Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein
Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE...
Saved in:
Published in | Biochemical journal Vol. 322; no. 1; pp. 317 - 325 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
15.02.1997
|
Subjects | |
Online Access | Get full text |
ISSN | 0264-6021 1470-8728 |
DOI | 10.1042/bj3220317 |
Cover
Loading…
Abstract | Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(Nε-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(Nε-lysino)propane (LML)] and lysine-HNE [3-(Nε-lysino)-4-hydroxynonan-1-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70Ő80% of total lysine loss during the reaction with MDA. LM and LML (0.002Ő0.12mmol/mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. |
---|---|
AbstractList | Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo.Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(Nε-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(Nε-lysino)propane (LML)] and lysine-HNE [3-(Nε-lysino)-4-hydroxynonan-1-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70Ő80% of total lysine loss during the reaction with MDA. LM and LML (0.002Ő0.12mmol/mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. |
Author | FU, Min Xin JENKINS, Alicia J. THORPE, Suzanne R. AHMED, Mahtab U. BAYNES, John W. LYONS, Timothy J. REQUENA, Jesús R. |
AuthorAffiliation | Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, USA |
AuthorAffiliation_xml | – name: Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, USA |
Author_xml | – sequence: 1 givenname: Jesús R. surname: REQUENA fullname: REQUENA, Jesús R. organization: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, U.S.A., Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, U.S.A – sequence: 2 givenname: Min Xin surname: FU fullname: FU, Min Xin organization: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, U.S.A – sequence: 3 givenname: Mahtab U. surname: AHMED fullname: AHMED, Mahtab U. organization: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, U.S.A – sequence: 4 givenname: Alicia J. surname: JENKINS fullname: JENKINS, Alicia J. organization: Department of Medicine, Medical University of South Carolina, Charleston, SC 29245, U.S.A – sequence: 5 givenname: Timothy J. surname: LYONS fullname: LYONS, Timothy J. organization: Department of Medicine, Medical University of South Carolina, Charleston, SC 29245, U.S.A – sequence: 6 givenname: John W. surname: BAYNES fullname: BAYNES, John W. organization: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, U.S.A., Department of School of Medicine, University of South Carolina, Columbia, SC 29208, U.S.A – sequence: 7 givenname: Suzanne R. surname: THORPE fullname: THORPE, Suzanne R. organization: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9078279$$D View this record in MEDLINE/PubMed |
BookMark | eNplkUtr3DAUhUVJSCdpF_0BBa0KXTjRayx7Uyihj0CgBNK10OO6oyBLU0tO4v6A_u4qmWnoYyXBuec73HuO0UFMERB6RckpJYKdmRvOGOFUPkMrKiRpOsm6A7QirBVNSxh9jo5zviGECiLIETrqieyY7Ffo59WsY_GDt7r4FHEa8KhDis7r4GCzOMA6Oiya-p3S_fIQHHXA2rnZloxLwmHJPgKeIHs3Q8Y-4lhhtztnuvfO_wCHN_OoIw7prnEQsy8LDn6btlMq4OMLdDjokOHl_j1BXz9-uD7_3Fx--XRx_v6ysYK3paGcaurWlDFRVwFnpe0HI6BtueVAKePamLXsjCDd4FoijBCgNeulkYZwzk_Qux13O5ux-iGWSQe1nfyop0Ul7dXfSvQb9S3dKspoR3tRAW_2gCl9r9sWNfpsIQQdIc1Zya4na877Ovj6z6SniP3lq3620-2Ucp5gUNaXxw5qrg-KEvVQrXqqtjre_uP4zfx_9hdSyafL |
CitedBy_id | crossref_primary_10_1016_j_ijantimicag_2016_11_011 crossref_primary_10_1155_2018_5123147 crossref_primary_10_1007_s10620_012_2321_2 crossref_primary_10_1096_fj_06_7536com crossref_primary_10_1021_tx010055u crossref_primary_10_1016_S0014_5793_97_01554_8 crossref_primary_10_3390_antiox9111132 crossref_primary_10_18097_pbmc20206606437 crossref_primary_10_1016_j_cbi_2011_01_007 crossref_primary_10_1016_j_bbrc_2010_02_043 crossref_primary_10_1002_adfm_202112000 crossref_primary_10_3109_09546634_2010_521812 crossref_primary_10_1006_clim_2000_4857 crossref_primary_10_1016_j_ejphar_2008_06_110 crossref_primary_10_4308_hjb_14_3_87 crossref_primary_10_1016_S0211_139X_06_72922_5 crossref_primary_10_1021_tx700059b crossref_primary_10_3390_ijms18050984 crossref_primary_10_1002_rcm_1283 crossref_primary_10_1128_CDLI_12_1_68_75_2005 crossref_primary_10_1016_j_cccn_2003_09_005 crossref_primary_10_1016_j_mad_2004_06_002 crossref_primary_10_1021_bi0349975 crossref_primary_10_1021_es9026369 crossref_primary_10_1074_jbc_M109935200 crossref_primary_10_1007_s12013_014_0365_y crossref_primary_10_1016_j_foodchem_2017_11_072 crossref_primary_10_1002_jms_381 crossref_primary_10_1016_j_apenergy_2016_01_087 crossref_primary_10_1080_10715760500250182 crossref_primary_10_1007_s11154_008_9093_1 crossref_primary_10_1021_acs_jafc_4c00335 crossref_primary_10_1093_gerona_55_6_B286 crossref_primary_10_1515_BC_2002_055 crossref_primary_10_3390_ijms23010211 crossref_primary_10_1089_ars_1999_1_3_255 crossref_primary_10_1089_ars_2017_7362 crossref_primary_10_1007_s10522_004_7380_0 crossref_primary_10_1046_j_1432_1033_2003_03598_x crossref_primary_10_1179_135100005X57382 crossref_primary_10_1016_j_cbi_2010_12_028 crossref_primary_10_1016_j_foodchem_2006_09_004 crossref_primary_10_1016_S0006_291X_03_01038_6 crossref_primary_10_3390_ijms242015489 crossref_primary_10_1021_ja038756w crossref_primary_10_1586_eem_10_68 crossref_primary_10_1007_s11357_012_9391_0 crossref_primary_10_1002_cmdc_200600075 crossref_primary_10_1007_s10522_006_9026_x crossref_primary_10_1021_acs_jafc_2c04052 crossref_primary_10_1016_S1074_5521_01_00026_6 crossref_primary_10_1021_tx049838g crossref_primary_10_1016_j_bbalip_2011_11_011 crossref_primary_10_1016_j_abb_2004_03_012 crossref_primary_10_1016_S0891_5849_97_00454_1 crossref_primary_10_1074_jbc_274_28_19661 crossref_primary_10_1194_jlr_M200370_JLR200 crossref_primary_10_1134_S1990750821020104 crossref_primary_10_3109_10715762_2015_1036052 crossref_primary_10_1016_j_exger_2004_01_006 crossref_primary_10_1186_1556_276X_8_190 crossref_primary_10_3390_ijms17111802 crossref_primary_10_1134_S0006297923120143 crossref_primary_10_1080_10715760600693422 crossref_primary_10_1002_mas_20006 crossref_primary_10_1134_S0006297907100069 crossref_primary_10_1016_S0891_5849_00_00226_4 crossref_primary_10_1194_jlr_M400095_JLR200 crossref_primary_10_1016_S0891_5849_00_00395_6 crossref_primary_10_1002_cbic_200500109 crossref_primary_10_1134_S0022093021040050 crossref_primary_10_1016_j_biomaterials_2010_04_014 crossref_primary_10_1111_1751_7915_13723 crossref_primary_10_1021_jf903562c crossref_primary_10_1016_j_amjcard_2003_12_028 crossref_primary_10_1096_fj_05_5568com crossref_primary_10_1562_0031_8655_2004_79_21_GOFAOM_2_0_CO_2 crossref_primary_10_3153_JFHS16018 crossref_primary_10_1074_jbc_M608589200 crossref_primary_10_31857_S0320972523110209 crossref_primary_10_1089_ars_2023_0314 crossref_primary_10_1006_abio_1999_4243 crossref_primary_10_1016_j_mam_2012_09_001 crossref_primary_10_1196_annals_1333_043 crossref_primary_10_1002_jsfa_3606 crossref_primary_10_1006_abbi_2001_2583 crossref_primary_10_1016_S1383_5742_99_00008_3 crossref_primary_10_1007_s00405_013_2821_5 crossref_primary_10_1016_j_atherosclerosis_2007_10_035 crossref_primary_10_1016_S0047_6374_98_00121_3 crossref_primary_10_1002_ppap_201100031 crossref_primary_10_1046_j_1523_1755_2003_00027_x crossref_primary_10_1080_07391102_2023_2208234 crossref_primary_10_3892_etm_2017_4766 crossref_primary_10_1016_j_abb_2008_11_007 crossref_primary_10_1007_s11010_012_1247_5 crossref_primary_10_1016_j_abb_2019_05_008 crossref_primary_10_1046_j_1471_4159_1999_0722601_x crossref_primary_10_1134_S0006297909040154 crossref_primary_10_1016_j_mad_2005_04_005 crossref_primary_10_1002_ejlt_200501196 crossref_primary_10_4236_ojmc_2019_93003 crossref_primary_10_3390_nu12040974 crossref_primary_10_1196_annals_1333_061 crossref_primary_10_3390_foods11070903 crossref_primary_10_1002_mas_10076 crossref_primary_10_1016_j_jmb_2008_01_057 crossref_primary_10_1016_S0009_9120_99_00075_2 crossref_primary_10_1111_j_1474_9726_2010_00573_x crossref_primary_10_1016_j_atherosclerosis_2013_11_068 crossref_primary_10_1016_S0968_0896_02_00311_5 crossref_primary_10_1111_ijfs_13016 crossref_primary_10_1155_2017_1625130 crossref_primary_10_1021_jf020201h crossref_primary_10_1021_acs_chemrev_7b00698 crossref_primary_10_1016_j_aca_2003_12_040 crossref_primary_10_1016_j_freeradbiomed_2009_08_002 crossref_primary_10_1016_j_freeradbiomed_2013_06_032 crossref_primary_10_1021_cr300073p crossref_primary_10_1007_s00726_006_0426_7 crossref_primary_10_1074_jbc_M304292200 crossref_primary_10_1021_tx1002854 crossref_primary_10_1016_S0891_5849_00_00469_X crossref_primary_10_1196_annals_1333_050 crossref_primary_10_1194_jlr_M400442_JLR200 crossref_primary_10_1016_S0891_5849_00_00228_8 crossref_primary_10_1128_AEM_65_9_4094_4098_1999 crossref_primary_10_1253_circj_CJ_16_0451 crossref_primary_10_1016_j_brainres_2016_04_027 crossref_primary_10_1021_bi501111j crossref_primary_10_1016_S0047_6374_01_00214_7 crossref_primary_10_1111_j_1749_6632_1998_tb09909_x crossref_primary_10_1111_j_1751_1097_2004_tb09852_x crossref_primary_10_1128_CDLI_10_4_499_505_2003 crossref_primary_10_1097_NEN_0b013e31820f8765 crossref_primary_10_1021_jf3026277 crossref_primary_10_1134_S0006297923110196 crossref_primary_10_1016_S0163_7827_98_00009_5 crossref_primary_10_1080_03602530600959508 crossref_primary_10_1021_acs_jafc_9b07978 crossref_primary_10_1074_jbc_M110_118182 crossref_primary_10_2337_db07_1204 crossref_primary_10_1016_j_metabol_2004_01_002 crossref_primary_10_1002_biof_5520240134 crossref_primary_10_1007_s11010_014_2144_x crossref_primary_10_1196_annals_1333_086 crossref_primary_10_1074_jbc_M502255200 crossref_primary_10_1007_s11010_014_2131_2 crossref_primary_10_1096_fasebj_13_10_1157 crossref_primary_10_1080_10715760600902302 crossref_primary_10_1002_jat_976 crossref_primary_10_31857_S0320972523120138 crossref_primary_10_1016_S0006_2952_98_00266_4 crossref_primary_10_1016_j_ijfoodmicro_2021_109116 crossref_primary_10_1006_abbi_1998_0976 crossref_primary_10_1016_S0006_291X_03_01412_8 crossref_primary_10_1074_jbc_M702146200 crossref_primary_10_1016_j_jnutbio_2011_08_006 crossref_primary_10_1089_ars_2012_4877 crossref_primary_10_3390_antiox10081184 crossref_primary_10_1016_S0271_5317_99_00025_1 crossref_primary_10_1021_acs_jafc_0c03947 crossref_primary_10_1016_j_freeradbiomed_2012_09_038 crossref_primary_10_1074_jbc_M310608200 crossref_primary_10_1002_cbdv_200590074 crossref_primary_10_1021_tx050078z crossref_primary_10_1016_S0891_5849_98_00149_X crossref_primary_10_1021_ac7016184 crossref_primary_10_1016_j_foodchem_2024_141397 crossref_primary_10_1016_S0021_9673_98_01078_4 crossref_primary_10_1016_S0047_6374_02_00076_3 crossref_primary_10_1371_journal_pone_0058764 crossref_primary_10_1002_mas_20074 crossref_primary_10_1081_DMR_100102336 crossref_primary_10_12737_article_590823a4b59f98_13160142 crossref_primary_10_1016_j_bbalip_2008_03_002 crossref_primary_10_2337_diabetes_51_9_2826 crossref_primary_10_1073_pnas_95_9_4882 crossref_primary_10_1189_jlb_1211617 crossref_primary_10_3109_10715769809065821 crossref_primary_10_1007_s10557_011_6326_4 crossref_primary_10_1161_CIRCRESAHA_109_200568 crossref_primary_10_3390_ijms241310471 crossref_primary_10_1080_08923970902785253 crossref_primary_10_1508_cytologia_80_467 crossref_primary_10_3390_foods11152176 crossref_primary_10_1016_j_yexmp_2012_06_008 crossref_primary_10_1006_abbi_1997_0266 crossref_primary_10_1021_ol0348147 crossref_primary_10_1021_tx000007u crossref_primary_10_1373_clinchem_2010_145201 crossref_primary_10_1016_S0891_5849_01_00811_5 crossref_primary_10_1016_S0014_5793_00_01539_8 crossref_primary_10_1089_rej_2014_1561 crossref_primary_10_1021_jf072385b crossref_primary_10_1177_026119299802600411 crossref_primary_10_1016_j_matchemphys_2015_07_029 crossref_primary_10_1016_j_bbalip_2011_08_018 crossref_primary_10_1177_1744806920903848 crossref_primary_10_3390_foods13244153 crossref_primary_10_1016_S0378_4347_00_00030_X crossref_primary_10_1016_j_aquaculture_2022_738861 crossref_primary_10_1016_S0925_4439_99_00087_3 crossref_primary_10_1007_s11357_005_4562_x crossref_primary_10_1016_j_exger_2004_08_001 crossref_primary_10_1016_S0022_2275_20_31568_6 crossref_primary_10_1074_jbc_273_26_16058 crossref_primary_10_1002_advs_202302887 crossref_primary_10_1016_S1044_0305_02_00911_X crossref_primary_10_1016_S0009_3084_03_00048_3 crossref_primary_10_1016_j_freeradbiomed_2004_09_007 crossref_primary_10_1080_10408398_2011_577540 crossref_primary_10_1002_pmic_201100668 crossref_primary_10_1021_acs_chemrestox_6b00443 crossref_primary_10_1016_j_bpc_2023_107069 crossref_primary_10_1111_j_1751_1097_2009_00593_x crossref_primary_10_1074_jbc_M003263200 crossref_primary_10_1016_j_lwt_2014_12_037 crossref_primary_10_1093_gerona_59_9_B890 crossref_primary_10_1007_s13399_023_04847_w |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1042/bj3220317 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1470-8728 |
EndPage | 325 |
ExternalDocumentID | PMC1218194 9078279 10_1042_bj3220317 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: 5R29 EY10697 – fundername: NIA NIH HHS grantid: AG11472 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 23N 2WC 3EH 3O- 53G 5GY 5RE 5VS 6J9 79B AAHRG AAYXX ABJNI ABPPZ ACGFO ACGFS ACNCT ADBBV ADXHL AEGXH AENEX AI. AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DU5 E3Z EBS EJD F5P H13 HH6 HYE HZ~ K-O L7B MV1 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RPO TR2 TWZ VH1 WH7 WOQ X7M XOL XSW Y6R YNY ZGI ZXP ZY4 ~02 ~KM AABGO ABTAH CGR CUY CVF ECM EIF NPM VXZ 7X8 5PM |
ID | FETCH-LOGICAL-c436t-131a1d51224014edc7c9fb4e663c3e1123abb578b408fd604b44eaa297b7b0333 |
ISSN | 0264-6021 |
IngestDate | Thu Aug 21 18:07:36 EDT 2025 Fri Jul 11 08:34:02 EDT 2025 Wed Feb 19 02:32:34 EST 2025 Thu Apr 24 23:08:41 EDT 2025 Tue Jul 01 03:42:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c436t-131a1d51224014edc7c9fb4e663c3e1123abb578b408fd604b44eaa297b7b0333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://portlandpress.com/biochemj/article-pdf/322/1/317/624099/bj3220317.pdf |
PMID | 9078279 |
PQID | 78905339 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1218194 proquest_miscellaneous_78905339 pubmed_primary_9078279 crossref_citationtrail_10_1042_bj3220317 crossref_primary_10_1042_bj3220317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-02-15 1997-Feb-15 19970215 |
PublicationDateYYYYMMDD | 1997-02-15 |
PublicationDate_xml | – month: 02 year: 1997 text: 1997-02-15 day: 15 |
PublicationDecade | 1990 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biochemical journal |
PublicationTitleAlternate | Biochem J |
PublicationYear | 1997 |
SSID | ssj0014040 |
Score | 2.033486 |
Snippet | Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 317 |
SubjectTerms | Aldehydes - metabolism Amino Acids - chemistry Collagen - metabolism Copper - metabolism Crystallins - metabolism Drug Stability Gas Chromatography-Mass Spectrometry Humans Lipid Peroxidation Lipoproteins, LDL - metabolism Lysine - chemistry Lysine - metabolism Malondialdehyde - metabolism Oxidation-Reduction Ribonucleases Schiff Bases Skin - metabolism |
Title | Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein |
URI | https://www.ncbi.nlm.nih.gov/pubmed/9078279 https://www.proquest.com/docview/78905339 https://pubmed.ncbi.nlm.nih.gov/PMC1218194 |
Volume | 322 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fj5NAEN_U80FfjN55sf7dGGNMGiqwW5BHPGuaJtfkzDXpW8PCkmJ6cLEQvfsAfh4_ojMM7NH2Hk5fCAGWAPNjdmZn5jeMvUulk_hSCct3U2FJkSpLKfBSRjrQkRdoqVJchzydeZO5nC5Gi17vTydrqSrVML6-ta7kf6QKx0CuWCX7D5I1N4UDsA_yhS1IGLZ3kvFZFVGuj7H7LqJ1kWMtSKJXVwmFBqQFu5itAp6-RuMTlE2FORxgdiIhSY6dU-Dhqzo3a5ATFTiOLH5lSXYNJil18lsXP60EE96x20R2WdQcDw1zdxsXzrADF1EQdF8BQzrjs_l4FlJKzQYD9J_DzeDb0CBoTmn8-WCRGcSGk9PxF6opWpWRGszN5dPxDFceqEgH12YG0-HNEgbRv7oWFXE2mg6sMsuzqVR6qEkTS98GVd1UjjeqWrjuHiZJ8QqqAG3mcEHF1HvTA2gokKn6DvexzYguBffO1GgSFutQvXSXZug9dt8Fx8Rp14eauJW0ZbOqRy_UcllJ96MZum0B7bk1u9m5HXPn_DF71PgpPCTQPWE9nR-yoxDAUVxc8fe8zhyuQzKH7MFJ2zXwiP3exiQvUr6DSQ7I4ruY5A0meVlwwiRvMcmznBMm65EtJnmNSd7BJO9g8imbfx2fn0yspteHFUvhlZYjnMhJRhjnha8IL-_HQaqkBoM4FhqcAhEpBbOLkvanNPFsqaTUUeQGvvKVLYQ4Zgf4xM8YVy4Mx1RAZxRJW6cK-ZY8mNrAF0piW_fZh_b7L-OGCB_7sayXe1Lus7fm0ktif7ntojetEJfwsTHgFuW6qDZLLDIHdyros2MSqblJgJa5Dyf8LVmb80j6vn0mz1Y1-buDNnkgn9_lyV6whze_20t2UP6o9CuwoUv1uobtX-dUzBY |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+malondialdehyde+and+4-hydroxynonenal+adducts+to+lysine+residues+in+native+and+oxidized+human+low-density+lipoprotein&rft.jtitle=Biochemical+journal&rft.au=REQUENA%2C+Jes%C3%BAs+R.&rft.au=FU%2C+Min+Xin&rft.au=AHMED%2C+Mahtab+U.&rft.au=JENKINS%2C+Alicia+J.&rft.date=1997-02-15&rft.issn=0264-6021&rft.eissn=1470-8728&rft.volume=322&rft.issue=1&rft.spage=317&rft.epage=325&rft_id=info:doi/10.1042%2Fbj3220317&rft.externalDBID=n%2Fa&rft.externalDocID=10_1042_bj3220317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-6021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-6021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-6021&client=summon |