Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion
•The impacting and freezing experiments of supercooled water droplets are conducted.•The impacting-freezing behaviors of supercooled water droplets are simulated.•The numerical model considers the supercooling effect and dynamic contact angle.•The supercooled droplet spreads and retracts slower than...
Saved in:
Published in | International journal of heat and mass transfer Vol. 158; p. 119997 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The impacting and freezing experiments of supercooled water droplets are conducted.•The impacting-freezing behaviors of supercooled water droplets are simulated.•The numerical model considers the supercooling effect and dynamic contact angle.•The supercooled droplet spreads and retracts slower than the room temperature one.•A morphology map of rebound and adhesion is proposed for the impacting-freezing.
The impacting-freezing dynamics of a supercooled water droplet on a cold surface is studied experimentally and numerically. A numerical model that considers both the effects of the supercooling degree on the physical properties and of the dynamic contact angle on the contact line motion is established to simulate the droplet impacting-freezing behaviors using the VOF multiphase model and the Solidification/Melting phase change model. Experiments are also conducted for the impacting-freezing processes of supercooled and room temperature water droplets on a cold surface and for the impacting process of a room temperature droplet on a room temperature surface. Both the temporal droplet profile and the spreading factor calculated by the simulations agree well with the experimental observations. The maximum deviation of the maximum and stable spreading factors between experiments and simulations is 11.3%. The numerical and experimental results elucidate that the supercooled droplet spreads and retracts slower than the room temperature one in the impacting process and thus yields a smaller maximum and a larger stable spreading factor. The increases of the Weber number and supercooling degree and the decrease of the contact angle will enlarge the above differences. Additionally, three different morphologies of full rebound, partial rebound and full adhesion are identified in the impacting-freezing process of a supercooled droplet on a cold hydrophobic surface, indicating the competition between the fluid flow and heat transfer. A unified morphology map of rebound and adhesion correlating the Weber number, supercooling degree and contact angle is proposed for the impacting-freezing behavior and it presents the universal limits for the full rebound and adhesion. This work may deepen our understanding of the interaction mechanism between the droplet and cold surface in the impacting-freezing process and provides reference for the associated applications and technologies in anti-icing/frosting and self-cleaning.
[Display omitted] |
---|---|
AbstractList | The impacting-freezing dynamics of a supercooled water droplet on a cold surface is studied experimentally and numerically. A numerical model that considers both the effects of the supercooling degree on the physical properties and of the dynamic contact angle on the contact line motion is established to simulate the droplet impacting-freezing behaviors using the VOF multiphase model and the Solidification/Melting phase change model. Experiments are also conducted for the impacting-freezing processes of supercooled and room temperature water droplets on a cold surface and for the impacting process of a room temperature droplet on a room temperature surface. Both the temporal droplet profile and the spreading factor calculated by the simulations agree well with the experimental observations. The maximum deviation of the maximum and stable spreading factors between experiments and simulations is 11.3%. The numerical and experimental results elucidate that the supercooled droplet spreads and retracts slower than the room temperature one in the impacting process and thus yields a smaller maximum and a larger stable spreading factor. The increases of the Weber number and supercooling degree and the decrease of the contact angle will enlarge the above differences. Additionally, three different morphologies of full rebound, partial rebound and full adhesion are identified in the impacting-freezing process of a supercooled droplet on a cold hydrophobic surface, indicating the competition between the fluid flow and heat transfer. A unified morphology map of rebound and adhesion correlating the Weber number, supercooling degree and contact angle is proposed for the impacting-freezing behavior and it presents the universal limits for the full rebound and adhesion. This work may deepen our understanding of the interaction mechanism between the droplet and cold surface in the impacting-freezing process and provides reference for the associated applications and technologies in anti-icing/frosting and self-cleaning. •The impacting and freezing experiments of supercooled water droplets are conducted.•The impacting-freezing behaviors of supercooled water droplets are simulated.•The numerical model considers the supercooling effect and dynamic contact angle.•The supercooled droplet spreads and retracts slower than the room temperature one.•A morphology map of rebound and adhesion is proposed for the impacting-freezing. The impacting-freezing dynamics of a supercooled water droplet on a cold surface is studied experimentally and numerically. A numerical model that considers both the effects of the supercooling degree on the physical properties and of the dynamic contact angle on the contact line motion is established to simulate the droplet impacting-freezing behaviors using the VOF multiphase model and the Solidification/Melting phase change model. Experiments are also conducted for the impacting-freezing processes of supercooled and room temperature water droplets on a cold surface and for the impacting process of a room temperature droplet on a room temperature surface. Both the temporal droplet profile and the spreading factor calculated by the simulations agree well with the experimental observations. The maximum deviation of the maximum and stable spreading factors between experiments and simulations is 11.3%. The numerical and experimental results elucidate that the supercooled droplet spreads and retracts slower than the room temperature one in the impacting process and thus yields a smaller maximum and a larger stable spreading factor. The increases of the Weber number and supercooling degree and the decrease of the contact angle will enlarge the above differences. Additionally, three different morphologies of full rebound, partial rebound and full adhesion are identified in the impacting-freezing process of a supercooled droplet on a cold hydrophobic surface, indicating the competition between the fluid flow and heat transfer. A unified morphology map of rebound and adhesion correlating the Weber number, supercooling degree and contact angle is proposed for the impacting-freezing behavior and it presents the universal limits for the full rebound and adhesion. This work may deepen our understanding of the interaction mechanism between the droplet and cold surface in the impacting-freezing process and provides reference for the associated applications and technologies in anti-icing/frosting and self-cleaning. [Display omitted] |
ArticleNumber | 119997 |
Author | Min, Jingchun Liu, Xin Zhang, Xuan Wu, Xiaomin |
Author_xml | – sequence: 1 givenname: Xuan surname: Zhang fullname: Zhang, Xuan organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Xin surname: Liu fullname: Liu, Xin organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Xiaomin surname: Wu fullname: Wu, Xiaomin email: wuxiaomin@mail.tsinghua.edu.cn organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Jingchun surname: Min fullname: Min, Jingchun email: minjc@mail.tsinghua.edu.cn organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China |
BookMark | eNqVkMtOJCEYhYnRxPbyDiRuZlMtf90oXDkxOmpMTIyuCQV_KZVqqAHaiT69dNrVuNEF4XIOH-E7ILvOOyTkF7AlMGhPx6UdX1CllYoxBeXigGFZsjLHIITgO2QBHRdFCZ3YJQvGgBeiArZPDmIcN1tWtwvS36xmpZN1z8UQEN_zgpo3p1ZWR-oHqmhczxi09xMa-k8lDNQEP0-YqHc51n4yuRMGpfGMPmDv185QtRnmBaP17ojsDWqKePw5H5Knq8vHi-vi7v7PzcXvu0LXVZsKUNi00AjeCdC87jqsayN6NHpQvGKGlyUg9D3kM8XKpum5ZlBzbKHqeyWqQ3Ky5c7B_11jTHL06-Dyk7Ks6zbf56LJrfNtSwcfY8BBzsGuVHiTwOTGrBzlV7NyY1ZuzWbE1X8IbZNK-au5bqefgG63IMxaXm1Oo7boNBobUCdpvP0-7AN03KnL |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2024_107307 crossref_primary_10_1016_j_cej_2023_146113 crossref_primary_10_1063_5_0190430 crossref_primary_10_1080_15435075_2023_2199329 crossref_primary_10_1016_j_applthermaleng_2022_119562 crossref_primary_10_1002_adma_202310177 crossref_primary_10_1021_acsnano_3c08368 crossref_primary_10_1016_j_ijthermalsci_2023_108726 crossref_primary_10_1016_j_ijthermalsci_2025_109811 crossref_primary_10_1021_acs_langmuir_4c03815 crossref_primary_10_1016_j_ijheatfluidflow_2024_109497 crossref_primary_10_1007_s10999_022_09593_x crossref_primary_10_1088_1402_4896_aced2b crossref_primary_10_1063_5_0223699 crossref_primary_10_1016_j_applthermaleng_2023_121533 crossref_primary_10_1016_j_rser_2023_113768 crossref_primary_10_1016_j_ijft_2021_100109 crossref_primary_10_1016_j_molliq_2025_126973 crossref_primary_10_1016_j_solener_2024_112384 crossref_primary_10_1016_j_jfluidstructs_2023_103839 crossref_primary_10_1016_j_est_2024_114186 crossref_primary_10_1016_j_expthermflusci_2023_111049 crossref_primary_10_3390_app13137743 crossref_primary_10_1016_j_expthermflusci_2025_111449 crossref_primary_10_1016_j_icheatmasstransfer_2024_108252 crossref_primary_10_1016_j_ijthermalsci_2021_107241 crossref_primary_10_1016_j_jcrysgro_2021_126475 crossref_primary_10_1016_j_actaastro_2022_04_031 crossref_primary_10_1016_j_camwa_2024_01_020 crossref_primary_10_1016_j_ast_2023_108126 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124477 crossref_primary_10_1016_j_jcis_2020_09_119 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124075 crossref_primary_10_1016_j_actaastro_2024_01_028 crossref_primary_10_1016_j_cis_2023_102919 crossref_primary_10_3390_sym14091891 crossref_primary_10_1063_5_0023896 crossref_primary_10_1063_5_0083833 crossref_primary_10_1021_acsami_4c12227 crossref_primary_10_1063_5_0231692 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121843 crossref_primary_10_1016_j_ijthermalsci_2025_109871 crossref_primary_10_1016_j_icheatmasstransfer_2022_106167 crossref_primary_10_1016_j_applthermaleng_2025_125461 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123108 crossref_primary_10_1016_j_expthermflusci_2021_110503 crossref_primary_10_1016_j_sna_2024_115745 crossref_primary_10_1016_j_ast_2021_106791 crossref_primary_10_1063_5_0226821 crossref_primary_10_1016_j_applthermaleng_2022_119131 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104101 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123196 crossref_primary_10_1016_j_icheatmasstransfer_2024_107619 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103887 crossref_primary_10_1016_j_applthermaleng_2025_126205 crossref_primary_10_1007_s00339_024_07664_8 crossref_primary_10_1016_j_colsurfa_2024_134452 crossref_primary_10_1016_j_ijft_2023_100519 crossref_primary_10_1016_j_jcis_2021_04_078 crossref_primary_10_1016_j_applthermaleng_2024_124521 crossref_primary_10_1063_5_0259031 crossref_primary_10_1111_jfpe_14383 crossref_primary_10_1038_s42005_022_00827_0 crossref_primary_10_1016_j_applthermaleng_2023_122044 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104590 crossref_primary_10_1007_s11581_024_05669_0 crossref_primary_10_1016_j_applthermaleng_2023_120515 crossref_primary_10_1016_j_compscitech_2021_109086 crossref_primary_10_1063_5_0222155 crossref_primary_10_1063_5_0176053 crossref_primary_10_1021_acs_langmuir_4c00235 crossref_primary_10_1063_5_0061621 crossref_primary_10_1063_5_0066366 crossref_primary_10_1016_j_expthermflusci_2023_111110 crossref_primary_10_1063_5_0024837 crossref_primary_10_1063_5_0069596 crossref_primary_10_1063_5_0028081 crossref_primary_10_1063_5_0236164 crossref_primary_10_1063_5_0239278 crossref_primary_10_1615_JEnhHeatTransf_2024051487 crossref_primary_10_1016_j_applthermaleng_2023_122135 crossref_primary_10_1016_j_ijthermalsci_2024_108881 crossref_primary_10_1016_j_measurement_2021_109907 crossref_primary_10_1016_j_icheatmasstransfer_2022_106264 crossref_primary_10_1016_j_icheatmasstransfer_2022_106269 crossref_primary_10_1016_j_ijhydene_2024_01_209 crossref_primary_10_1016_j_applthermaleng_2022_119516 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125311 crossref_primary_10_1080_01457632_2024_2368434 crossref_primary_10_3390_e24111650 crossref_primary_10_1063_5_0172752 crossref_primary_10_1186_s42774_021_00078_7 crossref_primary_10_1063_5_0020110 crossref_primary_10_1016_j_ijthermalsci_2022_107541 crossref_primary_10_1016_j_applthermaleng_2023_121693 crossref_primary_10_1016_j_applthermaleng_2023_121692 crossref_primary_10_3390_nano12020247 crossref_primary_10_1016_j_applthermaleng_2023_121691 crossref_primary_10_1016_j_colsurfa_2024_134806 crossref_primary_10_1063_5_0047583 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125241 crossref_primary_10_1063_5_0193368 crossref_primary_10_1016_j_applthermaleng_2023_121705 crossref_primary_10_1016_j_colsurfa_2024_134250 crossref_primary_10_1016_j_measurement_2024_115859 crossref_primary_10_1016_j_molliq_2023_121277 crossref_primary_10_1021_acsami_4c08289 crossref_primary_10_1002_admi_202400723 crossref_primary_10_1016_j_applthermaleng_2024_122397 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103675 crossref_primary_10_1038_s41598_024_61826_5 crossref_primary_10_1063_5_0102964 crossref_primary_10_1063_5_0206456 crossref_primary_10_1063_5_0097511 crossref_primary_10_1063_5_0087443 crossref_primary_10_1016_j_icheatmasstransfer_2022_106485 crossref_primary_10_1016_j_molliq_2021_118334 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126617 crossref_primary_10_1021_acs_langmuir_4c02161 crossref_primary_10_3390_w13121628 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122044 crossref_primary_10_1063_5_0165888 crossref_primary_10_1016_j_enbuild_2020_110315 crossref_primary_10_1080_15435075_2023_2230266 crossref_primary_10_1016_j_applthermaleng_2023_122007 crossref_primary_10_1016_j_icheatmasstransfer_2024_108108 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104263 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105032 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124781 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126100 crossref_primary_10_1016_j_apsusc_2024_161415 crossref_primary_10_1063_5_0048206 crossref_primary_10_1080_25740881_2021_1882490 crossref_primary_10_1016_j_applthermaleng_2025_125794 crossref_primary_10_1007_s42401_023_00192_y crossref_primary_10_1016_j_apsusc_2021_150717 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123436 crossref_primary_10_1016_j_icheatmasstransfer_2024_108112 crossref_primary_10_1016_j_applthermaleng_2025_126240 |
Cites_doi | 10.1016/j.expthermflusci.2017.05.009 10.1063/1.4991915 10.1016/j.ces.2019.06.058 10.1016/0021-9991(81)90145-5 10.1063/1.4873345 10.1016/j.surfcoat.2018.11.039 10.1016/j.ijheatmasstransfer.2019.07.081 10.1016/j.rser.2007.11.009 10.1038/ncomms1630 10.1063/1.5006439 10.1016/j.ijthermalsci.2015.10.027 10.1063/1.1928828 10.1016/j.ijheatmasstransfer.2018.10.142 10.1016/j.applthermaleng.2018.09.040 10.1007/s00396-012-2796-6 10.1016/j.ijheatmasstransfer.2017.02.055 10.1038/nphys2980 10.1016/j.atmosres.2016.02.012 10.1002/aic.690430903 10.2514/1.J053391 10.1175/1520-0450(1989)028<1098:IIBCFI>2.0.CO;2 10.1017/jfm.2017.797 10.1103/PhysRevFluids.2.043602 10.1016/j.cis.2014.07.004 10.1016/j.applthermaleng.2018.03.057 10.1063/1.4747185 10.1021/nn102557p 10.1016/j.apsusc.2016.03.029 10.1016/j.ijheatmasstransfer.2018.01.076 10.1088/0960-1317/26/9/095012 10.1103/PhysRevLett.113.054301 10.1021/la2045256 10.1016/j.ijmultiphaseflow.2019.06.011 10.1016/j.ijheatmasstransfer.2017.05.111 10.1006/jcis.1995.1010 10.1021/acsami.6b16803 10.1016/j.expthermflusci.2018.07.027 10.1016/j.applthermaleng.2017.07.017 10.1016/j.apsusc.2017.04.085 10.1016/j.ijmultiphaseflow.2015.07.005 10.1016/j.ijheatmasstransfer.2018.06.104 10.1016/j.ijrefrig.2014.11.002 10.1016/j.expthermflusci.2018.03.037 10.1063/1.5117278 10.1103/PhysRevE.95.022805 10.1063/1.3158468 10.1016/j.ijheatmasstransfer.2018.07.021 10.1016/j.ijheatmasstransfer.2019.04.106 10.1016/S0894-1777(01)00109-1 10.1016/j.ijheatmasstransfer.2016.08.086 10.1016/0021-9797(79)90081-X 10.1021/nl4037092 10.1146/annurev.fluid.38.050304.092144 10.1038/s41598-017-16787-3 10.1016/S0894-1777(01)00045-0 10.1016/j.ijthermalsci.2004.07.007 10.1007/BF01012963 10.1016/j.ijheatmasstransfer.2020.119468 10.1016/j.paerosci.2014.12.001 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Sep 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Sep 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2020.119997 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2020_119997 S0017931020316082 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c436t-1ae561597891c7488e44d9bedcfa730d7221e1bb19bea0255b7c0147e613bba93 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 08:17:52 EDT 2025 Thu Apr 24 22:59:29 EDT 2025 Tue Jul 01 04:24:02 EDT 2025 Fri Feb 23 02:49:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Impacting Supercooling Droplet Rebound and adhesion Freezing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c436t-1ae561597891c7488e44d9bedcfa730d7221e1bb19bea0255b7c0147e613bba93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2446722795 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2446722795 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119997 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119997 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Huang, Chen (bib0062) 2018; 30 Zhang, Wu, Min (bib0002) 2017; 104 Jin, Zhang, Yang (bib0033) 2017; 109 Haynes (bib0063) 2014 Chu, Wu, Wang (bib0007) 2017; 9 Wu, Silberschmidt, Hu, Chen (bib0008) 2019; 358 Malgarinos, Nikolopoulos, Marengo, Antonini, Gavaises (bib0054) 2014; 212 Enríquez, Marín, Winkels, Snoeijer (bib0048) 2012; 24 (bib0050) 2012 Ding, Wang, Zhu, Chen, Liao (bib0035) 2019; 138 Le Bot, Vincent, Arquis (bib0010) 2005; 44 Wang, Kong, Wang, Liu (bib0041) 2019; 130 Schremb, Roisman, Tropea (bib0034) 2017; 95 Mao, Kuhn, Tran (bib0015) 1997; 43 Zhang, Wu, Min (bib0018) 2017; 88 Vu, Tryggvason, Homma, Wells (bib0029) 2015; 76 Dalili, Edrisy, Carriveau (bib0003) 2009; 13 Voinov (bib0057) 1977; 11 Wu, Webb (bib0005) 2001; 24 Ju, Jin, Zhang, Yang, Zhang (bib0032) 2018; 96 Liu, Zhang, Min (bib0013) 2019; 31 Czys (bib0023) 1989; 28 Blake, Thompson, Raps, Strobl (bib0042) 2015; 53 Hao, Lv, Zhang (bib0021) 2014; 104 Jung, Tiwari, Doan, Poulikakos (bib0025) 2012; 3 Chen, Fu, Huang, Luo, Mo, Lyu (bib0036) 2016; 375 Maitra, Tiwari, Antonini, Schoch, Jung, Eberle, Poulikakos (bib0037) 2013; 14 Zhang, Liu, Wu, Min (bib0060) 2018; 127 Zhang, Hao, Zhang, He (bib0039) 2018; 122 Jiang, Soo-Gun, Slattery (bib0056) 1979; 69 Cao, Wu, Su, Xu (bib0001) 2015; 74 Yokoi, Vadillo, Hinch, Hutchings (bib0053) 2009; 21 Yao, Li, Zhang, Yang (bib0043) 2017; 419 Liu, Moevius, Xu, Qian, Yeomans, Wang (bib0016) 2014; 10 Yarin (bib0011) 2006; 38 Zhang, Liu, Wu, Min (bib0020) 2018; 99 Schremb, Roisman, Tropea (bib0046) 2018; 835 Feuillebois, Lasek, Creismeas, Pigeonneau, Szaniawski (bib0058) 1995; 169 Rahman, Jacobi (bib0006) 2015; 50 Zhang, Liu, Min, Wu (bib0027) 2019; 147 Eral, Mannetje, Oh (bib0055) 2013; 291 Jin, Zhang, Yang (bib0031) 2017; 113 Marcolli (bib0022) 2017; 7 Ji, Song, Yao (bib0052) 2017; 29 Šikalo, Marengo, Tropea, Ganić (bib0012) 2002; 25 Bejan, Kraus (bib0059) 2003 Alizadeh, Yamada, Li, Shang, Otta, Zhong, Ge, Dhinojwala, Conway, Bahadur, Vinciquerra, Stephens, Blohm (bib0017) 2012; 28 Zhang, Wu, Min, Liu (bib0024) 2017; 125 Punge, Kunz (bib0004) 2016; 176–177 Zhang, Zhao, Lv, Yang (bib0028) 2016; 101 Liu, Zhang, Min (bib0014) 2019; 207 Mishchenko, Hatton, Bahadur, Taylor, Krupenkin, Aizenberg (bib0030) 2010; 4 Youngs (bib0061) 1982 Wang, Tsai, Wu, Hwang (bib0009) 2016; 26 Hirt, Nichols (bib0049) 1981; 39 de Ruiter, Colinet, Brunet, Snoeijer, Gelderblom (bib0047) 2017; 2 Sun, Kong, Wang, Liu (bib0040) 2019; 142 Chang, Ding, Song, Leng (bib0044) 2019; 118 Tembely, Attarzadeh, Dolatabadi (bib0045) 2018; 127 Šikalo, Wilhelm, Roisman, Jakirlić, Tropea (bib0051) 2005; 17 Marín, Enríquez, Brunet, Colinet, Snoeijer (bib0026) 2014; 113 Yao, Li, Tao, Yang, Zhang (bib0038) 2018; 137 Meng, Zhang (bib0019) 2020; 152 Wang (10.1016/j.ijheatmasstransfer.2020.119997_bib0009) 2016; 26 Mishchenko (10.1016/j.ijheatmasstransfer.2020.119997_bib0030) 2010; 4 Yao (10.1016/j.ijheatmasstransfer.2020.119997_bib0038) 2018; 137 Šikalo (10.1016/j.ijheatmasstransfer.2020.119997_bib0012) 2002; 25 Maitra (10.1016/j.ijheatmasstransfer.2020.119997_bib0037) 2013; 14 Jung (10.1016/j.ijheatmasstransfer.2020.119997_bib0025) 2012; 3 Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0028) 2016; 101 Vu (10.1016/j.ijheatmasstransfer.2020.119997_bib0029) 2015; 76 Hirt (10.1016/j.ijheatmasstransfer.2020.119997_bib0049) 1981; 39 Voinov (10.1016/j.ijheatmasstransfer.2020.119997_bib0057) 1977; 11 Yarin (10.1016/j.ijheatmasstransfer.2020.119997_bib0011) 2006; 38 Schremb (10.1016/j.ijheatmasstransfer.2020.119997_bib0034) 2017; 95 Marín (10.1016/j.ijheatmasstransfer.2020.119997_bib0026) 2014; 113 Youngs (10.1016/j.ijheatmasstransfer.2020.119997_bib0061) 1982 Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0024) 2017; 125 Hao (10.1016/j.ijheatmasstransfer.2020.119997_bib0021) 2014; 104 Malgarinos (10.1016/j.ijheatmasstransfer.2020.119997_bib0054) 2014; 212 Šikalo (10.1016/j.ijheatmasstransfer.2020.119997_bib0051) 2005; 17 Blake (10.1016/j.ijheatmasstransfer.2020.119997_bib0042) 2015; 53 Feuillebois (10.1016/j.ijheatmasstransfer.2020.119997_bib0058) 1995; 169 Haynes (10.1016/j.ijheatmasstransfer.2020.119997_bib0063) 2014 Tembely (10.1016/j.ijheatmasstransfer.2020.119997_bib0045) 2018; 127 Chu (10.1016/j.ijheatmasstransfer.2020.119997_bib0007) 2017; 9 Rahman (10.1016/j.ijheatmasstransfer.2020.119997_bib0006) 2015; 50 Mao (10.1016/j.ijheatmasstransfer.2020.119997_bib0015) 1997; 43 Alizadeh (10.1016/j.ijheatmasstransfer.2020.119997_bib0017) 2012; 28 Chen (10.1016/j.ijheatmasstransfer.2020.119997_bib0036) 2016; 375 Wu (10.1016/j.ijheatmasstransfer.2020.119997_bib0005) 2001; 24 Wu (10.1016/j.ijheatmasstransfer.2020.119997_bib0008) 2019; 358 Yao (10.1016/j.ijheatmasstransfer.2020.119997_bib0043) 2017; 419 Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0039) 2018; 122 Enríquez (10.1016/j.ijheatmasstransfer.2020.119997_bib0048) 2012; 24 Ji (10.1016/j.ijheatmasstransfer.2020.119997_bib0052) 2017; 29 Chang (10.1016/j.ijheatmasstransfer.2020.119997_bib0044) 2019; 118 Czys (10.1016/j.ijheatmasstransfer.2020.119997_bib0023) 1989; 28 Eral (10.1016/j.ijheatmasstransfer.2020.119997_bib0055) 2013; 291 Schremb (10.1016/j.ijheatmasstransfer.2020.119997_bib0046) 2018; 835 de Ruiter (10.1016/j.ijheatmasstransfer.2020.119997_bib0047) 2017; 2 (10.1016/j.ijheatmasstransfer.2020.119997_bib0050) 2012 Dalili (10.1016/j.ijheatmasstransfer.2020.119997_bib0003) 2009; 13 Punge (10.1016/j.ijheatmasstransfer.2020.119997_bib0004) 2016; 176–177 Yokoi (10.1016/j.ijheatmasstransfer.2020.119997_bib0053) 2009; 21 Bejan (10.1016/j.ijheatmasstransfer.2020.119997_bib0059) 2003 Sun (10.1016/j.ijheatmasstransfer.2020.119997_bib0040) 2019; 142 Jiang (10.1016/j.ijheatmasstransfer.2020.119997_bib0056) 1979; 69 Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0027) 2019; 147 Jin (10.1016/j.ijheatmasstransfer.2020.119997_bib0033) 2017; 109 Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0018) 2017; 88 Cao (10.1016/j.ijheatmasstransfer.2020.119997_bib0001) 2015; 74 Liu (10.1016/j.ijheatmasstransfer.2020.119997_bib0016) 2014; 10 Wang (10.1016/j.ijheatmasstransfer.2020.119997_bib0041) 2019; 130 Liu (10.1016/j.ijheatmasstransfer.2020.119997_bib0013) 2019; 31 Ding (10.1016/j.ijheatmasstransfer.2020.119997_bib0035) 2019; 138 Meng (10.1016/j.ijheatmasstransfer.2020.119997_bib0019) 2020; 152 Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0060) 2018; 127 Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0002) 2017; 104 Liu (10.1016/j.ijheatmasstransfer.2020.119997_bib0014) 2019; 207 Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0020) 2018; 99 Le Bot (10.1016/j.ijheatmasstransfer.2020.119997_bib0010) 2005; 44 Ju (10.1016/j.ijheatmasstransfer.2020.119997_bib0032) 2018; 96 Marcolli (10.1016/j.ijheatmasstransfer.2020.119997_bib0022) 2017; 7 Jin (10.1016/j.ijheatmasstransfer.2020.119997_bib0031) 2017; 113 Huang (10.1016/j.ijheatmasstransfer.2020.119997_bib0062) 2018; 30 |
References_xml | – volume: 207 start-page: 495 year: 2019 end-page: 503 ident: bib0014 article-title: Spreading of droplets impacting different wettable surfaces at a weber number close to zero publication-title: Chem. Eng. Sci. – volume: 96 start-page: 430 year: 2018 end-page: 440 ident: bib0032 article-title: The impact and freezing processes of a water droplet on different cold spherical surfaces publication-title: Exp. Therm. Fluid Sci. – volume: 25 start-page: 503 year: 2002 end-page: 510 ident: bib0012 article-title: Analysis of impact of droplets on horizontal surfaces publication-title: Exp. Therm. Fluid Sci. – volume: 7 start-page: 16634 year: 2017 ident: bib0022 article-title: Ice nucleation triggered by negative pressure publication-title: Sci. Rep. – volume: 95 start-page: 22805 year: 2017 ident: bib0034 article-title: Transient effects in ice nucleation of a water drop impacting onto a cold substrate publication-title: Phys. Rev. E – volume: 14 start-page: 172 year: 2013 end-page: 182 ident: bib0037 article-title: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature publication-title: Nano Lett. – volume: 69 start-page: 74 year: 1979 end-page: 77 ident: bib0056 article-title: Correlation for dynamic contact angle publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 8420 year: 2017 end-page: 8425 ident: bib0007 article-title: Dynamic melting of freezing droplets on ultraslippery superhydrophobic surfaces publication-title: ACS Appl. Mater. Inter. – volume: 212 start-page: 1 year: 2014 end-page: 20 ident: bib0054 article-title: VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model publication-title: Adv. Colloid Interface Sci. – volume: 118 start-page: 150 year: 2019 end-page: 164 ident: bib0044 article-title: Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment publication-title: Int. J. Multiphas. Flow – volume: 10 start-page: 515 year: 2014 end-page: 519 ident: bib0016 article-title: Pancake bouncing on superhydrophobic surfaces publication-title: Nat. Phys. – volume: 142 year: 2019 ident: bib0040 article-title: Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution publication-title: Int. J. Heat Mass Transf. – volume: 21 start-page: 72102 year: 2009 ident: bib0053 article-title: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface publication-title: Phys. Fluids – volume: 26 start-page: 95012 year: 2016 ident: bib0009 article-title: Investigation of molten metal droplet deposition and solidification for 3d printing techniques publication-title: J. Micromech. Microeng. – volume: 137 start-page: 83 year: 2018 end-page: 92 ident: bib0038 article-title: Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface publication-title: Appl. Therm. Eng. – volume: 88 start-page: 1 year: 2017 end-page: 7 ident: bib0018 article-title: Freezing and melting of a sessile water droplet on a horizontal cold plate publication-title: Exp. Therm. Fluid Sci. – volume: 2 start-page: 43602 year: 2017 ident: bib0047 article-title: Contact line arrest in solidifying spreading drops publication-title: Phys. Rev. Fluids – volume: 24 start-page: 151 year: 2001 end-page: 156 ident: bib0005 article-title: Investigation of the possibility of frost release from a cold surface publication-title: Exp. Therm. Fluid Sci. – volume: 358 start-page: 207 year: 2019 end-page: 214 ident: bib0008 article-title: When superhydrophobic coatings are icephobic: role of surface topology publication-title: Surf. Coat. Technol. – volume: 30 start-page: 22106 year: 2018 ident: bib0062 article-title: Energetic analysis of drop's maximum spreading on solid surface with low impact speed publication-title: Phys. Fluids – volume: 38 start-page: 159 year: 2006 end-page: 192 ident: bib0011 article-title: Drop impact dynamics: splashing, spreading, receding, bouncing… publication-title: Annu. Rev. Fluid Mech. – volume: 28 start-page: 3180 year: 2012 end-page: 3186 ident: bib0017 article-title: Dynamics of ice nucleation on water repellent surfaces publication-title: Langmuir – volume: 99 start-page: 26 year: 2018 end-page: 34 ident: bib0020 article-title: Experimental investigation and statistical analysis of icing nucleation characteristics of sessile water droplets publication-title: Exp. Therm. Fluid Sci. – volume: 138 start-page: 844 year: 2019 end-page: 851 ident: bib0035 article-title: Water droplet impact on superhydrophobic surfaces with various inclinations and supercooling degrees publication-title: Int. J. Heat Mass Transf. – volume: 169 start-page: 90 year: 1995 end-page: 102 ident: bib0058 article-title: Freezing of a subcooled liquid droplet publication-title: J. Colloid Interface Sci. – year: 2003 ident: bib0059 article-title: Heat Transfer Handbook – volume: 31 start-page: 92102 year: 2019 ident: bib0013 article-title: Maximum spreading of droplets impacting spherical surfaces publication-title: Phys. Fluids – volume: 43 start-page: 2169 year: 1997 end-page: 2179 ident: bib0015 article-title: Spread and rebound of liquid droplets upon impact on flat surfaces publication-title: AIChe J. – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: bib0049 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – volume: 3 start-page: 615 year: 2012 ident: bib0025 article-title: Mechanism of supercooled droplet freezing on surfaces publication-title: Nat. Commun. – volume: 375 start-page: 127 year: 2016 end-page: 135 ident: bib0036 article-title: Droplet bouncing on hierarchical branched nanotube arrays above and below the freezing temperature publication-title: Appl. Surf. Sci. – volume: 127 start-page: 975 year: 2018 end-page: 985 ident: bib0060 article-title: Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects publication-title: Int. J. Heat Mass Transf. – volume: 147 start-page: 927 year: 2019 end-page: 934 ident: bib0027 article-title: Shape variation and unique tip formation of a sessile water droplet during freezing publication-title: Appl. Therm. Eng. – volume: 104 year: 2014 ident: bib0021 article-title: Freezing of sessile water droplets on surfaces with various roughness and wettability publication-title: Appl. Phys. Lett. – volume: 122 start-page: 395 year: 2018 end-page: 402 ident: bib0039 article-title: Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature publication-title: Int. J. Heat Mass Transf. – volume: 29 start-page: 77102 year: 2017 ident: bib0052 article-title: Numerical study of hydrophobic micron particle's impaction on liquid surface publication-title: Phys. Fluids – volume: 113 start-page: 318 year: 2017 end-page: 323 ident: bib0031 article-title: The impact and freezing processes of a water droplet on different cold cylindrical surfaces publication-title: Int. J. Heat Mass Transf. – volume: 4 start-page: 7699 year: 2010 end-page: 7707 ident: bib0030 article-title: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets publication-title: ACS Nano – volume: 130 start-page: 831 year: 2019 end-page: 842 ident: bib0041 article-title: Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate publication-title: Int. J. Heat Mass Transf. – volume: 291 start-page: 247 year: 2013 end-page: 260 ident: bib0055 article-title: Contact angle hysteresis: a review of fundamentals and applications publication-title: Colloid Polym. Sci. – volume: 11 start-page: 714 year: 1977 end-page: 721 ident: bib0057 article-title: Hydrodynamics of wetting publication-title: Fluid Dyn. – volume: 53 start-page: 1725 year: 2015 end-page: 1739 ident: bib0042 article-title: Simulating the freezing of supercooled water droplets impacting a cooled substrate publication-title: AIAA J. – volume: 176–177 start-page: 159 year: 2016 end-page: 184 ident: bib0004 article-title: Hail observations and hailstorm characteristics in Europe: a review publication-title: Atmos. Res. – volume: 109 start-page: 716 year: 2017 end-page: 724 ident: bib0033 article-title: Experimental investigation of the impact and freezing processes of a water droplet on an ice surface publication-title: Int. J. Heat Mass Transf. – volume: 101 start-page: 59 year: 2016 end-page: 67 ident: bib0028 article-title: Freezing of sessile water droplet for various contact angles publication-title: Int. J. Therm. Sci. – volume: 127 start-page: 193 year: 2018 end-page: 202 ident: bib0045 article-title: On the numerical modeling of supercooled micro-droplet impact and freezing on superhydrophobic surfaces publication-title: Int. J. Heat Mass Transf. – volume: 17 start-page: 62103 year: 2005 ident: bib0051 article-title: Dynamic contact angle of spreading droplets: experiments and simulations publication-title: Phys. Fluids – year: 2014 ident: bib0063 article-title: CRC Handbook of Chemistry and Physics – volume: 125 start-page: 644 year: 2017 end-page: 651 ident: bib0024 article-title: Modelling of sessile water droplet shape evolution during freezing with consideration of supercooling effect publication-title: Appl. Therm. Eng. – volume: 24 start-page: 91102 year: 2012 ident: bib0048 article-title: Freezing singularities in water drops publication-title: Phys. Fluids – volume: 13 start-page: 428 year: 2009 end-page: 438 ident: bib0003 article-title: A review of surface engineering issues critical to wind turbine performance publication-title: Renew. Sustain. Energy Rev. – volume: 50 start-page: 44 year: 2015 end-page: 56 ident: bib0006 article-title: Experimental study on frosting/defrosting characteristics of microgrooved metal surfaces publication-title: Int. J. Refrig. – volume: 76 start-page: 73 year: 2015 end-page: 85 ident: bib0029 article-title: Numerical investigations of drop solidification on a cold plate in the presence of volume change publication-title: Int. J. Multiphas. Flow – volume: 419 start-page: 52 year: 2017 end-page: 62 ident: bib0043 article-title: Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces publication-title: Appl. Surf. Sci. – volume: 835 start-page: 1087 year: 2018 end-page: 1107 ident: bib0046 article-title: Normal impact of supercooled water drops onto a smooth ice surface: experiments and modelling publication-title: J. Fluid Mech – volume: 113 start-page: 54301 year: 2014 ident: bib0026 article-title: Universality of tip singularity formation in freezing water drops publication-title: Phys. Rev. Lett. – year: 2012 ident: bib0050 article-title: ANSYS FLUENT User Guide, Release 14.5 – volume: 74 start-page: 62 year: 2015 end-page: 80 ident: bib0001 article-title: Aircraft flight characteristics in icing conditions publication-title: Prog. Aerosp. Sci. – volume: 104 start-page: 510 year: 2017 end-page: 516 ident: bib0002 article-title: Aircraft icing model considering both rime ice property variability and runback water effect publication-title: Int. J. Heat Mass Transf. – volume: 44 start-page: 219 year: 2005 end-page: 233 ident: bib0010 article-title: Impact and solidification of indium droplets on a cold substrate publication-title: Int. J. Therm. Sci. – volume: 152 year: 2020 ident: bib0019 article-title: Dynamic propagation of ice-water phase front in a supercooled water droplet publication-title: Int. J. Heat Mass Transf. – start-page: 273 year: 1982 end-page: 486 ident: bib0061 article-title: Time-dependent multi-material flow with large fluid distortion publication-title: Numerical Methods for Fluid Dynamics – volume: 28 start-page: 1098 year: 1989 end-page: 1104 ident: bib0023 article-title: Ice initiation by collision-freezing in warm-based cumuli publication-title: J. Appl. Meteorol. – volume: 88 start-page: 1 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0018 article-title: Freezing and melting of a sessile water droplet on a horizontal cold plate publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.05.009 – volume: 29 start-page: 77102 issue: 7 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0052 article-title: Numerical study of hydrophobic micron particle's impaction on liquid surface publication-title: Phys. Fluids doi: 10.1063/1.4991915 – volume: 207 start-page: 495 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0014 article-title: Spreading of droplets impacting different wettable surfaces at a weber number close to zero publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.06.058 – volume: 39 start-page: 201 issue: 1 year: 1981 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0049 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 104 issue: 16 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0021 article-title: Freezing of sessile water droplets on surfaces with various roughness and wettability publication-title: Appl. Phys. Lett. doi: 10.1063/1.4873345 – volume: 358 start-page: 207 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0008 article-title: When superhydrophobic coatings are icephobic: role of surface topology publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.11.039 – volume: 142 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0040 article-title: Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.07.081 – volume: 13 start-page: 428 issue: 2 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0003 article-title: A review of surface engineering issues critical to wind turbine performance publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2007.11.009 – volume: 3 start-page: 615 issue: 1 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0025 article-title: Mechanism of supercooled droplet freezing on surfaces publication-title: Nat. Commun. doi: 10.1038/ncomms1630 – volume: 30 start-page: 22106 issue: 2 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0062 article-title: Energetic analysis of drop's maximum spreading on solid surface with low impact speed publication-title: Phys. Fluids doi: 10.1063/1.5006439 – volume: 101 start-page: 59 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0028 article-title: Freezing of sessile water droplet for various contact angles publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2015.10.027 – volume: 17 start-page: 62103 issue: 6 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0051 article-title: Dynamic contact angle of spreading droplets: experiments and simulations publication-title: Phys. Fluids doi: 10.1063/1.1928828 – volume: 130 start-page: 831 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0041 article-title: Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.10.142 – volume: 147 start-page: 927 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0027 article-title: Shape variation and unique tip formation of a sessile water droplet during freezing publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.09.040 – volume: 291 start-page: 247 issue: 2 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0055 article-title: Contact angle hysteresis: a review of fundamentals and applications publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-012-2796-6 – volume: 109 start-page: 716 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0033 article-title: Experimental investigation of the impact and freezing processes of a water droplet on an ice surface publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.02.055 – volume: 10 start-page: 515 issue: 7 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0016 article-title: Pancake bouncing on superhydrophobic surfaces publication-title: Nat. Phys. doi: 10.1038/nphys2980 – volume: 176–177 start-page: 159 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0004 article-title: Hail observations and hailstorm characteristics in Europe: a review publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.02.012 – volume: 43 start-page: 2169 issue: 9 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0015 article-title: Spread and rebound of liquid droplets upon impact on flat surfaces publication-title: AIChe J. doi: 10.1002/aic.690430903 – volume: 53 start-page: 1725 issue: 7 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0042 article-title: Simulating the freezing of supercooled water droplets impacting a cooled substrate publication-title: AIAA J. doi: 10.2514/1.J053391 – volume: 28 start-page: 1098 issue: 10 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0023 article-title: Ice initiation by collision-freezing in warm-based cumuli publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1989)028<1098:IIBCFI>2.0.CO;2 – volume: 835 start-page: 1087 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0046 article-title: Normal impact of supercooled water drops onto a smooth ice surface: experiments and modelling publication-title: J. Fluid Mech doi: 10.1017/jfm.2017.797 – volume: 2 start-page: 43602 issue: 4 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0047 article-title: Contact line arrest in solidifying spreading drops publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.043602 – volume: 212 start-page: 1 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0054 article-title: VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2014.07.004 – volume: 137 start-page: 83 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0038 article-title: Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.03.057 – volume: 24 start-page: 91102 issue: 9 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0048 article-title: Freezing singularities in water drops publication-title: Phys. Fluids doi: 10.1063/1.4747185 – volume: 4 start-page: 7699 issue: 12 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0030 article-title: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets publication-title: ACS Nano doi: 10.1021/nn102557p – volume: 375 start-page: 127 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0036 article-title: Droplet bouncing on hierarchical branched nanotube arrays above and below the freezing temperature publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.029 – volume: 122 start-page: 395 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0039 article-title: Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.01.076 – volume: 26 start-page: 95012 issue: 9 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0009 article-title: Investigation of molten metal droplet deposition and solidification for 3d printing techniques publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/26/9/095012 – volume: 113 start-page: 54301 issue: 5 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0026 article-title: Universality of tip singularity formation in freezing water drops publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.054301 – year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0050 – year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0063 – volume: 28 start-page: 3180 issue: 6 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0017 article-title: Dynamics of ice nucleation on water repellent surfaces publication-title: Langmuir doi: 10.1021/la2045256 – volume: 118 start-page: 150 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0044 article-title: Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2019.06.011 – volume: 113 start-page: 318 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0031 article-title: The impact and freezing processes of a water droplet on different cold cylindrical surfaces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.111 – volume: 169 start-page: 90 issue: 1 year: 1995 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0058 article-title: Freezing of a subcooled liquid droplet publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1995.1010 – year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0059 – volume: 9 start-page: 8420 issue: 9 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0007 article-title: Dynamic melting of freezing droplets on ultraslippery superhydrophobic surfaces publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.6b16803 – volume: 99 start-page: 26 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0020 article-title: Experimental investigation and statistical analysis of icing nucleation characteristics of sessile water droplets publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2018.07.027 – volume: 125 start-page: 644 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0024 article-title: Modelling of sessile water droplet shape evolution during freezing with consideration of supercooling effect publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.017 – volume: 419 start-page: 52 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0043 article-title: Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.04.085 – volume: 76 start-page: 73 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0029 article-title: Numerical investigations of drop solidification on a cold plate in the presence of volume change publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2015.07.005 – volume: 127 start-page: 193 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0045 article-title: On the numerical modeling of supercooled micro-droplet impact and freezing on superhydrophobic surfaces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.06.104 – volume: 50 start-page: 44 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0006 article-title: Experimental study on frosting/defrosting characteristics of microgrooved metal surfaces publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2014.11.002 – volume: 96 start-page: 430 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0032 article-title: The impact and freezing processes of a water droplet on different cold spherical surfaces publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2018.03.037 – volume: 31 start-page: 92102 issue: 9 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0013 article-title: Maximum spreading of droplets impacting spherical surfaces publication-title: Phys. Fluids doi: 10.1063/1.5117278 – volume: 95 start-page: 22805 issue: 2 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0034 article-title: Transient effects in ice nucleation of a water drop impacting onto a cold substrate publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.022805 – volume: 21 start-page: 72102 issue: 7 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0053 article-title: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface publication-title: Phys. Fluids doi: 10.1063/1.3158468 – volume: 127 start-page: 975 issue: A year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0060 article-title: Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.07.021 – volume: 138 start-page: 844 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0035 article-title: Water droplet impact on superhydrophobic surfaces with various inclinations and supercooling degrees publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.04.106 – volume: 25 start-page: 503 issue: 7 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0012 article-title: Analysis of impact of droplets on horizontal surfaces publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(01)00109-1 – start-page: 273 year: 1982 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0061 article-title: Time-dependent multi-material flow with large fluid distortion – volume: 104 start-page: 510 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0002 article-title: Aircraft icing model considering both rime ice property variability and runback water effect publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.086 – volume: 69 start-page: 74 issue: 1 year: 1979 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0056 article-title: Correlation for dynamic contact angle publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(79)90081-X – volume: 14 start-page: 172 issue: 1 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0037 article-title: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature publication-title: Nano Lett. doi: 10.1021/nl4037092 – volume: 38 start-page: 159 issue: 1 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0011 article-title: Drop impact dynamics: splashing, spreading, receding, bouncing… publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.38.050304.092144 – volume: 7 start-page: 16634 issue: 1 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0022 article-title: Ice nucleation triggered by negative pressure publication-title: Sci. Rep. doi: 10.1038/s41598-017-16787-3 – volume: 24 start-page: 151 issue: 3–4 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0005 article-title: Investigation of the possibility of frost release from a cold surface publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(01)00045-0 – volume: 44 start-page: 219 issue: 3 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0010 article-title: Impact and solidification of indium droplets on a cold substrate publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2004.07.007 – volume: 11 start-page: 714 issue: 5 year: 1977 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0057 article-title: Hydrodynamics of wetting publication-title: Fluid Dyn. doi: 10.1007/BF01012963 – volume: 152 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0019 article-title: Dynamic propagation of ice-water phase front in a supercooled water droplet publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119468 – volume: 74 start-page: 62 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0001 article-title: Aircraft flight characteristics in icing conditions publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2014.12.001 |
SSID | ssj0017046 |
Score | 2.6397974 |
Snippet | •The impacting and freezing experiments of supercooled water droplets are conducted.•The impacting-freezing behaviors of supercooled water droplets are... The impacting-freezing dynamics of a supercooled water droplet on a cold surface is studied experimentally and numerically. A numerical model that considers... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119997 |
SubjectTerms | Adhesion Cold Cold surfaces Computational fluid dynamics Computer simulation Contact angle Deicing Droplet Droplets Fluid flow Freezing Impacting Mathematical models Morphology Numerical models Physical properties Rebound and adhesion Room temperature Solidification Supercooling Water drops Weber number |
Title | Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119997 https://www.proquest.com/docview/2446722795 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kongRn1itsgcPXmKzTZptvEgpSmvRgyh6W7K7E2ypTUlTBA_-dmfyUFQ8CB7y3mzC7Oz3zSYzs4wdy5iYwQhHRCJ2fA_AiVxjHQhdG3sG1wFFI1_fBP17_-qx_bjEelUsDLlVlthfYHqO1uWZZinN5mw0ohhfUi5Bv9JEgExGEey-JC0_fftw8xDSLYJ1CI2p9Co7-fTxGo0J8Z7RTM1yMxEoQ2iLcATtJvkbVX0D7ZyJLjfYemlC8m7xlptsCaZbbCV35TTzbaYHeeAjUpITpwCvuMNtMe_8nCcxj_h8MYPUJMkELH9BWzPlNiU_8ownU7yMqmGxTBpHBs44yp9mXuIRLfYJ6OvaDru_vLjr9Z1yJgXH-F6QYUMA2kk4duiEwkjss-D7NtRgTRxhF7ey1RIgtBZ4LqJRhpYGx04SkOy1jkJvl9WmyRT2GEc6a2vPdkLXuL5vAq1RqGDbsbDCIETU2XklNGXKNOM028VEVf5kY_VT7IrErgqx11n4UcOsSLnxh3t7VTupL2qkkCH-UEujamJVdum5QjsokJRvsb3_Lw85YGt0VPirNVgtSxdwiAZOpo9yDT5iy93BsH9D2-Htw_AdLUcB4w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50Fx8X8Ylvc_DgpdhsX9aLyKLs-tiTgrfQJFNc0e3SrQj-emf6WFHxIHhoKUmblpnJfJNmHgCHUcrIYKQjE5k6vofoJK6xDsauTT1D55CjkW8HYe_ev3oIHmag28TCsFtlrfsrnV5q67rluKbm8Xg45BhfFi7JW2kyJCSbhTZnpwpa0D7vX_cG082EyK3idVgh8wPzcPTp5jV8YqX3QpZqUVqKyElCO6xKyHSKfkOrb3q7BKPLZViqrUhxXn3oCszgaBXmSm9OM1kD3S9jHwmVnDRHfKcLYavS8xORpSIRk9cx5ibLntGKNzI3c2FzdiUvRDaibpIOS_fkaWLwVBALuPiSSPiwj8g_2Nbh_vLirttz6mIKjvG9sCBeIJlKtHw4iaWJaNqi79tYozVpQrPcRp2ORKm1pLaEFxo6MrR8ipDwXusk9jagNcpGuAmCEC3Qnj2JXeP6vgm1JqKiDVJppSEtsQVnDdGUqTONc8GLZ9W4lD2pn2RXTHZVkX0L4ukI4yrrxh-e7TZ8Ul8kSRFI_GGU3YbFqp7VE0WmUBhxysVg-19ecgALvbvbG3XTH1zvwCL3VO5ru9Aq8lfcI3un0Pu1PH8A3BsC8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacting-freezing+dynamics+of+a+supercooled+water+droplet+on+a+cold+surface%3A+Rebound+and+adhesion&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhang%2C+Xuan&rft.au=Liu%2C+Xin&rft.au=Wu%2C+Xiaomin&rft.au=Min%2C+Jingchun&rft.date=2020-09-01&rft.issn=0017-9310&rft.volume=158&rft.spage=119997&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |