Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord
Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astro...
Saved in:
Published in | Biomaterials science Vol. 7; no. 5; pp. 1995 - 28 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
23.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways,
ex vivo
gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs
in vitro
and
in vivo
can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI.
Recovery from spinal cord injuries after transplanted neural stem cells encapsulated in chondroitin sulfate methacrylate hydrogels. |
---|---|
AbstractList | Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI.Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI. Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI. Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI. Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by which NSCs preferentially differentiate into astrocytes, with relatively few neurons. It is well established that the increased NSC-derived astrocytes exhibit aberrant axonal sprouting associated with allodynia-like symptoms of the forepaws. Some strategies have been used to overcome this issue, such as regulation of major pathways, ex vivo gene transfer, and genetic overexpression. However, lack of efficiency, viral vector safety issues and the risk of tumorigenesis have hindered the clinical application of these treatments. Here, we show that astrocytic differentiation of NSCs in vitro and in vivo can be inhibited by encapsulation of cells in a three-dimensional chondroitin sulfate methacrylate (CSMA) hydrogel. When CSMA hydrogels were used to transplant NSCs, the combinatory implant promoted functional recovery and attenuated the hypersensitivity responses of the forepaws. Further analysis showed that transplantation of NSCs within CSMA hydrogels reduced injured cavity areas and promoted neurogenesis rather than fibroglial formation after graft implantation. Furthermore, the treatment prevented allodynia-related CGRP/GAP43-positive nociception due to fibers sprouting into inappropriate lamina regions. Taken together, these findings show that CSMA/NSCs combined transplantation helps prevent adverse side effects of NSCs treatment and promotes recovery of SCI. Recovery from spinal cord injuries after transplanted neural stem cells encapsulated in chondroitin sulfate methacrylate hydrogels. |
Author | Wang, Qiyou Liu, Bin Xing, Jianghao Fan, Lei Ning, Chengyun Zhou, Lei Lin, Chengkai Deng, Xiaoqian Rong, Limin Liu, Can Liu, Chang |
AuthorAffiliation | Department of Oncology Zhongshan Ophthalmic Center Sun Yat-sen University the Third Affiliated Hospital of Sun Yat-sen University the Seventh Affiliated Hospital of Sun Yat-sen University South China University of Technology State Key Laboratory of Ophthalmology Department of Spine Surgery College of Materials Science and Technology the First Affiliated Hospital of Anhui Medical University Department of Orthopedics |
AuthorAffiliation_xml | – sequence: 0 name: Zhongshan Ophthalmic Center – sequence: 0 name: Department of Oncology – sequence: 0 name: the Seventh Affiliated Hospital of Sun Yat-sen University – sequence: 0 name: South China University of Technology – sequence: 0 name: Department of Orthopedics – sequence: 0 name: the Third Affiliated Hospital of Sun Yat-sen University – sequence: 0 name: State Key Laboratory of Ophthalmology – sequence: 0 name: Sun Yat-sen University – sequence: 0 name: College of Materials Science and Technology – sequence: 0 name: Department of Spine Surgery – sequence: 0 name: the First Affiliated Hospital of Anhui Medical University |
Author_xml | – sequence: 1 givenname: Can surname: Liu fullname: Liu, Can – sequence: 2 givenname: Lei surname: Fan fullname: Fan, Lei – sequence: 3 givenname: Jianghao surname: Xing fullname: Xing, Jianghao – sequence: 4 givenname: Qiyou surname: Wang fullname: Wang, Qiyou – sequence: 5 givenname: Chengkai surname: Lin fullname: Lin, Chengkai – sequence: 6 givenname: Chang surname: Liu fullname: Liu, Chang – sequence: 7 givenname: Xiaoqian surname: Deng fullname: Deng, Xiaoqian – sequence: 8 givenname: Chengyun surname: Ning fullname: Ning, Chengyun – sequence: 9 givenname: Lei surname: Zhou fullname: Zhou, Lei – sequence: 10 givenname: Limin surname: Rong fullname: Rong, Limin – sequence: 11 givenname: Bin surname: Liu fullname: Liu, Bin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30839020$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv3CAUhVGVqHk0m-5bIXUTVZoUDAazTEZ9REqUTbu2MI-akQ0u4IX_TH9rcSaZSlGlwgLQ_e5BV-ecgSMfvAHgLUZXGBHxSTXdiDBhpHsFTitE-YY2VBwd7gSdgIuUdqgszgVi-DU4IaghAlXoFPy-9b3rXHbBw2ChTDkGtWSnoHbWmmh8dvK5mqP0aRqkz0ZDb-YoB5iyGaEyw5Bgt0DVB69jKHoepnmwMhs4mtxLFZdhffRLKf80hbYhwtwbGM0kXVzlnd_NsSinyfmirELUb8CxlUMyF0_nOfjx5fP37bfN3cPX2-313UZRwvIGM1NxW3OGpaiY0ozVlDNkRYe0sqSRshG6o4ISzQnitONUE4kwldoKJGtyDi73ulMMv2aTcju6tE4lvQlzaquK8JqyitH_o7hp6rIJLuiHF-guzLHMtgpiUgyg9fr3-ydq7kaj2ym6UcalfTapAB_3gIohpWjsAcGoXUPQbpub-8cQ3BQYvYCVy48OFvfc8O-Wd_uWmNRB-m-uyB_-1L8h |
CitedBy_id | crossref_primary_10_1088_1748_605X_ac1d3c crossref_primary_10_12677_ACM_2020_1012446 crossref_primary_10_14412_2074_2711_2019_3_137_143 crossref_primary_10_1007_s10143_022_01859_4 crossref_primary_10_1021_acsabm_3c01058 crossref_primary_10_1038_s41419_021_03546_6 crossref_primary_10_1016_j_carbpol_2024_122124 crossref_primary_10_1016_j_mtadv_2024_100465 crossref_primary_10_14412_2074_2711_2023_1_110_118 crossref_primary_10_1039_D2TB00584K crossref_primary_10_1002_adhm_202300123 crossref_primary_10_1016_j_biomaterials_2024_122629 crossref_primary_10_1016_j_bioadv_2023_213385 crossref_primary_10_1039_D2BM01467J crossref_primary_10_1016_j_expneurol_2023_114497 crossref_primary_10_1080_21691401_2019_1638794 crossref_primary_10_1002_adhm_202201720 crossref_primary_10_1016_j_actbio_2024_04_015 crossref_primary_10_1016_j_bbrc_2021_07_012 crossref_primary_10_1186_s13036_020_00244_3 crossref_primary_10_1016_j_bioactmat_2021_03_034 crossref_primary_10_1007_s12015_022_10483_0 crossref_primary_10_3390_pr9010011 crossref_primary_10_1016_j_pharmthera_2021_108043 crossref_primary_10_1088_1748_605X_ab785f crossref_primary_10_1016_j_cej_2024_158132 crossref_primary_10_1016_j_actbio_2024_06_011 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_1080_25740881_2023_2297956 crossref_primary_10_1002_mabi_202200181 crossref_primary_10_1016_j_biomaterials_2022_121689 crossref_primary_10_1002_mco2_214 crossref_primary_10_1016_j_bioadv_2023_213439 crossref_primary_10_1016_j_bioactmat_2021_05_039 crossref_primary_10_2217_nnm_2021_0025 crossref_primary_10_1016_j_ijbiomac_2020_11_206 |
Cites_doi | 10.1016/j.immuni.2017.06.006 10.1016/j.biomaterials.2012.12.046 10.1016/j.sbi.2007.08.015 10.1016/j.pain.2013.07.002 10.1021/acsami.6b13155 10.1002/glia.21170 10.1016/j.biomaterials.2009.05.050 10.1021/ja4056728 10.1016/j.mcn.2005.04.006 10.1097/j.pain.0000000000001316 10.1242/dev.02871 10.1093/hmg/ddt036 10.1038/nrn3550 10.1021/acs.bioconjchem.5b00397 10.1002/stem.309 10.1111/j.1460-9568.2005.03876.x 10.1371/journal.pmed.0050171 10.1016/j.cell.2012.08.020 10.1016/j.biomaterials.2013.11.017 10.1038/s41586-018-0068-4 10.1038/sj.mt.6300084 10.1074/jbc.R111.298430 10.1038/nmat5020 10.1074/jbc.M110.100941 10.1371/journal.pone.0021499 10.1016/j.expneurol.2006.04.035 10.1002/adma.201706032 10.1016/j.actbio.2017.02.046 10.1038/srep03701 10.1016/j.actbio.2016.06.016 10.1073/pnas.1121318109 10.1038/nm.4502 10.1038/nn.4541 10.3390/ma10020191 10.1038/s41467-017-00583-8 10.1007/s13311-018-0631-6 10.1021/acsbiomaterials.6b00805 10.1007/s00018-013-1435-9 10.1021/acsami.8b05293 10.1039/C7BM01158J 10.1016/j.expneurol.2004.03.017 10.1002/glia.22850 10.1088/1748-6041/7/1/012001 10.1038/nn1405 10.1038/nn.3023 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
DOI | 10.1039/c8bm01363b |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2047-4849 |
EndPage | 28 |
ExternalDocumentID | 30839020 10_1039_C8BM01363B c8bm01363b |
Genre | Journal Article |
GroupedDBID | -JG 0-7 0R~ 4.4 53G 705 AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- OK1 RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c436t-16e27f5761a926cd6654760f9b0dcf38aa89db4943d73074b74d3a014adf90a53 |
ISSN | 2047-4830 2047-4849 |
IngestDate | Fri Jul 11 14:48:51 EDT 2025 Fri Jul 11 06:58:16 EDT 2025 Mon Jun 30 05:16:11 EDT 2025 Wed Feb 19 02:36:39 EST 2025 Thu Apr 24 23:12:17 EDT 2025 Tue Jul 01 00:59:58 EDT 2025 Tue Dec 17 21:00:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-16e27f5761a926cd6654760f9b0dcf38aa89db4943d73074b74d3a014adf90a53 |
Notes | Electronic supplementary information (ESI) available: The proliferation of NSCs within CSMA hydrogels; immunohistochemical staining of activated macrophage/microglia (CD68 positive cells); and the hindlimb motor function of each group after 4 weeks (shown in video S1). See DOI 10.1039/c8bm01363b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3293-4716 0000-0002-4633-6314 0000-0001-9295-8176 |
PMID | 30839020 |
PQID | 2213020455 |
PQPubID | 2047520 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1039_C8BM01363B rsc_primary_c8bm01363b proquest_journals_2213020455 pubmed_primary_30839020 proquest_miscellaneous_2188585831 proquest_miscellaneous_2237546264 crossref_citationtrail_10_1039_C8BM01363B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190423 |
PublicationDateYYYYMMDD | 2019-04-23 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190423 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Biomaterials science |
PublicationTitleAlternate | Biomater Sci |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Macias (C8BM01363B-(cit9)/*[position()=1]) 2006; 201 Sirko (C8BM01363B-(cit18)/*[position()=1]) 2007; 134 Gotz (C8BM01363B-(cit7)/*[position()=1]) 2015; 63 Sugahara (C8BM01363B-(cit17)/*[position()=1]) 2007; 17 Purushothaman (C8BM01363B-(cit16)/*[position()=1]) 2012; 287 Fan (C8BM01363B-(cit22)/*[position()=1]) 2018; 10 Ueda (C8BM01363B-(cit44)/*[position()=1]) 2018; 159 Murphy (C8BM01363B-(cit14)/*[position()=1]) 2017; 54 Izumikawa (C8BM01363B-(cit19)/*[position()=1]) 2014; 4 Chai (C8BM01363B-(cit13)/*[position()=1]) 2007; 15 Macaya (C8BM01363B-(cit27)/*[position()=1]) 2012; 7 Zhang (C8BM01363B-(cit43)/*[position()=1]) 2013; 154 Zweckberger (C8BM01363B-(cit24)/*[position()=1]) 2016; 42 Assinck (C8BM01363B-(cit4)/*[position()=1]) 2017; 20 Banerjee (C8BM01363B-(cit29)/*[position()=1]) 2009; 30 Lin (C8BM01363B-(cit38)/*[position()=1]) 2011; 6 Rosenzweig (C8BM01363B-(cit6)/*[position()=1]) 2018; 24 Brown (C8BM01363B-(cit45)/*[position()=1]) 2012; 109 Lau (C8BM01363B-(cit15)/*[position()=1]) 2013; 14 Madl (C8BM01363B-(cit28)/*[position()=1]) 2017; 16 Kanski (C8BM01363B-(cit12)/*[position()=1]) 2014; 71 Liu (C8BM01363B-(cit23)/*[position()=1]) 2018; 30 Swarup (C8BM01363B-(cit34)/*[position()=1]) 2013; 135 Hofstetter (C8BM01363B-(cit8)/*[position()=1]) 2005; 8 Properzi (C8BM01363B-(cit35)/*[position()=1]) 2005; 21 Rolls (C8BM01363B-(cit37)/*[position()=1]) 2008; 5 Liu (C8BM01363B-(cit21)/*[position()=1]) 2017; 10 Hong (C8BM01363B-(cit26)/*[position()=1]) 2017; 8 Hsiao (C8BM01363B-(cit11)/*[position()=1]) 2013; 22 Karumbaiah (C8BM01363B-(cit40)/*[position()=1]) 2011; 59 Izumikawa (C8BM01363B-(cit36)/*[position()=1]) 2010; 285 Brown (C8BM01363B-(cit42)/*[position()=1]) 2004; 188 Lai (C8BM01363B-(cit5)/*[position()=1]) 2013; 34 Sofroniew (C8BM01363B-(cit1)/*[position()=1]) 2018; 557 Miyata (C8BM01363B-(cit46)/*[position()=1]) 2012; 15 Liddelow (C8BM01363B-(cit10)/*[position()=1]) 2017; 46 Serrano (C8BM01363B-(cit20)/*[position()=1]) 2014; 35 Wang (C8BM01363B-(cit3)/*[position()=1]) 2017; 9 Gilbert (C8BM01363B-(cit39)/*[position()=1]) 2005; 29 Betancur (C8BM01363B-(cit41)/*[position()=1]) 2017; 3 Brown (C8BM01363B-(cit33)/*[position()=1]) 2012; 109 Lu (C8BM01363B-(cit25)/*[position()=1]) 2012; 150 Karumbaiah (C8BM01363B-(cit30)/*[position()=1]) 2015; 26 Orr (C8BM01363B-(cit2)/*[position()=1]) 2018; 15 Sirko (C8BM01363B-(cit31)/*[position()=1]) 2010; 28 Farrugia (C8BM01363B-(cit32)/*[position()=1]) 2018; 6 |
References_xml | – volume: 46 start-page: 957 year: 2017 ident: C8BM01363B-(cit10)/*[position()=1] publication-title: Immunity doi: 10.1016/j.immuni.2017.06.006 – volume: 34 start-page: 2888 year: 2013 ident: C8BM01363B-(cit5)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.12.046 – volume: 17 start-page: 536 year: 2007 ident: C8BM01363B-(cit17)/*[position()=1] publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2007.08.015 – volume: 154 start-page: 2185 year: 2013 ident: C8BM01363B-(cit43)/*[position()=1] publication-title: Pain doi: 10.1016/j.pain.2013.07.002 – volume: 9 start-page: 6725 year: 2017 ident: C8BM01363B-(cit3)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13155 – volume: 59 start-page: 981 year: 2011 ident: C8BM01363B-(cit40)/*[position()=1] publication-title: Glia doi: 10.1002/glia.21170 – volume: 30 start-page: 4695 year: 2009 ident: C8BM01363B-(cit29)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.05.050 – volume: 135 start-page: 13488 year: 2013 ident: C8BM01363B-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4056728 – volume: 29 start-page: 545 year: 2005 ident: C8BM01363B-(cit39)/*[position()=1] publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2005.04.006 – volume: 159 start-page: 2170 year: 2018 ident: C8BM01363B-(cit44)/*[position()=1] publication-title: Pain doi: 10.1097/j.pain.0000000000001316 – volume: 134 start-page: 2727 year: 2007 ident: C8BM01363B-(cit18)/*[position()=1] publication-title: Development doi: 10.1242/dev.02871 – volume: 22 start-page: 1826 year: 2013 ident: C8BM01363B-(cit11)/*[position()=1] publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt036 – volume: 14 start-page: 722 year: 2013 ident: C8BM01363B-(cit15)/*[position()=1] publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3550 – volume: 26 start-page: 2336 year: 2015 ident: C8BM01363B-(cit30)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.5b00397 – volume: 28 start-page: 775 year: 2010 ident: C8BM01363B-(cit31)/*[position()=1] publication-title: Stem Cells doi: 10.1002/stem.309 – volume: 21 start-page: 378 year: 2005 ident: C8BM01363B-(cit35)/*[position()=1] publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.03876.x – volume: 5 start-page: e171 year: 2008 ident: C8BM01363B-(cit37)/*[position()=1] publication-title: PLoS Med. doi: 10.1371/journal.pmed.0050171 – volume: 150 start-page: 1264 year: 2012 ident: C8BM01363B-(cit25)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2012.08.020 – volume: 35 start-page: 1543 year: 2014 ident: C8BM01363B-(cit20)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.11.017 – volume: 557 start-page: 343 year: 2018 ident: C8BM01363B-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0068-4 – volume: 15 start-page: 467 year: 2007 ident: C8BM01363B-(cit13)/*[position()=1] publication-title: Mol. Ther. doi: 10.1038/sj.mt.6300084 – volume: 287 start-page: 2935 year: 2012 ident: C8BM01363B-(cit16)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.R111.298430 – volume: 16 start-page: 1233 year: 2017 ident: C8BM01363B-(cit28)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat5020 – volume: 285 start-page: 12190 year: 2010 ident: C8BM01363B-(cit36)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.100941 – volume: 6 start-page: e21499 year: 2011 ident: C8BM01363B-(cit38)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0021499 – volume: 201 start-page: 335 year: 2006 ident: C8BM01363B-(cit9)/*[position()=1] publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2006.04.035 – volume: 30 start-page: e1706032 year: 2018 ident: C8BM01363B-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706032 – volume: 54 start-page: 1 year: 2017 ident: C8BM01363B-(cit14)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.02.046 – volume: 4 start-page: 3701 year: 2014 ident: C8BM01363B-(cit19)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep03701 – volume: 42 start-page: 77 year: 2016 ident: C8BM01363B-(cit24)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.06.016 – volume: 109 start-page: 4768 year: 2012 ident: C8BM01363B-(cit45)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1121318109 – volume: 24 start-page: 484 year: 2018 ident: C8BM01363B-(cit6)/*[position()=1] publication-title: Nat. Med. doi: 10.1038/nm.4502 – volume: 20 start-page: 637 year: 2017 ident: C8BM01363B-(cit4)/*[position()=1] publication-title: Nat. Neurosci. doi: 10.1038/nn.4541 – volume: 10 start-page: 191 year: 2017 ident: C8BM01363B-(cit21)/*[position()=1] publication-title: Materials doi: 10.3390/ma10020191 – volume: 8 start-page: 533 year: 2017 ident: C8BM01363B-(cit26)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00583-8 – volume: 15 start-page: 541 year: 2018 ident: C8BM01363B-(cit2)/*[position()=1] publication-title: Neurotherapeutics doi: 10.1007/s13311-018-0631-6 – volume: 3 start-page: 420 year: 2017 ident: C8BM01363B-(cit41)/*[position()=1] publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00805 – volume: 71 start-page: 433 year: 2014 ident: C8BM01363B-(cit12)/*[position()=1] publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-013-1435-9 – volume: 10 start-page: 17742 year: 2018 ident: C8BM01363B-(cit22)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05293 – volume: 6 start-page: 947 year: 2018 ident: C8BM01363B-(cit32)/*[position()=1] publication-title: Biomater. Sci. doi: 10.1039/C7BM01158J – volume: 188 start-page: 115 year: 2004 ident: C8BM01363B-(cit42)/*[position()=1] publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2004.03.017 – volume: 63 start-page: 1452 year: 2015 ident: C8BM01363B-(cit7)/*[position()=1] publication-title: Glia doi: 10.1002/glia.22850 – volume: 7 start-page: 012001 year: 2012 ident: C8BM01363B-(cit27)/*[position()=1] publication-title: Biomed. Mater. doi: 10.1088/1748-6041/7/1/012001 – volume: 8 start-page: 346 year: 2005 ident: C8BM01363B-(cit8)/*[position()=1] publication-title: Nat. Neurosci. doi: 10.1038/nn1405 – volume: 15 start-page: 414 year: 2012 ident: C8BM01363B-(cit46)/*[position()=1] publication-title: Nat. Neurosci. doi: 10.1038/nn.3023 – volume: 109 start-page: 4768 year: 2012 ident: C8BM01363B-(cit33)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1121318109 |
SSID | ssj0000779061 |
Score | 2.3425493 |
Snippet | Neural stem cell (NSC) transplantation exerts a therapeutic effect on spinal cord injury (SCI) but is limited to an unregulated differentiation pattern by... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1995 |
SubjectTerms | adverse effects animal injuries Animals astrocytes Astrocytes - cytology Astrocytes - drug effects axons carcinogenesis Cell Differentiation - drug effects Cell Survival - drug effects Chondroitin sulfate Chondroitin Sulfates - chemistry Chondroitin Sulfates - pharmacology Differentiation encapsulation Female Gene expression gene overexpression gene transfer Hydrogels Hydrogels - chemistry hypersensitivity Implantation Injury analysis Injury prevention Methacrylates - chemistry Neural cell transplants neural stem cells Neural Stem Cells - transplantation neurogenesis Neurogenesis - drug effects nociception Rats Rats, Sprague-Dawley Recovery Recovery of Function - drug effects risk Side effects Signs and symptoms Spinal cord Spinal Cord Injuries - pathology Spinal Cord Injuries - physiopathology sprouting Stem cells Surgical implants therapeutics Transplantation Transplants & implants |
Title | Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30839020 https://www.proquest.com/docview/2213020455 https://www.proquest.com/docview/2188585831 https://www.proquest.com/docview/2237546264 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiK9BYSAjeEFVRmKnSfy4Ta22qRtCaqW-RXY-1qAurdrkofwL_A_8rdzZ-YJNaPBStbblRr5ffHe-8-8I-cil6_tp4FmpZL7lggKwlLCVFaceZ0pGTqLwHPLyyjubuRfz4bzX-9HJWioLdRR9v_Neyf9IFdpArnhL9h8k20wKDfAd5AufIGH4vJeMz_NFprLa5pPbArTRDhlY67InRdZYhIVmMV_iQsYDZLHUF0WSmwEe3W_RCoWNENkLYL4ck9ZTsEJ1gWkZbXZL_LHYQfc1KNM2NxGUmYkzZPm3ElPZt2tdZkv7tN14cbYC09isyaDSuk0uUFaa1JMGp-PqQkSS1S3zqvTKBaD5eiFXbRzAtH_Ndquye4Lh6GCMuWRsNjqGbBFuYKhL613Z74BvOFgf6avkmKzR2W2xraO5695bWsHmSKoaBeoGGeq4anVfHe-_-hKOZ5NJOB3Npw_IPgOfAzbN_ePR9HzSHNnZyM2oGXibJ64Jb7n43E7_u4lzy28BK2ZTV5fRVsz0CXlcuR_02GDpKekl-TPyqENK-Zz8bFFFVyltUUX_QBX2dlFFDaoooopqVFG1ox1U0QpVtIsq2qCKAqoooIoaVOH0FaqoQRVFVL0gs_FoenpmVVU8rMjlXmE5XsL8FNxaRwrmRbEud-3ZqVB2HKU8kDIQsXKFy2PQNr6rfDfmEjx3GafClkN-QPbyVZ68IhR8XzwIZiISsavsVAk_EorFSeInPpNOn3yqFz6MKop7rLSyDHWqBRfhaXByqYV00icfmrFrQ-xy56jDWn5h9eJvQ8Yw2g--0LBP3jfdsC3j0so8WZUwxgkw4h5w5y9jGNaf9sAl6ZOXBhvNo3BwjQT8SZ8cAFia5hZkr-8x7RvysH3fDslesSmTt2BDF-pdhe1fxzPPpA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+astrocytic+differentiation+of+transplanted+neural+stem+cells+by+chondroitin+sulfate+methacrylate+hydrogels+for+the+repair+of+injured+spinal+cord&rft.jtitle=Biomaterials+science&rft.au=Liu%2C+Can&rft.au=Fan%2C+Lei&rft.au=Xing%2C+Jianghao&rft.au=Wang%2C+Qiyou&rft.date=2019-04-23&rft.issn=2047-4849&rft.volume=7&rft.issue=5+p.1995-2008&rft.spage=1995&rft.epage=2008&rft_id=info:doi/10.1039%2Fc8bm01363b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-4830&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-4830&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-4830&client=summon |