Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord

Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astro...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials science Vol. 7; no. 5; pp. 1995 - 28
Main Authors Liu, Can, Fan, Lei, Xing, Jianghao, Wang, Qiyou, Lin, Chengkai, Liu, Chang, Deng, Xiaoqian, Ning, Chengyun, Zhou, Lei, Rong, Limin, Liu, Bin
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 23.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI. Recovery from spinal cord injuries after transplanted neural stem cells encapsulated in chondroitin sulfate methacrylate hydrogels.
AbstractList Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI.Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI.
Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI.
Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI.
Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI. Recovery from spinal cord injuries after transplanted neural stem cells encapsulated in chondroitin sulfate methacrylate hydrogels.
Author Wang, Qiyou
Liu, Bin
Xing, Jianghao
Fan, Lei
Ning, Chengyun
Zhou, Lei
Lin, Chengkai
Deng, Xiaoqian
Rong, Limin
Liu, Can
Liu, Chang
AuthorAffiliation Department of Oncology
Zhongshan Ophthalmic Center
Sun Yat-sen University
the Third Affiliated Hospital of Sun Yat-sen University
the Seventh Affiliated Hospital of Sun Yat-sen University
South China University of Technology
State Key Laboratory of Ophthalmology
Department of Spine Surgery
College of Materials Science and Technology
the First Affiliated Hospital of Anhui Medical University
Department of Orthopedics
AuthorAffiliation_xml – sequence: 0
  name: Zhongshan Ophthalmic Center
– sequence: 0
  name: Department of Oncology
– sequence: 0
  name: the Seventh Affiliated Hospital of Sun Yat-sen University
– sequence: 0
  name: South China University of Technology
– sequence: 0
  name: Department of Orthopedics
– sequence: 0
  name: the Third Affiliated Hospital of Sun Yat-sen University
– sequence: 0
  name: State Key Laboratory of Ophthalmology
– sequence: 0
  name: Sun Yat-sen University
– sequence: 0
  name: College of Materials Science and Technology
– sequence: 0
  name: Department of Spine Surgery
– sequence: 0
  name: the First Affiliated Hospital of Anhui Medical University
Author_xml – sequence: 1
  givenname: Can
  surname: Liu
  fullname: Liu, Can
– sequence: 2
  givenname: Lei
  surname: Fan
  fullname: Fan, Lei
– sequence: 3
  givenname: Jianghao
  surname: Xing
  fullname: Xing, Jianghao
– sequence: 4
  givenname: Qiyou
  surname: Wang
  fullname: Wang, Qiyou
– sequence: 5
  givenname: Chengkai
  surname: Lin
  fullname: Lin, Chengkai
– sequence: 6
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
– sequence: 7
  givenname: Xiaoqian
  surname: Deng
  fullname: Deng, Xiaoqian
– sequence: 8
  givenname: Chengyun
  surname: Ning
  fullname: Ning, Chengyun
– sequence: 9
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
– sequence: 10
  givenname: Limin
  surname: Rong
  fullname: Rong, Limin
– sequence: 11
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30839020$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv3CAUhVGVqHk0m-5bIXUTVZoUDAazTEZ9REqUTbu2MI-akQ0u4IX_TH9rcSaZSlGlwgLQ_e5BV-ecgSMfvAHgLUZXGBHxSTXdiDBhpHsFTitE-YY2VBwd7gSdgIuUdqgszgVi-DU4IaghAlXoFPy-9b3rXHbBw2ChTDkGtWSnoHbWmmh8dvK5mqP0aRqkz0ZDb-YoB5iyGaEyw5Bgt0DVB69jKHoepnmwMhs4mtxLFZdhffRLKf80hbYhwtwbGM0kXVzlnd_NsSinyfmirELUb8CxlUMyF0_nOfjx5fP37bfN3cPX2-313UZRwvIGM1NxW3OGpaiY0ozVlDNkRYe0sqSRshG6o4ISzQnitONUE4kwldoKJGtyDi73ulMMv2aTcju6tE4lvQlzaquK8JqyitH_o7hp6rIJLuiHF-guzLHMtgpiUgyg9fr3-ydq7kaj2ym6UcalfTapAB_3gIohpWjsAcGoXUPQbpub-8cQ3BQYvYCVy48OFvfc8O-Wd_uWmNRB-m-uyB_-1L8h
CitedBy_id crossref_primary_10_1088_1748_605X_ac1d3c
crossref_primary_10_12677_ACM_2020_1012446
crossref_primary_10_14412_2074_2711_2019_3_137_143
crossref_primary_10_1007_s10143_022_01859_4
crossref_primary_10_1021_acsabm_3c01058
crossref_primary_10_1038_s41419_021_03546_6
crossref_primary_10_1016_j_carbpol_2024_122124
crossref_primary_10_1016_j_mtadv_2024_100465
crossref_primary_10_14412_2074_2711_2023_1_110_118
crossref_primary_10_1039_D2TB00584K
crossref_primary_10_1002_adhm_202300123
crossref_primary_10_1016_j_biomaterials_2024_122629
crossref_primary_10_1016_j_bioadv_2023_213385
crossref_primary_10_1039_D2BM01467J
crossref_primary_10_1016_j_expneurol_2023_114497
crossref_primary_10_1080_21691401_2019_1638794
crossref_primary_10_1002_adhm_202201720
crossref_primary_10_1016_j_actbio_2024_04_015
crossref_primary_10_1016_j_bbrc_2021_07_012
crossref_primary_10_1186_s13036_020_00244_3
crossref_primary_10_1016_j_bioactmat_2021_03_034
crossref_primary_10_1007_s12015_022_10483_0
crossref_primary_10_3390_pr9010011
crossref_primary_10_1016_j_pharmthera_2021_108043
crossref_primary_10_1088_1748_605X_ab785f
crossref_primary_10_1016_j_cej_2024_158132
crossref_primary_10_1016_j_actbio_2024_06_011
crossref_primary_10_1016_j_mser_2020_100543
crossref_primary_10_1080_25740881_2023_2297956
crossref_primary_10_1002_mabi_202200181
crossref_primary_10_1016_j_biomaterials_2022_121689
crossref_primary_10_1002_mco2_214
crossref_primary_10_1016_j_bioadv_2023_213439
crossref_primary_10_1016_j_bioactmat_2021_05_039
crossref_primary_10_2217_nnm_2021_0025
crossref_primary_10_1016_j_ijbiomac_2020_11_206
Cites_doi 10.1016/j.immuni.2017.06.006
10.1016/j.biomaterials.2012.12.046
10.1016/j.sbi.2007.08.015
10.1016/j.pain.2013.07.002
10.1021/acsami.6b13155
10.1002/glia.21170
10.1016/j.biomaterials.2009.05.050
10.1021/ja4056728
10.1016/j.mcn.2005.04.006
10.1097/j.pain.0000000000001316
10.1242/dev.02871
10.1093/hmg/ddt036
10.1038/nrn3550
10.1021/acs.bioconjchem.5b00397
10.1002/stem.309
10.1111/j.1460-9568.2005.03876.x
10.1371/journal.pmed.0050171
10.1016/j.cell.2012.08.020
10.1016/j.biomaterials.2013.11.017
10.1038/s41586-018-0068-4
10.1038/sj.mt.6300084
10.1074/jbc.R111.298430
10.1038/nmat5020
10.1074/jbc.M110.100941
10.1371/journal.pone.0021499
10.1016/j.expneurol.2006.04.035
10.1002/adma.201706032
10.1016/j.actbio.2017.02.046
10.1038/srep03701
10.1016/j.actbio.2016.06.016
10.1073/pnas.1121318109
10.1038/nm.4502
10.1038/nn.4541
10.3390/ma10020191
10.1038/s41467-017-00583-8
10.1007/s13311-018-0631-6
10.1021/acsbiomaterials.6b00805
10.1007/s00018-013-1435-9
10.1021/acsami.8b05293
10.1039/C7BM01158J
10.1016/j.expneurol.2004.03.017
10.1002/glia.22850
10.1088/1748-6041/7/1/012001
10.1038/nn1405
10.1038/nn.3023
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
DOI 10.1039/c8bm01363b
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Materials Research Database

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2047-4849
EndPage 28
ExternalDocumentID 30839020
10_1039_C8BM01363B
c8bm01363b
Genre Journal Article
GroupedDBID -JG
0-7
0R~
4.4
53G
705
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
ID FETCH-LOGICAL-c436t-16e27f5761a926cd6654760f9b0dcf38aa89db4943d73074b74d3a014adf90a53
ISSN 2047-4830
2047-4849
IngestDate Fri Jul 11 14:48:51 EDT 2025
Fri Jul 11 06:58:16 EDT 2025
Mon Jun 30 05:16:11 EDT 2025
Wed Feb 19 02:36:39 EST 2025
Thu Apr 24 23:12:17 EDT 2025
Tue Jul 01 00:59:58 EDT 2025
Tue Dec 17 21:00:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-16e27f5761a926cd6654760f9b0dcf38aa89db4943d73074b74d3a014adf90a53
Notes Electronic supplementary information (ESI) available: The proliferation of NSCs within CSMA hydrogels; immunohistochemical staining of activated macrophage/microglia (CD68 positive cells); and the hindlimb motor function of each group after 4 weeks (shown in video S1). See DOI
10.1039/c8bm01363b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3293-4716
0000-0002-4633-6314
0000-0001-9295-8176
PMID 30839020
PQID 2213020455
PQPubID 2047520
PageCount 14
ParticipantIDs crossref_primary_10_1039_C8BM01363B
rsc_primary_c8bm01363b
proquest_journals_2213020455
pubmed_primary_30839020
proquest_miscellaneous_2188585831
proquest_miscellaneous_2237546264
crossref_citationtrail_10_1039_C8BM01363B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190423
PublicationDateYYYYMMDD 2019-04-23
PublicationDate_xml – month: 4
  year: 2019
  text: 20190423
  day: 23
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Biomaterials science
PublicationTitleAlternate Biomater Sci
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Macias (C8BM01363B-(cit9)/*[position()=1]) 2006; 201
Sirko (C8BM01363B-(cit18)/*[position()=1]) 2007; 134
Gotz (C8BM01363B-(cit7)/*[position()=1]) 2015; 63
Sugahara (C8BM01363B-(cit17)/*[position()=1]) 2007; 17
Purushothaman (C8BM01363B-(cit16)/*[position()=1]) 2012; 287
Fan (C8BM01363B-(cit22)/*[position()=1]) 2018; 10
Ueda (C8BM01363B-(cit44)/*[position()=1]) 2018; 159
Murphy (C8BM01363B-(cit14)/*[position()=1]) 2017; 54
Izumikawa (C8BM01363B-(cit19)/*[position()=1]) 2014; 4
Chai (C8BM01363B-(cit13)/*[position()=1]) 2007; 15
Macaya (C8BM01363B-(cit27)/*[position()=1]) 2012; 7
Zhang (C8BM01363B-(cit43)/*[position()=1]) 2013; 154
Zweckberger (C8BM01363B-(cit24)/*[position()=1]) 2016; 42
Assinck (C8BM01363B-(cit4)/*[position()=1]) 2017; 20
Banerjee (C8BM01363B-(cit29)/*[position()=1]) 2009; 30
Lin (C8BM01363B-(cit38)/*[position()=1]) 2011; 6
Rosenzweig (C8BM01363B-(cit6)/*[position()=1]) 2018; 24
Brown (C8BM01363B-(cit45)/*[position()=1]) 2012; 109
Lau (C8BM01363B-(cit15)/*[position()=1]) 2013; 14
Madl (C8BM01363B-(cit28)/*[position()=1]) 2017; 16
Kanski (C8BM01363B-(cit12)/*[position()=1]) 2014; 71
Liu (C8BM01363B-(cit23)/*[position()=1]) 2018; 30
Swarup (C8BM01363B-(cit34)/*[position()=1]) 2013; 135
Hofstetter (C8BM01363B-(cit8)/*[position()=1]) 2005; 8
Properzi (C8BM01363B-(cit35)/*[position()=1]) 2005; 21
Rolls (C8BM01363B-(cit37)/*[position()=1]) 2008; 5
Liu (C8BM01363B-(cit21)/*[position()=1]) 2017; 10
Hong (C8BM01363B-(cit26)/*[position()=1]) 2017; 8
Hsiao (C8BM01363B-(cit11)/*[position()=1]) 2013; 22
Karumbaiah (C8BM01363B-(cit40)/*[position()=1]) 2011; 59
Izumikawa (C8BM01363B-(cit36)/*[position()=1]) 2010; 285
Brown (C8BM01363B-(cit42)/*[position()=1]) 2004; 188
Lai (C8BM01363B-(cit5)/*[position()=1]) 2013; 34
Sofroniew (C8BM01363B-(cit1)/*[position()=1]) 2018; 557
Miyata (C8BM01363B-(cit46)/*[position()=1]) 2012; 15
Liddelow (C8BM01363B-(cit10)/*[position()=1]) 2017; 46
Serrano (C8BM01363B-(cit20)/*[position()=1]) 2014; 35
Wang (C8BM01363B-(cit3)/*[position()=1]) 2017; 9
Gilbert (C8BM01363B-(cit39)/*[position()=1]) 2005; 29
Betancur (C8BM01363B-(cit41)/*[position()=1]) 2017; 3
Brown (C8BM01363B-(cit33)/*[position()=1]) 2012; 109
Lu (C8BM01363B-(cit25)/*[position()=1]) 2012; 150
Karumbaiah (C8BM01363B-(cit30)/*[position()=1]) 2015; 26
Orr (C8BM01363B-(cit2)/*[position()=1]) 2018; 15
Sirko (C8BM01363B-(cit31)/*[position()=1]) 2010; 28
Farrugia (C8BM01363B-(cit32)/*[position()=1]) 2018; 6
References_xml – volume: 46
  start-page: 957
  year: 2017
  ident: C8BM01363B-(cit10)/*[position()=1]
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.06.006
– volume: 34
  start-page: 2888
  year: 2013
  ident: C8BM01363B-(cit5)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.12.046
– volume: 17
  start-page: 536
  year: 2007
  ident: C8BM01363B-(cit17)/*[position()=1]
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2007.08.015
– volume: 154
  start-page: 2185
  year: 2013
  ident: C8BM01363B-(cit43)/*[position()=1]
  publication-title: Pain
  doi: 10.1016/j.pain.2013.07.002
– volume: 9
  start-page: 6725
  year: 2017
  ident: C8BM01363B-(cit3)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13155
– volume: 59
  start-page: 981
  year: 2011
  ident: C8BM01363B-(cit40)/*[position()=1]
  publication-title: Glia
  doi: 10.1002/glia.21170
– volume: 30
  start-page: 4695
  year: 2009
  ident: C8BM01363B-(cit29)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.05.050
– volume: 135
  start-page: 13488
  year: 2013
  ident: C8BM01363B-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4056728
– volume: 29
  start-page: 545
  year: 2005
  ident: C8BM01363B-(cit39)/*[position()=1]
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2005.04.006
– volume: 159
  start-page: 2170
  year: 2018
  ident: C8BM01363B-(cit44)/*[position()=1]
  publication-title: Pain
  doi: 10.1097/j.pain.0000000000001316
– volume: 134
  start-page: 2727
  year: 2007
  ident: C8BM01363B-(cit18)/*[position()=1]
  publication-title: Development
  doi: 10.1242/dev.02871
– volume: 22
  start-page: 1826
  year: 2013
  ident: C8BM01363B-(cit11)/*[position()=1]
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt036
– volume: 14
  start-page: 722
  year: 2013
  ident: C8BM01363B-(cit15)/*[position()=1]
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3550
– volume: 26
  start-page: 2336
  year: 2015
  ident: C8BM01363B-(cit30)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.5b00397
– volume: 28
  start-page: 775
  year: 2010
  ident: C8BM01363B-(cit31)/*[position()=1]
  publication-title: Stem Cells
  doi: 10.1002/stem.309
– volume: 21
  start-page: 378
  year: 2005
  ident: C8BM01363B-(cit35)/*[position()=1]
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.03876.x
– volume: 5
  start-page: e171
  year: 2008
  ident: C8BM01363B-(cit37)/*[position()=1]
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0050171
– volume: 150
  start-page: 1264
  year: 2012
  ident: C8BM01363B-(cit25)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.020
– volume: 35
  start-page: 1543
  year: 2014
  ident: C8BM01363B-(cit20)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.11.017
– volume: 557
  start-page: 343
  year: 2018
  ident: C8BM01363B-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0068-4
– volume: 15
  start-page: 467
  year: 2007
  ident: C8BM01363B-(cit13)/*[position()=1]
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300084
– volume: 287
  start-page: 2935
  year: 2012
  ident: C8BM01363B-(cit16)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R111.298430
– volume: 16
  start-page: 1233
  year: 2017
  ident: C8BM01363B-(cit28)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5020
– volume: 285
  start-page: 12190
  year: 2010
  ident: C8BM01363B-(cit36)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.100941
– volume: 6
  start-page: e21499
  year: 2011
  ident: C8BM01363B-(cit38)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021499
– volume: 201
  start-page: 335
  year: 2006
  ident: C8BM01363B-(cit9)/*[position()=1]
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2006.04.035
– volume: 30
  start-page: e1706032
  year: 2018
  ident: C8BM01363B-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706032
– volume: 54
  start-page: 1
  year: 2017
  ident: C8BM01363B-(cit14)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.02.046
– volume: 4
  start-page: 3701
  year: 2014
  ident: C8BM01363B-(cit19)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep03701
– volume: 42
  start-page: 77
  year: 2016
  ident: C8BM01363B-(cit24)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.06.016
– volume: 109
  start-page: 4768
  year: 2012
  ident: C8BM01363B-(cit45)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1121318109
– volume: 24
  start-page: 484
  year: 2018
  ident: C8BM01363B-(cit6)/*[position()=1]
  publication-title: Nat. Med.
  doi: 10.1038/nm.4502
– volume: 20
  start-page: 637
  year: 2017
  ident: C8BM01363B-(cit4)/*[position()=1]
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4541
– volume: 10
  start-page: 191
  year: 2017
  ident: C8BM01363B-(cit21)/*[position()=1]
  publication-title: Materials
  doi: 10.3390/ma10020191
– volume: 8
  start-page: 533
  year: 2017
  ident: C8BM01363B-(cit26)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00583-8
– volume: 15
  start-page: 541
  year: 2018
  ident: C8BM01363B-(cit2)/*[position()=1]
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-018-0631-6
– volume: 3
  start-page: 420
  year: 2017
  ident: C8BM01363B-(cit41)/*[position()=1]
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00805
– volume: 71
  start-page: 433
  year: 2014
  ident: C8BM01363B-(cit12)/*[position()=1]
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-013-1435-9
– volume: 10
  start-page: 17742
  year: 2018
  ident: C8BM01363B-(cit22)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05293
– volume: 6
  start-page: 947
  year: 2018
  ident: C8BM01363B-(cit32)/*[position()=1]
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM01158J
– volume: 188
  start-page: 115
  year: 2004
  ident: C8BM01363B-(cit42)/*[position()=1]
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2004.03.017
– volume: 63
  start-page: 1452
  year: 2015
  ident: C8BM01363B-(cit7)/*[position()=1]
  publication-title: Glia
  doi: 10.1002/glia.22850
– volume: 7
  start-page: 012001
  year: 2012
  ident: C8BM01363B-(cit27)/*[position()=1]
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/7/1/012001
– volume: 8
  start-page: 346
  year: 2005
  ident: C8BM01363B-(cit8)/*[position()=1]
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1405
– volume: 15
  start-page: 414
  year: 2012
  ident: C8BM01363B-(cit46)/*[position()=1]
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3023
– volume: 109
  start-page: 4768
  year: 2012
  ident: C8BM01363B-(cit33)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1121318109
SSID ssj0000779061
Score 2.3425493
Snippet Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1995
SubjectTerms adverse effects
animal injuries
Animals
astrocytes
Astrocytes - cytology
Astrocytes - drug effects
axons
carcinogenesis
Cell Differentiation - drug effects
Cell Survival - drug effects
Chondroitin sulfate
Chondroitin Sulfates - chemistry
Chondroitin Sulfates - pharmacology
Differentiation
encapsulation
Female
Gene expression
gene overexpression
gene transfer
Hydrogels
Hydrogels - chemistry
hypersensitivity
Implantation
Injury analysis
Injury prevention
Methacrylates - chemistry
Neural cell transplants
neural stem cells
Neural Stem Cells - transplantation
neurogenesis
Neurogenesis - drug effects
nociception
Rats
Rats, Sprague-Dawley
Recovery
Recovery of Function - drug effects
risk
Side effects
Signs and symptoms
Spinal cord
Spinal Cord Injuries - pathology
Spinal Cord Injuries - physiopathology
sprouting
Stem cells
Surgical implants
therapeutics
Transplantation
Transplants & implants
Title Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord
URI https://www.ncbi.nlm.nih.gov/pubmed/30839020
https://www.proquest.com/docview/2213020455
https://www.proquest.com/docview/2188585831
https://www.proquest.com/docview/2237546264
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiK9BYSAjeEFVRmKnSfy4Ta22qRtCaqW-RXY-1qAurdrkofwL_A_8rdzZ-YJNaPBStbblRr5ffHe-8-8I-cil6_tp4FmpZL7lggKwlLCVFaceZ0pGTqLwHPLyyjubuRfz4bzX-9HJWioLdRR9v_Neyf9IFdpArnhL9h8k20wKDfAd5AufIGH4vJeMz_NFprLa5pPbArTRDhlY67InRdZYhIVmMV_iQsYDZLHUF0WSmwEe3W_RCoWNENkLYL4ck9ZTsEJ1gWkZbXZL_LHYQfc1KNM2NxGUmYkzZPm3ElPZt2tdZkv7tN14cbYC09isyaDSuk0uUFaa1JMGp-PqQkSS1S3zqvTKBaD5eiFXbRzAtH_Ndquye4Lh6GCMuWRsNjqGbBFuYKhL613Z74BvOFgf6avkmKzR2W2xraO5695bWsHmSKoaBeoGGeq4anVfHe-_-hKOZ5NJOB3Npw_IPgOfAzbN_ePR9HzSHNnZyM2oGXibJ64Jb7n43E7_u4lzy28BK2ZTV5fRVsz0CXlcuR_02GDpKekl-TPyqENK-Zz8bFFFVyltUUX_QBX2dlFFDaoooopqVFG1ox1U0QpVtIsq2qCKAqoooIoaVOH0FaqoQRVFVL0gs_FoenpmVVU8rMjlXmE5XsL8FNxaRwrmRbEud-3ZqVB2HKU8kDIQsXKFy2PQNr6rfDfmEjx3GafClkN-QPbyVZ68IhR8XzwIZiISsavsVAk_EorFSeInPpNOn3yqFz6MKop7rLSyDHWqBRfhaXByqYV00icfmrFrQ-xy56jDWn5h9eJvQ8Yw2g--0LBP3jfdsC3j0so8WZUwxgkw4h5w5y9jGNaf9sAl6ZOXBhvNo3BwjQT8SZ8cAFia5hZkr-8x7RvysH3fDslesSmTt2BDF-pdhe1fxzPPpA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+astrocytic+differentiation+of+transplanted+neural+stem+cells+by+chondroitin+sulfate+methacrylate+hydrogels+for+the+repair+of+injured+spinal+cord&rft.jtitle=Biomaterials+science&rft.au=Liu%2C+Can&rft.au=Fan%2C+Lei&rft.au=Xing%2C+Jianghao&rft.au=Wang%2C+Qiyou&rft.date=2019-04-23&rft.issn=2047-4849&rft.volume=7&rft.issue=5+p.1995-2008&rft.spage=1995&rft.epage=2008&rft_id=info:doi/10.1039%2Fc8bm01363b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-4830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-4830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-4830&client=summon