Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells
Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroeth...
Saved in:
Published in | Molecular nutrition & food research Vol. 54; no. 12; pp. 1753 - 1762 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley-VCH Verlag
01.12.2010
WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Conclusion: Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical. |
---|---|
AbstractList | Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes.
Methods and results: The anti‐diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration‐dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate‐activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate‐stimulated respiration in rat liver mitochondria.
Conclusion: Activation of adenosine monophosphate‐activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti‐diabetic nutraceutical. Abstract Scope: Products of cashew tree ( Anacardium occidentale ) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti‐diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration‐dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate‐activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate‐stimulated respiration in rat liver mitochondria. Conclusion: Activation of adenosine monophosphate‐activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti‐diabetic nutraceutical. Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Conclusion: Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical. Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical. SCOPEProducts of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes.METHODS AND RESULTSThe anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria.CONCLUSIONActivation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical. |
Author | Madiraju, Padma Martineau, Louis C. Tedong, Leonard Vallerand, Diane Desire, Dzeufiet D. P. Haddad, Pierre S. Kamtchouing, Pierre Arnason, John T. Lavoie, Louis |
Author_xml | – sequence: 1 fullname: Tedong, Leonard – sequence: 2 fullname: Madiraju, Padma – sequence: 3 fullname: Martineau, Louis C – sequence: 4 fullname: Vallerand, Diane – sequence: 5 fullname: Arnason, John T – sequence: 6 fullname: Desire, Dzeufiet D.P – sequence: 7 fullname: Lavoie, Louis – sequence: 8 fullname: Kamtchouing, Pierre – sequence: 9 fullname: Haddad, Pierre S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23637120$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20603833$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhiNURD_gyhF8qQCpWWxPPo8loi1SKVKh4mjNOpM2NLEX21G7f4bfildZFm6cZiw_78xrv4fJnrGGkuSl4AvBuXw_ms4tJI8951n-JDkQhYA0EwB7u17m-8mh9z84ByEzeJbsS15wqAAOkl8X69bZlMIdGjv0mtFjcKgDsx3T6O_ogQVHxN6eGtTo2n4amdW6b8kEHOgdM1NgaFrWB89Wrje6X-HAtB1XdjLtSbybdZphVJ0wH_pxGjAQux0mbT2xaRXwnlhvWCMbIdk4eT0Q0zQM_nnytMPB04ttPUpuzj5-ay7Syy_nn5rTy1RnUORpvqyhrQoqeJ5lWpOUrQRE0fIKYympqEFCnpUA0Ha5rJZ1JrIOChJiyXUOR8mbee7K2Z8T-aDG3m8coCE7eVWJvC6yCspILmZSO-u9o07FV4_o1kpwtYlEbSJRu0ii4NV29LQcqd3hfzKIwPEWQK9x6BzGT_R_OSigFJJHrp65h36g9X_Wqs9XZ9f_mkhnbe8DPe606O5VUUKZq-9X54oX5YfrJh6ayL-e-Q6twlsX_dx8jeOAi1rUMuPwG3Q8v6M |
CitedBy_id | crossref_primary_10_3390_plants11192637 crossref_primary_10_1053_j_jvca_2016_02_008 crossref_primary_10_1016_j_heliyon_2021_e05978 crossref_primary_10_1016_j_biocel_2014_04_014 crossref_primary_10_1080_15592294_2016_1278097 crossref_primary_10_1080_17446651_2019_1554430 crossref_primary_10_3389_fphar_2021_757090 crossref_primary_10_1016_j_foodres_2012_03_011 crossref_primary_10_1080_09637486_2023_2232949 crossref_primary_10_2217_pme_15_17 crossref_primary_10_1016_j_indcrop_2014_02_021 crossref_primary_10_1016_j_jep_2012_09_020 crossref_primary_10_1007_s00394_017_1552_6 crossref_primary_10_3390_diabetology4020019 crossref_primary_10_1186_s40816_019_0129_8 crossref_primary_10_3390_biom9090465 crossref_primary_10_15406_jnmr_2015_02_00030 crossref_primary_10_1007_s42535_024_00845_z crossref_primary_10_1002_fsn3_1322 crossref_primary_10_3390_ijms19051456 crossref_primary_10_1002_mnfr_201400414 crossref_primary_10_15406_ijcam_2015_01_00010 crossref_primary_10_1590_1981_6723_18916 crossref_primary_10_3390_ijms19041224 crossref_primary_10_1016_j_foodres_2015_07_020 crossref_primary_10_1017_jns_2015_30 crossref_primary_10_3390_nu9070673 crossref_primary_10_1016_j_jep_2014_05_055 crossref_primary_10_33619_2414_2948_66_17 crossref_primary_10_3390_plants11101360 |
Cites_doi | 10.1016/j.cbi.2009.10.008 10.2337/db08-1477 10.1152/ajpendo.00186.2006 10.2174/1574089054583605 10.1152/ajpendo.90563.2008 10.2337/dc07-1338 10.1074/jbc.M109.051185 10.1007/s00125-008-1239-x 10.1172/JCI0214955 10.1016/j.taap.2008.08.013 10.1289/ehp.01109s169 10.1139/Y06-018 10.1016/S0024-3205(99)00585-8 10.1016/j.bmc.2007.07.010 10.1016/j.jep.2009.10.026 10.1152/ajpendo.00622.2007 10.1016/j.phymed.2006.08.005 10.1038/ijo.2008.116 10.2741/3558 10.1016/j.jep.2007.10.024 10.1139/H09-047 10.1358/mf.2003.25.3.769640 10.1126/science.1168243 10.1152/ajpendo.00456.2004 10.1042/BST0330362 10.1038/nm1003-1228a 10.1016/j.fct.2005.06.012 10.1038/414821a 10.1016/S0378-8741(97)00159-1 10.1210/er.2007-0023 10.1152/ajpendo.90306.2008 10.1124/mol.63.4.844 |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS – notice: Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | FBQ BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/mnfr.201000045 |
DatabaseName | AGRIS Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | 1762 |
ExternalDocumentID | 10_1002_mnfr_201000045 20603833 23637120 MNFR201000045 ark_67375_WNG_067BRC75_C US201301919240 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Institute of Nutraceuticals and Functional Foods (INAF) – fundername: Laval University, Quebec – fundername: The CIHR Team in Aboriginal Anti‐Diabetic Medicines of Université de Montréal, Quebec, Canada |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABCVL ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HF~ HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WRC WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c4365-5b93d86e60544cce22d23aa1d08aaa17e69323547333df528b9414f36e11b0c53 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 |
IngestDate | Sat Aug 17 02:02:58 EDT 2024 Fri Aug 23 02:20:09 EDT 2024 Sat Sep 28 07:50:42 EDT 2024 Sun Oct 22 16:05:27 EDT 2023 Sat Aug 24 00:54:49 EDT 2024 Wed Oct 30 09:54:02 EDT 2024 Wed Dec 27 19:11:33 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Nuts Seeds Cashew seed extract Enzyme Anacardium occidentale Adenosine monophosphate-activated protein kinase Transferases Non-specific serine/threonine protein kinase Extract Glucose Uptake Anacardic acid Acetyl-CoA carboxylase Dicotyledones Angiospermae Tree Carbohydrate Spermatophyta Muscle Diabetes Anacardiaceae |
Language | English |
License | CC BY 4.0 Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4365-5b93d86e60544cce22d23aa1d08aaa17e69323547333df528b9414f36e11b0c53 |
Notes | http://dx.doi.org/10.1002/mnfr.201000045 istex:EC66A0F5B99AA375626E89B3063720B6BF4E98E3 Institute of Nutraceuticals and Functional Foods (INAF) ArticleID:MNFR201000045 Laval University, Quebec The CIHR Team in Aboriginal Anti-Diabetic Medicines of Université de Montréal, Quebec, Canada ark:/67375/WNG-067BRC75-C These authors have contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20603833 |
PQID | 815964837 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_815964837 crossref_primary_10_1002_mnfr_201000045 pubmed_primary_20603833 pascalfrancis_primary_23637120 wiley_primary_10_1002_mnfr_201000045_MNFR201000045 istex_primary_ark_67375_WNG_067BRC75_C fao_agris_US201301919240 |
PublicationCentury | 2000 |
PublicationDate | December 2010 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: December 2010 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol. Nutr. Food Res |
PublicationYear | 2010 |
Publisher | Wiley-VCH Verlag WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: Wiley-VCH Verlag – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | Karnieli, E., Armoni, M., Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: from physiology to pathology. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E38-E45. Martineau, L. C., Adeyiwola-Spoor, D. C., Vallerand, D., Afshar, A. et al., Enhancement of muscle cell glucose uptake by medicinal plant species of Canada's native populations is mediated by a common, Metformin-like mechanism. J. Ethnopharmacol. 2010, 127, 396-406. Kraegen, E. W., Bruce, C., Hegarty, B. D., Ye, J. M. et al., AMP-activated protein kinase and muscle insulin resistance. Front. Biosci. 2009, 14, 4658-4672. Moller, D. E., New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001, 414, 821-827. Tyman, J. H. P., Researches on the technology and bioactive properties of phenolic lipids. Front. Nat. Prod. Chem. 2005, 1, 107-120. Dykens, J. A., Jamieson, J., Marroquin, L., Nadanaciva, S. et al., Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol. Appl. Pharmacol. 2008, 233, 203-210. Funai, K., Cartee, G. D., Inhibition of contraction-stimulated AMP-activated protein kinase inhibits contraction-stimulated increases in PAS-TBC1D1 and glucose transport without altering PAS-AS160 in rat skeletal muscle. Diabetes 2009, 58, 1096-1104. Ojewole, J. A., Laboratory evaluation of the hypoglycemic effect of Anacardium occidentale Linn (Anacardiaceae) stem-bark extracts in rats. Methods Find. Exp. Clin. Pharmacol. 2003, 25, 199-204. Ligeret, H., Brault, A., Vallerand, D., Haddad, Y., Haddad, P. S., Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J. Ethnopharmacol. 2008, 115, 507-514. Martineau, L. C., Couture, A., Spoor, D., Benhaddou-Andaloussi, A. et al., Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 2006, 13, 612-623. Fryer, L. G., Carling, D., AMP-activated protein kinase and the metabolic syndrome. Biochem. Soc. Trans. 2005, 33, 362-366. Trevisan, M. T., Pfundstein, B., Haubner, R., Wurtele, G. et al., Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem. Toxicol. 2006, 44, 188-197. Poitout, V., Robertson, R. P., Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr. Rev. 2008, 29, 351-366. Voipio-Pulkki, L. M., Nuutila, P., Knuuti, M. J., Ruotsalainen, U. et al., Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J. Nucl. Med. 1993, 34, 2064-2067. Morais, T. C., Pinto, N. B., Carvalho, K. M., Rios, J. B. et al., Protective effect of anacardic acids from cashew (Anacardium occidentale) on ethanol-induced gastric damage in mice. Chem. Biol. Interact. 2010, 183, 264-269. Hardie, D. G., AMPK: a key regulator of energy balance in the single cell and the whole organism. Int. J. Obes. (Lond.) 2008, 32, S7-S12. Koska, J., Ortega, E., Bunt, J. C., Gasser, A. et al., The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 2009, 52, 385-393. Pelletier, A., Coderre, L., Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1325-E1332. Walter, P., Lardy, H. A., Johnson, D., Antibiotics as tools for metabolic studies. X. Inhibition of phosphoryl transfer reactions in mitochondria by peliomycin, ossamycin, and venturicidin. J. Biol. Chem. 1967, 242, 5014-5018. Fabricant, D. S., Farnsworth, N. R., The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69-75. Klip, A., The many ways to regulate glucose transporter 4. Appl. Physiol. Nutr. Metab. 2009, 34, 481-487. Fleischman, A., Shoelson, S. E., Bernier, R., Goldfine, A. B., Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 2008, 31, 289-294. Shrestha, S., Bhattarai, B. R., Lee, K. H., Cho, H., Mono- and disalicylic acid derivatives: PTP1B inhibitors as potential anti-obesity drugs. Bioorg. Med. Chem. 2007, 15, 6535-6548. Kaddai, V., Gonzalez, T., Bolla, M., Le Marchand-Brustel, Y., Cormont, M., The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E162-E169. Fazakerley, D. J., Holman, G. D., Marley, A., James, D. E. et al., Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMPK activators in l6 myotubes. J. Biol. Chem. 2010, 285, 1653-1660. Habeck, M., Diabetes treatments get sweet help from nature. Nat. Med. 2003, 9, 1228. Kamtchouing, P., Sokeng, S. D., Moundipa, P. F., Watcho, P. et al., Protective role of Anacardium occidentale extract against streptozotocin-induced diabetes in rats. J. Ethnopharmacol. 1998, 62, 95-99. Spoor, D. C., Martineau, L. C., Leduc, C., Benhaddou-Andaloussi, A. et al., Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti-diabetic potential. Can. J. Physiol. Pharmacol. 2006, 84, 847-858. Wang, D. S., Kusuhara, H., Kato, Y., Jonker, J. W. et al., Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol. Pharmacol. 2003, 63, 844-848. Hundal, R. S., Petersen, K. F., Mayerson, A. B., Randhawa, P. S. et al., Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 2002, 109, 1321-1326. Li, J. W., Vederas, J. C., Drug discovery and natural products: end of an era or an endless frontier? Science 2009, 325, 161-165. Wasserman, D. H., Four grams of glucose. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E11-E21. Yamaguchi, S., Katahira, H., Ozawa, S., Nakamichi, Y. et al., Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E643-E649. Toyomizu, M., Okamoto, K., Ishibashi, T., Chen, Z., Nakatsu, T., Uncoupling effect of anacardic acids from cashew nut shell oil on oxidative phosphorylation of rat liver mitochondria. Life Sci. 2000, 66, 229-234. 2006; 13 2010; 127 2000; 66 2009 2010; 285 2010; 183 2008; 32 2009; 296 2008; 31 1998; 62 2001; 109 2007; 15 2009; 34 2009; 14 2009; 58 1993; 34 2009; 52 2006; 84 2006; 44 2005; 289 2007; 292 2008; 29 2003; 9 2003; 25 2005; 1 2008; 115 1967; 242 2002; 109 2008; 233 2003; 63 2005; 33 2008; 295 2001; 414 2009; 325 e_1_2_6_31_2 e_1_2_6_30_2 Walter P. (e_1_2_6_18_2) 1967; 242 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 Voipio‐Pulkki L. M. (e_1_2_6_21_2) 1993; 34 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – volume: 62 start-page: 95 year: 1998 end-page: 99 article-title: Protective role of extract against streptozotocin‐induced diabetes in rats publication-title: J. Ethnopharmacol. – year: 2009 – volume: 33 start-page: 362 year: 2005 end-page: 366 article-title: AMP‐activated protein kinase and the metabolic syndrome publication-title: Biochem. Soc. Trans. – volume: 296 start-page: E11 year: 2009 end-page: E21 article-title: Four grams of glucose publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 295 start-page: E162 year: 2008 end-page: E169 article-title: The nitric oxide‐donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3‐L1 adipocytes publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 1 start-page: 107 year: 2005 end-page: 120 article-title: Researches on the technology and bioactive properties of phenolic lipids publication-title: Front. Nat. Prod. Chem. – volume: 13 start-page: 612 year: 2006 end-page: 623 article-title: Anti‐diabetic properties of the Canadian lowbush blueberry Ait publication-title: Phytomedicine – volume: 127 start-page: 396 year: 2010 end-page: 406 article-title: Enhancement of muscle cell glucose uptake by medicinal plant species of Canada's native populations is mediated by a common, Metformin‐like mechanism publication-title: J. Ethnopharmacol. – volume: 325 start-page: 161 year: 2009 end-page: 165 article-title: Drug discovery and natural products: end of an era or an endless frontier? publication-title: Science – volume: 52 start-page: 385 year: 2009 end-page: 393 article-title: The effect of salsalate on insulin action and glucose tolerance in obese non‐diabetic patients: results of a randomised double‐blind placebo‐controlled study publication-title: Diabetologia – volume: 31 start-page: 289 year: 2008 end-page: 294 article-title: Salsalate improves glycemia and inflammatory parameters in obese young adults publication-title: Diabetes Care – volume: 44 start-page: 188 year: 2006 end-page: 197 article-title: Characterization of alkyl phenols in cashew ( ) products and assay of their antioxidant capacity publication-title: Food Chem. Toxicol. – volume: 84 start-page: 847 year: 2006 end-page: 858 article-title: Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti‐diabetic potential publication-title: Can. J. Physiol. Pharmacol. – volume: 15 start-page: 6535 year: 2007 end-page: 6548 article-title: Mono‐ and disalicylic acid derivatives: PTP1B inhibitors as potential anti‐obesity drugs publication-title: Bioorg. Med. Chem. – volume: 242 start-page: 5014 year: 1967 end-page: 5018 article-title: Antibiotics as tools for metabolic studies. X. Inhibition of phosphoryl transfer reactions in mitochondria by peliomycin, ossamycin, and venturicidin publication-title: J. Biol. Chem. – volume: 295 start-page: E38 year: 2008 end-page: E45 article-title: Transcriptional regulation of the insulin‐responsive glucose transporter GLUT4 gene: from physiology to pathology publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 233 start-page: 203 year: 2008 end-page: 210 article-title: Biguanide‐induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically‐poised HepG2 cells and human hepatocytes publication-title: Toxicol. Appl. Pharmacol. – volume: 289 start-page: E643 year: 2005 end-page: E649 article-title: Activators of AMP‐activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3‐L1 adipocytes publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 58 start-page: 1096 year: 2009 end-page: 1104 article-title: Inhibition of contraction‐stimulated AMP‐activated protein kinase inhibits contraction‐stimulated increases in PAS‐TBC1D1 and glucose transport without altering PAS‐AS160 in rat skeletal muscle publication-title: Diabetes – volume: 34 start-page: 2064 year: 1993 end-page: 2067 article-title: Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography publication-title: J. Nucl. Med. – volume: 183 start-page: 264 year: 2010 end-page: 269 article-title: Protective effect of anacardic acids from cashew ( ) on ethanol‐induced gastric damage in mice publication-title: Chem. Biol. Interact – volume: 66 start-page: 229 year: 2000 end-page: 234 article-title: Uncoupling effect of anacardic acids from cashew nut shell oil on oxidative phosphorylation of rat liver mitochondria publication-title: Life Sci. – volume: 34 start-page: 481 year: 2009 end-page: 487 article-title: The many ways to regulate glucose transporter 4 publication-title: Appl. Physiol. Nutr. Metab. – volume: 109 start-page: 1321 year: 2002 end-page: 1326 article-title: Mechanism by which high‐dose aspirin improves glucose metabolism in type 2 diabetes publication-title: J. Clin. Invest. – volume: 25 start-page: 199 year: 2003 end-page: 204 article-title: Laboratory evaluation of the hypoglycemic effect of Linn (Anacardiaceae) stem‐bark extracts in rats publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 32 start-page: S7 year: 2008 end-page: S12 article-title: AMPK: a key regulator of energy balance in the single cell and the whole organism publication-title: Int. J. Obes. (Lond.) – volume: 63 start-page: 844 year: 2003 end-page: 848 article-title: Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin publication-title: Mol. Pharmacol. – volume: 285 start-page: 1653 year: 2010 end-page: 1660 article-title: Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMPK activators in l6 myotubes publication-title: J. Biol. Chem. – volume: 115 start-page: 507 year: 2008 end-page: 514 article-title: Antioxidant and mitochondrial protective effects of silibinin in cold preservation‐warm reperfusion liver injury publication-title: J. Ethnopharmacol. – volume: 292 start-page: E1325 year: 2007 end-page: E1332 article-title: Ketone bodies alter dinitrophenol‐induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 9 start-page: 1228 year: 2003 article-title: Diabetes treatments get sweet help from nature publication-title: Nat. Med. – volume: 14 start-page: 4658 year: 2009 end-page: 4672 article-title: AMP‐activated protein kinase and muscle insulin resistance publication-title: Front. Biosci. – volume: 29 start-page: 351 year: 2008 end-page: 366 article-title: Glucolipotoxicity: fuel excess and beta‐cell dysfunction publication-title: Endocr. Rev. – volume: 414 start-page: 821 year: 2001 end-page: 827 article-title: New drug targets for type 2 diabetes and the metabolic syndrome publication-title: Nature – volume: 109 start-page: 69 year: 2001 end-page: 75 article-title: The value of plants used in traditional medicine for drug discovery publication-title: Environ. Health Perspect. – ident: e_1_2_6_10_2 doi: 10.1016/j.cbi.2009.10.008 – ident: e_1_2_6_36_2 doi: 10.2337/db08-1477 – ident: e_1_2_6_32_2 doi: 10.1152/ajpendo.00186.2006 – ident: e_1_2_6_14_2 doi: 10.2174/1574089054583605 – ident: e_1_2_6_2_2 – ident: e_1_2_6_23_2 doi: 10.1152/ajpendo.90563.2008 – ident: e_1_2_6_29_2 doi: 10.2337/dc07-1338 – ident: e_1_2_6_35_2 doi: 10.1074/jbc.M109.051185 – ident: e_1_2_6_28_2 doi: 10.1007/s00125-008-1239-x – ident: e_1_2_6_31_2 doi: 10.1172/JCI0214955 – ident: e_1_2_6_34_2 doi: 10.1016/j.taap.2008.08.013 – ident: e_1_2_6_8_2 doi: 10.1289/ehp.01109s169 – ident: e_1_2_6_16_2 doi: 10.1139/Y06-018 – ident: e_1_2_6_15_2 doi: 10.1016/S0024-3205(99)00585-8 – ident: e_1_2_6_27_2 doi: 10.1016/j.bmc.2007.07.010 – ident: e_1_2_6_26_2 doi: 10.1016/j.jep.2009.10.026 – ident: e_1_2_6_30_2 doi: 10.1152/ajpendo.00622.2007 – ident: e_1_2_6_17_2 doi: 10.1016/j.phymed.2006.08.005 – volume: 242 start-page: 5014 year: 1967 ident: e_1_2_6_18_2 article-title: Antibiotics as tools for metabolic studies. X. Inhibition of phosphoryl transfer reactions in mitochondria by peliomycin, ossamycin, and venturicidin publication-title: J. Biol. Chem. contributor: fullname: Walter P. – ident: e_1_2_6_33_2 doi: 10.1038/ijo.2008.116 – ident: e_1_2_6_4_2 doi: 10.2741/3558 – ident: e_1_2_6_19_2 doi: 10.1016/j.jep.2007.10.024 – ident: e_1_2_6_24_2 doi: 10.1139/H09-047 – ident: e_1_2_6_13_2 doi: 10.1358/mf.2003.25.3.769640 – ident: e_1_2_6_7_2 doi: 10.1126/science.1168243 – ident: e_1_2_6_25_2 doi: 10.1152/ajpendo.00456.2004 – ident: e_1_2_6_5_2 doi: 10.1042/BST0330362 – ident: e_1_2_6_9_2 doi: 10.1038/nm1003-1228a – ident: e_1_2_6_11_2 doi: 10.1016/j.fct.2005.06.012 – ident: e_1_2_6_6_2 doi: 10.1038/414821a – ident: e_1_2_6_12_2 doi: 10.1016/S0378-8741(97)00159-1 – ident: e_1_2_6_3_2 doi: 10.1210/er.2007-0023 – volume: 34 start-page: 2064 year: 1993 ident: e_1_2_6_21_2 article-title: Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography publication-title: J. Nucl. Med. contributor: fullname: Voipio‐Pulkki L. M. – ident: e_1_2_6_22_2 doi: 10.1152/ajpendo.90306.2008 – ident: e_1_2_6_20_2 doi: 10.1124/mol.63.4.844 |
SSID | ssj0031243 |
Score | 2.1451926 |
Snippet | Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The... Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The... Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. The anti-diabetic properties of... Abstract Scope: Products of cashew tree ( Anacardium occidentale ) are used in traditional medicine for various ailments, including diabetes. Methods and... SCOPEProducts of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes.METHODS AND RESULTSThe... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1753 |
SubjectTerms | Acetyl-CoA carboxylase Adenosine monophosphate-activated protein kinase Anacardic acid Anacardic Acids - pharmacology Anacardium - chemistry Analysis of Variance Animals Biological and medical sciences Blotting, Western Cashew seed extract Cell Line Diabetes Food industries Fruit and vegetable industries Fundamental and applied biological sciences. Psychology Glucose - metabolism Hypoglycemic Agents - pharmacology Insulin - metabolism Male Mice Mitochondria, Liver - drug effects Muscle Cells - cytology Muscle Cells - metabolism Muscle Fibers, Skeletal - cytology Nuts - chemistry Oxidative Phosphorylation Plant Extracts - pharmacology Proto-Oncogene Proteins c-akt - metabolism Rats Rats, Wistar Receptor, Insulin - metabolism Seeds - chemistry |
Title | Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells |
URI | https://api.istex.fr/ark:/67375/WNG-067BRC75-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201000045 https://www.ncbi.nlm.nih.gov/pubmed/20603833 https://search.proquest.com/docview/815964837 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgVmx4w4TH6C7QANJkJrHz6nLIUCokuihUzM5ybAeq0qRqEvFY8Ql8At_Gl3Bv0mQoQkKCVRVVN62TY99z45NzGXukjYmRxueutVaQqXbiKkNGyD6Cw-dtUUFqi2k0mQcvz8PzX97i7_whhgduNDPa9ZomuMqqkwvT0FWRb1ppVktLcBH2RUyarrPZ4B8lMHm1CnvMWW6Aqbx3bfT4yW74Tla6nKsSuSpd5k-klVQVXq6863PxJyK6y2vbxDS-xlQ_pE6Psjxu6uxYf_nN7fF_xnydXd2yVjjtYHaDXbLFTeacLWwNh7C1Fv0A097Z_xb7PvlsNuWPr98sPZon72HALEBvZEGZg1bVe_sRaEMcnpwWShNMmxWUWlOPU6wH7FMomhpUYWBRV7DutgTwN0gCT52gjvC7Lk6DwqgjwLVqRb3ILGxl-NCsa7W0sCgg5anPYdVU-O-B9iqq22w-fv4mnbjbZhCuDkiJF2YjYZLIYvkVBFpbzg0XSvnGSxR-xDZCJiqok7IQJg95ko0CP8hFZH0_83Qo7rC9oizsPoNQ5IjOxI-TYBSIOFZaJwLLOGuoE5FWDnvcg0GuO88P2bk7c0l3QA53wGH7iBWp3uGCLOevOW0DYwGMNa3nsMMWQMMZ1GZJIro4lG-nLySShGezFA9Shx3sIGwI4CISsc_xTNBDTuLcp4ukCls2lUyQi0bUEsBhdzsoXgR7kScSIRzGW0D9ZSDy1XQ8G47u_UvQfXaFD1KfB2yv3jT2IRK2OjtoJ-VPYDo02g |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RcoALb6h5lDmgAlLd2rt-5VhcQoA2h9AIbqv1eg1RiB3Ftnic-An8BH4bv4QZO3YVhIQEp8iKxsmuv9mZ2f38DWOPdJqGmMZntjFGkKh2ZKuUhJBdBIfLm6KC2BbjYDT1Xr3zOzYhvQvT6kP0G27kGc16TQ5OG9KH56qhizxbNdysJi_ZYhfR5wU1MTie9ApSAsNXw7HHqGV7GMw73UaHH27ab8SlrUwVmK3SRH8mtqQqccKyttPFn1LRzcy2CU3DqyzpBtUyUuYHdZUc6K-_6T3-16ivsSvrxBWOWqRdZxdMfoNZxzNTwR6s1UU_wrgT97_Jfoy-pKvi57fvhnbnSX4YMBDQS1lQZKBV-cF8AjoThydHudKE1HoBhdbU5hRLAvMU8roClacwq0pYtqcC-BvEgqdmUPv4XWunQaHVPuBytaB2ZAbWTHyol5WaG5jlEPPY5bCoS_z3QMcV5S02HT4_i0f2uh-ErT0i4_nJQKRRYLAC8zytDecpF0q5qRMp_AhNgMmooGbKQqSZz6Nk4LleJgLjuomjfXGbbedFbnYY-CJDgEZuGHkDT4Sh0joSWMmZlJoRaWWxxx0a5LKV_ZCtwDOX9ARk_wQstoNgkeo9rsly-obTSTDWwFjWOhbbaxDU30Gt5sSjC335dvxCYp7wbBLjRWyx3Q2I9QZcBCJ0Od4JOsxJdH-aJJWboi5lhOloQF0BLHanxeK5sRM4IhLCYrxB1F8GIk_Hw0l_dfdfjB6yS6Oz0xN58nL8-h67zHvmz322Xa1q8wDztyrZbTz0F5gSOPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF3RIiFeuEPNpcwDKiA1rb3rWx5LQgi3CAUi-rZa765plMaOYltcnvgEPoFv40uYsROXICQkeIqsaJzs-qznjPf4DGMPtDER0vi0Y60VZKodd5QhI2QPweHxuqggtcUoHE78F8fB8S9v8Tf-EO0DN1oZ9f2aFvjCpIdnpqHzLF3W0qyalmyx834oXBJ19cetgZTA7FVL7DFpdXzM5WvbRpcfbsZvpKWtVOVIVmmeP5FYUhU4X2nT6OJPTHST2NaZaXCZqfWYGkHK7KAqkwP95Te7x_8Z9BV2aUVb4ajB2VV2zmbXmNOf2hL2YOUtegqjtbX_dfZ9-Nks8x9fv1l6Nk_mw4BpgF7JgjwFrYoT-xFoRxweHWVKE06rOeRaU5NTLAjsY8iqElRmYFoWsGj2BPA3SANPraD28bsmToPCqH3Am9WcmpFZWOnwoVqUamZhmkGP9zwO86rAfw-0WVHcYJPB03e9YWfVDaKjfZLiBUlXmDi0WH_5vtaWc8OFUp5xY4UfkQ2RigpqpSyESQMeJ13f81MRWs9LXB2Im2w7yzO7wyAQKcIz9qLY7_oiipTWscA6zhpqRaSVwx6uwSAXjemHbOyduaQrINsr4LAdxIpUH_COLCdvOe0DYwWMRa3rsL0aQO0Z1HJGKrookO9HzySyhCfjHh70HLa7gbA2gItQRB7HM8EachIXP02SymxeFTJGMhpSTwCH3WqgeBbshq6IhXAYrwH1l4HI16PBuD26_S9B99mFN_2BfPV89PIOu8hb2c9dtl0uK3sPyVuZ7Nbr8ye2DDej |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydro%E2%80%90ethanolic+extract+of+cashew+tree+%28+Anacardium+occidentale+%29+nut+and+its+principal+compound%2C+anacardic+acid%2C+stimulate+glucose+uptake+in+C2C12+muscle+cells&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Tedong%2C+Leonard&rft.au=Madiraju%2C+Padma&rft.au=Martineau%2C+Louis+C.&rft.au=Vallerand%2C+Diane&rft.date=2010-12-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=54&rft.issue=12&rft.spage=1753&rft.epage=1762&rft_id=info:doi/10.1002%2Fmnfr.201000045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mnfr_201000045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |