Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion

•The impacting and freezing experiments of supercooled water droplets are conducted.•The impacting-freezing behaviors of supercooled water droplets are simulated.•The numerical model considers the supercooling effect and dynamic contact angle.•The supercooled droplet spreads and retracts slower than...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 158; p. 119997
Main Authors Zhang, Xuan, Liu, Xin, Wu, Xiaomin, Min, Jingchun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The impacting and freezing experiments of supercooled water droplets are conducted.•The impacting-freezing behaviors of supercooled water droplets are simulated.•The numerical model considers the supercooling effect and dynamic contact angle.•The supercooled droplet spreads and retracts slower than the room temperature one.•A morphology map of rebound and adhesion is proposed for the impacting-freezing. The impacting-freezing dynamics of a supercooled water droplet on a cold surface is studied experimentally and numerically. A numerical model that considers both the effects of the supercooling degree on the physical properties and of the dynamic contact angle on the contact line motion is established to simulate the droplet impacting-freezing behaviors using the VOF multiphase model and the Solidification/Melting phase change model. Experiments are also conducted for the impacting-freezing processes of supercooled and room temperature water droplets on a cold surface and for the impacting process of a room temperature droplet on a room temperature surface. Both the temporal droplet profile and the spreading factor calculated by the simulations agree well with the experimental observations. The maximum deviation of the maximum and stable spreading factors between experiments and simulations is 11.3%. The numerical and experimental results elucidate that the supercooled droplet spreads and retracts slower than the room temperature one in the impacting process and thus yields a smaller maximum and a larger stable spreading factor. The increases of the Weber number and supercooling degree and the decrease of the contact angle will enlarge the above differences. Additionally, three different morphologies of full rebound, partial rebound and full adhesion are identified in the impacting-freezing process of a supercooled droplet on a cold hydrophobic surface, indicating the competition between the fluid flow and heat transfer. A unified morphology map of rebound and adhesion correlating the Weber number, supercooling degree and contact angle is proposed for the impacting-freezing behavior and it presents the universal limits for the full rebound and adhesion. This work may deepen our understanding of the interaction mechanism between the droplet and cold surface in the impacting-freezing process and provides reference for the associated applications and technologies in anti-icing/frosting and self-cleaning. [Display omitted]
AbstractList The impacting-freezing dynamics of a supercooled water droplet on a cold surface is studied experimentally and numerically. A numerical model that considers both the effects of the supercooling degree on the physical properties and of the dynamic contact angle on the contact line motion is established to simulate the droplet impacting-freezing behaviors using the VOF multiphase model and the Solidification/Melting phase change model. Experiments are also conducted for the impacting-freezing processes of supercooled and room temperature water droplets on a cold surface and for the impacting process of a room temperature droplet on a room temperature surface. Both the temporal droplet profile and the spreading factor calculated by the simulations agree well with the experimental observations. The maximum deviation of the maximum and stable spreading factors between experiments and simulations is 11.3%. The numerical and experimental results elucidate that the supercooled droplet spreads and retracts slower than the room temperature one in the impacting process and thus yields a smaller maximum and a larger stable spreading factor. The increases of the Weber number and supercooling degree and the decrease of the contact angle will enlarge the above differences. Additionally, three different morphologies of full rebound, partial rebound and full adhesion are identified in the impacting-freezing process of a supercooled droplet on a cold hydrophobic surface, indicating the competition between the fluid flow and heat transfer. A unified morphology map of rebound and adhesion correlating the Weber number, supercooling degree and contact angle is proposed for the impacting-freezing behavior and it presents the universal limits for the full rebound and adhesion. This work may deepen our understanding of the interaction mechanism between the droplet and cold surface in the impacting-freezing process and provides reference for the associated applications and technologies in anti-icing/frosting and self-cleaning.
•The impacting and freezing experiments of supercooled water droplets are conducted.•The impacting-freezing behaviors of supercooled water droplets are simulated.•The numerical model considers the supercooling effect and dynamic contact angle.•The supercooled droplet spreads and retracts slower than the room temperature one.•A morphology map of rebound and adhesion is proposed for the impacting-freezing. The impacting-freezing dynamics of a supercooled water droplet on a cold surface is studied experimentally and numerically. A numerical model that considers both the effects of the supercooling degree on the physical properties and of the dynamic contact angle on the contact line motion is established to simulate the droplet impacting-freezing behaviors using the VOF multiphase model and the Solidification/Melting phase change model. Experiments are also conducted for the impacting-freezing processes of supercooled and room temperature water droplets on a cold surface and for the impacting process of a room temperature droplet on a room temperature surface. Both the temporal droplet profile and the spreading factor calculated by the simulations agree well with the experimental observations. The maximum deviation of the maximum and stable spreading factors between experiments and simulations is 11.3%. The numerical and experimental results elucidate that the supercooled droplet spreads and retracts slower than the room temperature one in the impacting process and thus yields a smaller maximum and a larger stable spreading factor. The increases of the Weber number and supercooling degree and the decrease of the contact angle will enlarge the above differences. Additionally, three different morphologies of full rebound, partial rebound and full adhesion are identified in the impacting-freezing process of a supercooled droplet on a cold hydrophobic surface, indicating the competition between the fluid flow and heat transfer. A unified morphology map of rebound and adhesion correlating the Weber number, supercooling degree and contact angle is proposed for the impacting-freezing behavior and it presents the universal limits for the full rebound and adhesion. This work may deepen our understanding of the interaction mechanism between the droplet and cold surface in the impacting-freezing process and provides reference for the associated applications and technologies in anti-icing/frosting and self-cleaning. [Display omitted]
ArticleNumber 119997
Author Min, Jingchun
Liu, Xin
Zhang, Xuan
Wu, Xiaomin
Author_xml – sequence: 1
  givenname: Xuan
  surname: Zhang
  fullname: Zhang, Xuan
  organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Xiaomin
  surname: Wu
  fullname: Wu, Xiaomin
  email: wuxiaomin@mail.tsinghua.edu.cn
  organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Jingchun
  surname: Min
  fullname: Min, Jingchun
  email: minjc@mail.tsinghua.edu.cn
  organization: Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
BookMark eNqVkMtOJCEYhYnRxPbyDiRuZlMtf90oXDkxOmpMTIyuCQV_KZVqqAHaiT69dNrVuNEF4XIOH-E7ILvOOyTkF7AlMGhPx6UdX1CllYoxBeXigGFZsjLHIITgO2QBHRdFCZ3YJQvGgBeiArZPDmIcN1tWtwvS36xmpZN1z8UQEN_zgpo3p1ZWR-oHqmhczxi09xMa-k8lDNQEP0-YqHc51n4yuRMGpfGMPmDv185QtRnmBaP17ojsDWqKePw5H5Knq8vHi-vi7v7PzcXvu0LXVZsKUNi00AjeCdC87jqsayN6NHpQvGKGlyUg9D3kM8XKpum5ZlBzbKHqeyWqQ3Ky5c7B_11jTHL06-Dyk7Ks6zbf56LJrfNtSwcfY8BBzsGuVHiTwOTGrBzlV7NyY1ZuzWbE1X8IbZNK-au5bqefgG63IMxaXm1Oo7boNBobUCdpvP0-7AN03KnL
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2024_107307
crossref_primary_10_1016_j_cej_2023_146113
crossref_primary_10_1063_5_0190430
crossref_primary_10_1080_15435075_2023_2199329
crossref_primary_10_1016_j_applthermaleng_2022_119562
crossref_primary_10_1002_adma_202310177
crossref_primary_10_1021_acsnano_3c08368
crossref_primary_10_1016_j_ijthermalsci_2023_108726
crossref_primary_10_1016_j_ijthermalsci_2025_109811
crossref_primary_10_1021_acs_langmuir_4c03815
crossref_primary_10_1016_j_ijheatfluidflow_2024_109497
crossref_primary_10_1007_s10999_022_09593_x
crossref_primary_10_1088_1402_4896_aced2b
crossref_primary_10_1063_5_0223699
crossref_primary_10_1016_j_applthermaleng_2023_121533
crossref_primary_10_1016_j_rser_2023_113768
crossref_primary_10_1016_j_ijft_2021_100109
crossref_primary_10_1016_j_molliq_2025_126973
crossref_primary_10_1016_j_solener_2024_112384
crossref_primary_10_1016_j_jfluidstructs_2023_103839
crossref_primary_10_1016_j_est_2024_114186
crossref_primary_10_1016_j_expthermflusci_2023_111049
crossref_primary_10_3390_app13137743
crossref_primary_10_1016_j_expthermflusci_2025_111449
crossref_primary_10_1016_j_icheatmasstransfer_2024_108252
crossref_primary_10_1016_j_ijthermalsci_2021_107241
crossref_primary_10_1016_j_jcrysgro_2021_126475
crossref_primary_10_1016_j_actaastro_2022_04_031
crossref_primary_10_1016_j_camwa_2024_01_020
crossref_primary_10_1016_j_ast_2023_108126
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124477
crossref_primary_10_1016_j_jcis_2020_09_119
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124075
crossref_primary_10_1016_j_actaastro_2024_01_028
crossref_primary_10_1016_j_cis_2023_102919
crossref_primary_10_3390_sym14091891
crossref_primary_10_1063_5_0023896
crossref_primary_10_1063_5_0083833
crossref_primary_10_1021_acsami_4c12227
crossref_primary_10_1063_5_0231692
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121843
crossref_primary_10_1016_j_ijthermalsci_2025_109871
crossref_primary_10_1016_j_icheatmasstransfer_2022_106167
crossref_primary_10_1016_j_applthermaleng_2025_125461
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123108
crossref_primary_10_1016_j_expthermflusci_2021_110503
crossref_primary_10_1016_j_sna_2024_115745
crossref_primary_10_1016_j_ast_2021_106791
crossref_primary_10_1063_5_0226821
crossref_primary_10_1016_j_applthermaleng_2022_119131
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104101
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123196
crossref_primary_10_1016_j_icheatmasstransfer_2024_107619
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103887
crossref_primary_10_1016_j_applthermaleng_2025_126205
crossref_primary_10_1007_s00339_024_07664_8
crossref_primary_10_1016_j_colsurfa_2024_134452
crossref_primary_10_1016_j_ijft_2023_100519
crossref_primary_10_1016_j_jcis_2021_04_078
crossref_primary_10_1016_j_applthermaleng_2024_124521
crossref_primary_10_1063_5_0259031
crossref_primary_10_1111_jfpe_14383
crossref_primary_10_1038_s42005_022_00827_0
crossref_primary_10_1016_j_applthermaleng_2023_122044
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104590
crossref_primary_10_1007_s11581_024_05669_0
crossref_primary_10_1016_j_applthermaleng_2023_120515
crossref_primary_10_1016_j_compscitech_2021_109086
crossref_primary_10_1063_5_0222155
crossref_primary_10_1063_5_0176053
crossref_primary_10_1021_acs_langmuir_4c00235
crossref_primary_10_1063_5_0061621
crossref_primary_10_1063_5_0066366
crossref_primary_10_1016_j_expthermflusci_2023_111110
crossref_primary_10_1063_5_0024837
crossref_primary_10_1063_5_0069596
crossref_primary_10_1063_5_0028081
crossref_primary_10_1063_5_0236164
crossref_primary_10_1063_5_0239278
crossref_primary_10_1615_JEnhHeatTransf_2024051487
crossref_primary_10_1016_j_applthermaleng_2023_122135
crossref_primary_10_1016_j_ijthermalsci_2024_108881
crossref_primary_10_1016_j_measurement_2021_109907
crossref_primary_10_1016_j_icheatmasstransfer_2022_106264
crossref_primary_10_1016_j_icheatmasstransfer_2022_106269
crossref_primary_10_1016_j_ijhydene_2024_01_209
crossref_primary_10_1016_j_applthermaleng_2022_119516
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125311
crossref_primary_10_1080_01457632_2024_2368434
crossref_primary_10_3390_e24111650
crossref_primary_10_1063_5_0172752
crossref_primary_10_1186_s42774_021_00078_7
crossref_primary_10_1063_5_0020110
crossref_primary_10_1016_j_ijthermalsci_2022_107541
crossref_primary_10_1016_j_applthermaleng_2023_121693
crossref_primary_10_1016_j_applthermaleng_2023_121692
crossref_primary_10_3390_nano12020247
crossref_primary_10_1016_j_applthermaleng_2023_121691
crossref_primary_10_1016_j_colsurfa_2024_134806
crossref_primary_10_1063_5_0047583
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125241
crossref_primary_10_1063_5_0193368
crossref_primary_10_1016_j_applthermaleng_2023_121705
crossref_primary_10_1016_j_colsurfa_2024_134250
crossref_primary_10_1016_j_measurement_2024_115859
crossref_primary_10_1016_j_molliq_2023_121277
crossref_primary_10_1021_acsami_4c08289
crossref_primary_10_1002_admi_202400723
crossref_primary_10_1016_j_applthermaleng_2024_122397
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103675
crossref_primary_10_1038_s41598_024_61826_5
crossref_primary_10_1063_5_0102964
crossref_primary_10_1063_5_0206456
crossref_primary_10_1063_5_0097511
crossref_primary_10_1063_5_0087443
crossref_primary_10_1016_j_icheatmasstransfer_2022_106485
crossref_primary_10_1016_j_molliq_2021_118334
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126617
crossref_primary_10_1021_acs_langmuir_4c02161
crossref_primary_10_3390_w13121628
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122044
crossref_primary_10_1063_5_0165888
crossref_primary_10_1016_j_enbuild_2020_110315
crossref_primary_10_1080_15435075_2023_2230266
crossref_primary_10_1016_j_applthermaleng_2023_122007
crossref_primary_10_1016_j_icheatmasstransfer_2024_108108
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104263
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105032
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124781
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126100
crossref_primary_10_1016_j_apsusc_2024_161415
crossref_primary_10_1063_5_0048206
crossref_primary_10_1080_25740881_2021_1882490
crossref_primary_10_1016_j_applthermaleng_2025_125794
crossref_primary_10_1007_s42401_023_00192_y
crossref_primary_10_1016_j_apsusc_2021_150717
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123436
crossref_primary_10_1016_j_icheatmasstransfer_2024_108112
crossref_primary_10_1016_j_applthermaleng_2025_126240
Cites_doi 10.1016/j.expthermflusci.2017.05.009
10.1063/1.4991915
10.1016/j.ces.2019.06.058
10.1016/0021-9991(81)90145-5
10.1063/1.4873345
10.1016/j.surfcoat.2018.11.039
10.1016/j.ijheatmasstransfer.2019.07.081
10.1016/j.rser.2007.11.009
10.1038/ncomms1630
10.1063/1.5006439
10.1016/j.ijthermalsci.2015.10.027
10.1063/1.1928828
10.1016/j.ijheatmasstransfer.2018.10.142
10.1016/j.applthermaleng.2018.09.040
10.1007/s00396-012-2796-6
10.1016/j.ijheatmasstransfer.2017.02.055
10.1038/nphys2980
10.1016/j.atmosres.2016.02.012
10.1002/aic.690430903
10.2514/1.J053391
10.1175/1520-0450(1989)028<1098:IIBCFI>2.0.CO;2
10.1017/jfm.2017.797
10.1103/PhysRevFluids.2.043602
10.1016/j.cis.2014.07.004
10.1016/j.applthermaleng.2018.03.057
10.1063/1.4747185
10.1021/nn102557p
10.1016/j.apsusc.2016.03.029
10.1016/j.ijheatmasstransfer.2018.01.076
10.1088/0960-1317/26/9/095012
10.1103/PhysRevLett.113.054301
10.1021/la2045256
10.1016/j.ijmultiphaseflow.2019.06.011
10.1016/j.ijheatmasstransfer.2017.05.111
10.1006/jcis.1995.1010
10.1021/acsami.6b16803
10.1016/j.expthermflusci.2018.07.027
10.1016/j.applthermaleng.2017.07.017
10.1016/j.apsusc.2017.04.085
10.1016/j.ijmultiphaseflow.2015.07.005
10.1016/j.ijheatmasstransfer.2018.06.104
10.1016/j.ijrefrig.2014.11.002
10.1016/j.expthermflusci.2018.03.037
10.1063/1.5117278
10.1103/PhysRevE.95.022805
10.1063/1.3158468
10.1016/j.ijheatmasstransfer.2018.07.021
10.1016/j.ijheatmasstransfer.2019.04.106
10.1016/S0894-1777(01)00109-1
10.1016/j.ijheatmasstransfer.2016.08.086
10.1016/0021-9797(79)90081-X
10.1021/nl4037092
10.1146/annurev.fluid.38.050304.092144
10.1038/s41598-017-16787-3
10.1016/S0894-1777(01)00045-0
10.1016/j.ijthermalsci.2004.07.007
10.1007/BF01012963
10.1016/j.ijheatmasstransfer.2020.119468
10.1016/j.paerosci.2014.12.001
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Sep 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Sep 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2020.119997
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2020_119997
S0017931020316082
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c436t-1ae561597891c7488e44d9bedcfa730d7221e1bb19bea0255b7c0147e613bba93
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 08:17:52 EDT 2025
Thu Apr 24 22:59:29 EDT 2025
Tue Jul 01 04:24:02 EDT 2025
Fri Feb 23 02:49:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Impacting
Supercooling
Droplet
Rebound and adhesion
Freezing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-1ae561597891c7488e44d9bedcfa730d7221e1bb19bea0255b7c0147e613bba93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2446722795
PQPubID 2045464
ParticipantIDs proquest_journals_2446722795
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119997
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119997
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Huang, Chen (bib0062) 2018; 30
Zhang, Wu, Min (bib0002) 2017; 104
Jin, Zhang, Yang (bib0033) 2017; 109
Haynes (bib0063) 2014
Chu, Wu, Wang (bib0007) 2017; 9
Wu, Silberschmidt, Hu, Chen (bib0008) 2019; 358
Malgarinos, Nikolopoulos, Marengo, Antonini, Gavaises (bib0054) 2014; 212
Enríquez, Marín, Winkels, Snoeijer (bib0048) 2012; 24
(bib0050) 2012
Ding, Wang, Zhu, Chen, Liao (bib0035) 2019; 138
Le Bot, Vincent, Arquis (bib0010) 2005; 44
Wang, Kong, Wang, Liu (bib0041) 2019; 130
Schremb, Roisman, Tropea (bib0034) 2017; 95
Mao, Kuhn, Tran (bib0015) 1997; 43
Zhang, Wu, Min (bib0018) 2017; 88
Vu, Tryggvason, Homma, Wells (bib0029) 2015; 76
Dalili, Edrisy, Carriveau (bib0003) 2009; 13
Voinov (bib0057) 1977; 11
Wu, Webb (bib0005) 2001; 24
Ju, Jin, Zhang, Yang, Zhang (bib0032) 2018; 96
Liu, Zhang, Min (bib0013) 2019; 31
Czys (bib0023) 1989; 28
Blake, Thompson, Raps, Strobl (bib0042) 2015; 53
Hao, Lv, Zhang (bib0021) 2014; 104
Jung, Tiwari, Doan, Poulikakos (bib0025) 2012; 3
Chen, Fu, Huang, Luo, Mo, Lyu (bib0036) 2016; 375
Maitra, Tiwari, Antonini, Schoch, Jung, Eberle, Poulikakos (bib0037) 2013; 14
Zhang, Liu, Wu, Min (bib0060) 2018; 127
Zhang, Hao, Zhang, He (bib0039) 2018; 122
Jiang, Soo-Gun, Slattery (bib0056) 1979; 69
Cao, Wu, Su, Xu (bib0001) 2015; 74
Yokoi, Vadillo, Hinch, Hutchings (bib0053) 2009; 21
Yao, Li, Zhang, Yang (bib0043) 2017; 419
Liu, Moevius, Xu, Qian, Yeomans, Wang (bib0016) 2014; 10
Yarin (bib0011) 2006; 38
Zhang, Liu, Wu, Min (bib0020) 2018; 99
Schremb, Roisman, Tropea (bib0046) 2018; 835
Feuillebois, Lasek, Creismeas, Pigeonneau, Szaniawski (bib0058) 1995; 169
Rahman, Jacobi (bib0006) 2015; 50
Zhang, Liu, Min, Wu (bib0027) 2019; 147
Eral, Mannetje, Oh (bib0055) 2013; 291
Jin, Zhang, Yang (bib0031) 2017; 113
Marcolli (bib0022) 2017; 7
Ji, Song, Yao (bib0052) 2017; 29
Šikalo, Marengo, Tropea, Ganić (bib0012) 2002; 25
Bejan, Kraus (bib0059) 2003
Alizadeh, Yamada, Li, Shang, Otta, Zhong, Ge, Dhinojwala, Conway, Bahadur, Vinciquerra, Stephens, Blohm (bib0017) 2012; 28
Zhang, Wu, Min, Liu (bib0024) 2017; 125
Punge, Kunz (bib0004) 2016; 176–177
Zhang, Zhao, Lv, Yang (bib0028) 2016; 101
Liu, Zhang, Min (bib0014) 2019; 207
Mishchenko, Hatton, Bahadur, Taylor, Krupenkin, Aizenberg (bib0030) 2010; 4
Youngs (bib0061) 1982
Wang, Tsai, Wu, Hwang (bib0009) 2016; 26
Hirt, Nichols (bib0049) 1981; 39
de Ruiter, Colinet, Brunet, Snoeijer, Gelderblom (bib0047) 2017; 2
Sun, Kong, Wang, Liu (bib0040) 2019; 142
Chang, Ding, Song, Leng (bib0044) 2019; 118
Tembely, Attarzadeh, Dolatabadi (bib0045) 2018; 127
Šikalo, Wilhelm, Roisman, Jakirlić, Tropea (bib0051) 2005; 17
Marín, Enríquez, Brunet, Colinet, Snoeijer (bib0026) 2014; 113
Yao, Li, Tao, Yang, Zhang (bib0038) 2018; 137
Meng, Zhang (bib0019) 2020; 152
Wang (10.1016/j.ijheatmasstransfer.2020.119997_bib0009) 2016; 26
Mishchenko (10.1016/j.ijheatmasstransfer.2020.119997_bib0030) 2010; 4
Yao (10.1016/j.ijheatmasstransfer.2020.119997_bib0038) 2018; 137
Šikalo (10.1016/j.ijheatmasstransfer.2020.119997_bib0012) 2002; 25
Maitra (10.1016/j.ijheatmasstransfer.2020.119997_bib0037) 2013; 14
Jung (10.1016/j.ijheatmasstransfer.2020.119997_bib0025) 2012; 3
Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0028) 2016; 101
Vu (10.1016/j.ijheatmasstransfer.2020.119997_bib0029) 2015; 76
Hirt (10.1016/j.ijheatmasstransfer.2020.119997_bib0049) 1981; 39
Voinov (10.1016/j.ijheatmasstransfer.2020.119997_bib0057) 1977; 11
Yarin (10.1016/j.ijheatmasstransfer.2020.119997_bib0011) 2006; 38
Schremb (10.1016/j.ijheatmasstransfer.2020.119997_bib0034) 2017; 95
Marín (10.1016/j.ijheatmasstransfer.2020.119997_bib0026) 2014; 113
Youngs (10.1016/j.ijheatmasstransfer.2020.119997_bib0061) 1982
Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0024) 2017; 125
Hao (10.1016/j.ijheatmasstransfer.2020.119997_bib0021) 2014; 104
Malgarinos (10.1016/j.ijheatmasstransfer.2020.119997_bib0054) 2014; 212
Šikalo (10.1016/j.ijheatmasstransfer.2020.119997_bib0051) 2005; 17
Blake (10.1016/j.ijheatmasstransfer.2020.119997_bib0042) 2015; 53
Feuillebois (10.1016/j.ijheatmasstransfer.2020.119997_bib0058) 1995; 169
Haynes (10.1016/j.ijheatmasstransfer.2020.119997_bib0063) 2014
Tembely (10.1016/j.ijheatmasstransfer.2020.119997_bib0045) 2018; 127
Chu (10.1016/j.ijheatmasstransfer.2020.119997_bib0007) 2017; 9
Rahman (10.1016/j.ijheatmasstransfer.2020.119997_bib0006) 2015; 50
Mao (10.1016/j.ijheatmasstransfer.2020.119997_bib0015) 1997; 43
Alizadeh (10.1016/j.ijheatmasstransfer.2020.119997_bib0017) 2012; 28
Chen (10.1016/j.ijheatmasstransfer.2020.119997_bib0036) 2016; 375
Wu (10.1016/j.ijheatmasstransfer.2020.119997_bib0005) 2001; 24
Wu (10.1016/j.ijheatmasstransfer.2020.119997_bib0008) 2019; 358
Yao (10.1016/j.ijheatmasstransfer.2020.119997_bib0043) 2017; 419
Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0039) 2018; 122
Enríquez (10.1016/j.ijheatmasstransfer.2020.119997_bib0048) 2012; 24
Ji (10.1016/j.ijheatmasstransfer.2020.119997_bib0052) 2017; 29
Chang (10.1016/j.ijheatmasstransfer.2020.119997_bib0044) 2019; 118
Czys (10.1016/j.ijheatmasstransfer.2020.119997_bib0023) 1989; 28
Eral (10.1016/j.ijheatmasstransfer.2020.119997_bib0055) 2013; 291
Schremb (10.1016/j.ijheatmasstransfer.2020.119997_bib0046) 2018; 835
de Ruiter (10.1016/j.ijheatmasstransfer.2020.119997_bib0047) 2017; 2
(10.1016/j.ijheatmasstransfer.2020.119997_bib0050) 2012
Dalili (10.1016/j.ijheatmasstransfer.2020.119997_bib0003) 2009; 13
Punge (10.1016/j.ijheatmasstransfer.2020.119997_bib0004) 2016; 176–177
Yokoi (10.1016/j.ijheatmasstransfer.2020.119997_bib0053) 2009; 21
Bejan (10.1016/j.ijheatmasstransfer.2020.119997_bib0059) 2003
Sun (10.1016/j.ijheatmasstransfer.2020.119997_bib0040) 2019; 142
Jiang (10.1016/j.ijheatmasstransfer.2020.119997_bib0056) 1979; 69
Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0027) 2019; 147
Jin (10.1016/j.ijheatmasstransfer.2020.119997_bib0033) 2017; 109
Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0018) 2017; 88
Cao (10.1016/j.ijheatmasstransfer.2020.119997_bib0001) 2015; 74
Liu (10.1016/j.ijheatmasstransfer.2020.119997_bib0016) 2014; 10
Wang (10.1016/j.ijheatmasstransfer.2020.119997_bib0041) 2019; 130
Liu (10.1016/j.ijheatmasstransfer.2020.119997_bib0013) 2019; 31
Ding (10.1016/j.ijheatmasstransfer.2020.119997_bib0035) 2019; 138
Meng (10.1016/j.ijheatmasstransfer.2020.119997_bib0019) 2020; 152
Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0060) 2018; 127
Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0002) 2017; 104
Liu (10.1016/j.ijheatmasstransfer.2020.119997_bib0014) 2019; 207
Zhang (10.1016/j.ijheatmasstransfer.2020.119997_bib0020) 2018; 99
Le Bot (10.1016/j.ijheatmasstransfer.2020.119997_bib0010) 2005; 44
Ju (10.1016/j.ijheatmasstransfer.2020.119997_bib0032) 2018; 96
Marcolli (10.1016/j.ijheatmasstransfer.2020.119997_bib0022) 2017; 7
Jin (10.1016/j.ijheatmasstransfer.2020.119997_bib0031) 2017; 113
Huang (10.1016/j.ijheatmasstransfer.2020.119997_bib0062) 2018; 30
References_xml – volume: 207
  start-page: 495
  year: 2019
  end-page: 503
  ident: bib0014
  article-title: Spreading of droplets impacting different wettable surfaces at a weber number close to zero
  publication-title: Chem. Eng. Sci.
– volume: 96
  start-page: 430
  year: 2018
  end-page: 440
  ident: bib0032
  article-title: The impact and freezing processes of a water droplet on different cold spherical surfaces
  publication-title: Exp. Therm. Fluid Sci.
– volume: 25
  start-page: 503
  year: 2002
  end-page: 510
  ident: bib0012
  article-title: Analysis of impact of droplets on horizontal surfaces
  publication-title: Exp. Therm. Fluid Sci.
– volume: 7
  start-page: 16634
  year: 2017
  ident: bib0022
  article-title: Ice nucleation triggered by negative pressure
  publication-title: Sci. Rep.
– volume: 95
  start-page: 22805
  year: 2017
  ident: bib0034
  article-title: Transient effects in ice nucleation of a water drop impacting onto a cold substrate
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 172
  year: 2013
  end-page: 182
  ident: bib0037
  article-title: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature
  publication-title: Nano Lett.
– volume: 69
  start-page: 74
  year: 1979
  end-page: 77
  ident: bib0056
  article-title: Correlation for dynamic contact angle
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 8420
  year: 2017
  end-page: 8425
  ident: bib0007
  article-title: Dynamic melting of freezing droplets on ultraslippery superhydrophobic surfaces
  publication-title: ACS Appl. Mater. Inter.
– volume: 212
  start-page: 1
  year: 2014
  end-page: 20
  ident: bib0054
  article-title: VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model
  publication-title: Adv. Colloid Interface Sci.
– volume: 118
  start-page: 150
  year: 2019
  end-page: 164
  ident: bib0044
  article-title: Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment
  publication-title: Int. J. Multiphas. Flow
– volume: 10
  start-page: 515
  year: 2014
  end-page: 519
  ident: bib0016
  article-title: Pancake bouncing on superhydrophobic surfaces
  publication-title: Nat. Phys.
– volume: 142
  year: 2019
  ident: bib0040
  article-title: Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution
  publication-title: Int. J. Heat Mass Transf.
– volume: 21
  start-page: 72102
  year: 2009
  ident: bib0053
  article-title: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface
  publication-title: Phys. Fluids
– volume: 26
  start-page: 95012
  year: 2016
  ident: bib0009
  article-title: Investigation of molten metal droplet deposition and solidification for 3d printing techniques
  publication-title: J. Micromech. Microeng.
– volume: 137
  start-page: 83
  year: 2018
  end-page: 92
  ident: bib0038
  article-title: Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface
  publication-title: Appl. Therm. Eng.
– volume: 88
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib0018
  article-title: Freezing and melting of a sessile water droplet on a horizontal cold plate
  publication-title: Exp. Therm. Fluid Sci.
– volume: 2
  start-page: 43602
  year: 2017
  ident: bib0047
  article-title: Contact line arrest in solidifying spreading drops
  publication-title: Phys. Rev. Fluids
– volume: 24
  start-page: 151
  year: 2001
  end-page: 156
  ident: bib0005
  article-title: Investigation of the possibility of frost release from a cold surface
  publication-title: Exp. Therm. Fluid Sci.
– volume: 358
  start-page: 207
  year: 2019
  end-page: 214
  ident: bib0008
  article-title: When superhydrophobic coatings are icephobic: role of surface topology
  publication-title: Surf. Coat. Technol.
– volume: 30
  start-page: 22106
  year: 2018
  ident: bib0062
  article-title: Energetic analysis of drop's maximum spreading on solid surface with low impact speed
  publication-title: Phys. Fluids
– volume: 38
  start-page: 159
  year: 2006
  end-page: 192
  ident: bib0011
  article-title: Drop impact dynamics: splashing, spreading, receding, bouncing…
  publication-title: Annu. Rev. Fluid Mech.
– volume: 28
  start-page: 3180
  year: 2012
  end-page: 3186
  ident: bib0017
  article-title: Dynamics of ice nucleation on water repellent surfaces
  publication-title: Langmuir
– volume: 99
  start-page: 26
  year: 2018
  end-page: 34
  ident: bib0020
  article-title: Experimental investigation and statistical analysis of icing nucleation characteristics of sessile water droplets
  publication-title: Exp. Therm. Fluid Sci.
– volume: 138
  start-page: 844
  year: 2019
  end-page: 851
  ident: bib0035
  article-title: Water droplet impact on superhydrophobic surfaces with various inclinations and supercooling degrees
  publication-title: Int. J. Heat Mass Transf.
– volume: 169
  start-page: 90
  year: 1995
  end-page: 102
  ident: bib0058
  article-title: Freezing of a subcooled liquid droplet
  publication-title: J. Colloid Interface Sci.
– year: 2003
  ident: bib0059
  article-title: Heat Transfer Handbook
– volume: 31
  start-page: 92102
  year: 2019
  ident: bib0013
  article-title: Maximum spreading of droplets impacting spherical surfaces
  publication-title: Phys. Fluids
– volume: 43
  start-page: 2169
  year: 1997
  end-page: 2179
  ident: bib0015
  article-title: Spread and rebound of liquid droplets upon impact on flat surfaces
  publication-title: AIChe J.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bib0049
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 615
  year: 2012
  ident: bib0025
  article-title: Mechanism of supercooled droplet freezing on surfaces
  publication-title: Nat. Commun.
– volume: 375
  start-page: 127
  year: 2016
  end-page: 135
  ident: bib0036
  article-title: Droplet bouncing on hierarchical branched nanotube arrays above and below the freezing temperature
  publication-title: Appl. Surf. Sci.
– volume: 127
  start-page: 975
  year: 2018
  end-page: 985
  ident: bib0060
  article-title: Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects
  publication-title: Int. J. Heat Mass Transf.
– volume: 147
  start-page: 927
  year: 2019
  end-page: 934
  ident: bib0027
  article-title: Shape variation and unique tip formation of a sessile water droplet during freezing
  publication-title: Appl. Therm. Eng.
– volume: 104
  year: 2014
  ident: bib0021
  article-title: Freezing of sessile water droplets on surfaces with various roughness and wettability
  publication-title: Appl. Phys. Lett.
– volume: 122
  start-page: 395
  year: 2018
  end-page: 402
  ident: bib0039
  article-title: Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature
  publication-title: Int. J. Heat Mass Transf.
– volume: 29
  start-page: 77102
  year: 2017
  ident: bib0052
  article-title: Numerical study of hydrophobic micron particle's impaction on liquid surface
  publication-title: Phys. Fluids
– volume: 113
  start-page: 318
  year: 2017
  end-page: 323
  ident: bib0031
  article-title: The impact and freezing processes of a water droplet on different cold cylindrical surfaces
  publication-title: Int. J. Heat Mass Transf.
– volume: 4
  start-page: 7699
  year: 2010
  end-page: 7707
  ident: bib0030
  article-title: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
  publication-title: ACS Nano
– volume: 130
  start-page: 831
  year: 2019
  end-page: 842
  ident: bib0041
  article-title: Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate
  publication-title: Int. J. Heat Mass Transf.
– volume: 291
  start-page: 247
  year: 2013
  end-page: 260
  ident: bib0055
  article-title: Contact angle hysteresis: a review of fundamentals and applications
  publication-title: Colloid Polym. Sci.
– volume: 11
  start-page: 714
  year: 1977
  end-page: 721
  ident: bib0057
  article-title: Hydrodynamics of wetting
  publication-title: Fluid Dyn.
– volume: 53
  start-page: 1725
  year: 2015
  end-page: 1739
  ident: bib0042
  article-title: Simulating the freezing of supercooled water droplets impacting a cooled substrate
  publication-title: AIAA J.
– volume: 176–177
  start-page: 159
  year: 2016
  end-page: 184
  ident: bib0004
  article-title: Hail observations and hailstorm characteristics in Europe: a review
  publication-title: Atmos. Res.
– volume: 109
  start-page: 716
  year: 2017
  end-page: 724
  ident: bib0033
  article-title: Experimental investigation of the impact and freezing processes of a water droplet on an ice surface
  publication-title: Int. J. Heat Mass Transf.
– volume: 101
  start-page: 59
  year: 2016
  end-page: 67
  ident: bib0028
  article-title: Freezing of sessile water droplet for various contact angles
  publication-title: Int. J. Therm. Sci.
– volume: 127
  start-page: 193
  year: 2018
  end-page: 202
  ident: bib0045
  article-title: On the numerical modeling of supercooled micro-droplet impact and freezing on superhydrophobic surfaces
  publication-title: Int. J. Heat Mass Transf.
– volume: 17
  start-page: 62103
  year: 2005
  ident: bib0051
  article-title: Dynamic contact angle of spreading droplets: experiments and simulations
  publication-title: Phys. Fluids
– year: 2014
  ident: bib0063
  article-title: CRC Handbook of Chemistry and Physics
– volume: 125
  start-page: 644
  year: 2017
  end-page: 651
  ident: bib0024
  article-title: Modelling of sessile water droplet shape evolution during freezing with consideration of supercooling effect
  publication-title: Appl. Therm. Eng.
– volume: 24
  start-page: 91102
  year: 2012
  ident: bib0048
  article-title: Freezing singularities in water drops
  publication-title: Phys. Fluids
– volume: 13
  start-page: 428
  year: 2009
  end-page: 438
  ident: bib0003
  article-title: A review of surface engineering issues critical to wind turbine performance
  publication-title: Renew. Sustain. Energy Rev.
– volume: 50
  start-page: 44
  year: 2015
  end-page: 56
  ident: bib0006
  article-title: Experimental study on frosting/defrosting characteristics of microgrooved metal surfaces
  publication-title: Int. J. Refrig.
– volume: 76
  start-page: 73
  year: 2015
  end-page: 85
  ident: bib0029
  article-title: Numerical investigations of drop solidification on a cold plate in the presence of volume change
  publication-title: Int. J. Multiphas. Flow
– volume: 419
  start-page: 52
  year: 2017
  end-page: 62
  ident: bib0043
  article-title: Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces
  publication-title: Appl. Surf. Sci.
– volume: 835
  start-page: 1087
  year: 2018
  end-page: 1107
  ident: bib0046
  article-title: Normal impact of supercooled water drops onto a smooth ice surface: experiments and modelling
  publication-title: J. Fluid Mech
– volume: 113
  start-page: 54301
  year: 2014
  ident: bib0026
  article-title: Universality of tip singularity formation in freezing water drops
  publication-title: Phys. Rev. Lett.
– year: 2012
  ident: bib0050
  article-title: ANSYS FLUENT User Guide, Release 14.5
– volume: 74
  start-page: 62
  year: 2015
  end-page: 80
  ident: bib0001
  article-title: Aircraft flight characteristics in icing conditions
  publication-title: Prog. Aerosp. Sci.
– volume: 104
  start-page: 510
  year: 2017
  end-page: 516
  ident: bib0002
  article-title: Aircraft icing model considering both rime ice property variability and runback water effect
  publication-title: Int. J. Heat Mass Transf.
– volume: 44
  start-page: 219
  year: 2005
  end-page: 233
  ident: bib0010
  article-title: Impact and solidification of indium droplets on a cold substrate
  publication-title: Int. J. Therm. Sci.
– volume: 152
  year: 2020
  ident: bib0019
  article-title: Dynamic propagation of ice-water phase front in a supercooled water droplet
  publication-title: Int. J. Heat Mass Transf.
– start-page: 273
  year: 1982
  end-page: 486
  ident: bib0061
  article-title: Time-dependent multi-material flow with large fluid distortion
  publication-title: Numerical Methods for Fluid Dynamics
– volume: 28
  start-page: 1098
  year: 1989
  end-page: 1104
  ident: bib0023
  article-title: Ice initiation by collision-freezing in warm-based cumuli
  publication-title: J. Appl. Meteorol.
– volume: 88
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0018
  article-title: Freezing and melting of a sessile water droplet on a horizontal cold plate
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.05.009
– volume: 29
  start-page: 77102
  issue: 7
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0052
  article-title: Numerical study of hydrophobic micron particle's impaction on liquid surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.4991915
– volume: 207
  start-page: 495
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0014
  article-title: Spreading of droplets impacting different wettable surfaces at a weber number close to zero
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.06.058
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0049
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 104
  issue: 16
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0021
  article-title: Freezing of sessile water droplets on surfaces with various roughness and wettability
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4873345
– volume: 358
  start-page: 207
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0008
  article-title: When superhydrophobic coatings are icephobic: role of surface topology
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.11.039
– volume: 142
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0040
  article-title: Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.07.081
– volume: 13
  start-page: 428
  issue: 2
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0003
  article-title: A review of surface engineering issues critical to wind turbine performance
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2007.11.009
– volume: 3
  start-page: 615
  issue: 1
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0025
  article-title: Mechanism of supercooled droplet freezing on surfaces
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1630
– volume: 30
  start-page: 22106
  issue: 2
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0062
  article-title: Energetic analysis of drop's maximum spreading on solid surface with low impact speed
  publication-title: Phys. Fluids
  doi: 10.1063/1.5006439
– volume: 101
  start-page: 59
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0028
  article-title: Freezing of sessile water droplet for various contact angles
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2015.10.027
– volume: 17
  start-page: 62103
  issue: 6
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0051
  article-title: Dynamic contact angle of spreading droplets: experiments and simulations
  publication-title: Phys. Fluids
  doi: 10.1063/1.1928828
– volume: 130
  start-page: 831
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0041
  article-title: Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.10.142
– volume: 147
  start-page: 927
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0027
  article-title: Shape variation and unique tip formation of a sessile water droplet during freezing
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.09.040
– volume: 291
  start-page: 247
  issue: 2
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0055
  article-title: Contact angle hysteresis: a review of fundamentals and applications
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-012-2796-6
– volume: 109
  start-page: 716
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0033
  article-title: Experimental investigation of the impact and freezing processes of a water droplet on an ice surface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.02.055
– volume: 10
  start-page: 515
  issue: 7
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0016
  article-title: Pancake bouncing on superhydrophobic surfaces
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2980
– volume: 176–177
  start-page: 159
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0004
  article-title: Hail observations and hailstorm characteristics in Europe: a review
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.02.012
– volume: 43
  start-page: 2169
  issue: 9
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0015
  article-title: Spread and rebound of liquid droplets upon impact on flat surfaces
  publication-title: AIChe J.
  doi: 10.1002/aic.690430903
– volume: 53
  start-page: 1725
  issue: 7
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0042
  article-title: Simulating the freezing of supercooled water droplets impacting a cooled substrate
  publication-title: AIAA J.
  doi: 10.2514/1.J053391
– volume: 28
  start-page: 1098
  issue: 10
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0023
  article-title: Ice initiation by collision-freezing in warm-based cumuli
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1989)028<1098:IIBCFI>2.0.CO;2
– volume: 835
  start-page: 1087
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0046
  article-title: Normal impact of supercooled water drops onto a smooth ice surface: experiments and modelling
  publication-title: J. Fluid Mech
  doi: 10.1017/jfm.2017.797
– volume: 2
  start-page: 43602
  issue: 4
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0047
  article-title: Contact line arrest in solidifying spreading drops
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.043602
– volume: 212
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0054
  article-title: VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2014.07.004
– volume: 137
  start-page: 83
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0038
  article-title: Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.03.057
– volume: 24
  start-page: 91102
  issue: 9
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0048
  article-title: Freezing singularities in water drops
  publication-title: Phys. Fluids
  doi: 10.1063/1.4747185
– volume: 4
  start-page: 7699
  issue: 12
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0030
  article-title: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
  publication-title: ACS Nano
  doi: 10.1021/nn102557p
– volume: 375
  start-page: 127
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0036
  article-title: Droplet bouncing on hierarchical branched nanotube arrays above and below the freezing temperature
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.029
– volume: 122
  start-page: 395
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0039
  article-title: Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.01.076
– volume: 26
  start-page: 95012
  issue: 9
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0009
  article-title: Investigation of molten metal droplet deposition and solidification for 3d printing techniques
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/26/9/095012
– volume: 113
  start-page: 54301
  issue: 5
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0026
  article-title: Universality of tip singularity formation in freezing water drops
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.054301
– year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0050
– year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0063
– volume: 28
  start-page: 3180
  issue: 6
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0017
  article-title: Dynamics of ice nucleation on water repellent surfaces
  publication-title: Langmuir
  doi: 10.1021/la2045256
– volume: 118
  start-page: 150
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0044
  article-title: Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.06.011
– volume: 113
  start-page: 318
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0031
  article-title: The impact and freezing processes of a water droplet on different cold cylindrical surfaces
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.111
– volume: 169
  start-page: 90
  issue: 1
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0058
  article-title: Freezing of a subcooled liquid droplet
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1995.1010
– year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0059
– volume: 9
  start-page: 8420
  issue: 9
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0007
  article-title: Dynamic melting of freezing droplets on ultraslippery superhydrophobic surfaces
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.6b16803
– volume: 99
  start-page: 26
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0020
  article-title: Experimental investigation and statistical analysis of icing nucleation characteristics of sessile water droplets
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.07.027
– volume: 125
  start-page: 644
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0024
  article-title: Modelling of sessile water droplet shape evolution during freezing with consideration of supercooling effect
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.017
– volume: 419
  start-page: 52
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0043
  article-title: Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.04.085
– volume: 76
  start-page: 73
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0029
  article-title: Numerical investigations of drop solidification on a cold plate in the presence of volume change
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.07.005
– volume: 127
  start-page: 193
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0045
  article-title: On the numerical modeling of supercooled micro-droplet impact and freezing on superhydrophobic surfaces
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.06.104
– volume: 50
  start-page: 44
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0006
  article-title: Experimental study on frosting/defrosting characteristics of microgrooved metal surfaces
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2014.11.002
– volume: 96
  start-page: 430
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0032
  article-title: The impact and freezing processes of a water droplet on different cold spherical surfaces
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.03.037
– volume: 31
  start-page: 92102
  issue: 9
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0013
  article-title: Maximum spreading of droplets impacting spherical surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/1.5117278
– volume: 95
  start-page: 22805
  issue: 2
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0034
  article-title: Transient effects in ice nucleation of a water drop impacting onto a cold substrate
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.022805
– volume: 21
  start-page: 72102
  issue: 7
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0053
  article-title: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.3158468
– volume: 127
  start-page: 975
  issue: A
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0060
  article-title: Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.07.021
– volume: 138
  start-page: 844
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0035
  article-title: Water droplet impact on superhydrophobic surfaces with various inclinations and supercooling degrees
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.04.106
– volume: 25
  start-page: 503
  issue: 7
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0012
  article-title: Analysis of impact of droplets on horizontal surfaces
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(01)00109-1
– start-page: 273
  year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0061
  article-title: Time-dependent multi-material flow with large fluid distortion
– volume: 104
  start-page: 510
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0002
  article-title: Aircraft icing model considering both rime ice property variability and runback water effect
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.086
– volume: 69
  start-page: 74
  issue: 1
  year: 1979
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0056
  article-title: Correlation for dynamic contact angle
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(79)90081-X
– volume: 14
  start-page: 172
  issue: 1
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0037
  article-title: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature
  publication-title: Nano Lett.
  doi: 10.1021/nl4037092
– volume: 38
  start-page: 159
  issue: 1
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0011
  article-title: Drop impact dynamics: splashing, spreading, receding, bouncing…
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.38.050304.092144
– volume: 7
  start-page: 16634
  issue: 1
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0022
  article-title: Ice nucleation triggered by negative pressure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-16787-3
– volume: 24
  start-page: 151
  issue: 3–4
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0005
  article-title: Investigation of the possibility of frost release from a cold surface
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(01)00045-0
– volume: 44
  start-page: 219
  issue: 3
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0010
  article-title: Impact and solidification of indium droplets on a cold substrate
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2004.07.007
– volume: 11
  start-page: 714
  issue: 5
  year: 1977
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0057
  article-title: Hydrodynamics of wetting
  publication-title: Fluid Dyn.
  doi: 10.1007/BF01012963
– volume: 152
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0019
  article-title: Dynamic propagation of ice-water phase front in a supercooled water droplet
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119468
– volume: 74
  start-page: 62
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119997_bib0001
  article-title: Aircraft flight characteristics in icing conditions
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2014.12.001
SSID ssj0017046
Score 2.6397974
Snippet •The impacting and freezing experiments of supercooled water droplets are conducted.•The impacting-freezing behaviors of supercooled water droplets are...
The impacting-freezing dynamics of a supercooled water droplet on a cold surface is studied experimentally and numerically. A numerical model that considers...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119997
SubjectTerms Adhesion
Cold
Cold surfaces
Computational fluid dynamics
Computer simulation
Contact angle
Deicing
Droplet
Droplets
Fluid flow
Freezing
Impacting
Mathematical models
Morphology
Numerical models
Physical properties
Rebound and adhesion
Room temperature
Solidification
Supercooling
Water drops
Weber number
Title Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119997
https://www.proquest.com/docview/2446722795
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kongRn1itsgcPXmKzTZptvEgpSmvRgyh6W7K7E2ypTUlTBA_-dmfyUFQ8CB7y3mzC7Oz3zSYzs4wdy5iYwQhHRCJ2fA_AiVxjHQhdG3sG1wFFI1_fBP17_-qx_bjEelUsDLlVlthfYHqO1uWZZinN5mw0ohhfUi5Bv9JEgExGEey-JC0_fftw8xDSLYJ1CI2p9Co7-fTxGo0J8Z7RTM1yMxEoQ2iLcATtJvkbVX0D7ZyJLjfYemlC8m7xlptsCaZbbCV35TTzbaYHeeAjUpITpwCvuMNtMe_8nCcxj_h8MYPUJMkELH9BWzPlNiU_8ownU7yMqmGxTBpHBs44yp9mXuIRLfYJ6OvaDru_vLjr9Z1yJgXH-F6QYUMA2kk4duiEwkjss-D7NtRgTRxhF7ey1RIgtBZ4LqJRhpYGx04SkOy1jkJvl9WmyRT2GEc6a2vPdkLXuL5vAq1RqGDbsbDCIETU2XklNGXKNOM028VEVf5kY_VT7IrErgqx11n4UcOsSLnxh3t7VTupL2qkkCH-UEujamJVdum5QjsokJRvsb3_Lw85YGt0VPirNVgtSxdwiAZOpo9yDT5iy93BsH9D2-Htw_AdLUcB4w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50Fx8X8Ylvc_DgpdhsX9aLyKLs-tiTgrfQJFNc0e3SrQj-emf6WFHxIHhoKUmblpnJfJNmHgCHUcrIYKQjE5k6vofoJK6xDsauTT1D55CjkW8HYe_ev3oIHmag28TCsFtlrfsrnV5q67rluKbm8Xg45BhfFi7JW2kyJCSbhTZnpwpa0D7vX_cG082EyK3idVgh8wPzcPTp5jV8YqX3QpZqUVqKyElCO6xKyHSKfkOrb3q7BKPLZViqrUhxXn3oCszgaBXmSm9OM1kD3S9jHwmVnDRHfKcLYavS8xORpSIRk9cx5ibLntGKNzI3c2FzdiUvRDaibpIOS_fkaWLwVBALuPiSSPiwj8g_2Nbh_vLirttz6mIKjvG9sCBeIJlKtHw4iaWJaNqi79tYozVpQrPcRp2ORKm1pLaEFxo6MrR8ipDwXusk9jagNcpGuAmCEC3Qnj2JXeP6vgm1JqKiDVJppSEtsQVnDdGUqTONc8GLZ9W4lD2pn2RXTHZVkX0L4ukI4yrrxh-e7TZ8Ul8kSRFI_GGU3YbFqp7VE0WmUBhxysVg-19ecgALvbvbG3XTH1zvwCL3VO5ru9Aq8lfcI3un0Pu1PH8A3BsC8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacting-freezing+dynamics+of+a+supercooled+water+droplet+on+a+cold+surface%3A+Rebound+and+adhesion&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhang%2C+Xuan&rft.au=Liu%2C+Xin&rft.au=Wu%2C+Xiaomin&rft.au=Min%2C+Jingchun&rft.date=2020-09-01&rft.issn=0017-9310&rft.volume=158&rft.spage=119997&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_119997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon