Tropical Cyclone Frequency
The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth,...
Saved in:
Published in | Earth's future Vol. 9; no. 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.12.2021
American Geophysical Union (AGU) Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency.
Plain Language Summary
The term tropical cyclone frequency refers to the average number of tropical cyclones (also known as hurricanes, typhoons, etc.) which occur each year, either over the earth as a whole or in smaller regions. In this paper, the authors review the state of the science regarding what is known about tropical cyclone frequency. The state of the science is not great. There are around 80 tropical cyclones in a typical year, and we do not know why it is this number and not a much larger or smaller one. We also do not know much about whether this number should increase or decrease as the planet warms‐‐‐thus far, it has not done much of either on the global scale, though there are larger changes in some particular regions. No existing theory predicts tropical cyclone frequency. In this situation, we are left with numerical models as our primary tool, and the authors discuss the strengths, weaknesses, and different ways of using such models to investigate tropical cyclone frequency. Idealized simulations, in which the planet is made simpler than it really is, are allowing some new insights. Another promising avenue of investigation involves studying the weaker disturbances that sometimes strengthen into tropical cyclones.
Key Points
We do not understand why the number of tropical cyclones per year is what it is, nor how it may be changing
In the absence of theory, our main tools are numerical models
Promising research directions include idealized simulations at high resolution and study of precursor disturbances, or "seeds" |
---|---|
AbstractList | The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency. The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency. The term tropical cyclone frequency refers to the average number of tropical cyclones (also known as hurricanes, typhoons, etc.) which occur each year, either over the earth as a whole or in smaller regions. In this paper, the authors review the state of the science regarding what is known about tropical cyclone frequency. The state of the science is not great. There are around 80 tropical cyclones in a typical year, and we do not know why it is this number and not a much larger or smaller one. We also do not know much about whether this number should increase or decrease as the planet warms‐‐‐thus far, it has not done much of either on the global scale, though there are larger changes in some particular regions. No existing theory predicts tropical cyclone frequency. In this situation, we are left with numerical models as our primary tool, and the authors discuss the strengths, weaknesses, and different ways of using such models to investigate tropical cyclone frequency. Idealized simulations, in which the planet is made simpler than it really is, are allowing some new insights. Another promising avenue of investigation involves studying the weaker disturbances that sometimes strengthen into tropical cyclones. We do not understand why the number of tropical cyclones per year is what it is, nor how it may be changing In the absence of theory, our main tools are numerical models Promising research directions include idealized simulations at high resolution and study of precursor disturbances, or "seeds" Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency. Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency. The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency. Plain Language Summary The term tropical cyclone frequency refers to the average number of tropical cyclones (also known as hurricanes, typhoons, etc.) which occur each year, either over the earth as a whole or in smaller regions. In this paper, the authors review the state of the science regarding what is known about tropical cyclone frequency. The state of the science is not great. There are around 80 tropical cyclones in a typical year, and we do not know why it is this number and not a much larger or smaller one. We also do not know much about whether this number should increase or decrease as the planet warms‐‐‐thus far, it has not done much of either on the global scale, though there are larger changes in some particular regions. No existing theory predicts tropical cyclone frequency. In this situation, we are left with numerical models as our primary tool, and the authors discuss the strengths, weaknesses, and different ways of using such models to investigate tropical cyclone frequency. Idealized simulations, in which the planet is made simpler than it really is, are allowing some new insights. Another promising avenue of investigation involves studying the weaker disturbances that sometimes strengthen into tropical cyclones. Key Points We do not understand why the number of tropical cyclones per year is what it is, nor how it may be changing In the absence of theory, our main tools are numerical models Promising research directions include idealized simulations at high resolution and study of precursor disturbances, or "seeds" |
Author | Wing, Allison A. Lee, Chia‐Ying Camargo, Suzana J. Vecchi, Gabriel A. Tippett, Michael K. Patricola, Christina M. Sobel, Adam H. |
Author_xml | – sequence: 1 givenname: Adam H. orcidid: 0000-0003-3602-0567 surname: Sobel fullname: Sobel, Adam H. email: ahs129@columbia.edu organization: Columbia University – sequence: 2 givenname: Allison A. orcidid: 0000-0003-2194-8709 surname: Wing fullname: Wing, Allison A. organization: Florida State University – sequence: 3 givenname: Suzana J. orcidid: 0000-0002-0802-5160 surname: Camargo fullname: Camargo, Suzana J. organization: Columbia University – sequence: 4 givenname: Christina M. orcidid: 0000-0002-3387-0307 surname: Patricola fullname: Patricola, Christina M. organization: Iowa State University – sequence: 5 givenname: Gabriel A. orcidid: 0000-0002-5085-224X surname: Vecchi fullname: Vecchi, Gabriel A. organization: Princeton University – sequence: 6 givenname: Chia‐Ying surname: Lee fullname: Lee, Chia‐Ying organization: Columbia University – sequence: 7 givenname: Michael K. orcidid: 0000-0002-7790-5364 surname: Tippett fullname: Tippett, Michael K. organization: Columbia University |
BackLink | https://www.osti.gov/biblio/1835943$$D View this record in Osti.gov |
BookMark | eNp9kM1LAzEQxYNUsNbePHkqerWaj00mOUrpakHwUs8hm81qyrqp2S2y_72pK1IEnUuG8Jv3Zt4pGjWhcQidE3xDMFW3FFOyzDGmFPgRGlNG5TyjAKOD_gRN23aDUynAjMMYXaxj2Hpr6tmit3VSnOXRve9cY_szdFyZunXT73eCnvPlevEwf3y6Xy3uHuc2Y4LPeWk4JyA4A6gIKRxYAGmdtCCSjypViR3jRmCZiVJUuCrA4VIUUFBOXcYmaDXolsFs9Db6NxN7HYzXXx8hvmgTO29rp0vFlFVlJjNXZFjYgoKVjgklGMOSi6R1OWiFtvO6tb5z9tWGpnG200QyrjKWoKsB2saQTm07vQm72KQbNRUkxScB9lLXA2VjaNvoqp_VCNb7xPVh4gmnv_Bkbjofmi4aX_81RIahD1-7_l8DvczXVBHOPgFqnY4C |
CitedBy_id | crossref_primary_10_1016_j_margeo_2024_107303 crossref_primary_10_1016_j_tcrr_2023_10_001 crossref_primary_10_5194_esurf_12_1145_2024 crossref_primary_10_1038_s41612_023_00516_x crossref_primary_10_1002_qj_4850 crossref_primary_10_1029_2024PA004870 crossref_primary_10_1038_s41612_025_00919_y crossref_primary_10_1007_s40518_023_00224_3 crossref_primary_10_1038_s41467_023_41911_5 crossref_primary_10_3390_jmse12101707 crossref_primary_10_1038_s41467_025_56433_5 crossref_primary_10_1029_2022JD037471 crossref_primary_10_1029_2024JD042615 crossref_primary_10_1007_s10113_024_02331_3 crossref_primary_10_1029_2022GL100590 crossref_primary_10_1038_s41612_024_00721_2 crossref_primary_10_3390_jmse11050946 crossref_primary_10_1002_joc_8180 crossref_primary_10_1007_s00382_024_07138_w crossref_primary_10_1038_s41598_024_51420_0 crossref_primary_10_1088_1748_9326_ad4976 crossref_primary_10_1126_sciadv_adi2779 crossref_primary_10_1007_s00550_024_00544_y crossref_primary_10_1016_j_quascirev_2023_108242 crossref_primary_10_3390_ijgi12080341 crossref_primary_10_1029_2023GL105864 crossref_primary_10_1029_2023JD038508 crossref_primary_10_1016_j_pce_2024_103642 crossref_primary_10_1029_2023GL102879 crossref_primary_10_1029_2022GL099354 crossref_primary_10_1038_s41467_023_43532_4 crossref_primary_10_3390_atmos15060655 crossref_primary_10_1016_j_gloplacha_2023_104319 crossref_primary_10_1126_sciadv_adf0259 crossref_primary_10_1038_s41612_023_00546_5 crossref_primary_10_1016_j_wace_2024_100683 crossref_primary_10_1103_PhysRevE_110_041001 crossref_primary_10_1007_s00382_024_07359_z crossref_primary_10_1002_joc_8598 crossref_primary_10_1029_2023EF003479 crossref_primary_10_1029_2022EF003097 crossref_primary_10_1111_nyas_15116 crossref_primary_10_1088_1748_9326_adad85 crossref_primary_10_5194_gmd_17_6195_2024 crossref_primary_10_1038_s41558_022_01388_4 crossref_primary_10_1007_s40710_023_00649_4 crossref_primary_10_7837_kosomes_2024_30_6_541 crossref_primary_10_1080_02723646_2024_2313778 crossref_primary_10_1088_1748_9326_adaa8d crossref_primary_10_1029_2023EF004056 crossref_primary_10_1038_s41597_024_02952_7 crossref_primary_10_1016_j_scib_2024_12_036 crossref_primary_10_1088_2515_7620_acb52a crossref_primary_10_1007_s00376_022_2212_1 crossref_primary_10_1002_ecs2_4915 crossref_primary_10_1016_j_gsf_2025_102012 crossref_primary_10_1016_j_ijdrr_2023_103796 crossref_primary_10_3390_atmos13121945 crossref_primary_10_1080_00206814_2025_2450808 crossref_primary_10_1007_s00382_024_07370_4 crossref_primary_10_1007_s00382_024_07458_x crossref_primary_10_1007_s41748_025_00571_9 crossref_primary_10_1038_s41467_022_35530_9 crossref_primary_10_1007_s00382_024_07523_5 crossref_primary_10_1016_j_wace_2024_100742 crossref_primary_10_1109_TGRS_2023_3266814 crossref_primary_10_1126_sciadv_adl2142 crossref_primary_10_1029_2022EF003118 crossref_primary_10_1051_e3sconf_202452003023 crossref_primary_10_3390_rs17010118 crossref_primary_10_1029_2022GL100267 crossref_primary_10_1029_2023GL105491 crossref_primary_10_1029_2021EF002600 crossref_primary_10_1016_j_isci_2024_111714 |
Cites_doi | 10.1002/2016GL067730 10.1029/2011GL047629 10.2151/jmsj.2021-029 10.1007/s00382-015-2602-5 10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2 10.1175/2009JCLI3303.1 10.1029/2006EO240001 10.1175/JCLI3457.1 10.1175/BAMS-D-18-0042.1 10.1175/2009BAMS2755.1 10.1175/JCLI-D-19-0639.1 10.1007/s40641-018-0110-5 10.1002/2014MS000342 10.1029/2019MS002024 10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2 10.1038/nature06423 10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2 10.5194/gmd-11-793-2018 10.1038/s41561-018-0137-1 10.1073/pnas.1720683115 10.1007/s00382-019-04913-y 10.1002/2017GL076966 10.1038/ngeo1008 10.1126/science.1060040 10.1002/2015MS000519 10.1175/JCLI-D-12-00638.1 10.1175/BAMS-D-11-00165.1 10.1002/2015GL063974 10.1029/2010GL045124 10.1029/2018JD029375 10.1175/JCLI-D-12-00823.1 10.1029/2007GL030740 10.1111/j.1600-0870.2007.00238.x 10.1029/2020GL088662 10.1029/2006GL028581 10.1002/2014MS000372 10.1029/2020GL089512 10.1142/9789814293488_0011 10.1007/s11069-016-2389-7 10.1029/92JC01586 10.1002/2017MS001199 10.1029/GL017i011p01917 10.1175/JCLI4282.1 10.1175/JCLI-D-14-00158.1 10.1038/nature13278 10.1002/2017JD026492 10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2 10.1175/JAS-D-14-0284.1 10.1002/wcc.338 10.1146/annurev.energy.25.1.441 10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2 10.1175/2009JCLI3049.1 10.1175/JCLI-D-16-0298.1 10.1073/pnas.2010547117 10.1002/qj.828 10.1029/2006GL028905 10.1175/BAMS-D-18-0189.1 10.1029/2020MS002086 10.1002/2016GL071965 10.1175/JCLI-D-18-0599.1 10.1002/joc.5463 10.1175/JAS-D-15-0049.1 10.1186/s40645-020-00397-1 10.1029/2020GL091980 10.1175/JCLI-D-12-00135.1 10.1175/JCLI-D-11-00619.1 10.1175/BAMS-D-13-00242.1 10.1175/JCLI-D-20-0409.1 10.1175/BAMS-88-11-1767 10.1002/2015GL064929 10.1175/JCLI-D-15-0054.1 10.3894/JAMES.2010.2.1 10.1175/JAS-D-20-0094.1 10.1007/s13143-010-0013-4 10.1175/2007JAS2604.1 10.22499/2.6401.003 10.1175/JCLI-D-19-0500.1 10.1175/BAMS-D-18-0194.1 10.1073/pnas.1301293110 10.1175/JAS3614.1 10.1002/wcc.602 10.1175/JAS-D-19-0001.1 10.5194/gmd-9-4185-2016 10.1002/2016MS000785 10.2151/sola.2005-035 10.1038/nature01092a 10.1175/JCLI-D-19-0079.1 10.1007/s00382-018-4134-2 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 10.1175/JCLI-D-12-00061.1 10.1126/sciadv.abg6931 10.1175/JCLI-D-11-00050.1 10.1175/BAMS-D-15-00274.1 10.1175/2008WAF2007099.1 10.1175/JCLI-D-18-0862.1 10.1038/nature12855 10.1002/qj.3803 10.1038/s41558-019-0505-x 10.1029/2009GL041469 10.1080/07055900.1997.9649597 10.1002/wcc.371 10.1029/2019GL085406 10.1175/JCLI-D-14-00131.1 10.1016/j.tcrr.2019.10.003 10.2151/sola.2020-012 10.1038/ngeo955 10.5194/cp-17-675-2021 10.1175/MWR3435.1 10.2151/jmsj.2015-001 10.1175/JAS-D-16-0195.1 10.1175/2009JCLI3034.1 10.1175/JAS-D-15-0380.1 10.1029/2021GL093259 10.2151/jmsj.84.405 10.1073/pnas.2013584117 10.1175/2010MWR3499.1 10.1002/qj.170 10.1175/2010BAMS3001.1 10.1175/JCLI-D-13-00505.1 10.1175/JAS3604.1 10.1002/2017GL076081 10.1175/JAS-D-13-0190.1 10.1175/BAMS-89-3-347 10.1175/JAS-D-20-0079.1 10.1007/s00382-020-05446-5 10.3402/tellusa.v68.31494 10.1029/2008GL034147 10.1007/s40641-019-00131-0 10.1175/JCLI-D-16-0273.1 10.1175/JCLI-D-19-0452.1 10.1029/2019MS002020 10.1038/ngeo779 10.1002/jame.20032 10.1175/MWR-D-14-00021.1 10.1175/WAF-D-13-00008.1 10.1038/s41558-018-0227-5 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2 10.1002/2015MS000543 10.1175/2010JAS3318.1 10.1175/JAS-D-19-0044.1 10.1002/2013MS000253 10.1175/JCLI-D-16-0836.1 10.5194/acp-19-8383-2019 10.1007/s00382-012-1407-z 10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2 10.1175/JAS-D-18-0357.1 10.1175/JCLI-D-12-00033.1 10.1002/2016GL071236 10.1175/JCLI-D-16-0292.1 10.1002/2016GL071337 10.1029/2009GL039849 10.1007/s40641-019-00133-y 10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2 10.1029/2006GL027969 10.1175/JCLI-D-15-0216.1 10.1175/2010JCLI3811.1 10.1029/2006GL028607 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2 10.1126/science.aab3980 10.1175/JCLI-D-16-0358.1 10.1175/JCLI-D-17-0269.1 10.2151/jmsj.2012-A24 10.1175/2010JCLI3690.1 10.1175/JCLI-D-17-0898.1 10.1002/qj.706 10.1038/s41467-021-24268-5 10.1002/grl.50680 10.1038/s41558-017-0008-6 10.1175/JCLI-D-20-0574.1 10.1038/nature13636 10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2 10.1175/2010MWR3488.1 10.1175/JAS-D-15-0027.1 10.1175/MWR-D-13-00179.1 10.1175/2009JAS3101.1 10.1051/0004-6361/202038203 10.1002/jame.20020 10.1007/s10236-015-0854-6 10.1175/JAS-D-17-0061.1 10.1073/pnas.1719967115 10.1007/s00382-018-4577-5 10.1175/JCLI-D-16-0758.1 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Florida State Univ., Tallahassee, FL (United States) Columbia Univ., New York, NY (United States) Iowa State Univ., Ames, IA (United States) Princeton Univ., NJ (UNited States) |
CorporateAuthor_xml | – name: Iowa State Univ., Ames, IA (United States) – name: Princeton Univ., NJ (UNited States) – name: Florida State Univ., Tallahassee, FL (United States) – name: Columbia Univ., New York, NY (United States) |
DBID | 24P AAYXX CITATION 7ST 7TG ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ KL. PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI OTOTI DOA |
DOI | 10.1029/2021EF002275 |
DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2328-4277 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_d939c9d484eb406cb27c8e3696330856 1835943 10_1029_2021EF002275 EFT2915 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Swiss Re Institute – fundername: DOE, SC, Biological and Environmental Research (BER) funderid: DE‐SC0021109 – fundername: NOAA funderid: NA18OAR4310270; NA18OAR4310418; NA18OAR4310277 |
GroupedDBID | 0R~ 1OC 24P 5VS 7XC 8-1 8FE 8FH 8GL AAHBH AAHHS AAZKR ACCFJ ACCMX ACQOY ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EDH EJD GICCO GODZA GROUPED_DOAJ HCIFZ IEP ISN ITC LK5 M7R M~E OK1 PATMY PCBAR PIMPY PROAC PYCSY SUPJJ WIN ~OA AAYXX CITATION PHGZM PHGZT 7ST 7TG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO GNUQQ KL. PKEHL PQEST PQQKQ PQUKI PRINS SOI OTOTI PUEGO |
ID | FETCH-LOGICAL-c4365-5da551765377f11be7c778ce8c760099d9d0e35a60846d6f0fb7e0d6b7b252e43 |
IEDL.DBID | 24P |
ISSN | 2328-4277 |
IngestDate | Wed Aug 27 01:28:34 EDT 2025 Sun Jul 13 03:03:14 EDT 2025 Mon Jul 14 06:48:45 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Tue Jul 01 02:48:24 EDT 2025 Wed Jan 22 16:27:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4365-5da551765377f11be7c778ce8c760099d9d0e35a60846d6f0fb7e0d6b7b252e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0021109 DOE-IowaState-DE-SC0021109 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0002-3387-0307 0000-0002-5085-224X 0000-0003-3602-0567 0000-0003-2194-8709 0000-0002-0802-5160 0000-0002-7790-5364 0000000208025160 0000000336020567 0000000277905364 0000000321948709 000000025085224X 0000000233870307 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002275 |
PQID | 2612758776 |
PQPubID | 2034575 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d939c9d484eb406cb27c8e3696330856 osti_scitechconnect_1835943 proquest_journals_2612758776 crossref_primary_10_1029_2021EF002275 crossref_citationtrail_10_1029_2021EF002275 wiley_primary_10_1029_2021EF002275_EFT2915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis – name: United States |
PublicationTitle | Earth's future |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU) Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) – name: Wiley |
References | 2015; 72 2019; 10 2005; 62 2014; 27 2020; 16 2019; 19 2008; 35 2020; 12 2018; 45 2013; 5 1993; 121 1979 2007a; 450 2010; 23 2020a; 33 2017; 74 2018; 8 2021; 76 2021; 78 2018; 4 2000; 128 1948; 3 2016; 43 2013; 110 2012; 25 2010; 3 2010; 2 2018; 31 2018; 38 2007b; 34 2019; 8 2009; 66 2011; 137 2021; 48 2019; 9 2010; 37 2019; 5 2011; 139 2013; 504 2019; 32 2012b; 25 2016; 97 2002; 419 2020; 33 2020; 146 2019; 100 2015; 350 2016; 7 2010; 46 2019; 46 1997; 35 2018; 115 2012; 90A 2019; 47 2015; 65 2005; 1 2016; 29 2018; 11 2007; 88 2018; 10 2005; 18 2014; 142 2010a; 3 1998; 79 2006; 71 2017; 7 2013; 26 2004; 61 2013; 28 2019; 53 2019; 52 1990; 17 2017; 44 1979; 107 2020; 643 2016; 73 2020; 55 2020; 125 2020b; 47 1992; 97 2007; 34 2017; 9 2014; 64 2010; 67 2015; 46 2017; 30 2007; 135 2006; 63 2001; 293 2021; 31 2021; 34 1986; 43 1984; 112 2015; 42 2007; 133 1981; 38 2020; 47 2008; 65 2011; 24 2016; 83 2007; 20 2017; 122 2014; 6 1968; 96 2012a; 25 2021; 8 2009; 22 2004; 85 2009; 24 2014; 513 2015; 6 2013; 49 2000; 25 2015; 93 2012 2010 2019; 76 2013; 40 2015; 96 2020; 101 2020; 77 2011; 38 2007; 56 2015; 7 2010b; 3 2017; 108 1997; 125 2012; 93 2009; 36 2015; 28 2021; 99 2006; 84 2014; 509 2021 2020 2010; 136 2021; 17 1998; 108 2008; 89 2020; 117 2017 2016 2003; 60 2007; 59A 2010; 91 2014; 71 2016; 68 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 Gray W. M. (e_1_2_9_52_1) 1979 e_1_2_9_119_1 e_1_2_9_60_1 Palmén E. (e_1_2_9_115_1) 1948; 3 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 Kaplan A. (e_1_2_9_73_1) 1998; 108 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 Neale R. B. (e_1_2_9_109_1) 2012 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_174_1 Emanuel K. A. (e_1_2_9_44_1) 2004; 85 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_173_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 Izumo T. (e_1_2_9_67_1) 2019; 47 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_2_1 e_1_2_9_138_1 Nolan D. S. (e_1_2_9_111_1) 2007; 56 e_1_2_9_26_1 e_1_2_9_49_1 Korty R. (e_1_2_9_84_1) 2012; 25 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 World Meteorological Organization (e_1_2_9_177_1) 2017 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 Vu T.‐A. (e_1_2_9_163_1) 2020 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 72 start-page: 3499 year: 2015 end-page: 3516 article-title: The formation of moist vortices and tropical cyclones in idealized simulations publication-title: Journal of the Atmospheric Sciences – volume: 48 year: 2021 article-title: Examining the role of cloud radiative interactions in tropical cyclone development using satellite measurements and wrf simulations publication-title: Geophysical Research Letters – volume: 115 start-page: 11465 issue: 45 year: 2018 end-page: 11470 article-title: Mean precipitation change from a deepening troposphere publication-title: Proceedings of the National Academy of Sciences – volume: 85 start-page: 666 year: 2004 end-page: 667 article-title: Tropical cyclone activity and global climate publication-title: Bulletin of the American Meteorological Society – volume: 2 year: 2010 article-title: Tropical cyclone activity downscaled from NOAA‐CIRES reanalysis, 1908‐1958 publication-title: Journal of Advances in Modeling Earth Systems – volume: 43 start-page: 585 issue: 6 year: 1986 end-page: 605 article-title: An air‐sea interaction theory for tropical cyclones. Part I: Steady‐state maintenance publication-title: Journal of the Atmospheric Sciences – volume: 110 start-page: 12219 year: 2013 end-page: 12224 article-title: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century publication-title: Proceedings of the National Academy of Sciences – volume: 5 start-page: 447 year: 2013 end-page: 458 article-title: Response of tropical sea surface temperature, precipitation, and tropical cyclone‐related variables to changes in global and local forcing publication-title: Journal of Advances in Modelling Earth Systems – volume: 17 start-page: 1917 year: 1990 end-page: 1920 article-title: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? publication-title: Geophysical Research Letters – volume: 49 start-page: 1949 year: 2013 end-page: 1968 article-title: Future changes in tropical cyclone activity in the North Indian Ocean projected by high‐resolution MRI‐AGCMs publication-title: Climate Dynamics – volume: 78 start-page: 877 year: 2021 end-page: 902 article-title: Idealized aquaplanet simulations of tropical cyclone activity: Significance of temperature gradients, Hadley circulation, and zonal asymmetry publication-title: Journal of the Atmospheric Sciences – volume: 643 start-page: A37 year: 2020 article-title: Hurricanes on tidally locked terrestrial planets: Fixed surface temperature experiments publication-title: Astronomy & Astrophysics – volume: 10 issue: 5 year: 2019 article-title: Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends publication-title: WIREs Climate Change – volume: 139 start-page: 1070 year: 2011 end-page: 1082 article-title: Dynamical predictions of seasonal North Atlantic hurricane activity publication-title: Monthly Weather Review – volume: 27 start-page: 7994 issue: 21 year: 2014 end-page: 8016 article-title: On the seasonal forecasting of regional tropical cyclone activity publication-title: Journal of Climate – volume: 37 issue: 21 year: 2010 article-title: Global warming shifts pacific tropical cyclone location publication-title: Geophysical Research Letters – volume: 26 start-page: 6067 year: 2013 end-page: 6080 article-title: Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble publication-title: Journal of Climate – volume: 26 start-page: 380 year: 2013 end-page: 398 article-title: Seasonal predictions of tropical cyclones using a 25‐km general circulation model publication-title: Journal of Climate – volume: 34 year: 2007 article-title: Evolution of convection during tropical cyclogenesis publication-title: Geophysical Research Letters – volume: 53 start-page: 173 issue: 1–2 year: 2019 end-page: 192 article-title: The impact of climate model sea surface temperature biases on tropical cyclone simulations publication-title: Climate Dynamics – volume: 33 start-page: 1725 year: 2020 end-page: 1745 article-title: Exploring controls on tropical cyclone count through the geography of environmental favorability publication-title: Journal of Climate – volume: 56 start-page: 241 year: 2007 end-page: 266 article-title: What is the trigger for tropical cyclogenesis? publication-title: Australian Meterological Magazine – volume: 76 year: 2021 article-title: Improved simulation of 19th and 20th century north Atlantic hurricane frequency after correcting historical sea surface temperatures publication-title: Science Advances – volume: 100 start-page: 1665 year: 2019 end-page: 1686 article-title: Process‐oriented evaluation of climate and weather forecasting models publication-title: Bulletin of the American Meteorological Society – volume: 3 start-page: 157 year: 2010 end-page: 163 article-title: Tropical cyclones and climate change publication-title: Nature Geoscience – volume: 509 start-page: 349 year: 2014 end-page: 352 article-title: The poleward migration of the location of tropical cyclone maximum intensity publication-title: Nature – volume: 12 year: 2020 article-title: Response of tropical cyclone formation and intensification rates to climate warming in idealized simulations publication-title: Journal of Advances in Modeling Earth Systems – volume: 3 start-page: 26 year: 1948 end-page: 38 article-title: On the formation and structure of tropical hurricanes publication-title: Geophysica – volume: 79 start-page: 19 issue: 1 year: 1998 end-page: 38 article-title: Tropical cyclones and global climate change: A post‐IPCC assessment publication-title: Bulletin of the American Meteorological Society – volume: 29 start-page: 8589 year: 2016 end-page: 8610 article-title: Tropical cyclone intensity errors associated with lack of two‐way ocean coupling in high‐resolution global simulations publication-title: Journal of Climate – volume: 47 year: 2020b article-title: Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble publication-title: Geophysical Research Letters – volume: 128 start-page: 1139 issue: 4 year: 2000 end-page: 1152 article-title: A statistical analysis of tropical cyclone intensity publication-title: Monthly Weather Review – volume: 24 start-page: 183 issue: 1 year: 2011 end-page: 193 article-title: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single‐column model publication-title: Journal of Climate – volume: 93 start-page: 1901 issue: 12 year: 2012 end-page: 1912 article-title: A ventilation index for tropical cyclones publication-title: Bulletin of the American Meteorological Society – volume: 135 start-page: 3587 issue: 10 year: 2007 end-page: 3598 article-title: The interannual variability of tropical cyclones publication-title: Monthly Weather Review – volume: 31 start-page: 8281 issue: 20 year: 2018 end-page: 8303 article-title: Projected response of tropical cyclone intensity and intensification in a global climate model publication-title: Journal of Climate – volume: 53 start-page: 5999 issue: 9–10 year: 2019 end-page: 6033 article-title: Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes publication-title: Climate Dynamics – volume: 122 start-page: 6284 year: 2017 end-page: 6297 article-title: Replicating annual north Atlantic hurricane activity 1878‐2012 from environmental variables publication-title: Journal of Geophysical Research – volume: 24 start-page: 472 year: 2009 end-page: 491 article-title: Experimental seasonal dynamical forecasts of tropical cyclone activity at IRI publication-title: Weather Forecasting – volume: 5 start-page: 172 year: 2019 end-page: 184 article-title: Global cloud resolving models publication-title: Current Climate Change Reports – volume: 45 start-page: 471 issue: 1 year: 2018 end-page: 479 article-title: The response of Atlantic tropical cyclones to suppression of African easterly waves publication-title: Geophysical Research Letters – volume: 513 start-page: 45 year: 2014 end-page: 53 article-title: Migrations and dynamics of the intertropical convergence zone publication-title: Nature – volume: 24 start-page: 2335 year: 2011 end-page: 2357 article-title: A Poisson regression index for tropical cyclone genesis and the role of large‐scale vorticity in genesis publication-title: Journal of Climate – volume: 73 start-page: 525 year: 2016 end-page: 544 article-title: Convective self‐aggregation and tropical cyclogenesis under the hypohydrostatic rescaling publication-title: Journal of the Atmospheric Sciences – volume: 30 start-page: 5419 issue: 14 year: 2017 end-page: 5454 article-title: The modern‐era retrospective analysis for research and applications, Version 2 (MERRA‐2) publication-title: Journal of Climate – volume: 34 year: 2007 article-title: Tropical sea surface temperature, vertical wind shear, and hurricane development publication-title: Geophysical Research Letters – volume: 77 start-page: 1261 year: 2020 end-page: 1277 article-title: The role of radiation in accelerating tropical cyclogenesis in idealized simulations publication-title: Journal of the Atmospheric Sciences – volume: 10 start-page: 165 year: 2018 end-page: 186 article-title: Tropical cyclone activity in the high‐resolution Community Earth System Model and the impact of ocean coupling publication-title: Journal of Advances in Modeling Earth Systems – volume: 137 start-page: 553 year: 2011 end-page: 597 article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 25 start-page: 8196 year: 2012b end-page: 8211 article-title: Variations in tropical cyclone genesis factors in simulations of the Holocene Epoch publication-title: Journal of Climate – volume: 31 start-page: 659 year: 2021 end-page: 674 article-title: Tropical cyclones downscaled from simulations of the last glacial maximum publication-title: Journal of Climate – volume: 35 year: 2008 article-title: Increased sensitivity of tropical cyclogenesis to wind shear in higher sst environments publication-title: Geophysical Research Letters – volume: 450 start-page: 1066 issue: 7172 year: 2007a end-page: 1070 article-title: Effect of remote sea surface temperature change on tropical cyclone potential intensity publication-title: Nature – volume: 4 start-page: 355 year: 2018 end-page: 370 article-title: Response of the intertropical convergence zone to climate change: Location, width, and strength publication-title: Current Climate Change Reports – volume: 44 start-page: 587 year: 2017 end-page: 595 article-title: Revisiting the connection between African Easterly Waves and Atlantic tropical cyclogenesis publication-title: Geophysical Research Letters – volume: 46 start-page: 619 year: 2015 end-page: 636 article-title: Inhomogeneous warming of the tropical Indian Ocean in the CMIP5 model simulations during 1900‐2005 and associated mechanisms publication-title: Climate Dynamics – volume: 293 start-page: 474 year: 2001 end-page: 479 article-title: The recent increase in Atlantic hurricane activity: Causes and implications publication-title: Science – year: 2020 article-title: A numerical study of the global formation of tropical cyclones publication-title: Journal of Advances in Modeling Earth Systems – volume: 7 start-page: 1872 year: 2015 article-title: The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state publication-title: Journal of Advances in Modeling Earth Systems – volume: 42 start-page: 6780 year: 2015 end-page: 6784 article-title: More tropical cyclones in a cooler climate? publication-title: Geophysical Research Letters – volume: 91 start-page: 1015 year: 2010 end-page: 1058 article-title: The NCEP climate forecast system reanalysis publication-title: Bulletin of the American Meteorological Society – volume: 99 start-page: 579 year: 2021 end-page: 602 article-title: Tropical cyclones in global storm‐resolving models publication-title: Journal of the Meteorological Society of Japan. – volume: 74 start-page: 879 year: 2017 end-page: 892 article-title: Tropical cyclones in rotating radiative‐convective equilibrium with coupled SST publication-title: Journal of the Atmospheric Sciences – volume: 43 start-page: 2859 year: 2016 end-page: 2865 article-title: Surface temperature dependence of tropical cyclone‐permitting simulations in a spherical model with uniform thermal forcing publication-title: Geophysical Research Letters – volume: 73 start-page: 2633 year: 2016 end-page: 2642 article-title: Role of radiative‐convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations publication-title: Journal of the Atmospheric Sciences – volume: 83 start-page: 1717 year: 2016 end-page: 1729 article-title: Northern hemisphere tropical cyclones during the quasi‐El Niño of late 2014 publication-title: Natural Hazards – volume: 33 start-page: 2557 year: 2020a end-page: 2583 article-title: Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble publication-title: Journal of Climate – volume: 71 start-page: 1058 year: 2014 end-page: 1068 article-title: Parameter study of tropical cyclones in rotating radiative‐convective equilibrium with column physics and resolution of a 25 km GCM publication-title: Journal of the Atmospheric Sciences – volume: 125 start-page: 2662 year: 1997 end-page: 2682 article-title: The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study publication-title: Monthly Weather Review – volume: 101 start-page: E303 year: 2020 end-page: E322 article-title: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming publication-title: Bulletin of the American Meteorological Society – volume: 63 start-page: 355 year: 2006 end-page: 386 article-title: A vortical hot tower route to tropical cyclogenesis publication-title: Journal of the Atmospheric Sciences – volume: 6 start-page: 1154 issue: 4 year: 2014 end-page: 1172 article-title: Characteristics of tropical cyclones in high‐resolution models in the present climate publication-title: Journal of Advances in Modeling Earth Systems – volume: 19 start-page: 8383 year: 2019 end-page: 8397 article-title: Large‐scale dynamics of tropical cyclone formation associated with ITCZ breakdown publication-title: Atmospheric Chemistry and Physics – volume: 6 start-page: 616 year: 2014 end-page: 629 article-title: Large‐scale character of an atmosphere in rotating radiative‐convective equilibrium publication-title: Journal of Advances in Modeling Earth Systems – volume: 12 issue: 8 year: 2020 article-title: Characterizing tropical cyclones in the Energy Exascale Earth System Model Version 1 publication-title: Journal of Advances in Modeling Earth Systems – volume: 26 start-page: 2563 issue: 8 year: 2013 end-page: 2579 article-title: Analysis of tropical cyclone precipitation using an object‐based algorithm publication-title: Journal of Climate – volume: 65 start-page: 1037 year: 2015 end-page: 1046 article-title: Understanding the Indian Ocean response to double CO2 forcing in a coupled model publication-title: Ocean Dynamics – volume: 139 start-page: 689 year: 2011 end-page: 710 article-title: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs publication-title: Monthly Weather Review – volume: 11 start-page: 793 year: 2018 end-page: 813 article-title: Radiative–convective equilibrium model intercomparison project publication-title: Geoscientific Model Development – volume: 34 year: 2007 article-title: Relationship between the potential and actual intensities of tropical cyclones on interannual time scales publication-title: Geophysical Research Letters – volume: 96 start-page: 669 year: 1968 end-page: 700 article-title: Global view of the origin of tropical disturbances and storms publication-title: Monthly Weather Review – volume: 61 start-page: 1209 year: 2004 end-page: 1232 article-title: The role of vortical hot towers in the formation of tropical cyclone Diana (1984) publication-title: Journal of the Atmospheric Sciences – volume: 23 start-page: 1526 issue: 6 year: 2010 end-page: 1543 article-title: Contribution of tropical cyclones to the global precipitation from eight seasons of trmm data: Regional, seasonal, and interannual variations publication-title: Journal of Climate – volume: 7 start-page: 65 year: 2016 end-page: 89 article-title: Tropical cyclones and climate change publication-title: WIREs Climate Change – volume: 33 start-page: 1473 year: 2020 end-page: 1486 article-title: Real world and tropical cyclone world. Part II: Sensitivity of tropical cyclone formation to uniform and meridionally varying sea surface temperatures under aquaplanet conditions publication-title: Journal of Climate – start-page: 325 year: 2010 end-page: 360 – volume: 108 start-page: 567589 issue: 18 year: 1998 end-page: 567618 article-title: Analyses of global sea surface temperature 1856‐1991 publication-title: Journal of Geophysical Research – volume: 34 start-page: 2079 year: 2021 end-page: 2091 article-title: The role of radiative interactions in tropical cyclone development under realistic boundary conditions publication-title: Journal of Climate – volume: 66 start-page: 3061 year: 2009 end-page: 3074 article-title: Diagnosis of the mjo modulation of tropical cyclogenesis using an empirical index publication-title: Journal of the Atmospheric Sciences – volume: 32 start-page: 6071 year: 2019 end-page: 6095 article-title: Moist static energy budget analysis of tropical cyclone intensification in high‐resolution climate models publication-title: Journal of Climate – volume: 55 start-page: 3177 issue: 11 year: 2020 end-page: 3196 article-title: Large‐scale control on the frequency of tropical cyclones and seeds: A consistent relationship across a hierarchy of global atmospheric models publication-title: Climate Dynamics – volume: 33 start-page: 4815 issue: 11 year: 2020 end-page: 4834 article-title: Statistical–dynamical downscaling projections of tropical cyclone activity in a warming climate: Two diverging genesis scenarios publication-title: Journal of Climate – volume: 136 year: 2010 article-title: Thermodynamic control of tropical cyclogenesis in environments of radiative‐convective equilibrium with shear publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 38 start-page: 1132 year: 1981 end-page: 1151 article-title: Observational analysis of tropical cyclone formation. Part II: Comparison of non‐developing versus non‐developing Systems publication-title: Journal of the Atmospheric Sciences – volume: 90A start-page: 397 year: 2012 end-page: 408 article-title: On the mechanism of tropical cyclone frequency changes due to global warming publication-title: Journal of Meteorological Society of Japan – volume: 30 start-page: 3789 year: 2017 end-page: 3805 article-title: The central role of ocean dynamics in connecting the north atlantic oscillation to the extratropical component of the Atlantic multidecadal oscillation publication-title: Journal of Climate – volume: 142 start-page: 1221 year: 2014 end-page: 1239 article-title: Using variable‐resolution meshes to model tropical cyclones in the Community Atmosphere Model publication-title: Monthly Weather Review – volume: 18 start-page: 2996 year: 2005 end-page: 3006 article-title: Western North Pacific tropical cyclone intensity and ENSO publication-title: Journal of Climate – volume: 36 issue: 21 year: 2009 article-title: Global warming, convective threshold and false thermostats publication-title: Geophysical Research Letters – volume: 133 start-page: 2085 year: 2007 end-page: 2107 article-title: Tropical cyclonegenesis sensitivity to environmental parameters in radiative‐convective equilibrium publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 30 start-page: 359 issue: 1 year: 2017 end-page: 372 article-title: Contribution of tropical cyclones to rainfall at the global scale publication-title: Journal of Climate – volume: 96 start-page: 997 year: 2015 end-page: 1017 article-title: Hurricanes and climate: The U.S. CLIVAR Working Group on hurricanes publication-title: Bulletin of the American Meteorological Society – volume: 27 start-page: 9171 year: 2014 end-page: 9196 article-title: Testing the performance of tropical cyclone genesis indices in future climates using the HIRAM model publication-title: Journal of Climate – volume: 93 start-page: 5 issue: 1 year: 2015 end-page: 48 article-title: The JRA‐55 reanalysis: General specifications and basic characteristics publication-title: Journal of the Meteorological Society of Japan. Ser. II – volume: 44 start-page: 1167 year: 2017 end-page: 1174 article-title: A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones publication-title: Geophysical Research Letters – volume: 71 start-page: 233 year: 2006 article-title: Atlantic hurricane trends linked to climate change publication-title: EOS – volume: 33 start-page: 4463 year: 2020 end-page: 4487 article-title: Characteristics of model tropical cyclone climatology and the large‐scale environment publication-title: Journal of Climate – volume: 3 start-page: 842 year: 2010b end-page: 845 article-title: Variability and change of the sea surface temperature threshold for convection over tropical oceans publication-title: Nature Geosciences – volume: 7 start-page: 885 year: 2017 end-page: 889 article-title: Increasing frequency of extremely severe cyclonic storms over the Arabian Sea publication-title: Nature Climate Change – volume: 1 start-page: 133 year: 2005 end-page: 136 article-title: Tropical cyclone climatology in a high‐resolution AGCM ‐ Impacts of SST warming and CO2 increase publication-title: SOLA – volume: 76 start-page: 2193 year: 2019 end-page: 2220 article-title: Dry and semidry tropical cyclones publication-title: Journal of the Atmospheric Sciences – volume: 16 start-page: 70 year: 2020 end-page: 74 article-title: Future changes in the global frequency of tropical cyclone seeds publication-title: SOLA – volume: 47 year: 2020 article-title: A global analysis of interannual variability of potential and actual tropical cyclone intensities publication-title: Geophysical Research Letters – volume: 35 start-page: 367 year: 1997 end-page: 383 article-title: Documentation of a highly ENSO‐related SST region in the equatorial Pacific publication-title: Atmosphere‐Ocean – volume: 100 start-page: 1987 year: 2019 end-page: 2007 article-title: Tropical cyclones and climate change assessment: Part I. Detection and attribution publication-title: Bulletin of the American Meteorological Society – volume: 5 start-page: 134 year: 2013 end-page: 145 article-title: Hurricanes in an aquaplanet world: Implications of the impacts of external forcing and model horizontal resolution publication-title: Journal of Advances in Modeling Earth Systems – volume: 3 start-page: 688 issue: 10 year: 2010 end-page: 694 article-title: External forcing as a metronome for Atlantic multidecadal variability publication-title: Nature Geoscience – volume: 74 start-page: 2989 year: 2017 end-page: 2996 article-title: A simple derivation of tropical cyclone ventilation theory and its application to capped surface entropy fluxes publication-title: Journal of the Atmospheric Sciences – volume: 31 start-page: 1685 year: 2018 end-page: 1702 article-title: Process‐oriented diagnosis of tropical cyclones in high‐resolution GCMs publication-title: Journal of Climate – volume: 28 start-page: 1423 year: 2013 end-page: 1445 article-title: An evaluation of tropical cyclone genesis forecasts from global numerical models publication-title: Weather Forecasting – volume: 46 start-page: 135 year: 2010 end-page: 153 article-title: Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model publication-title: Asia‐Pacific Journal of Atmospheric Science – volume: 115 start-page: 2930 year: 2018 end-page: 2935 article-title: Acceleration of tropical cyclogenesis by self‐aggregation feedbacks publication-title: Proceedings of the National Academy of Sciences – volume: 125 year: 2020 article-title: Sub‐seasonal to seasonal prediction of weather to climate with application to tropical cyclones publication-title: Journal of Geophysical Research – volume: 34 year: 2007 article-title: Dynamically‐based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP publication-title: Geophysical Research Letters – volume: 59A start-page: 428 year: 2007 end-page: 443 article-title: Tropical cyclone genesis potential index in climate models publication-title: Tellus – volume: 48 year: 2021 article-title: Tropical cyclone frequency under varying SSTs in aquaplanet simulations publication-title: Geophysical Research Letters – volume: 112 start-page: 1649 year: 1984 end-page: 1668 article-title: Atlantic seasonal hurricane frequency. Part I: El‐Niño and 30‐MB quasi‐biennial oscillation influences publication-title: Monthly Weather Review – volume: 9 start-page: 4 year: 2017 end-page: 18 article-title: Variations in tropical cyclone frequency response to solar and CO forcing in aquaplanet simulations publication-title: Journal of Advances in Modeling Earth Systems – volume: 42 start-page: 3603 issue: 9 year: 2015 end-page: 3608 article-title: Impact of the dynamical core on the direct simulation of tropical cyclones in a high‐resolution global model publication-title: Geophysical Research Letters – volume: 62 start-page: 4237 year: 2005 end-page: 4292 article-title: An energy‐balance analysis of deep convective self‐aggregation above uniform SST publication-title: Journal of the Atmospheric Sciences – volume: 40 start-page: 4109 year: 2013 end-page: 4114 article-title: The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations publication-title: Geophysical Research Letters – volume: 97 start-page: 20227 year: 1992 end-page: 20248 article-title: Upper ocean response to hurricane Gilbert publication-title: Journal of Geophysical Research – year: 2021 article-title: Changes in Atlantic major hurricane frequency since the late 19th century publication-title: Nature Communications – volume: 121 start-page: 1703 year: 1993 end-page: 1713 article-title: A climatology of intense (or major) Atlantic hurricanes publication-title: Monthly Weather Review – volume: 34 year: 2007b article-title: Increased tropical Atlantic wind shear in model projections of global warming publication-title: Geophysical Research Letters – volume: 30 start-page: 145 year: 2017 end-page: 162 article-title: Tropical cyclone interaction with the ocean: The role of high‐frequency (subdaily) coupled processes publication-title: Journal of Climate – volume: 25 start-page: 4358 year: 2012a end-page: 4365 article-title: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum publication-title: Journal of Climate – volume: 88 start-page: 1767 year: 2007 end-page: 1782 article-title: A more general framework for understanding Atlantic hurricane variability and trends publication-title: Bulletin of the American Meteorological Society – volume: 504 start-page: 44 year: 2013 end-page: 52 article-title: Coastal flooding by tropical cyclones and sea‐level rise publication-title: Nature – volume: 17 start-page: 675 year: 2021 end-page: 701 article-title: Atlantic hurricanes response to Sahara greening and reduced dust emissions during the mid‐Holocene publication-title: Climate of the Past – volume: 6 start-page: 345 year: 2015 end-page: 358 article-title: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward publication-title: Wires Climate Change – volume: 23 start-page: 2508 year: 2010 end-page: 2519 article-title: Impact of duration thresholds on atlantic tropical cyclone counts publication-title: Journal of Climate – volume: 46 start-page: 13327 year: 2019 end-page: 13337 article-title: Unprecedented northern hemisphere tropical cyclone genesis in 2018 shaped by subtropical warming in the North Pacific and the North Atlantic publication-title: Geophysical Research Letters – volume: 67 start-page: 1817 year: 2010 end-page: 1830 article-title: Midlevel ventilation's constraint on tropical cyclone intensity publication-title: Journal of the Atmospheric Sciences – volume: 7 start-page: 1938 year: 2015 end-page: 1955 article-title: Uniformly rotating global radiative‐convective equilibrium in the Community Atmosphere Model, version 5 publication-title: Journal of Advances in Modeling Earth Systems – volume: 77 start-page: 4051 year: 2020 end-page: 4065 article-title: Interactive radiation accelerates the intensification of the midlevel vortex for tropical cyclogenesis publication-title: Journal of the Atmospheric Sciences – volume: 8 year: 2021 article-title: Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high‐resolution multi‐model ensemble simulations publication-title: Progress in Earth and Planetary Science – volume: 8 start-page: 730 year: 2018 end-page: 736 article-title: Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion publication-title: Nature Climate Change – volume: 91 start-page: 363 year: 2010 end-page: 376 article-title: The international best track archive for climate stewardship (ibtracs) publication-title: Bulletin of the American Meteorological Society – volume: 146 start-page: 1999 issue: 730 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 64 start-page: 11 year: 2014 end-page: 25 article-title: Tropical cyclogenesis and mid‐level vorticity publication-title: Australian Meteorological and Oceangraphic Journal – volume: 11 start-page: 392 year: 2018 end-page: 400 article-title: Global energetics and local physics as drivers of past, present and future monsoons publication-title: Nature Geosciences – volume: 419 start-page: 228 issue: 6903 year: 2002 end-page: 232 article-title: Constraints on future changes in climate and the hydrologic cycle publication-title: Nature – volume: 3 start-page: 842 issue: 12 year: 2010a end-page: 845 article-title: Changes in the sea surface temperature threshold for tropical convection publication-title: Nature Geoscience – volume: 60 start-page: 607 year: 2003 end-page: 625 article-title: Cloud resolving modeling of the ARM Summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities publication-title: Journal of the Atmospheric Sciences – volume: 12 year: 2020 article-title: Tropical cyclogenesis from self‐aggregated convection in numerical simulations of rotating radiative‐convective equilibrium publication-title: Journal of Advances in Modeling Earth Systems – volume: 76 start-page: 2257 year: 2019 end-page: 2274 article-title: Dynamical aquaplanet experiments with uniform thermal forcing: System dynamics and implications for tropical cyclone genesis and size publication-title: Journal of the Atmospheric Sciences – volume: 107 start-page: 1221 year: 1979 end-page: 1224 article-title: A possible method for predicting seasonal tropical cyclone activity in the Australian region publication-title: Monthly Weather Review – volume: 22 start-page: 6653 issue: 24 year: 2009 end-page: 6678 article-title: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50‐km resolution gcm publication-title: Journal of Climate – volume: 5 start-page: 185 year: 2019 end-page: 195 article-title: Aquaplanet simulations of tropical cyclones publication-title: Current Climate Change Reports – volume: 28 start-page: 574 issue: 2 year: 2015 end-page: 596 article-title: Tropical cyclones in the upscale ensemble of high‐resolution global climate models publication-title: Journal of Climate – volume: 68 year: 2016 article-title: Tropical cyclones in the GISS ModelE2 publication-title: Tellus – volume: 9 start-page: 517 year: 2019 end-page: 522 article-title: Strengthening tropical pacific zonal sea surface temperature gradient consistent with rising greenhouse gases publication-title: Nature Climate Change – volume: 38 start-page: 2819 year: 2018 end-page: 2837 article-title: Changes in tropical cyclone activity in North Indian Ocean during satellite era (1981 ‐ 2014) publication-title: International Journal of Climatology – volume: 44 start-page: 2742 year: 2017 end-page: 2480 article-title: The role of historical forcings in simulating the observed Atlantic multidecadal oscillation publication-title: Geophysical Research Letters – volume: 25 start-page: 8611 year: 2012 end-page: 8626 article-title: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin publication-title: Journal of Climate – volume: 72 start-page: 2286 year: 2015 end-page: 2302 article-title: The sensitivity of tropical cyclone activity to off‐equatorial thermal forcing publication-title: Journal of the Atmospheric Sciences – volume: 28 start-page: 7182 year: 2015 end-page: 7202 article-title: Tropical cyclone genesis factors in a simulation of the last two millennia: Results from the Community Earth System Model publication-title: Journal of Climate – volume: 97 start-page: 2305 year: 2016 end-page: 2328 article-title: Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group publication-title: Bulletin of the American Meteorological Society – volume: 27 start-page: 2185 year: 2014 end-page: 2208 article-title: The NCEP climate forecast system version 2 publication-title: Journal of Climate – volume: 25 start-page: 441 year: 2000 end-page: 475 article-title: Water vapor feedback and global warming publication-title: Annual Review of Energy and Environment – volume: 84 start-page: 405 issue: 2 year: 2006 end-page: 428 article-title: Influence of greenhouse warming on tropical cyclone frequency publication-title: Journal of the Meteorological Society of Japan – volume: 36 year: 2009 article-title: Co‐variability of tropical cyclones in the North Atlantic and the eastern North Pacific publication-title: Geophysical Research Letters – volume: 65 start-page: 2003 year: 2008 end-page: 2013 article-title: Aquaplanet homogeneouchre rotating radiative‐convective equilibrium at GCM resolution publication-title: Journal of Atmospheric Sciences – volume: 146 start-page: 1999 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 38 year: 2011 article-title: The remarkable predictability of inter‐annual variability of Atlantic hurricanes during the past decade publication-title: Geophysical Research Letters – year: 2016 article-title: High resolution model intercomparison project (HighResMIP) publication-title: Geoscientific Model Development Discussions – volume: 24 start-page: 5353 issue: 20 year: 2011 end-page: 5364 article-title: The response of tropical cyclone statistics to an increase in CO with fixed sea surface temperatures publication-title: Journal of Climate – volume: 5 start-page: 816 year: 2013 end-page: 825 article-title: Rotating radiative‐convective equilibrium simulated by a cloud‐resolving model publication-title: Journal of Advances in Modeling Earth Systems – volume: 52 start-page: 107 year: 2019 end-page: 127 article-title: Tropical cyclogenesis in warm climates simulated by a cloud‐system resolving model publication-title: Climate Dynamics – year: 2012 – volume: 47 year: 2019 article-title: Relevance of relative sea surface temperature for tropical rainfall interannual variability publication-title: Geophysical Research Letters – volume: 28 start-page: 9058 issue: 23 year: 2015 end-page: 9079 article-title: Simulation and prediction of category 4 and 5 hurricanes in the high‐resolution GFDL HiFLOR coupled climate model publication-title: Journal of Climate – volume: 117 start-page: 22720 year: 2020 end-page: 22726 article-title: Summertime stationary waves integrate tropical and extratropical impacts on tropical cyclone activity publication-title: Proceedings of the National Academy of Sciences – volume: 350 start-page: 320 year: 2015 end-page: 324 article-title: The Atlantic multidecadal oscillation without a role for ocean circulation publication-title: Science – volume: 108 start-page: 8179 year: 2017 end-page: 8205 article-title: Extended reconstructed sea surface temperature version 5 (ersstv5), upgrades, validations, and intercomparisons publication-title: Journal of Climate – start-page: 155 year: 1979 end-page: 218 article-title: Meteorology over the tropical oceans publication-title: Royal Meteorological Society – volume: 89 start-page: 347 year: 2008 end-page: 368 article-title: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations publication-title: Bulletin of the American Meteorological Society – volume: 8 start-page: 134 year: 2019 end-page: 149 article-title: Seasonal tropical cyclone forecasting publication-title: Tropical Cyclone Research and Review – volume: 117 start-page: 27884 year: 2020 end-page: 27892 article-title: The critical role of cloud‐infrared radiation feedback in tropical cyclone development publication-title: Proceedings of the National Academy of Sciences – volume: 142 start-page: 3881 year: 2014 end-page: 3899 article-title: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS publication-title: Monthly Weather Review – year: 2017 – volume: 45 start-page: 2082 issue: 4 year: 2018 end-page: 2087 article-title: Resolving tropical cyclone intensity in models publication-title: Geophysical Research Letters – volume: 20 start-page: 4819 year: 2007 end-page: 4834 article-title: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis publication-title: Journal of Climate – volume-title: Global Guide to tropical cyclone forecasting, WMO‐No. 1194 year: 2017 ident: e_1_2_9_177_1 – ident: e_1_2_9_102_1 doi: 10.1002/2016GL067730 – ident: e_1_2_9_31_1 doi: 10.1029/2011GL047629 – ident: e_1_2_9_72_1 doi: 10.2151/jmsj.2021-029 – ident: e_1_2_9_183_1 doi: 10.1007/s00382-015-2602-5 – ident: e_1_2_9_99_1 doi: 10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2 – ident: e_1_2_9_69_1 doi: 10.1175/2009JCLI3303.1 – ident: e_1_2_9_98_1 doi: 10.1029/2006EO240001 – ident: e_1_2_9_19_1 doi: 10.1175/JCLI3457.1 – ident: e_1_2_9_97_1 doi: 10.1175/BAMS-D-18-0042.1 – ident: e_1_2_9_79_1 doi: 10.1175/2009BAMS2755.1 – ident: e_1_2_9_127_1 doi: 10.1175/JCLI-D-19-0639.1 – ident: e_1_2_9_15_1 doi: 10.1007/s40641-018-0110-5 – ident: e_1_2_9_144_1 doi: 10.1002/2014MS000342 – ident: e_1_2_9_3_1 doi: 10.1029/2019MS002024 – ident: e_1_2_9_110_1 doi: 10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2 – ident: e_1_2_9_158_1 doi: 10.1038/nature06423 – ident: e_1_2_9_9_1 doi: 10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2 – ident: e_1_2_9_174_1 doi: 10.5194/gmd-11-793-2018 – ident: e_1_2_9_8_1 doi: 10.1038/s41561-018-0137-1 – ident: e_1_2_9_68_1 doi: 10.1073/pnas.1720683115 – ident: e_1_2_9_156_1 doi: 10.1007/s00382-019-04913-y – ident: e_1_2_9_35_1 doi: 10.1002/2017GL076966 – ident: e_1_2_9_70_1 doi: 10.1038/ngeo1008 – ident: e_1_2_9_50_1 doi: 10.1126/science.1060040 – ident: e_1_2_9_124_1 doi: 10.1002/2015MS000519 – volume: 47 year: 2019 ident: e_1_2_9_67_1 article-title: Relevance of relative sea surface temperature for tropical rainfall interannual variability publication-title: Geophysical Research Letters – ident: e_1_2_9_191_1 doi: 10.1175/JCLI-D-12-00638.1 – ident: e_1_2_9_153_1 doi: 10.1175/BAMS-D-11-00165.1 – ident: e_1_2_9_123_1 doi: 10.1002/2015GL063974 – ident: e_1_2_9_95_1 doi: 10.1029/2010GL045124 – ident: e_1_2_9_130_1 doi: 10.1029/2018JD029375 – ident: e_1_2_9_134_1 doi: 10.1175/JCLI-D-12-00823.1 – ident: e_1_2_9_162_1 doi: 10.1029/2007GL030740 – ident: e_1_2_9_20_1 doi: 10.1111/j.1600-0870.2007.00238.x – ident: e_1_2_9_128_1 doi: 10.1029/2020GL088662 – ident: e_1_2_9_175_1 doi: 10.1029/2006GL028581 – ident: e_1_2_9_141_1 doi: 10.1002/2014MS000372 – ident: e_1_2_9_145_1 doi: 10.1029/2020GL089512 – ident: e_1_2_9_21_1 doi: 10.1142/9789814293488_0011 – ident: e_1_2_9_148_1 doi: 10.1007/s11069-016-2389-7 – volume: 85 start-page: 666 year: 2004 ident: e_1_2_9_44_1 article-title: Tropical cyclone activity and global climate publication-title: Bulletin of the American Meteorological Society – ident: e_1_2_9_143_1 doi: 10.1029/92JC01586 – year: 2020 ident: e_1_2_9_163_1 article-title: A numerical study of the global formation of tropical cyclones publication-title: Journal of Advances in Modeling Earth Systems – ident: e_1_2_9_94_1 doi: 10.1002/2017MS001199 – ident: e_1_2_9_12_1 doi: 10.1029/GL017i011p01917 – ident: e_1_2_9_17_1 doi: 10.1175/JCLI4282.1 – ident: e_1_2_9_155_1 doi: 10.1175/JCLI-D-14-00158.1 – volume: 3 start-page: 26 year: 1948 ident: e_1_2_9_115_1 article-title: On the formation and structure of tropical hurricanes publication-title: Geophysica – ident: e_1_2_9_86_1 doi: 10.1038/nature13278 – ident: e_1_2_9_136_1 doi: 10.1002/2017JD026492 – ident: e_1_2_9_53_1 doi: 10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2 – volume: 56 start-page: 241 year: 2007 ident: e_1_2_9_111_1 article-title: What is the trigger for tropical cyclogenesis? publication-title: Australian Meterological Magazine – ident: e_1_2_9_5_1 doi: 10.1175/JAS-D-14-0284.1 – ident: e_1_2_9_126_1 doi: 10.1002/wcc.338 – ident: e_1_2_9_56_1 doi: 10.1146/annurev.energy.25.1.441 – ident: e_1_2_9_75_1 doi: 10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2 – ident: e_1_2_9_190_1 doi: 10.1175/2009JCLI3049.1 – ident: e_1_2_9_76_1 doi: 10.1175/JCLI-D-16-0298.1 – ident: e_1_2_9_170_1 doi: 10.1073/pnas.2010547117 – ident: e_1_2_9_37_1 doi: 10.1002/qj.828 – ident: e_1_2_9_159_1 doi: 10.1029/2006GL028905 – ident: e_1_2_9_80_1 doi: 10.1175/BAMS-D-18-0189.1 – ident: e_1_2_9_118_1 doi: 10.1029/2020MS002086 – ident: e_1_2_9_116_1 doi: 10.1002/2016GL071965 – ident: e_1_2_9_172_1 doi: 10.1175/JCLI-D-18-0599.1 – ident: e_1_2_9_4_1 doi: 10.1002/joc.5463 – ident: e_1_2_9_10_1 doi: 10.1175/JAS-D-15-0049.1 – ident: e_1_2_9_179_1 doi: 10.1186/s40645-020-00397-1 – ident: e_1_2_9_14_1 doi: 10.1029/2020GL091980 – ident: e_1_2_9_146_1 doi: 10.1175/JCLI-D-12-00135.1 – ident: e_1_2_9_13_1 doi: 10.1175/JCLI-D-11-00619.1 – ident: e_1_2_9_164_1 doi: 10.1175/BAMS-D-13-00242.1 – ident: e_1_2_9_91_1 doi: 10.1175/JCLI-D-20-0409.1 – ident: e_1_2_9_87_1 doi: 10.1175/BAMS-88-11-1767 – ident: e_1_2_9_151_1 doi: 10.1002/2015GL064929 – ident: e_1_2_9_181_1 doi: 10.1175/JCLI-D-15-0054.1 – ident: e_1_2_9_42_1 doi: 10.3894/JAMES.2010.2.1 – ident: e_1_2_9_182_1 doi: 10.1175/JAS-D-20-0094.1 – ident: e_1_2_9_39_1 doi: 10.1007/s13143-010-0013-4 – ident: e_1_2_9_57_1 doi: 10.1175/2007JAS2604.1 – ident: e_1_2_9_121_1 doi: 10.22499/2.6401.003 – ident: e_1_2_9_18_1 doi: 10.1175/JCLI-D-19-0500.1 – ident: e_1_2_9_81_1 doi: 10.1175/BAMS-D-18-0194.1 – ident: e_1_2_9_43_1 doi: 10.1073/pnas.1301293110 – ident: e_1_2_9_11_1 doi: 10.1175/JAS3614.1 – ident: e_1_2_9_27_1 doi: 10.1002/wcc.602 – ident: e_1_2_9_29_1 doi: 10.1175/JAS-D-19-0001.1 – ident: e_1_2_9_54_1 doi: 10.5194/gmd-9-4185-2016 – ident: e_1_2_9_161_1 doi: 10.1002/2016MS000785 – ident: e_1_2_9_184_1 doi: 10.2151/sola.2005-035 – ident: e_1_2_9_2_1 doi: 10.1038/nature01092a – ident: e_1_2_9_166_1 doi: 10.1175/JCLI-D-19-0079.1 – ident: e_1_2_9_47_1 doi: 10.1007/s00382-018-4134-2 – ident: e_1_2_9_40_1 doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 – ident: e_1_2_9_30_1 doi: 10.1175/JCLI-D-12-00061.1 – ident: e_1_2_9_26_1 doi: 10.1126/sciadv.abg6931 – ident: e_1_2_9_58_1 doi: 10.1175/JCLI-D-11-00050.1 – ident: e_1_2_9_195_1 doi: 10.1175/BAMS-D-15-00274.1 – ident: e_1_2_9_16_1 doi: 10.1175/2008WAF2007099.1 – ident: e_1_2_9_63_1 doi: 10.1175/JCLI-D-18-0862.1 – ident: e_1_2_9_176_1 doi: 10.1038/nature12855 – ident: e_1_2_9_61_1 doi: 10.1002/qj.3803 – ident: e_1_2_9_140_1 doi: 10.1038/s41558-019-0505-x – ident: e_1_2_9_167_1 doi: 10.1029/2009GL041469 – ident: e_1_2_9_6_1 doi: 10.1080/07055900.1997.9649597 – ident: e_1_2_9_165_1 doi: 10.1002/wcc.371 – ident: e_1_2_9_168_1 doi: 10.1029/2019GL085406 – volume: 25 start-page: 4358 year: 2012 ident: e_1_2_9_84_1 article-title: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum publication-title: Journal of Climate – volume: 108 start-page: 567589 issue: 18 year: 1998 ident: e_1_2_9_73_1 article-title: Analyses of global sea surface temperature 1856‐1991 publication-title: Journal of Geophysical Research – ident: e_1_2_9_129_1 doi: 10.1175/JCLI-D-14-00131.1 – ident: e_1_2_9_78_1 doi: 10.1016/j.tcrr.2019.10.003 – ident: e_1_2_9_150_1 doi: 10.2151/sola.2020-012 – ident: e_1_2_9_114_1 doi: 10.1038/ngeo955 – ident: e_1_2_9_34_1 doi: 10.5194/cp-17-675-2021 – ident: e_1_2_9_71_1 doi: 10.1038/ngeo1008 – ident: e_1_2_9_48_1 doi: 10.1175/MWR3435.1 – ident: e_1_2_9_83_1 doi: 10.2151/jmsj.2015-001 – ident: e_1_2_9_193_1 doi: 10.1175/JAS-D-16-0195.1 – ident: e_1_2_9_89_1 doi: 10.1175/2009JCLI3034.1 – ident: e_1_2_9_173_1 doi: 10.1175/JAS-D-15-0380.1 – ident: e_1_2_9_178_1 doi: 10.1029/2021GL093259 – ident: e_1_2_9_185_1 doi: 10.2151/jmsj.84.405 – ident: e_1_2_9_131_1 doi: 10.1073/pnas.2013584117 – ident: e_1_2_9_160_1 doi: 10.1175/2010MWR3499.1 – ident: e_1_2_9_113_1 doi: 10.1002/qj.170 – ident: e_1_2_9_133_1 doi: 10.1175/2010BAMS3001.1 – ident: e_1_2_9_23_1 doi: 10.1175/JCLI-D-13-00505.1 – ident: e_1_2_9_103_1 doi: 10.1175/JAS3604.1 – ident: e_1_2_9_117_1 doi: 10.1002/2017GL076081 – ident: e_1_2_9_194_1 doi: 10.1175/JAS-D-13-0190.1 – start-page: 155 year: 1979 ident: e_1_2_9_52_1 article-title: Meteorology over the tropical oceans publication-title: Royal Meteorological Society – ident: e_1_2_9_46_1 doi: 10.1175/BAMS-89-3-347 – ident: e_1_2_9_189_1 doi: 10.1175/JAS-D-20-0079.1 – ident: e_1_2_9_64_1 doi: 10.1007/s00382-020-05446-5 – ident: e_1_2_9_22_1 doi: 10.3402/tellusa.v68.31494 – ident: e_1_2_9_112_1 doi: 10.1029/2008GL034147 – ident: e_1_2_9_135_1 doi: 10.1007/s40641-019-00131-0 – ident: e_1_2_9_186_1 doi: 10.1175/JCLI-D-16-0273.1 – ident: e_1_2_9_92_1 doi: 10.1175/JCLI-D-19-0452.1 – ident: e_1_2_9_25_1 doi: 10.1029/2019MS002020 – ident: e_1_2_9_82_1 doi: 10.1038/ngeo779 – ident: e_1_2_9_45_1 doi: 10.1002/jame.20032 – ident: e_1_2_9_138_1 doi: 10.1175/MWR-D-14-00021.1 – ident: e_1_2_9_62_1 doi: 10.1002/qj.3803 – ident: e_1_2_9_55_1 doi: 10.1175/WAF-D-13-00008.1 – ident: e_1_2_9_142_1 doi: 10.1038/s41558-018-0227-5 – ident: e_1_2_9_51_1 doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2 – ident: e_1_2_9_192_1 doi: 10.1002/2015MS000543 – ident: e_1_2_9_152_1 doi: 10.1175/2010JAS3318.1 – ident: e_1_2_9_147_1 doi: 10.1175/JAS-D-19-0044.1 – ident: e_1_2_9_74_1 doi: 10.1002/2013MS000253 – ident: e_1_2_9_66_1 doi: 10.1175/JCLI-D-16-0836.1 – ident: e_1_2_9_169_1 doi: 10.5194/acp-19-8383-2019 – ident: e_1_2_9_105_1 doi: 10.1007/s00382-012-1407-z – ident: e_1_2_9_88_1 doi: 10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2 – ident: e_1_2_9_33_1 doi: 10.1175/JAS-D-18-0357.1 – ident: e_1_2_9_85_1 doi: 10.1175/JCLI-D-12-00033.1 – ident: e_1_2_9_132_1 doi: 10.1002/2016GL071236 – ident: e_1_2_9_139_1 doi: 10.1175/JCLI-D-16-0292.1 – ident: e_1_2_9_108_1 doi: 10.1002/2016GL071337 – ident: e_1_2_9_171_1 doi: 10.1029/2009GL039849 – ident: e_1_2_9_100_1 doi: 10.1007/s40641-019-00133-y – ident: e_1_2_9_59_1 doi: 10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2 – ident: e_1_2_9_90_1 doi: 10.1029/2006GL027969 – ident: e_1_2_9_107_1 doi: 10.1175/JCLI-D-15-0216.1 – ident: e_1_2_9_154_1 doi: 10.1175/2010JCLI3811.1 – ident: e_1_2_9_122_1 doi: 10.1029/2006GL028607 – ident: e_1_2_9_41_1 doi: 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2 – ident: e_1_2_9_32_1 doi: 10.1126/science.aab3980 – ident: e_1_2_9_38_1 doi: 10.1175/JCLI-D-16-0358.1 – ident: e_1_2_9_77_1 doi: 10.1175/JCLI-D-17-0269.1 – volume-title: Description of the NCAR Community atmosphere model (CAM 5.0) (NCAR Technical note nos. NCAR/TN‐486+STR) year: 2012 ident: e_1_2_9_109_1 – ident: e_1_2_9_149_1 doi: 10.2151/jmsj.2012-A24 – ident: e_1_2_9_119_1 doi: 10.1175/2010JCLI3690.1 – ident: e_1_2_9_7_1 doi: 10.1175/JCLI-D-17-0898.1 – ident: e_1_2_9_120_1 doi: 10.1002/qj.706 – ident: e_1_2_9_157_1 doi: 10.1038/s41467-021-24268-5 – ident: e_1_2_9_101_1 doi: 10.1002/grl.50680 – ident: e_1_2_9_106_1 doi: 10.1038/s41558-017-0008-6 – ident: e_1_2_9_188_1 doi: 10.1175/JCLI-D-20-0574.1 – ident: e_1_2_9_137_1 doi: 10.1038/nature13636 – ident: e_1_2_9_60_1 doi: 10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2 – ident: e_1_2_9_125_1 doi: 10.1175/2010MWR3488.1 – ident: e_1_2_9_36_1 doi: 10.1175/JAS-D-15-0027.1 – ident: e_1_2_9_187_1 doi: 10.1175/MWR-D-13-00179.1 – ident: e_1_2_9_24_1 doi: 10.1175/2009JAS3101.1 – ident: e_1_2_9_180_1 doi: 10.1051/0004-6361/202038203 – ident: e_1_2_9_93_1 doi: 10.1002/jame.20020 – ident: e_1_2_9_96_1 doi: 10.1007/s10236-015-0854-6 – ident: e_1_2_9_28_1 doi: 10.1175/JAS-D-17-0061.1 – ident: e_1_2_9_104_1 doi: 10.1073/pnas.1719967115 – ident: e_1_2_9_65_1 doi: 10.1007/s00382-018-4577-5 – ident: e_1_2_9_49_1 doi: 10.1175/JCLI-D-16-0758.1 |
SSID | ssj0000970357 |
Score | 2.5306878 |
SecondaryResourceType | review_article |
Snippet | The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm.... Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no... Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no... |
SourceID | doaj osti proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Basins Climate change Cyclones Environmental factors ENVIRONMENTAL SCIENCES extreme weather Global warming Hurricanes Mathematical models Numerical models Seeds Storms Time series Trends Tropical cyclone frequencies tropical cyclone frequency Tropical cyclones Weather forecasting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEq6IPUAZYQBGJY8f2CFWiCgmmVupmxa-paqu2DP33nJ20pAOwMEVKzsnpzvbdyV--Q-ieU6hurK1iWiVJTBzVsWCKxNzoNOEERgU04ftHPp6StxmdtVp9eUxYTQ9cG-7ZiExoYQgnVkHw0Qozza3vQgeVOKeBbBtiXquYCnuwgJlMWYN0T7DwRX5alIExjx7FoEDVD5clLKmjNLOdrIZoU56jsyZNjF5q9S7QiV1com7x_VcaPGyW5eYK9Sfr5cpbOxrt9Hy5sFG5riHSu2s0LYvJaBw3TQ9iTTzijJoKkhiW04wxl6bKMs0Y15Zrf4QmhBEmsRmtcrBkbnKXOMVsYnLFFKbYkqyLOgv40A2KXGUJtsJWJFOEOsqVSyrFUly5NMst76GnvRmkbhjBfWOKuQwn01jIttF66OEgvaqZMH6Qe_UWPch4_upwA7wqG6_Kv7zaQwPvDwlpgOey1R70o7cS9h8qSNZDw72bZLPkNtJzoUHxwxgMfgyu-1VNWZQTLFLa_w91B-jUv7uGuQxRZ7v-tLeQrGzVXZiXX4JK3vA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BWVgQT5EWUAdYQBFO_J4QoEQICYRQkdis-BEW1JS2DP332Klb2gGmSImdRHe-y2f7y3cA54L62Y1zVUorhFJSU5NKrkkqrMmQIL5XyyZ8emYPb-Txnb7HBbdJpFUucmKbqG1jwhr5dZC68tiWc3Yz-kpD1aiwuxpLaGzClk_BQnRg6654fnldrrIg6Uc05ZHxjnIZJvtZUbbKeXTtW9RK9vtD40NrDW6ugtb2q1Puwk6Ei_3buX_3YMMN9-Go-P07zV-M4Tk5gO5g3IyC1fv3M_PZDF2_HM-p0rNDeCuLwf1DGosfpIYE5hm1lQcznFHMeZ1l2nHDuTBOmLCVJqWVFjlMK-YtyiyrUa25Q5ZprnOaO4KPoDP0DzqGfl05kjvpKoI1oTUVukaV5lle1RlmTiRwtTCDMlEZPBSo-FTtDnUu1arRErhYth7NFTH-aHcXLLpsE3Ss2xPN-EPFsFBWYmmkJYI47aGF0Tk3woUagxh7MMgS6AV_KA8HgqatCeQfM1U-D1FJcAInCzepGHoT9TtQErhsXffva6qiHOQyo93_79WD7dBrTmQ5gc50_O1OPRyZ6rM45n4Ao0zYwg priority: 102 providerName: ProQuest |
Title | Tropical Cyclone Frequency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002275 https://www.proquest.com/docview/2612758776 https://www.osti.gov/biblio/1835943 https://doaj.org/article/d939c9d484eb406cb27c8e3696330856 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuPSCSlvU5bHaA720ipr4EdtHQIlQJRBCi8TNsh2nF7SLdpcD_74zjlmWQ5E4RXLGTjTjsb-xx58BTrXE6CZGV0hXloXoZSiM8qLQXahKLbBWyia8uq4v78Sfe3mfF9zoLMzAD7FecCPPSOM1Objzy0w2QByZGLVXTZso8OQ27NLpWkrpY-JmvcZSGuzPiewTcYMuBFMq575jE783G3gzKyXyfnzM0cneAM9N-Jrmn_Yz7GXgODkbLL0PW3H2BQ6a13Nq-DI76vIrHE4X80fS_-TiOTzMZ3HSLoak6edvcNc204vLIl-DUARBOWiycwhrVC25Un1V-aiCUjpEHWhTzZjOdGXk0tWo27qr-7L3KpZd7ZVnkkXBD2Bnhh_6DpPeRcGiiU5wL2Qvte9L51XFXF_xOuoR_HpRgw2ZI5yuqniwaa-aGbuptBH8WEs_DtwY_5E7J42uZYjROhXMF39tdhDbGW6C6YQW0SPICJ6poCPdNsg5wsJ6BEdkD4vAgNhtA6UBhZXFEUkawUdw_GImm51waYkdDcMhpbDyz2S6d3_TNu2UmUoefkT4CD5R8ZDgcgw7q8VTPEGYsvLj1BfHsHveXN_cjlOw_w_Madua |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuqDwq0hbIgV5AEY4fsX1AiJZEW9quENpKvZnYcbhUm2V3UbV_it_IOI9te6C3niIl9sSalz_b4xmAd0rg6sb7MhElIQmvhUu0tDxRlUuJ4tirjSY8n2TjC_7tUlxuwd_hLkwIqxx8Yuuoq8aFPfKPIdUVYlsps8_z30moGhVOV4cSGp1anPr1NS7Zlp9OvqJ8Dykt8unxOOmrCiSOh5AuUZWIEmQmmJR1mlovnZTKeeXCGZXWla6IZ6LMcKhZldWkttKTKrPSUkE9Z0j3EWwjLUJHsH2UT77_2OzqEI0WJGQfYU-oDpsLaV60mfrEnbmvLRGAjwZN-Q68vQ2S21mu2IGnPTyNv3T69Ay2_Ow57OY3t-HwY-8Oli9gb7po5kHK8fHaXTUzHxeLLjR7_RIuHoQtuzCa4Y9eQVyXnlOvfcmZ5aIWytaktDKlZZ2yzKsIPgxsMK7PRB4KYlyZ9kScanObaREcblrPuwwc_2l3FDi6aRPyZrcvmsUv05uhqTTTTldccW8RyjhLpVM-1DRkDMFnFsF-kIdB-BFy6LoQbORWBv2e0JxFcDCIyfSmvjQ3ihnB-1Z09w7T5MWU6lTs3U_rLTweT8_PzNnJ5HQfngQKXRDNAYxWiz_-NUKhlX3T618MPx9a5f8BBKcUZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6qfpCDdA2h3JpFZE4dmwfqqpAIijtClWLxM2NX1zQZru7CO1f66_rOI8FDuXGKVLiONa88tn-PAPwUTCc3ThXJ6xO04R6ZhLJNU2ENVkqKL7Vsgl_jovjc_r9gl1swN_hLEygVQ4xsQ3UtjFhjXw_pLpCbMt5se97WsTZUfV19icJFaTCTutQTqMzkVO3usHp2-LLyRHqeo-QqpwcHid9hYHE0EDvYrZGxMALlnPus0w7bjgXxgkT9quktNKmLmd1gcMubOFTr7lLbaG5Jow4mmO_T2CTh1nRCDYPyvHZr_UKTyrRmxjv2fYpkWGhISurNmsfu_cfbMsF4KVBt74Hde8C5vaPV72A5z1Ujb91tvUSNtz0FWyVtyfj8GEfGhavYXsyb2ZB4_Hhylw1UxdX846mvXoD548ili0YTfFDbyH2taPESVfTXFPmmdA-rTXPSO2zvHAigs-DGJTps5KH4hhXqt0dJ1LdFVoEe-vWsy4bx3_aHQSJrtuEHNrtjWZ-qXqXVFbm0khLBXUaYY3RhBvhQn3DPEcgWkSwE_ShEIqEfLomEI_MUmEMZJLmEewOalK92y_UrZFG8KlV3YPDVGU1ITJj2w_39QGeoqmrHyfj0x14Fjro-DS7MFrOr907REVL_b43vxh-P7bF_wMWrxiZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tropical+Cyclone+Frequency&rft.jtitle=Earth%27s+future&rft.au=Sobel%2C+Adam+H.&rft.au=Wing%2C+Allison+A.&rft.au=Camargo%2C+Suzana+J.&rft.au=Patricola%2C+Christina+M.&rft.date=2021-12-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=9&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021EF002275&rft.externalDBID=10.1029%252F2021EF002275&rft.externalDocID=EFT2915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon |