Fault-tolerant control design to enhance damping of inter-area oscillations in power grids

SUMMARYIn this paper, passive and active approaches for the design of fault‐tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of inter‐area oscillations in a power grid. The effectiveness of using a combination of local and remote (wide area) feedback signals is fir...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 24; no. 8-9; pp. 1304 - 1316
Main Authors Segundo Sevilla, F. R., Jaimoukha, I., Chaudhuri, B., Korba, P.
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 25.05.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARYIn this paper, passive and active approaches for the design of fault‐tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of inter‐area oscillations in a power grid. The effectiveness of using a combination of local and remote (wide area) feedback signals is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance following a loss of remote signals. The designs are based on regional pole placement using linear matrix inequalities. First, a passive FTC is proposed. It is shown that the computation of the controller reduces to the solution of bilinear matrix inequalities. An iterative procedure is then used to design the controller. Next, as an alternative to active, time‐varying controllers, one for each fault scenario, we propose an approach for the design of a ‘minimal switching’ FTC in which only one controller is designed, but where a simple switch is incorporated into the controller structure. A case study in a linear and nonlinear Nordic equivalent system is presented to show that the closed‐loop response using a conventional control design could deteriorate the performance or even destabilize the system if the remote signals are lost and to demonstrate the effectiveness of the proposed FTC designs. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList SUMMARYIn this paper, passive and active approaches for the design of fault‐tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of inter‐area oscillations in a power grid. The effectiveness of using a combination of local and remote (wide area) feedback signals is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance following a loss of remote signals. The designs are based on regional pole placement using linear matrix inequalities. First, a passive FTC is proposed. It is shown that the computation of the controller reduces to the solution of bilinear matrix inequalities. An iterative procedure is then used to design the controller. Next, as an alternative to active, time‐varying controllers, one for each fault scenario, we propose an approach for the design of a ‘minimal switching’ FTC in which only one controller is designed, but where a simple switch is incorporated into the controller structure. A case study in a linear and nonlinear Nordic equivalent system is presented to show that the closed‐loop response using a conventional control design could deteriorate the performance or even destabilize the system if the remote signals are lost and to demonstrate the effectiveness of the proposed FTC designs. Copyright © 2013 John Wiley & Sons, Ltd.
SUMMARY In this paper, passive and active approaches for the design of fault-tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of inter-area oscillations in a power grid. The effectiveness of using a combination of local and remote (wide area) feedback signals is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance following a loss of remote signals. The designs are based on regional pole placement using linear matrix inequalities. First, a passive FTC is proposed. It is shown that the computation of the controller reduces to the solution of bilinear matrix inequalities. An iterative procedure is then used to design the controller. Next, as an alternative to active, time-varying controllers, one for each fault scenario, we propose an approach for the design of a 'minimal switching' FTC in which only one controller is designed, but where a simple switch is incorporated into the controller structure. A case study in a linear and nonlinear Nordic equivalent system is presented to show that the closed-loop response using a conventional control design could deteriorate the performance or even destabilize the system if the remote signals are lost and to demonstrate the effectiveness of the proposed FTC designs. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
In this paper, passive and active approaches for the design of fault-tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of inter-area oscillations in a power grid. The effectiveness of using a combination of local and remote (wide area) feedback signals is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance following a loss of remote signals. The designs are based on regional pole placement using linear matrix inequalities. First, a passive FTC is proposed. It is shown that the computation of the controller reduces to the solution of bilinear matrix inequalities. An iterative procedure is then used to design the controller. Next, as an alternative to active, time-varying controllers, one for each fault scenario, we propose an approach for the design of a 'minimal switching' FTC in which only one controller is designed, but where a simple switch is incorporated into the controller structure. A case study in a linear and nonlinear Nordic equivalent system is presented to show that the closed-loop response using a conventional control design could deteriorate the performance or even destabilize the system if the remote signals are lost and to demonstrate the effectiveness of the proposed FTC designs. Copyright copyright 2013 John Wiley & Sons, Ltd.
In this paper, passive and active approaches for the design of fault-tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of inter-area oscillations in a power grid. The effectiveness of using a combination of local and remote (wide area) feedback signals is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance following a loss of remote signals. The designs are based on regional pole placement using linear matrix inequalities. First, a passive FTC is proposed. It is shown that the computation of the controller reduces to the solution of bilinear matrix inequalities. An iterative procedure is then used to design the controller. Next, as an alternative to active, time-varying controllers, one for each fault scenario, we propose an approach for the design of a ‘minimal switching’ FTC in which only one controller is designed, but where a simple switch is incorporated into the controller structure. A case study in a linear and nonlinear Nordic equivalent system is presented to show that the closed-loop response using a conventional control design could deteriorate the performance or even destabilize the system if the remote signals are lost and to demonstrate the effectiveness of the proposed FTC designs.
SUMMARY In this paper, passive and active approaches for the design of fault‐tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of inter‐area oscillations in a power grid. The effectiveness of using a combination of local and remote (wide area) feedback signals is first demonstrated. The challenge is then to guarantee a minimum level of dynamic performance following a loss of remote signals. The designs are based on regional pole placement using linear matrix inequalities. First, a passive FTC is proposed. It is shown that the computation of the controller reduces to the solution of bilinear matrix inequalities. An iterative procedure is then used to design the controller. Next, as an alternative to active, time‐varying controllers, one for each fault scenario, we propose an approach for the design of a ‘minimal switching’ FTC in which only one controller is designed, but where a simple switch is incorporated into the controller structure. A case study in a linear and nonlinear Nordic equivalent system is presented to show that the closed‐loop response using a conventional control design could deteriorate the performance or even destabilize the system if the remote signals are lost and to demonstrate the effectiveness of the proposed FTC designs. Copyright © 2013 John Wiley & Sons, Ltd.
Author Jaimoukha, I.
Korba, P.
Chaudhuri, B.
Segundo Sevilla, F. R.
Author_xml – sequence: 1
  givenname: F. R.
  surname: Segundo Sevilla
  fullname: Segundo Sevilla, F. R.
  email: Correspondence to: Felix Rafael Segundo Sevilla, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK., frs09@ic.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, UK
– sequence: 2
  givenname: I.
  surname: Jaimoukha
  fullname: Jaimoukha, I.
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, UK
– sequence: 3
  givenname: B.
  surname: Chaudhuri
  fullname: Chaudhuri, B.
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, UK
– sequence: 4
  givenname: P.
  surname: Korba
  fullname: Korba, P.
  organization: Zurich University of Applied Sciences, Winterthur, Switzerland
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125012$$DView record from Swedish Publication Index
BookMark eNp1kVtrFEEQhRuJYLIK_oQGX3yZpC9z68ewujGyriDxgi9NTXfNppPZ7kl3D2v-vbNEEhR8qqLq41Cnzgk58sEjIa85O-WMibPozalQbfuMHHOmVMGFVEeHvlRFq4R8QU5SumFs3onymPxcwTTkIocBI_hMTfA5hoFaTG7raQ4U_TV4g9TCbnR-S0NPnc8YC4gINCTjhgGyCz7NczqGPUa6jc6ml-R5D0PCV3_qgnxdvb9afijWny8ul-frwpSybgujRMcFGgVtWXfMgJQ9qK7pmAJr6tqCkU3bW1Ey2aOyKK3FSjU98BYY7-SCFA-6aY_j1Okxuh3Eex3A6Xfu27kOcatv87XmomLzOxbk7QM_xnA3Ycp655LB2YXHMCXNq5KXopGKzeibf9CbMEU_u5kp3opKyqp8EjQxpBSxfzyBM30IRc-h6EMoT7fu3YD3_-X0l83yb96ljL8eeYi3um5kU-nvmwv9g119Epv1R72SvwFecp-1
CitedBy_id crossref_primary_10_1007_s12046_024_02453_8
crossref_primary_10_1109_LCSYS_2021_3138054
crossref_primary_10_1186_s41601_020_0151_3
crossref_primary_10_1002_rnc_3148
crossref_primary_10_1002_2050_7038_12906
crossref_primary_10_1109_ACCESS_2024_3370677
crossref_primary_10_3182_20140824_6_ZA_1003_00315
crossref_primary_10_1109_ACCESS_2018_2828609
crossref_primary_10_1109_ACCESS_2020_3021599
crossref_primary_10_1109_ACCESS_2023_3274730
crossref_primary_10_1088_1742_6596_2195_1_012047
crossref_primary_10_3390_en14185892
crossref_primary_10_1016_j_conengprac_2014_12_010
crossref_primary_10_1007_s00202_020_01094_4
crossref_primary_10_1109_TAC_2015_2418681
Cites_doi 10.1080/00207170500202249
10.1109/TCST.2006.883186
10.1007/978-1-4615-4561-3
10.1115/1.4005512
10.1109/PSCE.2009.4840162
10.1109/ACC.2010.5531061
10.1109/TPWRD.2010.2070881
10.1016/j.conengprac.2004.11.002
10.1049/iet‐gtd.2009.0478
10.1109/PESGM.2012.6344917
10.1109/87.974340
10.1007/s00034-011-9385-7
10.23919/ACC.2004.1386840
10.1109/9.119629
10.1109/9.847106
10.1109/9.486637
10.1002/1099-1239(200006)10:7<561::AID-RNC493>3.0.CO;2-C
10.1016/0005-1098(85)90008-1
10.1016/j.ins.2009.10.002
10.23919/ACC.1988.4789991
10.1109/TPWRS.2003.820690
10.1109/TSG.2012.2197029
10.1109/TPWRS.2008.2004733
10.1109/PES.2008.4596564
10.1109/59.910791
10.1109/TPWRS.2004.835669
10.1109/JPROC.2005.857486
10.1109/TPWRS.2009.2031908
10.1016/j.amc.2007.08.085
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
DOI 10.1002/rnc.2988
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 1316
ExternalDocumentID oai_DiVA_org_kth_125012
3282265111
10_1002_rnc_2988
RNC2988
ark_67375_WNG_X0TM2NLJ_F
Genre article
GrantInformation_xml – fundername: ABB, Switzerland
  funderid: EESC P26939
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABHUG
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
31~
ABEML
ACSCC
AI.
AITYG
ASPBG
AVWKF
AZFZN
CMOOK
FEDTE
HF~
HGLYW
HVGLF
M59
PALCI
RIWAO
RJQFR
SAMSI
VH1
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c4368-c92b12ec9a846b0ca33fa9b7b09adc66dac378fd2403fe9de3dde597fa18a01b3
IEDL.DBID DR2
ISSN 1049-8923
1099-1239
IngestDate Sat Aug 24 00:17:34 EDT 2024
Sat Aug 17 01:39:40 EDT 2024
Thu Oct 10 19:12:36 EDT 2024
Fri Aug 23 00:47:20 EDT 2024
Sat Aug 24 01:07:36 EDT 2024
Wed Jan 17 05:00:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8-9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4368-c92b12ec9a846b0ca33fa9b7b09adc66dac378fd2403fe9de3dde597fa18a01b3
Notes ArticleID:RNC2988
ark:/67375/WNG-X0TM2NLJ-F
ABB, Switzerland - No. EESC P26939
istex:A3266E4D79B6629E2D31EBD4D8FAC40DDC0E569A
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://spiral.imperial.ac.uk/bitstream/10044/1/19712/2/FRS_IJRNC_final_for_publication.pdf
PQID 1518253354
PQPubID 1026344
PageCount 13
ParticipantIDs swepub_primary_oai_DiVA_org_kth_125012
proquest_miscellaneous_1541427390
proquest_journals_1518253354
crossref_primary_10_1002_rnc_2988
wiley_primary_10_1002_rnc_2988_RNC2988
istex_primary_ark_67375_WNG_X0TM2NLJ_F
PublicationCentury 2000
PublicationDate 2014-05-25
PublicationDateYYYYMMDD 2014-05-25
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-25
  day: 25
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationTitleAlternate Int. J. Robust Nonlinear Control
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Liang YW, Xu SD, Tsai CL. Study of vsc reliable designs with application to spacecraft attitude stabilization. IEEE Transactions on Control Systems Technology 2007; 15(2):332-338.
Kamwa I, Grondin R, Hebert Y. Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach. IEEE Transactions on Power Systems 2001; 16(1):136-153. DOI: 10.1109/59.910791.
Makarov Y, Reshetov V, Stroev A, Voropai I. Blackout prevention in the united states, europe, and russia. Proceedings of the IEEE 2005; 93(11):1942-1955. DOI: 10.1109/JPROC.2005.857486.
Chakrabortty A. Wide-area damping control of power systems using dynamic clustering and tcsc-based redesigns. IEEE Transactions on Smart Grid 2012; 3(3):1503-1514. DOI: 10.1109/TSG.2012.2197029.
Dotta D, e Silva AS, Decker IC. Wide-area measurements-based two-level control design considering signal transmission delay. IEEE Transactions on Power Systems 2009; 24(1):208-216.
Rogers G. Power Systems Oscillations. Kluwer Academic Publishers: Boston, 2000.
Li X, Liu HHT. A passive fault tolerant flight control for maximum allowable vertical tail damaged aircraft. Journal of Dynamic Systems, Measurement, and Control 2012; 134(3):031006-1-031006-15.
Niemann H, Stoustrup J. An architecture for fault tolerant controllers. International Journal of Control 2005; 78(14):1091-1110.
Chilali M, Gahinet P. H-infinity design with pole placement constraints: an LMI approach. IEEE Transactions on Automatic Control 1996; 41(3):358-367. DOI: 10.1109/9.486637.
Liao F, Wang JL, Yang GH. Reliable robust flight tracking control: an lmi approach. IEEE Transactions on Control Systems Technology 2002; 10(1):76-89.
Huang D, Nguang SK. Robust fault estimator design for uncertain networked control systems with random time delays: An ilmi approach. Information Sciences 2010; 180(3):465-480.
Chaudhuri NR, Ray S, Majumder R, Chaudhuri B. A new approach to continuous latency compensation with adaptive phasor power oscillation damping controller (pod). IEEE Transactions on Power Systems 2010; 25(2):939-946.
Hingorani NG, Gyugyi L. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. IEEE Press: New York, 2000.
Veillette R, Medanic J, Perkins W. Design of reliable control systems. IEEE Transactions on Automatic Control 1992; 37(3):290-304.
Chaudhuri N, Domahidi A, Majumder R, Chaudhuri B, Korba P, Ray S, Uhlen K. Wide-area power oscillation damping control in nordic equivalent system. IET Generation, Transmission Distribution 2010; 4(10):1139-1150. DOI: 10.1049/iet-gtd.2009.0478.
Tuan H, Apkarian P, Nakashima Y. A new lagrangian dual global optimization algorithm for solving bilinear matrix inequalities. Intternational Journal of Robust and Nonlinear Control 2000; 10:561-578.
Vidyasagar M, Viswanadham N. Reliable stabilization using a multi-controller configuration. Automatica 1985; 21(5):599-602.
Chaudhuri B, Majumder R, Pal B. Wide-area measurement-based stabilizing control of power system considering signal transmission delay. IEEE Transactions on Power Systems 2004; 19(4):1971-1979.
Lien CH, Yu KW, Lin YF, Chung YJ, Chung LY. Robust reliable h8 control for uncertain nonlinear systems via lmi approach. Applied Mathematics and Computation 2008; 198(1):453-462.
Ramos R, Alberto L, Bretas N. A new methodology for the coordinated design of robust decentralized power system damping controllers. IEEE Transactions on Power Systems 2004feb.; 19(1):444-454. DOI: 10.1109/TPWRS.2003.820690.
Gao Z, Jiang B, Shi P, Liu J, Xu Y. Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system. Circuits, Systems, and Signal Processing 2012; 31:565-581.
Chaudhuri NR, Chakraborty D, Chaudhuri B. An architecture for FACTS controllers to deal with bandwidth-constrained communication. IEEE Transactions on Power Delivery 2011; 26(1):188-196.
Niemann H, Stoustrup J. Passive fault tolerant control of a double inverted penduluma case study. Control Engineering Practice 2005; 13(8):1047-1059.
Liang YW, Liaw DC, Lee TC. Reliable control of nonlinear systems. IEEE Transactions on Automatic Control 2000; 45(4):706-710.
2009; 24
2012
2010
2000; 45
2002; 10
2009
2008
2005
2000; 2
1992; 37
2004; 2
2011; 3
2010; 180
1985; 21
2012; 31
2007; 15
2012; 3
2012; 134
2010; 25
2004; 19
2000
2000; 10
1996; 41
2001; 16
2005; 93
2011; 26
2008; 198
2010; 4
2005; 78
2005; 13
1988
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_20_1
Hingorani NG (e_1_2_11_27_1) 2000
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_19_1
References_xml – volume: 25
  start-page: 939
  issue: 2
  year: 2010
  end-page: 946
  article-title: A new approach to continuous latency compensation with adaptive phasor power oscillation damping controller (pod)
  publication-title: IEEE Transactions on Power Systems
– volume: 3
  start-page: 1503
  issue: 3
  year: 2012
  end-page: 1514
  article-title: Wide‐area damping control of power systems using dynamic clustering and tcsc‐based redesigns
  publication-title: IEEE Transactions on Smart Grid
– volume: 10
  start-page: 561
  year: 2000
  end-page: 578
  article-title: A new lagrangian dual global optimization algorithm for solving bilinear matrix inequalities
  publication-title: Intternational Journal of Robust and Nonlinear Control
– volume: 198
  start-page: 453
  issue: 1
  year: 2008
  end-page: 462
  article-title: Robust reliable h8 control for uncertain nonlinear systems via lmi approach
  publication-title: Applied Mathematics and Computation
– volume: 41
  start-page: 358
  issue: 3
  year: 1996
  end-page: 367
  article-title: H‐infinity design with pole placement constraints: an LMI approach
  publication-title: IEEE Transactions on Automatic Control
– year: 2000
– start-page: 1685
  year: 1988
  end-page: 1690
– start-page: 1
  year: 2008
  end-page: 7
– start-page: 1
  year: 2009
  end-page: 8
– volume: 15
  start-page: 332
  issue: 2
  year: 2007
  end-page: 338
  article-title: Study of vsc reliable designs with application to spacecraft attitude stabilization
  publication-title: IEEE Transactions on Control Systems Technology
– start-page: 1949
  year: 2010
  end-page: 1953
– volume: 180
  start-page: 465
  issue: 3
  year: 2010
  end-page: 480
  article-title: Robust fault estimator design for uncertain networked control systems with random time delays: An ilmi approach
  publication-title: Information Sciences
– volume: 19
  start-page: 444
  issue: 1
  year: 2004
  end-page: 454
  article-title: A new methodology for the coordinated design of robust decentralized power system damping controllers
  publication-title: IEEE Transactions on Power Systems
– volume: 2
  start-page: 1015
  year: 2000
  end-page: 1019
– volume: 3
  start-page: 1308
  year: 2011
  end-page: 1312
– start-page: 1734
  year: 2005
  end-page: 1743
– volume: 26
  start-page: 188
  issue: 1
  year: 2011
  end-page: 196
  article-title: An architecture for FACTS controllers to deal with bandwidth‐constrained communication
  publication-title: IEEE Transactions on Power Delivery
– volume: 134
  start-page: 031006‐1
  issue: 3
  year: 2012
  end-page: 031006‐15
  article-title: A passive fault tolerant flight control for maximum allowable vertical tail damaged aircraft
  publication-title: Journal of Dynamic Systems, Measurement, and Control
– volume: 4
  start-page: 1139
  issue: 10
  year: 2010
  end-page: 1150
  article-title: Wide‐area power oscillation damping control in nordic equivalent system
  publication-title: IET Generation, Transmission Distribution
– volume: 19
  start-page: 1971
  issue: 4
  year: 2004
  end-page: 1979
  article-title: Wide‐area measurement‐based stabilizing control of power system considering signal transmission delay
  publication-title: IEEE Transactions on Power Systems
– volume: 16
  start-page: 136
  issue: 1
  year: 2001
  end-page: 153
  article-title: Wide‐area measurement based stabilizing control of large power systems‐a decentralized/hierarchical approach
  publication-title: IEEE Transactions on Power Systems
– start-page: 4640
  year: 2010
  end-page: 4646
– volume: 45
  start-page: 706
  issue: 4
  year: 2000
  end-page: 710
  article-title: Reliable control of nonlinear systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 10
  start-page: 76
  issue: 1
  year: 2002
  end-page: 89
  article-title: Reliable robust flight tracking control: an lmi approach
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 31
  start-page: 565
  year: 2012
  end-page: 581
  article-title: Passive fault‐tolerant control design for near‐space hypersonic vehicle dynamical system
  publication-title: Circuits, Systems, and Signal Processing
– volume: 37
  start-page: 290
  issue: 3
  year: 1992
  end-page: 304
  article-title: Design of reliable control systems
  publication-title: IEEE Transactions on Automatic Control
– volume: 13
  start-page: 1047
  issue: 8
  year: 2005
  end-page: 1059
  article-title: Passive fault tolerant control of a double inverted penduluma case study
  publication-title: Control Engineering Practice
– start-page: 1
  year: 2012
  end-page: 8
– volume: 78
  start-page: 1091
  issue: 14
  year: 2005
  end-page: 1110
  article-title: An architecture for fault tolerant controllers
  publication-title: International Journal of Control
– volume: 24
  start-page: 208
  issue: 1
  year: 2009
  end-page: 216
  article-title: Wide‐area measurements‐based two‐level control design considering signal transmission delay
  publication-title: IEEE Transactions on Power Systems
– volume: 21
  start-page: 599
  issue: 5
  year: 1985
  end-page: 602
  article-title: Reliable stabilization using a multi‐controller configuration
  publication-title: Automatica
– volume: 2
  start-page: 1794
  year: 2004
  end-page: 1798
– volume: 93
  start-page: 1942
  issue: 11
  year: 2005
  end-page: 1955
  article-title: Blackout prevention in the united states, europe, and russia
  publication-title: Proceedings of the IEEE
– ident: e_1_2_11_14_1
  doi: 10.1080/00207170500202249
– ident: e_1_2_11_5_1
– ident: e_1_2_11_10_1
  doi: 10.1109/TCST.2006.883186
– ident: e_1_2_11_35_1
  doi: 10.1007/978-1-4615-4561-3
– ident: e_1_2_11_2_1
  doi: 10.1115/1.4005512
– ident: e_1_2_11_32_1
  doi: 10.1109/PSCE.2009.4840162
– volume-title: Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems
  year: 2000
  ident: e_1_2_11_27_1
  contributor:
    fullname: Hingorani NG
– ident: e_1_2_11_3_1
  doi: 10.1109/ACC.2010.5531061
– ident: e_1_2_11_24_1
  doi: 10.1109/TPWRD.2010.2070881
– ident: e_1_2_11_15_1
  doi: 10.1016/j.conengprac.2004.11.002
– ident: e_1_2_11_26_1
  doi: 10.1049/iet‐gtd.2009.0478
– ident: e_1_2_11_30_1
  doi: 10.1109/PESGM.2012.6344917
– ident: e_1_2_11_11_1
  doi: 10.1109/87.974340
– ident: e_1_2_11_6_1
  doi: 10.1007/s00034-011-9385-7
– ident: e_1_2_11_16_1
  doi: 10.23919/ACC.2004.1386840
– ident: e_1_2_11_7_1
  doi: 10.1109/9.119629
– ident: e_1_2_11_9_1
  doi: 10.1109/9.847106
– ident: e_1_2_11_28_1
  doi: 10.1109/9.486637
– ident: e_1_2_11_31_1
  doi: 10.1002/1099-1239(200006)10:7<561::AID-RNC493>3.0.CO;2-C
– ident: e_1_2_11_8_1
  doi: 10.1016/0005-1098(85)90008-1
– ident: e_1_2_11_12_1
  doi: 10.1016/j.ins.2009.10.002
– ident: e_1_2_11_34_1
  doi: 10.23919/ACC.1988.4789991
– ident: e_1_2_11_4_1
– ident: e_1_2_11_18_1
– ident: e_1_2_11_29_1
  doi: 10.1109/TPWRS.2003.820690
– ident: e_1_2_11_19_1
  doi: 10.1109/TSG.2012.2197029
– ident: e_1_2_11_21_1
  doi: 10.1109/TPWRS.2008.2004733
– ident: e_1_2_11_33_1
  doi: 10.1109/PES.2008.4596564
– ident: e_1_2_11_25_1
– ident: e_1_2_11_20_1
  doi: 10.1109/59.910791
– ident: e_1_2_11_22_1
  doi: 10.1109/TPWRS.2004.835669
– ident: e_1_2_11_17_1
  doi: 10.1109/JPROC.2005.857486
– ident: e_1_2_11_23_1
  doi: 10.1109/TPWRS.2009.2031908
– ident: e_1_2_11_13_1
  doi: 10.1016/j.amc.2007.08.085
SSID ssj0009924
Score 2.2499707
Snippet SUMMARYIn this paper, passive and active approaches for the design of fault‐tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping...
SUMMARY In this paper, passive and active approaches for the design of fault‐tolerant controllers (FTCs) are presented. The FTCs are used to improve the...
SUMMARY In this paper, passive and active approaches for the design of fault-tolerant controllers (FTCs) are presented. The FTCs are used to improve the...
In this paper, passive and active approaches for the design of fault-tolerant controllers (FTCs) are presented. The FTCs are used to improve the damping of...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1304
SubjectTerms Active control
Control systems
Controllers
Damping
Design engineering
Fault tolerance
fault-tolerant control
local and remote feedback
Nonlinearity
Oscillations
power oscillation damping
regional pole placement
simultaneous design
Title Fault-tolerant control design to enhance damping of inter-area oscillations in power grids
URI https://api.istex.fr/ark:/67375/WNG-X0TM2NLJ-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.2988
https://www.proquest.com/docview/1518253354
https://search.proquest.com/docview/1541427390
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125012
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCBRwGxUCpXQtzSJrGTtY9V6VJVdA9VHyshYfnZVrskVTYrIU79Cf2N_SWdyWPLIiEhTjl4LDueGc_nZPwNIR-D4AGABiC3LNURzx34XAhZZCUXMnYQoZuifUfj_OCUH06ySZdViXdhWn6I5Qc39Ixmv0YH12a-80AaWoH_pFLgPV_k0UM8dPzAHCVlW88WAHAkAMT0vLNxutN3XIlEj3FRf67CzJY6dBW1NmFn9Jx86yfcZptMtxe12ba__uBy_L83ekGedWiU7rbm85I88sU6efobR-Er8n2kF7P67ua2LmceAltNu-x26prkD1qX1BeXaDzU6R94_YqWgSINRQW9NIBSioSZsy7pDlroNZZmoxfVlZu_Jqej_ZO9g6gryhBZJKsHJaYmSb2VGpCLia1mLGhphiaW2tk8d9qyoQgOef6Cl84z2EDh1BJ0InScGPaGrBVl4d8SapgVgXGRWW_4kBkBuyc3NreyIf1JBmSrV5C6brk3VMuynCpYK4VrNSCfGs0tBXQ1xVy1YabOx1_UJD45SsdfD9VoQDZ61arOTecK4A6ckBnLOIy1bAYHw78muvDlAmV4wgHkyRjGak1iORhyc3--OttVZXWhpvWlArgIER8EGz3_ddbqeLyHz3f_KviePAGkxjFtIc02yFpdLfwHQEO12Wzs_h4izwl8
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKewAO5VtsKWAkxG3bJHaytjhVLctSdnOotrAHhGU7dlvtklRpVkKc-An8Rn4JM_nYskhIiFMOHsuOx8_z4oyfCXnpBfdANIC5xZHu8yQDzHkf963kQgYZROj60r5JmoxO-fEsnm2Q191ZmEYfYrXhhsio12sEOG5I71-rhpYAoEgKcYNsAdpjROXRybV2lJTNjbZAgfsCaEynPBtE-13NtVi0hcP6dZ1oNuKh67y1DjzDO-RT1-Um32S-t6zMnv32h5rjf77TXbLdElJ60Myge2TD5ffJ7d9kCh-Qz0O9XFQ_v_-oioWD2FbRNsGdZnX-B60K6vJznD8001_wBBYtPEUlihJqaeClFDUzF23eHZTQS7ydjZ6VF9nVQ3I6fDM9HPXbexn6FvXqwY-RCSNnpQbyYgKrGfNamoEJpM5skmTasoHwGUr9eSczx2ANhQ8Xr0Ohg9CwR2QzL3L3mFDDrPCMi9g6wwfMCFhAubGJlbXuT9gjLzoPqctGfkM1QsuRgrFSOFY98qp23cpAl3NMVxvE6mP6Vs2C6SRKx8dq2CO7nW9Vi9QrBYwHPpIZizm0tSoGjOGPE527Yok2POTA82QAbTVzYtUYynMfXXw4UEV5pubVuQLGCEEfDGtH_7XX6iQ9xOfOvxo-JzdH08lYjd-l75-QW0DcOGYxRPEu2azKpXsK5Kgyz2oQ_AKpCg2c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAcoDwqFkoxEuKWNomdrH2sug2ltBGqWlgJCcvPttolWaVZCXHqT-hv5Jd0nMeWRUJCnHLwWHZmPJ7PyfgbhN46Rh0ADUBuSSwDmhrwOeeSQHPKeGggQjdF-47ydP-UHoyTcZdV6e_CtPwQiw9u3jOa_do7-My47VvS0Ar8J-aM3UWrNCWxP3iNjm-pozhvC9oCAg4YoJieeDaMt_ueS6Fo1Wv1xzLObLlDl2FrE3eyR-hrP-M23WSyNa_Vlv75B5nj_73SGnrYwVG8066fx-iOLZ6gB7-RFD5F3zI5n9a_rq7rcmohstW4S2_Hpsn-wHWJbXHuVw828ru_f4VLhz0PRQW9JKBS7Bkzp13WHbTgma_Nhs-qC3P5DJ1meye7-0FXlSHQnq0erBirKLaaS4AuKtSSECe5GqqQS6PT1EhNhswZT_TnLDeWwA4KxxYnIybDSJF1tFKUhX2OsCKaOUJZoq2iQ6IYbJ9U6VTzhvUnGqA3vYHErCXfEC3NcixAV8LraoDeNZZbCMhq4pPVhon4kr8X4_DkKM4PD0Q2QBu9aUXnp5cC8A4ckQlJKIy1aAYP879NZGHLuZehEQWUx0MYq10Si8E8Offo4vOOKKszManPBeBFCPkg2Nj5r7MWx_muf774V8HX6N6nUSYOP-QfX6L7gNqoT2GIkw20Uldz-wqQUa02Gxe4AYfWDEs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault%E2%80%90tolerant+control+design+to+enhance+damping+of+inter%E2%80%90area+oscillations+in+power+grids&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Segundo%E2%80%89Sevilla%2C+F.+R.&rft.au=Jaimoukha%2C+I.&rft.au=Chaudhuri%2C+B.&rft.au=Korba%2C+P.&rft.date=2014-05-25&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=24&rft.issue=8-9&rft.spage=1304&rft.epage=1316&rft_id=info:doi/10.1002%2Frnc.2988&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_2988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon