Inducible regulatory elements in the human cyclin D1 promoter publication-title: Oncogene – volume: 10 start-page: 123 year: 1991 ident: key 20170510124518_B1 article-title: Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07928.x – volume: 25 start-page: 4441 year: 2006 ident: key 20170510124518_B67 article-title: TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription publication-title: Oncogene doi: 10.1038/sj.onc.1209471 – volume: 4 start-page: 395 year: 2003 ident: key 20170510124518_B38 article-title: Wnt3a plays a major role in the segmentation clock controlling somitogenesis publication-title: Dev. Cell doi: 10.1016/S1534-5807(03)00055-8 – volume: 25 start-page: 7492 year: 2006 ident: key 20170510124518_B5 article-title: Diversity of LEF/TCF action in development and disease publication-title: Oncogene doi: 10.1038/sj.onc.1210056 – volume: 15 start-page: 1532 year: 2009 ident: key 20170510124518_B30 article-title: Expression and molecular diversity of Tcf7l2 in the developing murine cerebellum and brain publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21989 – volume: 3 start-page: 593 year: 2004 ident: key 20170510124518_B71 article-title: The role of Cdx proteins in intestinal development and cancer publication-title: Can. Biol. Ther. doi: 10.4161/cbt.3.7.913 – volume: 15 start-page: 1688 year: 2001 ident: key 20170510124518_B20 article-title: Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin publication-title: Genes & Dev. doi: 10.1101/gad.891401 – volume: 127 start-page: 171 year: 2006 ident: key 20170510124518_B21 article-title: Tcf3 governs stem cell features and represses cell fate determination in skin publication-title: Cell doi: 10.1016/j.cell.2006.07.036 – volume: 17 start-page: 2152 year: 2003 ident: key 20170510124518_B54 article-title: TCF and Groucho-related genes influence pituitary growth and development publication-title: Mol. Endocrinology doi: 10.1210/me.2003-0225 – volume: 28 start-page: 2732 year: 2008 ident: key 20170510124518_B15 article-title: Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02175-07 – volume: 86 start-page: 391 year: 1996 ident: key 20170510124518_B10 article-title: XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos publication-title: Cell doi: 10.1016/S0092-8674(00)80112-9 – volume: 5 start-page: 880 year: 1991 ident: key 20170510124518_B3 article-title: LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected] publication-title: Genes Dev. doi: 10.1101/gad.5.5.880 – volume: 8 start-page: 1434 year: 1994 ident: key 20170510124518_B37 article-title: Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate publication-title: Genes Dev. doi: 10.1101/gad.8.12.1434 – volume: 81 start-page: 65 year: 1999 ident: key 20170510124518_B52 article-title: The C-terminal transactivation domain of beta-catenin is necessary and sufficient for signaling by the LEF-1/beta-catenin complex in Xenopus laevis publication-title: Mech. Dev. doi: 10.1016/S0925-4773(98)00225-1 – volume: 134 start-page: 2315 year: 2007 ident: key 20170510124518_B49 article-title: Wnt signaling is a key mediator of Cdx1 expression in vivo publication-title: Development doi: 10.1242/dev.001206 – volume: 96 start-page: 139 year: 1999 ident: key 20170510124518_B51 article-title: Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.1.139 – reference: 12796377 - Clin Cancer Res. 2003 Jun;9(6):2121-32 – reference: 9874785 - Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):139-44 – reference: 8622675 - Mol Cell Biol. 1996 Mar;16(3):745-52 – reference: 17893322 - Mol Cell Biol. 2007 Dec;27(23):8352-63 – reference: 9880534 - J Biol Chem. 1999 Jan 15;274(3):1566-72 – reference: 12036905 - Cancer Res. 2002 Jun 1;62(11):3009-13 – reference: 12907761 - Mol Endocrinol. 2003 Nov;17(11):2152-61 – reference: 16547505 - Oncogene. 2006 Jul 27;25(32):4441-8 – reference: 17018284 - Cell. 2006 Oct 6;127(1):171-83 – reference: 9488439 - Mol Cell Biol. 1998 Mar;18(3):1248-56 – reference: 10330485 - Mech Dev. 1999 Mar;81(1-2):65-74 – reference: 15547706 - Int J Oncol. 2004 Dec;25(6):1685-92 – reference: 11821382 - J Biol Chem. 2002 Apr 19;277(16):14159-71 – reference: 12533679 - Mol Cancer Ther. 2003 Jan;2(1):113-21 – reference: 10485457 - Cancer Res. 1999 Sep 1;59(17):4213-5 – reference: 17198701 - Exp Cell Res. 2007 Feb 1;313(3):572-87 – reference: 15143193 - Mol Cell Biol. 2004 Jun;24(11):5028-38 – reference: 16713950 - Curr Biol. 2006 May 23;16(10):R378-85 – reference: 12636920 - Dev Cell. 2003 Mar;4(3):395-406 – reference: 1752444 - Genes Dev. 1991 Dec;5(12B):2567-78 – reference: 10090727 - Genes Dev. 1999 Mar 15;13(6):709-17 – reference: 8134134 - Oncogene. 1994 Apr;9(4):1295-304 – reference: 9697701 - Nat Genet. 1998 Aug;19(4):379-83 – reference: 11751639 - Genes Dev. 2001 Dec 15;15(24):3342-54 – reference: 18852287 - Mol Cell Biol. 2008 Dec;28(24):7368-79 – reference: 17923689 - Mol Cell Biol. 2007 Dec;27(23):8164-77 – reference: 3143916 - Nature. 1988 Dec 15;336(6200):684-7 – reference: 11959819 - Development. 2002 May;129(9):2087-98 – reference: 1989880 - EMBO J. 1991 Jan;10(1):123-32 – reference: 9784592 - Mech Dev. 1998 Sep;77(1):9-18 – reference: 1732063 - Cell. 1992 Jan 10;68(1):33-51 – reference: 10318916 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5522-7 – reference: 12204269 - Mech Dev. 2002 Sep;117(1-2):269-73 – reference: 8757136 - Nature. 1996 Aug 15;382(6592):638-42 – reference: 17143293 - Oncogene. 2006 Dec 4;25(57):7492-504 – reference: 18621708 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9697-702 – reference: 10201372 - Nature. 1999 Apr 1;398(6726):422-6 – reference: 12408868 - Cell. 2002 Oct 18;111(2):241-50 – reference: 15728254 - J Cell Sci. 2005 Mar 15;118(Pt 6):1129-37 – reference: 12711682 - Nucleic Acids Res. 2003 May 1;31(9):2369-80 – reference: 18231635 - Neoplasia. 2008 Jan;10(1):8-19 – reference: 18268006 - Mol Cell Biol. 2008 Apr;28(8):2732-44 – reference: 19062282 - Curr Biol. 2008 Dec 9;18(23):1877-81 – reference: 1827423 - Genes Dev. 1991 May;5(5):880-94 – reference: 19460168 - BMC Cancer. 2009;9:159 – reference: 17081971 - Cell. 2006 Nov 3;127(3):469-80 – reference: 11845287 - Mamm Genome. 2001 Nov;12(11):843-51 – reference: 14668413 - Development. 2004 Jan;131(2):263-74 – reference: 8892228 - Mech Dev. 1996 Sep;59(1):3-10 – reference: 16532032 - Oncogene. 2006 Jul 20;25(31):4361-9 – reference: 2010090 - Genes Dev. 1991 Apr;5(4):656-69 – reference: 10934025 - Development. 2000 Sep;127(17):3805-13 – reference: 16510874 - Genes Dev. 2006 Mar 1;20(5):586-600 – reference: 11445543 - Genes Dev. 2001 Jul 1;15(13):1688-705 – reference: 15768032 - Nat Struct Mol Biol. 2005 Apr;12(4):364-71 – reference: 12445388 - Curr Biol. 2002 Nov 19;12(22):1941-5 – reference: 12861022 - Mol Cell Biol. 2003 Aug;23(15):5366-75 – reference: 15136761 - Cancer Biol Ther. 2004 Jul;3(7):593-601 – reference: 19125404 - J Neurosci Res. 2009 May 15;87(7):1532-46 – reference: 17251379 - J Cell Sci. 2007 Feb 1;120(Pt 3):385-93 – reference: 16325796 - Dev Biol. 2006 Jan 15;289(2):318-28 – reference: 1639073 - EMBO J. 1992 Aug;11(8):3039-44 – reference: 10919662 - Cancer Res. 2000 Jul 15;60(14):3872-9 – reference: 17537796 - Development. 2007 Jun;134(12):2315-23 – reference: 12582159 - J Biol Chem. 2003 May 2;278(18):16169-75 – reference: 9308964 - Genes Dev. 1997 Sep 15;11(18):2359-70 – reference: 8756721 - Cell. 1996 Aug 9;86(3):391-9 – reference: 9065401 - Science. 1997 Mar 21;275(5307):1784-7 – reference: 18347094 - Genes Dev. 2008 Mar 15;22(6):746-55 – reference: 18372917 - Oncogene. 2008 Jul 24;27(32):4497-502 – reference: 16291789 - Development. 2005 Dec;132(24):5375-85 – reference: 10431240 - Nat Genet. 1999 Aug;22(4):361-5 – reference: 11124256 - J Biol Chem. 2001 Mar 23;276(12):8968-78 – reference: 7926743 - Genes Dev. 1994 Jun 15;8(12):1434-47 – reference: 12446687 - J Biol Chem. 2003 Feb 7;278(6):3776-85 |
SSID | ssj0014154 |
Score | 2.3470702 |
Snippet | Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative... Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative... |
SourceID | pubmedcentral proquest pubmed crossref fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1964 |
SubjectTerms | Alternative Splicing Amino Acid Sequence Animals beta Catenin - metabolism Cell Line complement DNA DNA-binding domains DNA-binding proteins embryonic stem cells exons Genetic Variation Humans Mice Molecular Biology molecular cloning Molecular Sequence Data polymerase chain reaction Promoter Regions, Genetic Protein Isoforms - chemistry Protein Isoforms - genetics Protein Isoforms - metabolism protein products sequence analysis T-lymphocytes TCF Transcription Factors - chemistry TCF Transcription Factors - genetics TCF Transcription Factors - metabolism Tissue Distribution tissues transcription (genetics) Transcription Factor 7-Like 2 Protein Transcriptional Activation Wnt Proteins - pharmacology |
Title | Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/β-catenin targets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20044351 https://www.proquest.com/docview/733526013 https://www.proquest.com/docview/742688446 https://pubmed.ncbi.nlm.nih.gov/PMC2847248 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l5QAXBC3Q8FPtoeVA5NZeO7F9DFGiColeSERv1np3XQKpEyVOJXgmTjwIT8DDMLO7_kmIUOFiRcmuFWs-7_x9M0PIifSYiHtZ5kSplE4gIuXEimVOoBhoY1AoSo9OeH_Zu5gE7666V63WrwZraV2kZ-LbzrqS_5EqfAdyxSrZf5BsdVP4Aj6DfOEKEobrnWTcn9lw3q3qrDARbSnMY5GFM4bjH3JzKqxwUjK2T1arju7MMM07t-Al86q8rRyUUmAEfaE5emqJbrMsqxjru5noIVZEmHgurl8gPxvuzovOR2xlMDodDE_fMgcJV9i_1TDOV01b-BJbKWO7WDGVmLxoxNV0qmhqZj5qyiWvo_lLjKtYIsjnSqkMZ5mtPtI8o5osgJmCG3O2YiCk4M04B6boK3qMre_SPVNNX84zZY5rXfMVb57nftTAbfNwxt5jDUXvxWZYzB9KxDTYypHgPrr-ssBEa60tS4bAlhKtqI0mqe8nsD2xm_fIPQZODM7XCN1hleMC08k0N7PPZatHYfM5bD63mzfspb2Mz3e5QtuM3oaJNH5EHlrfhvYNUB-TlsoPyGEfADq_-UpfU8021mmcA3J_UE4aPCTfGzimJY7pPKMGx7SBY1rhmFoc0xLHFHFMmzim2zimgGO6hWNa45jWOKa8oIDj858_SgRTi-AnZDIajgcXjp0i4ojA7xWOJ1QQR8JN48hlMgqV76uMC3BV0m6oUibABgcnhPsuV2koWaa43-XMzbiKXCm6_lOyn89zdUSoF8QhDzMPvFI3kH6UBiwLlexJLhkOimiTN6WsEmFb7OOkl1myAxVtclItXpjOMruXHYHQE34NOj-ZfGDINPAiLH_vtgktkZCAxDDTx3M1X6-SECspe7D0L0vANI-iIOi1yTODnepf4BELXpTXJuEGqqoF2JJ-85d8-km3pkdjlwXR87s92wvyoH7TX5L9YrlWr8DGL9Jj_aoc6wjZbxrZDV8 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+splicing+of+Tcf7l2+transcripts+generates+protein+variants+with+differential+promoter-binding+and+transcriptional+activation+properties+at+Wnt%2F%CE%B2-catenin+targets&rft.jtitle=Nucleic+acids+research&rft.au=Weise%2C+Andreas&rft.au=Bruser%2C+Katja&rft.au=Elfert%2C+Susanne&rft.au=Wallmen%2C+Britta&rft.date=2010-04-01&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=38&rft.issue=6&rft.spage=1964&rft.epage=1981&rft_id=info:doi/10.1093%2Fnar%2Fgkp1197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkp1197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |