Tropical Cyclone Frequency

The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth,...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 9; no. 12
Main Authors Sobel, Adam H., Wing, Allison A., Camargo, Suzana J., Patricola, Christina M., Vecchi, Gabriel A., Lee, Chia‐Ying, Tippett, Michael K.
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.12.2021
American Geophysical Union (AGU)
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency. Plain Language Summary The term tropical cyclone frequency refers to the average number of tropical cyclones (also known as hurricanes, typhoons, etc.) which occur each year, either over the earth as a whole or in smaller regions. In this paper, the authors review the state of the science regarding what is known about tropical cyclone frequency. The state of the science is not great. There are around 80 tropical cyclones in a typical year, and we do not know why it is this number and not a much larger or smaller one. We also do not know much about whether this number should increase or decrease as the planet warms‐‐‐thus far, it has not done much of either on the global scale, though there are larger changes in some particular regions. No existing theory predicts tropical cyclone frequency. In this situation, we are left with numerical models as our primary tool, and the authors discuss the strengths, weaknesses, and different ways of using such models to investigate tropical cyclone frequency. Idealized simulations, in which the planet is made simpler than it really is, are allowing some new insights. Another promising avenue of investigation involves studying the weaker disturbances that sometimes strengthen into tropical cyclones. Key Points We do not understand why the number of tropical cyclones per year is what it is, nor how it may be changing In the absence of theory, our main tools are numerical models Promising research directions include idealized simulations at high resolution and study of precursor disturbances, or "seeds"
AbstractList The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency.
The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency. The term tropical cyclone frequency refers to the average number of tropical cyclones (also known as hurricanes, typhoons, etc.) which occur each year, either over the earth as a whole or in smaller regions. In this paper, the authors review the state of the science regarding what is known about tropical cyclone frequency. The state of the science is not great. There are around 80 tropical cyclones in a typical year, and we do not know why it is this number and not a much larger or smaller one. We also do not know much about whether this number should increase or decrease as the planet warms‐‐‐thus far, it has not done much of either on the global scale, though there are larger changes in some particular regions. No existing theory predicts tropical cyclone frequency. In this situation, we are left with numerical models as our primary tool, and the authors discuss the strengths, weaknesses, and different ways of using such models to investigate tropical cyclone frequency. Idealized simulations, in which the planet is made simpler than it really is, are allowing some new insights. Another promising avenue of investigation involves studying the weaker disturbances that sometimes strengthen into tropical cyclones. We do not understand why the number of tropical cyclones per year is what it is, nor how it may be changing In the absence of theory, our main tools are numerical models Promising research directions include idealized simulations at high resolution and study of precursor disturbances, or "seeds"
Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency.
Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency.
The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm. Yet this frequency is poorly understood. There is no accepted theory that explains the average number of TCs that occur each year on the Earth, nor how that number will change with global warming. Arguments based on global budgets of heat or moisture do not yet appear helpful, nor does a detailed understanding of the physical processes of TC genesis. Empirical indices that predict TC frequency as a function of large‐scale environmental variables can explain some of its relative variations in space and time, but not its absolute value. Global numerical models with horizontal grid spacings on the order of 25–50 km have allowed much improved simulations of TC activity, however. Many such models project a decrease in frequency with warming, but some project an increase. Idealized simulations, including those at higher resolutions, offer promise by allowing a systematic, deductive investigation of the roles of individual environmental factors. In addition to the larger‐scale environmental modulation of genesis likelihood, precursor disturbances, or “seeds”, may exert an independent influence on TC frequency. Plain Language Summary The term tropical cyclone frequency refers to the average number of tropical cyclones (also known as hurricanes, typhoons, etc.) which occur each year, either over the earth as a whole or in smaller regions. In this paper, the authors review the state of the science regarding what is known about tropical cyclone frequency. The state of the science is not great. There are around 80 tropical cyclones in a typical year, and we do not know why it is this number and not a much larger or smaller one. We also do not know much about whether this number should increase or decrease as the planet warms‐‐‐thus far, it has not done much of either on the global scale, though there are larger changes in some particular regions. No existing theory predicts tropical cyclone frequency. In this situation, we are left with numerical models as our primary tool, and the authors discuss the strengths, weaknesses, and different ways of using such models to investigate tropical cyclone frequency. Idealized simulations, in which the planet is made simpler than it really is, are allowing some new insights. Another promising avenue of investigation involves studying the weaker disturbances that sometimes strengthen into tropical cyclones. Key Points We do not understand why the number of tropical cyclones per year is what it is, nor how it may be changing In the absence of theory, our main tools are numerical models Promising research directions include idealized simulations at high resolution and study of precursor disturbances, or "seeds"
Author Wing, Allison A.
Lee, Chia‐Ying
Camargo, Suzana J.
Vecchi, Gabriel A.
Tippett, Michael K.
Patricola, Christina M.
Sobel, Adam H.
Author_xml – sequence: 1
  givenname: Adam H.
  orcidid: 0000-0003-3602-0567
  surname: Sobel
  fullname: Sobel, Adam H.
  email: ahs129@columbia.edu
  organization: Columbia University
– sequence: 2
  givenname: Allison A.
  orcidid: 0000-0003-2194-8709
  surname: Wing
  fullname: Wing, Allison A.
  organization: Florida State University
– sequence: 3
  givenname: Suzana J.
  orcidid: 0000-0002-0802-5160
  surname: Camargo
  fullname: Camargo, Suzana J.
  organization: Columbia University
– sequence: 4
  givenname: Christina M.
  orcidid: 0000-0002-3387-0307
  surname: Patricola
  fullname: Patricola, Christina M.
  organization: Iowa State University
– sequence: 5
  givenname: Gabriel A.
  orcidid: 0000-0002-5085-224X
  surname: Vecchi
  fullname: Vecchi, Gabriel A.
  organization: Princeton University
– sequence: 6
  givenname: Chia‐Ying
  surname: Lee
  fullname: Lee, Chia‐Ying
  organization: Columbia University
– sequence: 7
  givenname: Michael K.
  orcidid: 0000-0002-7790-5364
  surname: Tippett
  fullname: Tippett, Michael K.
  organization: Columbia University
BackLink https://www.osti.gov/biblio/1835943$$D View this record in Osti.gov
BookMark eNp9kM1LAzEQxYNUsNbePHkqerWaj00mOUrpakHwUs8hm81qyrqp2S2y_72pK1IEnUuG8Jv3Zt4pGjWhcQidE3xDMFW3FFOyzDGmFPgRGlNG5TyjAKOD_gRN23aDUynAjMMYXaxj2Hpr6tmit3VSnOXRve9cY_szdFyZunXT73eCnvPlevEwf3y6Xy3uHuc2Y4LPeWk4JyA4A6gIKRxYAGmdtCCSjypViR3jRmCZiVJUuCrA4VIUUFBOXcYmaDXolsFs9Db6NxN7HYzXXx8hvmgTO29rp0vFlFVlJjNXZFjYgoKVjgklGMOSi6R1OWiFtvO6tb5z9tWGpnG200QyrjKWoKsB2saQTm07vQm72KQbNRUkxScB9lLXA2VjaNvoqp_VCNb7xPVh4gmnv_Bkbjofmi4aX_81RIahD1-7_l8DvczXVBHOPgFqnY4C
CitedBy_id crossref_primary_10_1016_j_margeo_2024_107303
crossref_primary_10_1016_j_tcrr_2023_10_001
crossref_primary_10_5194_esurf_12_1145_2024
crossref_primary_10_1038_s41612_023_00516_x
crossref_primary_10_1002_qj_4850
crossref_primary_10_1029_2024PA004870
crossref_primary_10_1038_s41612_025_00919_y
crossref_primary_10_1007_s40518_023_00224_3
crossref_primary_10_1038_s41467_023_41911_5
crossref_primary_10_3390_jmse12101707
crossref_primary_10_1038_s41467_025_56433_5
crossref_primary_10_1029_2022JD037471
crossref_primary_10_1029_2024JD042615
crossref_primary_10_1007_s10113_024_02331_3
crossref_primary_10_1029_2022GL100590
crossref_primary_10_1038_s41612_024_00721_2
crossref_primary_10_3390_jmse11050946
crossref_primary_10_1002_joc_8180
crossref_primary_10_1007_s00382_024_07138_w
crossref_primary_10_1038_s41598_024_51420_0
crossref_primary_10_1088_1748_9326_ad4976
crossref_primary_10_1126_sciadv_adi2779
crossref_primary_10_1007_s00550_024_00544_y
crossref_primary_10_1016_j_quascirev_2023_108242
crossref_primary_10_3390_ijgi12080341
crossref_primary_10_1029_2023GL105864
crossref_primary_10_1029_2023JD038508
crossref_primary_10_1016_j_pce_2024_103642
crossref_primary_10_1029_2023GL102879
crossref_primary_10_1029_2022GL099354
crossref_primary_10_1038_s41467_023_43532_4
crossref_primary_10_3390_atmos15060655
crossref_primary_10_1016_j_gloplacha_2023_104319
crossref_primary_10_1126_sciadv_adf0259
crossref_primary_10_1038_s41612_023_00546_5
crossref_primary_10_1016_j_wace_2024_100683
crossref_primary_10_1103_PhysRevE_110_041001
crossref_primary_10_1007_s00382_024_07359_z
crossref_primary_10_1002_joc_8598
crossref_primary_10_1029_2023EF003479
crossref_primary_10_1029_2022EF003097
crossref_primary_10_1111_nyas_15116
crossref_primary_10_1088_1748_9326_adad85
crossref_primary_10_5194_gmd_17_6195_2024
crossref_primary_10_1038_s41558_022_01388_4
crossref_primary_10_1007_s40710_023_00649_4
crossref_primary_10_7837_kosomes_2024_30_6_541
crossref_primary_10_1080_02723646_2024_2313778
crossref_primary_10_1088_1748_9326_adaa8d
crossref_primary_10_1029_2023EF004056
crossref_primary_10_1038_s41597_024_02952_7
crossref_primary_10_1016_j_scib_2024_12_036
crossref_primary_10_1088_2515_7620_acb52a
crossref_primary_10_1007_s00376_022_2212_1
crossref_primary_10_1002_ecs2_4915
crossref_primary_10_1016_j_gsf_2025_102012
crossref_primary_10_1016_j_ijdrr_2023_103796
crossref_primary_10_3390_atmos13121945
crossref_primary_10_1080_00206814_2025_2450808
crossref_primary_10_1007_s00382_024_07370_4
crossref_primary_10_1007_s00382_024_07458_x
crossref_primary_10_1007_s41748_025_00571_9
crossref_primary_10_1038_s41467_022_35530_9
crossref_primary_10_1007_s00382_024_07523_5
crossref_primary_10_1016_j_wace_2024_100742
crossref_primary_10_1109_TGRS_2023_3266814
crossref_primary_10_1126_sciadv_adl2142
crossref_primary_10_1029_2022EF003118
crossref_primary_10_1051_e3sconf_202452003023
crossref_primary_10_3390_rs17010118
crossref_primary_10_1029_2022GL100267
crossref_primary_10_1029_2023GL105491
crossref_primary_10_1029_2021EF002600
crossref_primary_10_1016_j_isci_2024_111714
Cites_doi 10.1002/2016GL067730
10.1029/2011GL047629
10.2151/jmsj.2021-029
10.1007/s00382-015-2602-5
10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2
10.1175/2009JCLI3303.1
10.1029/2006EO240001
10.1175/JCLI3457.1
10.1175/BAMS-D-18-0042.1
10.1175/2009BAMS2755.1
10.1175/JCLI-D-19-0639.1
10.1007/s40641-018-0110-5
10.1002/2014MS000342
10.1029/2019MS002024
10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2
10.1038/nature06423
10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2
10.5194/gmd-11-793-2018
10.1038/s41561-018-0137-1
10.1073/pnas.1720683115
10.1007/s00382-019-04913-y
10.1002/2017GL076966
10.1038/ngeo1008
10.1126/science.1060040
10.1002/2015MS000519
10.1175/JCLI-D-12-00638.1
10.1175/BAMS-D-11-00165.1
10.1002/2015GL063974
10.1029/2010GL045124
10.1029/2018JD029375
10.1175/JCLI-D-12-00823.1
10.1029/2007GL030740
10.1111/j.1600-0870.2007.00238.x
10.1029/2020GL088662
10.1029/2006GL028581
10.1002/2014MS000372
10.1029/2020GL089512
10.1142/9789814293488_0011
10.1007/s11069-016-2389-7
10.1029/92JC01586
10.1002/2017MS001199
10.1029/GL017i011p01917
10.1175/JCLI4282.1
10.1175/JCLI-D-14-00158.1
10.1038/nature13278
10.1002/2017JD026492
10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2
10.1175/JAS-D-14-0284.1
10.1002/wcc.338
10.1146/annurev.energy.25.1.441
10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2
10.1175/2009JCLI3049.1
10.1175/JCLI-D-16-0298.1
10.1073/pnas.2010547117
10.1002/qj.828
10.1029/2006GL028905
10.1175/BAMS-D-18-0189.1
10.1029/2020MS002086
10.1002/2016GL071965
10.1175/JCLI-D-18-0599.1
10.1002/joc.5463
10.1175/JAS-D-15-0049.1
10.1186/s40645-020-00397-1
10.1029/2020GL091980
10.1175/JCLI-D-12-00135.1
10.1175/JCLI-D-11-00619.1
10.1175/BAMS-D-13-00242.1
10.1175/JCLI-D-20-0409.1
10.1175/BAMS-88-11-1767
10.1002/2015GL064929
10.1175/JCLI-D-15-0054.1
10.3894/JAMES.2010.2.1
10.1175/JAS-D-20-0094.1
10.1007/s13143-010-0013-4
10.1175/2007JAS2604.1
10.22499/2.6401.003
10.1175/JCLI-D-19-0500.1
10.1175/BAMS-D-18-0194.1
10.1073/pnas.1301293110
10.1175/JAS3614.1
10.1002/wcc.602
10.1175/JAS-D-19-0001.1
10.5194/gmd-9-4185-2016
10.1002/2016MS000785
10.2151/sola.2005-035
10.1038/nature01092a
10.1175/JCLI-D-19-0079.1
10.1007/s00382-018-4134-2
10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
10.1175/JCLI-D-12-00061.1
10.1126/sciadv.abg6931
10.1175/JCLI-D-11-00050.1
10.1175/BAMS-D-15-00274.1
10.1175/2008WAF2007099.1
10.1175/JCLI-D-18-0862.1
10.1038/nature12855
10.1002/qj.3803
10.1038/s41558-019-0505-x
10.1029/2009GL041469
10.1080/07055900.1997.9649597
10.1002/wcc.371
10.1029/2019GL085406
10.1175/JCLI-D-14-00131.1
10.1016/j.tcrr.2019.10.003
10.2151/sola.2020-012
10.1038/ngeo955
10.5194/cp-17-675-2021
10.1175/MWR3435.1
10.2151/jmsj.2015-001
10.1175/JAS-D-16-0195.1
10.1175/2009JCLI3034.1
10.1175/JAS-D-15-0380.1
10.1029/2021GL093259
10.2151/jmsj.84.405
10.1073/pnas.2013584117
10.1175/2010MWR3499.1
10.1002/qj.170
10.1175/2010BAMS3001.1
10.1175/JCLI-D-13-00505.1
10.1175/JAS3604.1
10.1002/2017GL076081
10.1175/JAS-D-13-0190.1
10.1175/BAMS-89-3-347
10.1175/JAS-D-20-0079.1
10.1007/s00382-020-05446-5
10.3402/tellusa.v68.31494
10.1029/2008GL034147
10.1007/s40641-019-00131-0
10.1175/JCLI-D-16-0273.1
10.1175/JCLI-D-19-0452.1
10.1029/2019MS002020
10.1038/ngeo779
10.1002/jame.20032
10.1175/MWR-D-14-00021.1
10.1175/WAF-D-13-00008.1
10.1038/s41558-018-0227-5
10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
10.1002/2015MS000543
10.1175/2010JAS3318.1
10.1175/JAS-D-19-0044.1
10.1002/2013MS000253
10.1175/JCLI-D-16-0836.1
10.5194/acp-19-8383-2019
10.1007/s00382-012-1407-z
10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2
10.1175/JAS-D-18-0357.1
10.1175/JCLI-D-12-00033.1
10.1002/2016GL071236
10.1175/JCLI-D-16-0292.1
10.1002/2016GL071337
10.1029/2009GL039849
10.1007/s40641-019-00133-y
10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2
10.1029/2006GL027969
10.1175/JCLI-D-15-0216.1
10.1175/2010JCLI3811.1
10.1029/2006GL028607
10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2
10.1126/science.aab3980
10.1175/JCLI-D-16-0358.1
10.1175/JCLI-D-17-0269.1
10.2151/jmsj.2012-A24
10.1175/2010JCLI3690.1
10.1175/JCLI-D-17-0898.1
10.1002/qj.706
10.1038/s41467-021-24268-5
10.1002/grl.50680
10.1038/s41558-017-0008-6
10.1175/JCLI-D-20-0574.1
10.1038/nature13636
10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2
10.1175/2010MWR3488.1
10.1175/JAS-D-15-0027.1
10.1175/MWR-D-13-00179.1
10.1175/2009JAS3101.1
10.1051/0004-6361/202038203
10.1002/jame.20020
10.1007/s10236-015-0854-6
10.1175/JAS-D-17-0061.1
10.1073/pnas.1719967115
10.1007/s00382-018-4577-5
10.1175/JCLI-D-16-0758.1
ContentType Journal Article
Copyright 2021 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Florida State Univ., Tallahassee, FL (United States)
Columbia Univ., New York, NY (United States)
Iowa State Univ., Ames, IA (United States)
Princeton Univ., NJ (UNited States)
CorporateAuthor_xml – name: Iowa State Univ., Ames, IA (United States)
– name: Princeton Univ., NJ (UNited States)
– name: Florida State Univ., Tallahassee, FL (United States)
– name: Columbia Univ., New York, NY (United States)
DBID 24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
OTOTI
DOA
DOI 10.1029/2021EF002275
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d939c9d484eb406cb27c8e3696330856
1835943
10_1029_2021EF002275
EFT2915
Genre reviewArticle
GrantInformation_xml – fundername: Swiss Re Institute
– fundername: DOE, SC, Biological and Environmental Research (BER)
  funderid: DE‐SC0021109
– fundername: NOAA
  funderid: NA18OAR4310270; NA18OAR4310418; NA18OAR4310277
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
7ST
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
OTOTI
PUEGO
ID FETCH-LOGICAL-c4365-5da551765377f11be7c778ce8c760099d9d0e35a60846d6f0fb7e0d6b7b252e43
IEDL.DBID 24P
ISSN 2328-4277
IngestDate Wed Aug 27 01:28:34 EDT 2025
Sun Jul 13 03:03:14 EDT 2025
Mon Jul 14 06:48:45 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Tue Jul 01 02:48:24 EDT 2025
Wed Jan 22 16:27:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4365-5da551765377f11be7c778ce8c760099d9d0e35a60846d6f0fb7e0d6b7b252e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0021109
DOE-IowaState-DE-SC0021109
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0002-3387-0307
0000-0002-5085-224X
0000-0003-3602-0567
0000-0003-2194-8709
0000-0002-0802-5160
0000-0002-7790-5364
0000000208025160
0000000336020567
0000000277905364
0000000321948709
000000025085224X
0000000233870307
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002275
PQID 2612758776
PQPubID 2034575
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_d939c9d484eb406cb27c8e3696330856
osti_scitechconnect_1835943
proquest_journals_2612758776
crossref_primary_10_1029_2021EF002275
crossref_citationtrail_10_1029_2021EF002275
wiley_primary_10_1029_2021EF002275_EFT2915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
– name: United States
PublicationTitle Earth's future
PublicationYear 2021
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
– name: Wiley
References 2015; 72
2019; 10
2005; 62
2014; 27
2020; 16
2019; 19
2008; 35
2020; 12
2018; 45
2013; 5
1993; 121
1979
2007a; 450
2010; 23
2020a; 33
2017; 74
2018; 8
2021; 76
2021; 78
2018; 4
2000; 128
1948; 3
2016; 43
2013; 110
2012; 25
2010; 3
2010; 2
2018; 31
2018; 38
2007b; 34
2019; 8
2009; 66
2011; 137
2021; 48
2019; 9
2010; 37
2019; 5
2011; 139
2013; 504
2019; 32
2012b; 25
2016; 97
2002; 419
2020; 33
2020; 146
2019; 100
2015; 350
2016; 7
2010; 46
2019; 46
1997; 35
2018; 115
2012; 90A
2019; 47
2015; 65
2005; 1
2016; 29
2018; 11
2007; 88
2018; 10
2005; 18
2014; 142
2010a; 3
1998; 79
2006; 71
2017; 7
2013; 26
2004; 61
2013; 28
2019; 53
2019; 52
1990; 17
2017; 44
1979; 107
2020; 643
2016; 73
2020; 55
2020; 125
2020b; 47
1992; 97
2007; 34
2017; 9
2014; 64
2010; 67
2015; 46
2017; 30
2007; 135
2006; 63
2001; 293
2021; 31
2021; 34
1986; 43
1984; 112
2015; 42
2007; 133
1981; 38
2020; 47
2008; 65
2011; 24
2016; 83
2007; 20
2017; 122
2014; 6
1968; 96
2012a; 25
2021; 8
2009; 22
2004; 85
2009; 24
2014; 513
2015; 6
2013; 49
2000; 25
2015; 93
2012
2010
2019; 76
2013; 40
2015; 96
2020; 101
2020; 77
2011; 38
2007; 56
2015; 7
2010b; 3
2017; 108
1997; 125
2012; 93
2009; 36
2015; 28
2021; 99
2006; 84
2014; 509
2021
2020
2010; 136
2021; 17
1998; 108
2008; 89
2020; 117
2017
2016
2003; 60
2007; 59A
2010; 91
2014; 71
2016; 68
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
Gray W. M. (e_1_2_9_52_1) 1979
e_1_2_9_119_1
e_1_2_9_60_1
Palmén E. (e_1_2_9_115_1) 1948; 3
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
Kaplan A. (e_1_2_9_73_1) 1998; 108
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
Neale R. B. (e_1_2_9_109_1) 2012
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_174_1
Emanuel K. A. (e_1_2_9_44_1) 2004; 85
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_173_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
Izumo T. (e_1_2_9_67_1) 2019; 47
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_2_1
e_1_2_9_138_1
Nolan D. S. (e_1_2_9_111_1) 2007; 56
e_1_2_9_26_1
e_1_2_9_49_1
Korty R. (e_1_2_9_84_1) 2012; 25
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
World Meteorological Organization (e_1_2_9_177_1) 2017
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
Vu T.‐A. (e_1_2_9_163_1) 2020
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 72
  start-page: 3499
  year: 2015
  end-page: 3516
  article-title: The formation of moist vortices and tropical cyclones in idealized simulations
  publication-title: Journal of the Atmospheric Sciences
– volume: 48
  year: 2021
  article-title: Examining the role of cloud radiative interactions in tropical cyclone development using satellite measurements and wrf simulations
  publication-title: Geophysical Research Letters
– volume: 115
  start-page: 11465
  issue: 45
  year: 2018
  end-page: 11470
  article-title: Mean precipitation change from a deepening troposphere
  publication-title: Proceedings of the National Academy of Sciences
– volume: 85
  start-page: 666
  year: 2004
  end-page: 667
  article-title: Tropical cyclone activity and global climate
  publication-title: Bulletin of the American Meteorological Society
– volume: 2
  year: 2010
  article-title: Tropical cyclone activity downscaled from NOAA‐CIRES reanalysis, 1908‐1958
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 43
  start-page: 585
  issue: 6
  year: 1986
  end-page: 605
  article-title: An air‐sea interaction theory for tropical cyclones. Part I: Steady‐state maintenance
  publication-title: Journal of the Atmospheric Sciences
– volume: 110
  start-page: 12219
  year: 2013
  end-page: 12224
  article-title: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  start-page: 447
  year: 2013
  end-page: 458
  article-title: Response of tropical sea surface temperature, precipitation, and tropical cyclone‐related variables to changes in global and local forcing
  publication-title: Journal of Advances in Modelling Earth Systems
– volume: 17
  start-page: 1917
  year: 1990
  end-page: 1920
  article-title: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate?
  publication-title: Geophysical Research Letters
– volume: 49
  start-page: 1949
  year: 2013
  end-page: 1968
  article-title: Future changes in tropical cyclone activity in the North Indian Ocean projected by high‐resolution MRI‐AGCMs
  publication-title: Climate Dynamics
– volume: 78
  start-page: 877
  year: 2021
  end-page: 902
  article-title: Idealized aquaplanet simulations of tropical cyclone activity: Significance of temperature gradients, Hadley circulation, and zonal asymmetry
  publication-title: Journal of the Atmospheric Sciences
– volume: 643
  start-page: A37
  year: 2020
  article-title: Hurricanes on tidally locked terrestrial planets: Fixed surface temperature experiments
  publication-title: Astronomy & Astrophysics
– volume: 10
  issue: 5
  year: 2019
  article-title: Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends
  publication-title: WIREs Climate Change
– volume: 139
  start-page: 1070
  year: 2011
  end-page: 1082
  article-title: Dynamical predictions of seasonal North Atlantic hurricane activity
  publication-title: Monthly Weather Review
– volume: 27
  start-page: 7994
  issue: 21
  year: 2014
  end-page: 8016
  article-title: On the seasonal forecasting of regional tropical cyclone activity
  publication-title: Journal of Climate
– volume: 37
  issue: 21
  year: 2010
  article-title: Global warming shifts pacific tropical cyclone location
  publication-title: Geophysical Research Letters
– volume: 26
  start-page: 6067
  year: 2013
  end-page: 6080
  article-title: Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble
  publication-title: Journal of Climate
– volume: 26
  start-page: 380
  year: 2013
  end-page: 398
  article-title: Seasonal predictions of tropical cyclones using a 25‐km general circulation model
  publication-title: Journal of Climate
– volume: 34
  year: 2007
  article-title: Evolution of convection during tropical cyclogenesis
  publication-title: Geophysical Research Letters
– volume: 53
  start-page: 173
  issue: 1–2
  year: 2019
  end-page: 192
  article-title: The impact of climate model sea surface temperature biases on tropical cyclone simulations
  publication-title: Climate Dynamics
– volume: 33
  start-page: 1725
  year: 2020
  end-page: 1745
  article-title: Exploring controls on tropical cyclone count through the geography of environmental favorability
  publication-title: Journal of Climate
– volume: 56
  start-page: 241
  year: 2007
  end-page: 266
  article-title: What is the trigger for tropical cyclogenesis?
  publication-title: Australian Meterological Magazine
– volume: 76
  year: 2021
  article-title: Improved simulation of 19th and 20th century north Atlantic hurricane frequency after correcting historical sea surface temperatures
  publication-title: Science Advances
– volume: 100
  start-page: 1665
  year: 2019
  end-page: 1686
  article-title: Process‐oriented evaluation of climate and weather forecasting models
  publication-title: Bulletin of the American Meteorological Society
– volume: 3
  start-page: 157
  year: 2010
  end-page: 163
  article-title: Tropical cyclones and climate change
  publication-title: Nature Geoscience
– volume: 509
  start-page: 349
  year: 2014
  end-page: 352
  article-title: The poleward migration of the location of tropical cyclone maximum intensity
  publication-title: Nature
– volume: 12
  year: 2020
  article-title: Response of tropical cyclone formation and intensification rates to climate warming in idealized simulations
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 3
  start-page: 26
  year: 1948
  end-page: 38
  article-title: On the formation and structure of tropical hurricanes
  publication-title: Geophysica
– volume: 79
  start-page: 19
  issue: 1
  year: 1998
  end-page: 38
  article-title: Tropical cyclones and global climate change: A post‐IPCC assessment
  publication-title: Bulletin of the American Meteorological Society
– volume: 29
  start-page: 8589
  year: 2016
  end-page: 8610
  article-title: Tropical cyclone intensity errors associated with lack of two‐way ocean coupling in high‐resolution global simulations
  publication-title: Journal of Climate
– volume: 47
  year: 2020b
  article-title: Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble
  publication-title: Geophysical Research Letters
– volume: 128
  start-page: 1139
  issue: 4
  year: 2000
  end-page: 1152
  article-title: A statistical analysis of tropical cyclone intensity
  publication-title: Monthly Weather Review
– volume: 24
  start-page: 183
  issue: 1
  year: 2011
  end-page: 193
  article-title: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single‐column model
  publication-title: Journal of Climate
– volume: 93
  start-page: 1901
  issue: 12
  year: 2012
  end-page: 1912
  article-title: A ventilation index for tropical cyclones
  publication-title: Bulletin of the American Meteorological Society
– volume: 135
  start-page: 3587
  issue: 10
  year: 2007
  end-page: 3598
  article-title: The interannual variability of tropical cyclones
  publication-title: Monthly Weather Review
– volume: 31
  start-page: 8281
  issue: 20
  year: 2018
  end-page: 8303
  article-title: Projected response of tropical cyclone intensity and intensification in a global climate model
  publication-title: Journal of Climate
– volume: 53
  start-page: 5999
  issue: 9–10
  year: 2019
  end-page: 6033
  article-title: Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes
  publication-title: Climate Dynamics
– volume: 122
  start-page: 6284
  year: 2017
  end-page: 6297
  article-title: Replicating annual north Atlantic hurricane activity 1878‐2012 from environmental variables
  publication-title: Journal of Geophysical Research
– volume: 24
  start-page: 472
  year: 2009
  end-page: 491
  article-title: Experimental seasonal dynamical forecasts of tropical cyclone activity at IRI
  publication-title: Weather Forecasting
– volume: 5
  start-page: 172
  year: 2019
  end-page: 184
  article-title: Global cloud resolving models
  publication-title: Current Climate Change Reports
– volume: 45
  start-page: 471
  issue: 1
  year: 2018
  end-page: 479
  article-title: The response of Atlantic tropical cyclones to suppression of African easterly waves
  publication-title: Geophysical Research Letters
– volume: 513
  start-page: 45
  year: 2014
  end-page: 53
  article-title: Migrations and dynamics of the intertropical convergence zone
  publication-title: Nature
– volume: 24
  start-page: 2335
  year: 2011
  end-page: 2357
  article-title: A Poisson regression index for tropical cyclone genesis and the role of large‐scale vorticity in genesis
  publication-title: Journal of Climate
– volume: 73
  start-page: 525
  year: 2016
  end-page: 544
  article-title: Convective self‐aggregation and tropical cyclogenesis under the hypohydrostatic rescaling
  publication-title: Journal of the Atmospheric Sciences
– volume: 30
  start-page: 5419
  issue: 14
  year: 2017
  end-page: 5454
  article-title: The modern‐era retrospective analysis for research and applications, Version 2 (MERRA‐2)
  publication-title: Journal of Climate
– volume: 34
  year: 2007
  article-title: Tropical sea surface temperature, vertical wind shear, and hurricane development
  publication-title: Geophysical Research Letters
– volume: 77
  start-page: 1261
  year: 2020
  end-page: 1277
  article-title: The role of radiation in accelerating tropical cyclogenesis in idealized simulations
  publication-title: Journal of the Atmospheric Sciences
– volume: 10
  start-page: 165
  year: 2018
  end-page: 186
  article-title: Tropical cyclone activity in the high‐resolution Community Earth System Model and the impact of ocean coupling
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 25
  start-page: 8196
  year: 2012b
  end-page: 8211
  article-title: Variations in tropical cyclone genesis factors in simulations of the Holocene Epoch
  publication-title: Journal of Climate
– volume: 31
  start-page: 659
  year: 2021
  end-page: 674
  article-title: Tropical cyclones downscaled from simulations of the last glacial maximum
  publication-title: Journal of Climate
– volume: 35
  year: 2008
  article-title: Increased sensitivity of tropical cyclogenesis to wind shear in higher sst environments
  publication-title: Geophysical Research Letters
– volume: 450
  start-page: 1066
  issue: 7172
  year: 2007a
  end-page: 1070
  article-title: Effect of remote sea surface temperature change on tropical cyclone potential intensity
  publication-title: Nature
– volume: 4
  start-page: 355
  year: 2018
  end-page: 370
  article-title: Response of the intertropical convergence zone to climate change: Location, width, and strength
  publication-title: Current Climate Change Reports
– volume: 44
  start-page: 587
  year: 2017
  end-page: 595
  article-title: Revisiting the connection between African Easterly Waves and Atlantic tropical cyclogenesis
  publication-title: Geophysical Research Letters
– volume: 46
  start-page: 619
  year: 2015
  end-page: 636
  article-title: Inhomogeneous warming of the tropical Indian Ocean in the CMIP5 model simulations during 1900‐2005 and associated mechanisms
  publication-title: Climate Dynamics
– volume: 293
  start-page: 474
  year: 2001
  end-page: 479
  article-title: The recent increase in Atlantic hurricane activity: Causes and implications
  publication-title: Science
– year: 2020
  article-title: A numerical study of the global formation of tropical cyclones
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 7
  start-page: 1872
  year: 2015
  article-title: The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 42
  start-page: 6780
  year: 2015
  end-page: 6784
  article-title: More tropical cyclones in a cooler climate?
  publication-title: Geophysical Research Letters
– volume: 91
  start-page: 1015
  year: 2010
  end-page: 1058
  article-title: The NCEP climate forecast system reanalysis
  publication-title: Bulletin of the American Meteorological Society
– volume: 99
  start-page: 579
  year: 2021
  end-page: 602
  article-title: Tropical cyclones in global storm‐resolving models
  publication-title: Journal of the Meteorological Society of Japan.
– volume: 74
  start-page: 879
  year: 2017
  end-page: 892
  article-title: Tropical cyclones in rotating radiative‐convective equilibrium with coupled SST
  publication-title: Journal of the Atmospheric Sciences
– volume: 43
  start-page: 2859
  year: 2016
  end-page: 2865
  article-title: Surface temperature dependence of tropical cyclone‐permitting simulations in a spherical model with uniform thermal forcing
  publication-title: Geophysical Research Letters
– volume: 73
  start-page: 2633
  year: 2016
  end-page: 2642
  article-title: Role of radiative‐convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations
  publication-title: Journal of the Atmospheric Sciences
– volume: 83
  start-page: 1717
  year: 2016
  end-page: 1729
  article-title: Northern hemisphere tropical cyclones during the quasi‐El Niño of late 2014
  publication-title: Natural Hazards
– volume: 33
  start-page: 2557
  year: 2020a
  end-page: 2583
  article-title: Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble
  publication-title: Journal of Climate
– volume: 71
  start-page: 1058
  year: 2014
  end-page: 1068
  article-title: Parameter study of tropical cyclones in rotating radiative‐convective equilibrium with column physics and resolution of a 25 km GCM
  publication-title: Journal of the Atmospheric Sciences
– volume: 125
  start-page: 2662
  year: 1997
  end-page: 2682
  article-title: The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study
  publication-title: Monthly Weather Review
– volume: 101
  start-page: E303
  year: 2020
  end-page: E322
  article-title: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming
  publication-title: Bulletin of the American Meteorological Society
– volume: 63
  start-page: 355
  year: 2006
  end-page: 386
  article-title: A vortical hot tower route to tropical cyclogenesis
  publication-title: Journal of the Atmospheric Sciences
– volume: 6
  start-page: 1154
  issue: 4
  year: 2014
  end-page: 1172
  article-title: Characteristics of tropical cyclones in high‐resolution models in the present climate
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 19
  start-page: 8383
  year: 2019
  end-page: 8397
  article-title: Large‐scale dynamics of tropical cyclone formation associated with ITCZ breakdown
  publication-title: Atmospheric Chemistry and Physics
– volume: 6
  start-page: 616
  year: 2014
  end-page: 629
  article-title: Large‐scale character of an atmosphere in rotating radiative‐convective equilibrium
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 12
  issue: 8
  year: 2020
  article-title: Characterizing tropical cyclones in the Energy Exascale Earth System Model Version 1
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 26
  start-page: 2563
  issue: 8
  year: 2013
  end-page: 2579
  article-title: Analysis of tropical cyclone precipitation using an object‐based algorithm
  publication-title: Journal of Climate
– volume: 65
  start-page: 1037
  year: 2015
  end-page: 1046
  article-title: Understanding the Indian Ocean response to double CO2 forcing in a coupled model
  publication-title: Ocean Dynamics
– volume: 139
  start-page: 689
  year: 2011
  end-page: 710
  article-title: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs
  publication-title: Monthly Weather Review
– volume: 11
  start-page: 793
  year: 2018
  end-page: 813
  article-title: Radiative–convective equilibrium model intercomparison project
  publication-title: Geoscientific Model Development
– volume: 34
  year: 2007
  article-title: Relationship between the potential and actual intensities of tropical cyclones on interannual time scales
  publication-title: Geophysical Research Letters
– volume: 96
  start-page: 669
  year: 1968
  end-page: 700
  article-title: Global view of the origin of tropical disturbances and storms
  publication-title: Monthly Weather Review
– volume: 61
  start-page: 1209
  year: 2004
  end-page: 1232
  article-title: The role of vortical hot towers in the formation of tropical cyclone Diana (1984)
  publication-title: Journal of the Atmospheric Sciences
– volume: 23
  start-page: 1526
  issue: 6
  year: 2010
  end-page: 1543
  article-title: Contribution of tropical cyclones to the global precipitation from eight seasons of trmm data: Regional, seasonal, and interannual variations
  publication-title: Journal of Climate
– volume: 7
  start-page: 65
  year: 2016
  end-page: 89
  article-title: Tropical cyclones and climate change
  publication-title: WIREs Climate Change
– volume: 33
  start-page: 1473
  year: 2020
  end-page: 1486
  article-title: Real world and tropical cyclone world. Part II: Sensitivity of tropical cyclone formation to uniform and meridionally varying sea surface temperatures under aquaplanet conditions
  publication-title: Journal of Climate
– start-page: 325
  year: 2010
  end-page: 360
– volume: 108
  start-page: 567589
  issue: 18
  year: 1998
  end-page: 567618
  article-title: Analyses of global sea surface temperature 1856‐1991
  publication-title: Journal of Geophysical Research
– volume: 34
  start-page: 2079
  year: 2021
  end-page: 2091
  article-title: The role of radiative interactions in tropical cyclone development under realistic boundary conditions
  publication-title: Journal of Climate
– volume: 66
  start-page: 3061
  year: 2009
  end-page: 3074
  article-title: Diagnosis of the mjo modulation of tropical cyclogenesis using an empirical index
  publication-title: Journal of the Atmospheric Sciences
– volume: 32
  start-page: 6071
  year: 2019
  end-page: 6095
  article-title: Moist static energy budget analysis of tropical cyclone intensification in high‐resolution climate models
  publication-title: Journal of Climate
– volume: 55
  start-page: 3177
  issue: 11
  year: 2020
  end-page: 3196
  article-title: Large‐scale control on the frequency of tropical cyclones and seeds: A consistent relationship across a hierarchy of global atmospheric models
  publication-title: Climate Dynamics
– volume: 33
  start-page: 4815
  issue: 11
  year: 2020
  end-page: 4834
  article-title: Statistical–dynamical downscaling projections of tropical cyclone activity in a warming climate: Two diverging genesis scenarios
  publication-title: Journal of Climate
– volume: 136
  year: 2010
  article-title: Thermodynamic control of tropical cyclogenesis in environments of radiative‐convective equilibrium with shear
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 38
  start-page: 1132
  year: 1981
  end-page: 1151
  article-title: Observational analysis of tropical cyclone formation. Part II: Comparison of non‐developing versus non‐developing Systems
  publication-title: Journal of the Atmospheric Sciences
– volume: 90A
  start-page: 397
  year: 2012
  end-page: 408
  article-title: On the mechanism of tropical cyclone frequency changes due to global warming
  publication-title: Journal of Meteorological Society of Japan
– volume: 30
  start-page: 3789
  year: 2017
  end-page: 3805
  article-title: The central role of ocean dynamics in connecting the north atlantic oscillation to the extratropical component of the Atlantic multidecadal oscillation
  publication-title: Journal of Climate
– volume: 142
  start-page: 1221
  year: 2014
  end-page: 1239
  article-title: Using variable‐resolution meshes to model tropical cyclones in the Community Atmosphere Model
  publication-title: Monthly Weather Review
– volume: 18
  start-page: 2996
  year: 2005
  end-page: 3006
  article-title: Western North Pacific tropical cyclone intensity and ENSO
  publication-title: Journal of Climate
– volume: 36
  issue: 21
  year: 2009
  article-title: Global warming, convective threshold and false thermostats
  publication-title: Geophysical Research Letters
– volume: 133
  start-page: 2085
  year: 2007
  end-page: 2107
  article-title: Tropical cyclonegenesis sensitivity to environmental parameters in radiative‐convective equilibrium
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 30
  start-page: 359
  issue: 1
  year: 2017
  end-page: 372
  article-title: Contribution of tropical cyclones to rainfall at the global scale
  publication-title: Journal of Climate
– volume: 96
  start-page: 997
  year: 2015
  end-page: 1017
  article-title: Hurricanes and climate: The U.S. CLIVAR Working Group on hurricanes
  publication-title: Bulletin of the American Meteorological Society
– volume: 27
  start-page: 9171
  year: 2014
  end-page: 9196
  article-title: Testing the performance of tropical cyclone genesis indices in future climates using the HIRAM model
  publication-title: Journal of Climate
– volume: 93
  start-page: 5
  issue: 1
  year: 2015
  end-page: 48
  article-title: The JRA‐55 reanalysis: General specifications and basic characteristics
  publication-title: Journal of the Meteorological Society of Japan. Ser. II
– volume: 44
  start-page: 1167
  year: 2017
  end-page: 1174
  article-title: A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones
  publication-title: Geophysical Research Letters
– volume: 71
  start-page: 233
  year: 2006
  article-title: Atlantic hurricane trends linked to climate change
  publication-title: EOS
– volume: 33
  start-page: 4463
  year: 2020
  end-page: 4487
  article-title: Characteristics of model tropical cyclone climatology and the large‐scale environment
  publication-title: Journal of Climate
– volume: 3
  start-page: 842
  year: 2010b
  end-page: 845
  article-title: Variability and change of the sea surface temperature threshold for convection over tropical oceans
  publication-title: Nature Geosciences
– volume: 7
  start-page: 885
  year: 2017
  end-page: 889
  article-title: Increasing frequency of extremely severe cyclonic storms over the Arabian Sea
  publication-title: Nature Climate Change
– volume: 1
  start-page: 133
  year: 2005
  end-page: 136
  article-title: Tropical cyclone climatology in a high‐resolution AGCM ‐ Impacts of SST warming and CO2 increase
  publication-title: SOLA
– volume: 76
  start-page: 2193
  year: 2019
  end-page: 2220
  article-title: Dry and semidry tropical cyclones
  publication-title: Journal of the Atmospheric Sciences
– volume: 16
  start-page: 70
  year: 2020
  end-page: 74
  article-title: Future changes in the global frequency of tropical cyclone seeds
  publication-title: SOLA
– volume: 47
  year: 2020
  article-title: A global analysis of interannual variability of potential and actual tropical cyclone intensities
  publication-title: Geophysical Research Letters
– volume: 35
  start-page: 367
  year: 1997
  end-page: 383
  article-title: Documentation of a highly ENSO‐related SST region in the equatorial Pacific
  publication-title: Atmosphere‐Ocean
– volume: 100
  start-page: 1987
  year: 2019
  end-page: 2007
  article-title: Tropical cyclones and climate change assessment: Part I. Detection and attribution
  publication-title: Bulletin of the American Meteorological Society
– volume: 5
  start-page: 134
  year: 2013
  end-page: 145
  article-title: Hurricanes in an aquaplanet world: Implications of the impacts of external forcing and model horizontal resolution
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 3
  start-page: 688
  issue: 10
  year: 2010
  end-page: 694
  article-title: External forcing as a metronome for Atlantic multidecadal variability
  publication-title: Nature Geoscience
– volume: 74
  start-page: 2989
  year: 2017
  end-page: 2996
  article-title: A simple derivation of tropical cyclone ventilation theory and its application to capped surface entropy fluxes
  publication-title: Journal of the Atmospheric Sciences
– volume: 31
  start-page: 1685
  year: 2018
  end-page: 1702
  article-title: Process‐oriented diagnosis of tropical cyclones in high‐resolution GCMs
  publication-title: Journal of Climate
– volume: 28
  start-page: 1423
  year: 2013
  end-page: 1445
  article-title: An evaluation of tropical cyclone genesis forecasts from global numerical models
  publication-title: Weather Forecasting
– volume: 46
  start-page: 135
  year: 2010
  end-page: 153
  article-title: Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model
  publication-title: Asia‐Pacific Journal of Atmospheric Science
– volume: 115
  start-page: 2930
  year: 2018
  end-page: 2935
  article-title: Acceleration of tropical cyclogenesis by self‐aggregation feedbacks
  publication-title: Proceedings of the National Academy of Sciences
– volume: 125
  year: 2020
  article-title: Sub‐seasonal to seasonal prediction of weather to climate with application to tropical cyclones
  publication-title: Journal of Geophysical Research
– volume: 34
  year: 2007
  article-title: Dynamically‐based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP
  publication-title: Geophysical Research Letters
– volume: 59A
  start-page: 428
  year: 2007
  end-page: 443
  article-title: Tropical cyclone genesis potential index in climate models
  publication-title: Tellus
– volume: 48
  year: 2021
  article-title: Tropical cyclone frequency under varying SSTs in aquaplanet simulations
  publication-title: Geophysical Research Letters
– volume: 112
  start-page: 1649
  year: 1984
  end-page: 1668
  article-title: Atlantic seasonal hurricane frequency. Part I: El‐Niño and 30‐MB quasi‐biennial oscillation influences
  publication-title: Monthly Weather Review
– volume: 9
  start-page: 4
  year: 2017
  end-page: 18
  article-title: Variations in tropical cyclone frequency response to solar and CO forcing in aquaplanet simulations
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 42
  start-page: 3603
  issue: 9
  year: 2015
  end-page: 3608
  article-title: Impact of the dynamical core on the direct simulation of tropical cyclones in a high‐resolution global model
  publication-title: Geophysical Research Letters
– volume: 62
  start-page: 4237
  year: 2005
  end-page: 4292
  article-title: An energy‐balance analysis of deep convective self‐aggregation above uniform SST
  publication-title: Journal of the Atmospheric Sciences
– volume: 40
  start-page: 4109
  year: 2013
  end-page: 4114
  article-title: The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations
  publication-title: Geophysical Research Letters
– volume: 97
  start-page: 20227
  year: 1992
  end-page: 20248
  article-title: Upper ocean response to hurricane Gilbert
  publication-title: Journal of Geophysical Research
– year: 2021
  article-title: Changes in Atlantic major hurricane frequency since the late 19th century
  publication-title: Nature Communications
– volume: 121
  start-page: 1703
  year: 1993
  end-page: 1713
  article-title: A climatology of intense (or major) Atlantic hurricanes
  publication-title: Monthly Weather Review
– volume: 34
  year: 2007b
  article-title: Increased tropical Atlantic wind shear in model projections of global warming
  publication-title: Geophysical Research Letters
– volume: 30
  start-page: 145
  year: 2017
  end-page: 162
  article-title: Tropical cyclone interaction with the ocean: The role of high‐frequency (subdaily) coupled processes
  publication-title: Journal of Climate
– volume: 25
  start-page: 4358
  year: 2012a
  end-page: 4365
  article-title: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum
  publication-title: Journal of Climate
– volume: 88
  start-page: 1767
  year: 2007
  end-page: 1782
  article-title: A more general framework for understanding Atlantic hurricane variability and trends
  publication-title: Bulletin of the American Meteorological Society
– volume: 504
  start-page: 44
  year: 2013
  end-page: 52
  article-title: Coastal flooding by tropical cyclones and sea‐level rise
  publication-title: Nature
– volume: 17
  start-page: 675
  year: 2021
  end-page: 701
  article-title: Atlantic hurricanes response to Sahara greening and reduced dust emissions during the mid‐Holocene
  publication-title: Climate of the Past
– volume: 6
  start-page: 345
  year: 2015
  end-page: 358
  article-title: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward
  publication-title: Wires Climate Change
– volume: 23
  start-page: 2508
  year: 2010
  end-page: 2519
  article-title: Impact of duration thresholds on atlantic tropical cyclone counts
  publication-title: Journal of Climate
– volume: 46
  start-page: 13327
  year: 2019
  end-page: 13337
  article-title: Unprecedented northern hemisphere tropical cyclone genesis in 2018 shaped by subtropical warming in the North Pacific and the North Atlantic
  publication-title: Geophysical Research Letters
– volume: 67
  start-page: 1817
  year: 2010
  end-page: 1830
  article-title: Midlevel ventilation's constraint on tropical cyclone intensity
  publication-title: Journal of the Atmospheric Sciences
– volume: 7
  start-page: 1938
  year: 2015
  end-page: 1955
  article-title: Uniformly rotating global radiative‐convective equilibrium in the Community Atmosphere Model, version 5
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 77
  start-page: 4051
  year: 2020
  end-page: 4065
  article-title: Interactive radiation accelerates the intensification of the midlevel vortex for tropical cyclogenesis
  publication-title: Journal of the Atmospheric Sciences
– volume: 8
  year: 2021
  article-title: Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high‐resolution multi‐model ensemble simulations
  publication-title: Progress in Earth and Planetary Science
– volume: 8
  start-page: 730
  year: 2018
  end-page: 736
  article-title: Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion
  publication-title: Nature Climate Change
– volume: 91
  start-page: 363
  year: 2010
  end-page: 376
  article-title: The international best track archive for climate stewardship (ibtracs)
  publication-title: Bulletin of the American Meteorological Society
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 64
  start-page: 11
  year: 2014
  end-page: 25
  article-title: Tropical cyclogenesis and mid‐level vorticity
  publication-title: Australian Meteorological and Oceangraphic Journal
– volume: 11
  start-page: 392
  year: 2018
  end-page: 400
  article-title: Global energetics and local physics as drivers of past, present and future monsoons
  publication-title: Nature Geosciences
– volume: 419
  start-page: 228
  issue: 6903
  year: 2002
  end-page: 232
  article-title: Constraints on future changes in climate and the hydrologic cycle
  publication-title: Nature
– volume: 3
  start-page: 842
  issue: 12
  year: 2010a
  end-page: 845
  article-title: Changes in the sea surface temperature threshold for tropical convection
  publication-title: Nature Geoscience
– volume: 60
  start-page: 607
  year: 2003
  end-page: 625
  article-title: Cloud resolving modeling of the ARM Summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities
  publication-title: Journal of the Atmospheric Sciences
– volume: 12
  year: 2020
  article-title: Tropical cyclogenesis from self‐aggregated convection in numerical simulations of rotating radiative‐convective equilibrium
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 76
  start-page: 2257
  year: 2019
  end-page: 2274
  article-title: Dynamical aquaplanet experiments with uniform thermal forcing: System dynamics and implications for tropical cyclone genesis and size
  publication-title: Journal of the Atmospheric Sciences
– volume: 107
  start-page: 1221
  year: 1979
  end-page: 1224
  article-title: A possible method for predicting seasonal tropical cyclone activity in the Australian region
  publication-title: Monthly Weather Review
– volume: 22
  start-page: 6653
  issue: 24
  year: 2009
  end-page: 6678
  article-title: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50‐km resolution gcm
  publication-title: Journal of Climate
– volume: 5
  start-page: 185
  year: 2019
  end-page: 195
  article-title: Aquaplanet simulations of tropical cyclones
  publication-title: Current Climate Change Reports
– volume: 28
  start-page: 574
  issue: 2
  year: 2015
  end-page: 596
  article-title: Tropical cyclones in the upscale ensemble of high‐resolution global climate models
  publication-title: Journal of Climate
– volume: 68
  year: 2016
  article-title: Tropical cyclones in the GISS ModelE2
  publication-title: Tellus
– volume: 9
  start-page: 517
  year: 2019
  end-page: 522
  article-title: Strengthening tropical pacific zonal sea surface temperature gradient consistent with rising greenhouse gases
  publication-title: Nature Climate Change
– volume: 38
  start-page: 2819
  year: 2018
  end-page: 2837
  article-title: Changes in tropical cyclone activity in North Indian Ocean during satellite era (1981 ‐ 2014)
  publication-title: International Journal of Climatology
– volume: 44
  start-page: 2742
  year: 2017
  end-page: 2480
  article-title: The role of historical forcings in simulating the observed Atlantic multidecadal oscillation
  publication-title: Geophysical Research Letters
– volume: 25
  start-page: 8611
  year: 2012
  end-page: 8626
  article-title: Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin
  publication-title: Journal of Climate
– volume: 72
  start-page: 2286
  year: 2015
  end-page: 2302
  article-title: The sensitivity of tropical cyclone activity to off‐equatorial thermal forcing
  publication-title: Journal of the Atmospheric Sciences
– volume: 28
  start-page: 7182
  year: 2015
  end-page: 7202
  article-title: Tropical cyclone genesis factors in a simulation of the last two millennia: Results from the Community Earth System Model
  publication-title: Journal of Climate
– volume: 97
  start-page: 2305
  year: 2016
  end-page: 2328
  article-title: Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group
  publication-title: Bulletin of the American Meteorological Society
– volume: 27
  start-page: 2185
  year: 2014
  end-page: 2208
  article-title: The NCEP climate forecast system version 2
  publication-title: Journal of Climate
– volume: 25
  start-page: 441
  year: 2000
  end-page: 475
  article-title: Water vapor feedback and global warming
  publication-title: Annual Review of Energy and Environment
– volume: 84
  start-page: 405
  issue: 2
  year: 2006
  end-page: 428
  article-title: Influence of greenhouse warming on tropical cyclone frequency
  publication-title: Journal of the Meteorological Society of Japan
– volume: 36
  year: 2009
  article-title: Co‐variability of tropical cyclones in the North Atlantic and the eastern North Pacific
  publication-title: Geophysical Research Letters
– volume: 65
  start-page: 2003
  year: 2008
  end-page: 2013
  article-title: Aquaplanet homogeneouchre rotating radiative‐convective equilibrium at GCM resolution
  publication-title: Journal of Atmospheric Sciences
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 38
  year: 2011
  article-title: The remarkable predictability of inter‐annual variability of Atlantic hurricanes during the past decade
  publication-title: Geophysical Research Letters
– year: 2016
  article-title: High resolution model intercomparison project (HighResMIP)
  publication-title: Geoscientific Model Development Discussions
– volume: 24
  start-page: 5353
  issue: 20
  year: 2011
  end-page: 5364
  article-title: The response of tropical cyclone statistics to an increase in CO with fixed sea surface temperatures
  publication-title: Journal of Climate
– volume: 5
  start-page: 816
  year: 2013
  end-page: 825
  article-title: Rotating radiative‐convective equilibrium simulated by a cloud‐resolving model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 52
  start-page: 107
  year: 2019
  end-page: 127
  article-title: Tropical cyclogenesis in warm climates simulated by a cloud‐system resolving model
  publication-title: Climate Dynamics
– year: 2012
– volume: 47
  year: 2019
  article-title: Relevance of relative sea surface temperature for tropical rainfall interannual variability
  publication-title: Geophysical Research Letters
– volume: 28
  start-page: 9058
  issue: 23
  year: 2015
  end-page: 9079
  article-title: Simulation and prediction of category 4 and 5 hurricanes in the high‐resolution GFDL HiFLOR coupled climate model
  publication-title: Journal of Climate
– volume: 117
  start-page: 22720
  year: 2020
  end-page: 22726
  article-title: Summertime stationary waves integrate tropical and extratropical impacts on tropical cyclone activity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 350
  start-page: 320
  year: 2015
  end-page: 324
  article-title: The Atlantic multidecadal oscillation without a role for ocean circulation
  publication-title: Science
– volume: 108
  start-page: 8179
  year: 2017
  end-page: 8205
  article-title: Extended reconstructed sea surface temperature version 5 (ersstv5), upgrades, validations, and intercomparisons
  publication-title: Journal of Climate
– start-page: 155
  year: 1979
  end-page: 218
  article-title: Meteorology over the tropical oceans
  publication-title: Royal Meteorological Society
– volume: 89
  start-page: 347
  year: 2008
  end-page: 368
  article-title: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations
  publication-title: Bulletin of the American Meteorological Society
– volume: 8
  start-page: 134
  year: 2019
  end-page: 149
  article-title: Seasonal tropical cyclone forecasting
  publication-title: Tropical Cyclone Research and Review
– volume: 117
  start-page: 27884
  year: 2020
  end-page: 27892
  article-title: The critical role of cloud‐infrared radiation feedback in tropical cyclone development
  publication-title: Proceedings of the National Academy of Sciences
– volume: 142
  start-page: 3881
  year: 2014
  end-page: 3899
  article-title: The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS
  publication-title: Monthly Weather Review
– year: 2017
– volume: 45
  start-page: 2082
  issue: 4
  year: 2018
  end-page: 2087
  article-title: Resolving tropical cyclone intensity in models
  publication-title: Geophysical Research Letters
– volume: 20
  start-page: 4819
  year: 2007
  end-page: 4834
  article-title: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis
  publication-title: Journal of Climate
– volume-title: Global Guide to tropical cyclone forecasting, WMO‐No. 1194
  year: 2017
  ident: e_1_2_9_177_1
– ident: e_1_2_9_102_1
  doi: 10.1002/2016GL067730
– ident: e_1_2_9_31_1
  doi: 10.1029/2011GL047629
– ident: e_1_2_9_72_1
  doi: 10.2151/jmsj.2021-029
– ident: e_1_2_9_183_1
  doi: 10.1007/s00382-015-2602-5
– ident: e_1_2_9_99_1
  doi: 10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2
– ident: e_1_2_9_69_1
  doi: 10.1175/2009JCLI3303.1
– ident: e_1_2_9_98_1
  doi: 10.1029/2006EO240001
– ident: e_1_2_9_19_1
  doi: 10.1175/JCLI3457.1
– ident: e_1_2_9_97_1
  doi: 10.1175/BAMS-D-18-0042.1
– ident: e_1_2_9_79_1
  doi: 10.1175/2009BAMS2755.1
– ident: e_1_2_9_127_1
  doi: 10.1175/JCLI-D-19-0639.1
– ident: e_1_2_9_15_1
  doi: 10.1007/s40641-018-0110-5
– ident: e_1_2_9_144_1
  doi: 10.1002/2014MS000342
– ident: e_1_2_9_3_1
  doi: 10.1029/2019MS002024
– ident: e_1_2_9_110_1
  doi: 10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2
– ident: e_1_2_9_158_1
  doi: 10.1038/nature06423
– ident: e_1_2_9_9_1
  doi: 10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2
– ident: e_1_2_9_174_1
  doi: 10.5194/gmd-11-793-2018
– ident: e_1_2_9_8_1
  doi: 10.1038/s41561-018-0137-1
– ident: e_1_2_9_68_1
  doi: 10.1073/pnas.1720683115
– ident: e_1_2_9_156_1
  doi: 10.1007/s00382-019-04913-y
– ident: e_1_2_9_35_1
  doi: 10.1002/2017GL076966
– ident: e_1_2_9_70_1
  doi: 10.1038/ngeo1008
– ident: e_1_2_9_50_1
  doi: 10.1126/science.1060040
– ident: e_1_2_9_124_1
  doi: 10.1002/2015MS000519
– volume: 47
  year: 2019
  ident: e_1_2_9_67_1
  article-title: Relevance of relative sea surface temperature for tropical rainfall interannual variability
  publication-title: Geophysical Research Letters
– ident: e_1_2_9_191_1
  doi: 10.1175/JCLI-D-12-00638.1
– ident: e_1_2_9_153_1
  doi: 10.1175/BAMS-D-11-00165.1
– ident: e_1_2_9_123_1
  doi: 10.1002/2015GL063974
– ident: e_1_2_9_95_1
  doi: 10.1029/2010GL045124
– ident: e_1_2_9_130_1
  doi: 10.1029/2018JD029375
– ident: e_1_2_9_134_1
  doi: 10.1175/JCLI-D-12-00823.1
– ident: e_1_2_9_162_1
  doi: 10.1029/2007GL030740
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1600-0870.2007.00238.x
– ident: e_1_2_9_128_1
  doi: 10.1029/2020GL088662
– ident: e_1_2_9_175_1
  doi: 10.1029/2006GL028581
– ident: e_1_2_9_141_1
  doi: 10.1002/2014MS000372
– ident: e_1_2_9_145_1
  doi: 10.1029/2020GL089512
– ident: e_1_2_9_21_1
  doi: 10.1142/9789814293488_0011
– ident: e_1_2_9_148_1
  doi: 10.1007/s11069-016-2389-7
– volume: 85
  start-page: 666
  year: 2004
  ident: e_1_2_9_44_1
  article-title: Tropical cyclone activity and global climate
  publication-title: Bulletin of the American Meteorological Society
– ident: e_1_2_9_143_1
  doi: 10.1029/92JC01586
– year: 2020
  ident: e_1_2_9_163_1
  article-title: A numerical study of the global formation of tropical cyclones
  publication-title: Journal of Advances in Modeling Earth Systems
– ident: e_1_2_9_94_1
  doi: 10.1002/2017MS001199
– ident: e_1_2_9_12_1
  doi: 10.1029/GL017i011p01917
– ident: e_1_2_9_17_1
  doi: 10.1175/JCLI4282.1
– ident: e_1_2_9_155_1
  doi: 10.1175/JCLI-D-14-00158.1
– volume: 3
  start-page: 26
  year: 1948
  ident: e_1_2_9_115_1
  article-title: On the formation and structure of tropical hurricanes
  publication-title: Geophysica
– ident: e_1_2_9_86_1
  doi: 10.1038/nature13278
– ident: e_1_2_9_136_1
  doi: 10.1002/2017JD026492
– ident: e_1_2_9_53_1
  doi: 10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2
– volume: 56
  start-page: 241
  year: 2007
  ident: e_1_2_9_111_1
  article-title: What is the trigger for tropical cyclogenesis?
  publication-title: Australian Meterological Magazine
– ident: e_1_2_9_5_1
  doi: 10.1175/JAS-D-14-0284.1
– ident: e_1_2_9_126_1
  doi: 10.1002/wcc.338
– ident: e_1_2_9_56_1
  doi: 10.1146/annurev.energy.25.1.441
– ident: e_1_2_9_75_1
  doi: 10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2
– ident: e_1_2_9_190_1
  doi: 10.1175/2009JCLI3049.1
– ident: e_1_2_9_76_1
  doi: 10.1175/JCLI-D-16-0298.1
– ident: e_1_2_9_170_1
  doi: 10.1073/pnas.2010547117
– ident: e_1_2_9_37_1
  doi: 10.1002/qj.828
– ident: e_1_2_9_159_1
  doi: 10.1029/2006GL028905
– ident: e_1_2_9_80_1
  doi: 10.1175/BAMS-D-18-0189.1
– ident: e_1_2_9_118_1
  doi: 10.1029/2020MS002086
– ident: e_1_2_9_116_1
  doi: 10.1002/2016GL071965
– ident: e_1_2_9_172_1
  doi: 10.1175/JCLI-D-18-0599.1
– ident: e_1_2_9_4_1
  doi: 10.1002/joc.5463
– ident: e_1_2_9_10_1
  doi: 10.1175/JAS-D-15-0049.1
– ident: e_1_2_9_179_1
  doi: 10.1186/s40645-020-00397-1
– ident: e_1_2_9_14_1
  doi: 10.1029/2020GL091980
– ident: e_1_2_9_146_1
  doi: 10.1175/JCLI-D-12-00135.1
– ident: e_1_2_9_13_1
  doi: 10.1175/JCLI-D-11-00619.1
– ident: e_1_2_9_164_1
  doi: 10.1175/BAMS-D-13-00242.1
– ident: e_1_2_9_91_1
  doi: 10.1175/JCLI-D-20-0409.1
– ident: e_1_2_9_87_1
  doi: 10.1175/BAMS-88-11-1767
– ident: e_1_2_9_151_1
  doi: 10.1002/2015GL064929
– ident: e_1_2_9_181_1
  doi: 10.1175/JCLI-D-15-0054.1
– ident: e_1_2_9_42_1
  doi: 10.3894/JAMES.2010.2.1
– ident: e_1_2_9_182_1
  doi: 10.1175/JAS-D-20-0094.1
– ident: e_1_2_9_39_1
  doi: 10.1007/s13143-010-0013-4
– ident: e_1_2_9_57_1
  doi: 10.1175/2007JAS2604.1
– ident: e_1_2_9_121_1
  doi: 10.22499/2.6401.003
– ident: e_1_2_9_18_1
  doi: 10.1175/JCLI-D-19-0500.1
– ident: e_1_2_9_81_1
  doi: 10.1175/BAMS-D-18-0194.1
– ident: e_1_2_9_43_1
  doi: 10.1073/pnas.1301293110
– ident: e_1_2_9_11_1
  doi: 10.1175/JAS3614.1
– ident: e_1_2_9_27_1
  doi: 10.1002/wcc.602
– ident: e_1_2_9_29_1
  doi: 10.1175/JAS-D-19-0001.1
– ident: e_1_2_9_54_1
  doi: 10.5194/gmd-9-4185-2016
– ident: e_1_2_9_161_1
  doi: 10.1002/2016MS000785
– ident: e_1_2_9_184_1
  doi: 10.2151/sola.2005-035
– ident: e_1_2_9_2_1
  doi: 10.1038/nature01092a
– ident: e_1_2_9_166_1
  doi: 10.1175/JCLI-D-19-0079.1
– ident: e_1_2_9_47_1
  doi: 10.1007/s00382-018-4134-2
– ident: e_1_2_9_40_1
  doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
– ident: e_1_2_9_30_1
  doi: 10.1175/JCLI-D-12-00061.1
– ident: e_1_2_9_26_1
  doi: 10.1126/sciadv.abg6931
– ident: e_1_2_9_58_1
  doi: 10.1175/JCLI-D-11-00050.1
– ident: e_1_2_9_195_1
  doi: 10.1175/BAMS-D-15-00274.1
– ident: e_1_2_9_16_1
  doi: 10.1175/2008WAF2007099.1
– ident: e_1_2_9_63_1
  doi: 10.1175/JCLI-D-18-0862.1
– ident: e_1_2_9_176_1
  doi: 10.1038/nature12855
– ident: e_1_2_9_61_1
  doi: 10.1002/qj.3803
– ident: e_1_2_9_140_1
  doi: 10.1038/s41558-019-0505-x
– ident: e_1_2_9_167_1
  doi: 10.1029/2009GL041469
– ident: e_1_2_9_6_1
  doi: 10.1080/07055900.1997.9649597
– ident: e_1_2_9_165_1
  doi: 10.1002/wcc.371
– ident: e_1_2_9_168_1
  doi: 10.1029/2019GL085406
– volume: 25
  start-page: 4358
  year: 2012
  ident: e_1_2_9_84_1
  article-title: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum
  publication-title: Journal of Climate
– volume: 108
  start-page: 567589
  issue: 18
  year: 1998
  ident: e_1_2_9_73_1
  article-title: Analyses of global sea surface temperature 1856‐1991
  publication-title: Journal of Geophysical Research
– ident: e_1_2_9_129_1
  doi: 10.1175/JCLI-D-14-00131.1
– ident: e_1_2_9_78_1
  doi: 10.1016/j.tcrr.2019.10.003
– ident: e_1_2_9_150_1
  doi: 10.2151/sola.2020-012
– ident: e_1_2_9_114_1
  doi: 10.1038/ngeo955
– ident: e_1_2_9_34_1
  doi: 10.5194/cp-17-675-2021
– ident: e_1_2_9_71_1
  doi: 10.1038/ngeo1008
– ident: e_1_2_9_48_1
  doi: 10.1175/MWR3435.1
– ident: e_1_2_9_83_1
  doi: 10.2151/jmsj.2015-001
– ident: e_1_2_9_193_1
  doi: 10.1175/JAS-D-16-0195.1
– ident: e_1_2_9_89_1
  doi: 10.1175/2009JCLI3034.1
– ident: e_1_2_9_173_1
  doi: 10.1175/JAS-D-15-0380.1
– ident: e_1_2_9_178_1
  doi: 10.1029/2021GL093259
– ident: e_1_2_9_185_1
  doi: 10.2151/jmsj.84.405
– ident: e_1_2_9_131_1
  doi: 10.1073/pnas.2013584117
– ident: e_1_2_9_160_1
  doi: 10.1175/2010MWR3499.1
– ident: e_1_2_9_113_1
  doi: 10.1002/qj.170
– ident: e_1_2_9_133_1
  doi: 10.1175/2010BAMS3001.1
– ident: e_1_2_9_23_1
  doi: 10.1175/JCLI-D-13-00505.1
– ident: e_1_2_9_103_1
  doi: 10.1175/JAS3604.1
– ident: e_1_2_9_117_1
  doi: 10.1002/2017GL076081
– ident: e_1_2_9_194_1
  doi: 10.1175/JAS-D-13-0190.1
– start-page: 155
  year: 1979
  ident: e_1_2_9_52_1
  article-title: Meteorology over the tropical oceans
  publication-title: Royal Meteorological Society
– ident: e_1_2_9_46_1
  doi: 10.1175/BAMS-89-3-347
– ident: e_1_2_9_189_1
  doi: 10.1175/JAS-D-20-0079.1
– ident: e_1_2_9_64_1
  doi: 10.1007/s00382-020-05446-5
– ident: e_1_2_9_22_1
  doi: 10.3402/tellusa.v68.31494
– ident: e_1_2_9_112_1
  doi: 10.1029/2008GL034147
– ident: e_1_2_9_135_1
  doi: 10.1007/s40641-019-00131-0
– ident: e_1_2_9_186_1
  doi: 10.1175/JCLI-D-16-0273.1
– ident: e_1_2_9_92_1
  doi: 10.1175/JCLI-D-19-0452.1
– ident: e_1_2_9_25_1
  doi: 10.1029/2019MS002020
– ident: e_1_2_9_82_1
  doi: 10.1038/ngeo779
– ident: e_1_2_9_45_1
  doi: 10.1002/jame.20032
– ident: e_1_2_9_138_1
  doi: 10.1175/MWR-D-14-00021.1
– ident: e_1_2_9_62_1
  doi: 10.1002/qj.3803
– ident: e_1_2_9_55_1
  doi: 10.1175/WAF-D-13-00008.1
– ident: e_1_2_9_142_1
  doi: 10.1038/s41558-018-0227-5
– ident: e_1_2_9_51_1
  doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
– ident: e_1_2_9_192_1
  doi: 10.1002/2015MS000543
– ident: e_1_2_9_152_1
  doi: 10.1175/2010JAS3318.1
– ident: e_1_2_9_147_1
  doi: 10.1175/JAS-D-19-0044.1
– ident: e_1_2_9_74_1
  doi: 10.1002/2013MS000253
– ident: e_1_2_9_66_1
  doi: 10.1175/JCLI-D-16-0836.1
– ident: e_1_2_9_169_1
  doi: 10.5194/acp-19-8383-2019
– ident: e_1_2_9_105_1
  doi: 10.1007/s00382-012-1407-z
– ident: e_1_2_9_88_1
  doi: 10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2
– ident: e_1_2_9_33_1
  doi: 10.1175/JAS-D-18-0357.1
– ident: e_1_2_9_85_1
  doi: 10.1175/JCLI-D-12-00033.1
– ident: e_1_2_9_132_1
  doi: 10.1002/2016GL071236
– ident: e_1_2_9_139_1
  doi: 10.1175/JCLI-D-16-0292.1
– ident: e_1_2_9_108_1
  doi: 10.1002/2016GL071337
– ident: e_1_2_9_171_1
  doi: 10.1029/2009GL039849
– ident: e_1_2_9_100_1
  doi: 10.1007/s40641-019-00133-y
– ident: e_1_2_9_59_1
  doi: 10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2
– ident: e_1_2_9_90_1
  doi: 10.1029/2006GL027969
– ident: e_1_2_9_107_1
  doi: 10.1175/JCLI-D-15-0216.1
– ident: e_1_2_9_154_1
  doi: 10.1175/2010JCLI3811.1
– ident: e_1_2_9_122_1
  doi: 10.1029/2006GL028607
– ident: e_1_2_9_41_1
  doi: 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2
– ident: e_1_2_9_32_1
  doi: 10.1126/science.aab3980
– ident: e_1_2_9_38_1
  doi: 10.1175/JCLI-D-16-0358.1
– ident: e_1_2_9_77_1
  doi: 10.1175/JCLI-D-17-0269.1
– volume-title: Description of the NCAR Community atmosphere model (CAM 5.0) (NCAR Technical note nos. NCAR/TN‐486+STR)
  year: 2012
  ident: e_1_2_9_109_1
– ident: e_1_2_9_149_1
  doi: 10.2151/jmsj.2012-A24
– ident: e_1_2_9_119_1
  doi: 10.1175/2010JCLI3690.1
– ident: e_1_2_9_7_1
  doi: 10.1175/JCLI-D-17-0898.1
– ident: e_1_2_9_120_1
  doi: 10.1002/qj.706
– ident: e_1_2_9_157_1
  doi: 10.1038/s41467-021-24268-5
– ident: e_1_2_9_101_1
  doi: 10.1002/grl.50680
– ident: e_1_2_9_106_1
  doi: 10.1038/s41558-017-0008-6
– ident: e_1_2_9_188_1
  doi: 10.1175/JCLI-D-20-0574.1
– ident: e_1_2_9_137_1
  doi: 10.1038/nature13636
– ident: e_1_2_9_60_1
  doi: 10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2
– ident: e_1_2_9_125_1
  doi: 10.1175/2010MWR3488.1
– ident: e_1_2_9_36_1
  doi: 10.1175/JAS-D-15-0027.1
– ident: e_1_2_9_187_1
  doi: 10.1175/MWR-D-13-00179.1
– ident: e_1_2_9_24_1
  doi: 10.1175/2009JAS3101.1
– ident: e_1_2_9_180_1
  doi: 10.1051/0004-6361/202038203
– ident: e_1_2_9_93_1
  doi: 10.1002/jame.20020
– ident: e_1_2_9_96_1
  doi: 10.1007/s10236-015-0854-6
– ident: e_1_2_9_28_1
  doi: 10.1175/JAS-D-17-0061.1
– ident: e_1_2_9_104_1
  doi: 10.1073/pnas.1719967115
– ident: e_1_2_9_65_1
  doi: 10.1007/s00382-018-4577-5
– ident: e_1_2_9_49_1
  doi: 10.1175/JCLI-D-16-0758.1
SSID ssj0000970357
Score 2.5306878
SecondaryResourceType review_article
Snippet The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no harm....
Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no...
Abstract The frequency with which tropical cyclones (TCs) occur controls all other aspects of tropical cyclone risk since a storm that does not occur can do no...
SourceID doaj
osti
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Basins
Climate change
Cyclones
Environmental factors
ENVIRONMENTAL SCIENCES
extreme weather
Global warming
Hurricanes
Mathematical models
Numerical models
Seeds
Storms
Time series
Trends
Tropical cyclone frequencies
tropical cyclone frequency
Tropical cyclones
Weather forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEq6IPUAZYQBGJY8f2CFWiCgmmVupmxa-paqu2DP33nJ20pAOwMEVKzsnpzvbdyV--Q-ieU6hurK1iWiVJTBzVsWCKxNzoNOEERgU04ftHPp6StxmdtVp9eUxYTQ9cG-7ZiExoYQgnVkHw0Qozza3vQgeVOKeBbBtiXquYCnuwgJlMWYN0T7DwRX5alIExjx7FoEDVD5clLKmjNLOdrIZoU56jsyZNjF5q9S7QiV1com7x_VcaPGyW5eYK9Sfr5cpbOxrt9Hy5sFG5riHSu2s0LYvJaBw3TQ9iTTzijJoKkhiW04wxl6bKMs0Y15Zrf4QmhBEmsRmtcrBkbnKXOMVsYnLFFKbYkqyLOgv40A2KXGUJtsJWJFOEOsqVSyrFUly5NMst76GnvRmkbhjBfWOKuQwn01jIttF66OEgvaqZMH6Qe_UWPch4_upwA7wqG6_Kv7zaQwPvDwlpgOey1R70o7cS9h8qSNZDw72bZLPkNtJzoUHxwxgMfgyu-1VNWZQTLFLa_w91B-jUv7uGuQxRZ7v-tLeQrGzVXZiXX4JK3vA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BWVgQT5EWUAdYQBFO_J4QoEQICYRQkdis-BEW1JS2DP332Klb2gGmSImdRHe-y2f7y3cA54L62Y1zVUorhFJSU5NKrkkqrMmQIL5XyyZ8emYPb-Txnb7HBbdJpFUucmKbqG1jwhr5dZC68tiWc3Yz-kpD1aiwuxpLaGzClk_BQnRg6654fnldrrIg6Uc05ZHxjnIZJvtZUbbKeXTtW9RK9vtD40NrDW6ugtb2q1Puwk6Ei_3buX_3YMMN9-Go-P07zV-M4Tk5gO5g3IyC1fv3M_PZDF2_HM-p0rNDeCuLwf1DGosfpIYE5hm1lQcznFHMeZ1l2nHDuTBOmLCVJqWVFjlMK-YtyiyrUa25Q5ZprnOaO4KPoDP0DzqGfl05kjvpKoI1oTUVukaV5lle1RlmTiRwtTCDMlEZPBSo-FTtDnUu1arRErhYth7NFTH-aHcXLLpsE3Ss2xPN-EPFsFBWYmmkJYI47aGF0Tk3woUagxh7MMgS6AV_KA8HgqatCeQfM1U-D1FJcAInCzepGHoT9TtQErhsXffva6qiHOQyo93_79WD7dBrTmQ5gc50_O1OPRyZ6rM45n4Ao0zYwg
  priority: 102
  providerName: ProQuest
Title Tropical Cyclone Frequency
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002275
https://www.proquest.com/docview/2612758776
https://www.osti.gov/biblio/1835943
https://doaj.org/article/d939c9d484eb406cb27c8e3696330856
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuPSCSlvU5bHaA720ipr4EdtHQIlQJRBCi8TNsh2nF7SLdpcD_74zjlmWQ5E4RXLGTjTjsb-xx58BTrXE6CZGV0hXloXoZSiM8qLQXahKLbBWyia8uq4v78Sfe3mfF9zoLMzAD7FecCPPSOM1Objzy0w2QByZGLVXTZso8OQ27NLpWkrpY-JmvcZSGuzPiewTcYMuBFMq575jE783G3gzKyXyfnzM0cneAM9N-Jrmn_Yz7GXgODkbLL0PW3H2BQ6a13Nq-DI76vIrHE4X80fS_-TiOTzMZ3HSLoak6edvcNc204vLIl-DUARBOWiycwhrVC25Un1V-aiCUjpEHWhTzZjOdGXk0tWo27qr-7L3KpZd7ZVnkkXBD2Bnhh_6DpPeRcGiiU5wL2Qvte9L51XFXF_xOuoR_HpRgw2ZI5yuqniwaa-aGbuptBH8WEs_DtwY_5E7J42uZYjROhXMF39tdhDbGW6C6YQW0SPICJ6poCPdNsg5wsJ6BEdkD4vAgNhtA6UBhZXFEUkawUdw_GImm51waYkdDcMhpbDyz2S6d3_TNu2UmUoefkT4CD5R8ZDgcgw7q8VTPEGYsvLj1BfHsHveXN_cjlOw_w_Madua
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuqDwq0hbIgV5AEY4fsX1AiJZEW9quENpKvZnYcbhUm2V3UbV_it_IOI9te6C3niIl9sSalz_b4xmAd0rg6sb7MhElIQmvhUu0tDxRlUuJ4tirjSY8n2TjC_7tUlxuwd_hLkwIqxx8Yuuoq8aFPfKPIdUVYlsps8_z30moGhVOV4cSGp1anPr1NS7Zlp9OvqJ8Dykt8unxOOmrCiSOh5AuUZWIEmQmmJR1mlovnZTKeeXCGZXWla6IZ6LMcKhZldWkttKTKrPSUkE9Z0j3EWwjLUJHsH2UT77_2OzqEI0WJGQfYU-oDpsLaV60mfrEnbmvLRGAjwZN-Q68vQ2S21mu2IGnPTyNv3T69Ay2_Ow57OY3t-HwY-8Oli9gb7po5kHK8fHaXTUzHxeLLjR7_RIuHoQtuzCa4Y9eQVyXnlOvfcmZ5aIWytaktDKlZZ2yzKsIPgxsMK7PRB4KYlyZ9kScanObaREcblrPuwwc_2l3FDi6aRPyZrcvmsUv05uhqTTTTldccW8RyjhLpVM-1DRkDMFnFsF-kIdB-BFy6LoQbORWBv2e0JxFcDCIyfSmvjQ3ihnB-1Z09w7T5MWU6lTs3U_rLTweT8_PzNnJ5HQfngQKXRDNAYxWiz_-NUKhlX3T618MPx9a5f8BBKcUZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6qfpCDdA2h3JpFZE4dmwfqqpAIijtClWLxM2NX1zQZru7CO1f66_rOI8FDuXGKVLiONa88tn-PAPwUTCc3ThXJ6xO04R6ZhLJNU2ENVkqKL7Vsgl_jovjc_r9gl1swN_hLEygVQ4xsQ3UtjFhjXw_pLpCbMt5se97WsTZUfV19icJFaTCTutQTqMzkVO3usHp2-LLyRHqeo-QqpwcHid9hYHE0EDvYrZGxMALlnPus0w7bjgXxgkT9quktNKmLmd1gcMubOFTr7lLbaG5Jow4mmO_T2CTh1nRCDYPyvHZr_UKTyrRmxjv2fYpkWGhISurNmsfu_cfbMsF4KVBt74Hde8C5vaPV72A5z1Ujb91tvUSNtz0FWyVtyfj8GEfGhavYXsyb2ZB4_Hhylw1UxdX846mvXoD548ili0YTfFDbyH2taPESVfTXFPmmdA-rTXPSO2zvHAigs-DGJTps5KH4hhXqt0dJ1LdFVoEe-vWsy4bx3_aHQSJrtuEHNrtjWZ-qXqXVFbm0khLBXUaYY3RhBvhQn3DPEcgWkSwE_ShEIqEfLomEI_MUmEMZJLmEewOalK92y_UrZFG8KlV3YPDVGU1ITJj2w_39QGeoqmrHyfj0x14Fjro-DS7MFrOr907REVL_b43vxh-P7bF_wMWrxiZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tropical+Cyclone+Frequency&rft.jtitle=Earth%27s+future&rft.au=Sobel%2C+Adam+H.&rft.au=Wing%2C+Allison+A.&rft.au=Camargo%2C+Suzana+J.&rft.au=Patricola%2C+Christina+M.&rft.date=2021-12-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=9&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021EF002275&rft.externalDBID=10.1029%252F2021EF002275&rft.externalDocID=EFT2915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon