Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells

Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroeth...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 54; no. 12; pp. 1753 - 1762
Main Authors Tedong, Leonard, Madiraju, Padma, Martineau, Louis C, Vallerand, Diane, Arnason, John T, Desire, Dzeufiet D.P, Lavoie, Louis, Kamtchouing, Pierre, Haddad, Pierre S
Format Journal Article
LanguageEnglish
Published Weinheim Wiley-VCH Verlag 01.12.2010
WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Conclusion: Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical.
AbstractList Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti‐diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration‐dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate‐activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate‐stimulated respiration in rat liver mitochondria. Conclusion: Activation of adenosine monophosphate‐activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti‐diabetic nutraceutical.
Abstract Scope: Products of cashew tree ( Anacardium occidentale ) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti‐diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration‐dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate‐activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate‐stimulated respiration in rat liver mitochondria. Conclusion: Activation of adenosine monophosphate‐activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti‐diabetic nutraceutical.
Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Conclusion: Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical.
Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical.
SCOPEProducts of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes.METHODS AND RESULTSThe anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria.CONCLUSIONActivation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical.
Author Madiraju, Padma
Martineau, Louis C.
Tedong, Leonard
Vallerand, Diane
Desire, Dzeufiet D. P.
Haddad, Pierre S.
Kamtchouing, Pierre
Arnason, John T.
Lavoie, Louis
Author_xml – sequence: 1
  fullname: Tedong, Leonard
– sequence: 2
  fullname: Madiraju, Padma
– sequence: 3
  fullname: Martineau, Louis C
– sequence: 4
  fullname: Vallerand, Diane
– sequence: 5
  fullname: Arnason, John T
– sequence: 6
  fullname: Desire, Dzeufiet D.P
– sequence: 7
  fullname: Lavoie, Louis
– sequence: 8
  fullname: Kamtchouing, Pierre
– sequence: 9
  fullname: Haddad, Pierre S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23637120$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20603833$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhiNURD_gyhF8qQCpWWxPPo8loi1SKVKh4mjNOpM2NLEX21G7f4bfildZFm6cZiw_78xrv4fJnrGGkuSl4AvBuXw_ms4tJI8951n-JDkQhYA0EwB7u17m-8mh9z84ByEzeJbsS15wqAAOkl8X69bZlMIdGjv0mtFjcKgDsx3T6O_ogQVHxN6eGtTo2n4amdW6b8kEHOgdM1NgaFrWB89Wrje6X-HAtB1XdjLtSbybdZphVJ0wH_pxGjAQux0mbT2xaRXwnlhvWCMbIdk4eT0Q0zQM_nnytMPB04ttPUpuzj5-ay7Syy_nn5rTy1RnUORpvqyhrQoqeJ5lWpOUrQRE0fIKYympqEFCnpUA0Ha5rJZ1JrIOChJiyXUOR8mbee7K2Z8T-aDG3m8coCE7eVWJvC6yCspILmZSO-u9o07FV4_o1kpwtYlEbSJRu0ii4NV29LQcqd3hfzKIwPEWQK9x6BzGT_R_OSigFJJHrp65h36g9X_Wqs9XZ9f_mkhnbe8DPe606O5VUUKZq-9X54oX5YfrJh6ayL-e-Q6twlsX_dx8jeOAi1rUMuPwG3Q8v6M
CitedBy_id crossref_primary_10_3390_plants11192637
crossref_primary_10_1053_j_jvca_2016_02_008
crossref_primary_10_1016_j_heliyon_2021_e05978
crossref_primary_10_1016_j_biocel_2014_04_014
crossref_primary_10_1080_15592294_2016_1278097
crossref_primary_10_1080_17446651_2019_1554430
crossref_primary_10_3389_fphar_2021_757090
crossref_primary_10_1016_j_foodres_2012_03_011
crossref_primary_10_1080_09637486_2023_2232949
crossref_primary_10_2217_pme_15_17
crossref_primary_10_1016_j_indcrop_2014_02_021
crossref_primary_10_1016_j_jep_2012_09_020
crossref_primary_10_1007_s00394_017_1552_6
crossref_primary_10_3390_diabetology4020019
crossref_primary_10_1186_s40816_019_0129_8
crossref_primary_10_3390_biom9090465
crossref_primary_10_15406_jnmr_2015_02_00030
crossref_primary_10_1007_s42535_024_00845_z
crossref_primary_10_1002_fsn3_1322
crossref_primary_10_3390_ijms19051456
crossref_primary_10_1002_mnfr_201400414
crossref_primary_10_15406_ijcam_2015_01_00010
crossref_primary_10_1590_1981_6723_18916
crossref_primary_10_3390_ijms19041224
crossref_primary_10_1016_j_foodres_2015_07_020
crossref_primary_10_1017_jns_2015_30
crossref_primary_10_3390_nu9070673
crossref_primary_10_1016_j_jep_2014_05_055
crossref_primary_10_33619_2414_2948_66_17
crossref_primary_10_3390_plants11101360
Cites_doi 10.1016/j.cbi.2009.10.008
10.2337/db08-1477
10.1152/ajpendo.00186.2006
10.2174/1574089054583605
10.1152/ajpendo.90563.2008
10.2337/dc07-1338
10.1074/jbc.M109.051185
10.1007/s00125-008-1239-x
10.1172/JCI0214955
10.1016/j.taap.2008.08.013
10.1289/ehp.01109s169
10.1139/Y06-018
10.1016/S0024-3205(99)00585-8
10.1016/j.bmc.2007.07.010
10.1016/j.jep.2009.10.026
10.1152/ajpendo.00622.2007
10.1016/j.phymed.2006.08.005
10.1038/ijo.2008.116
10.2741/3558
10.1016/j.jep.2007.10.024
10.1139/H09-047
10.1358/mf.2003.25.3.769640
10.1126/science.1168243
10.1152/ajpendo.00456.2004
10.1042/BST0330362
10.1038/nm1003-1228a
10.1016/j.fct.2005.06.012
10.1038/414821a
10.1016/S0378-8741(97)00159-1
10.1210/er.2007-0023
10.1152/ajpendo.90306.2008
10.1124/mol.63.4.844
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID FBQ
BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/mnfr.201000045
DatabaseName AGRIS
Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage 1762
ExternalDocumentID 10_1002_mnfr_201000045
20603833
23637120
MNFR201000045
ark_67375_WNG_067BRC75_C
US201301919240
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Institute of Nutraceuticals and Functional Foods (INAF)
– fundername: Laval University, Quebec
– fundername: The CIHR Team in Aboriginal Anti‐Diabetic Medicines of Université de Montréal, Quebec, Canada
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4365-5b93d86e60544cce22d23aa1d08aaa17e69323547333df528b9414f36e11b0c53
IEDL.DBID DR2
ISSN 1613-4125
IngestDate Sat Aug 17 02:02:58 EDT 2024
Fri Aug 23 02:20:09 EDT 2024
Sat Sep 28 07:50:42 EDT 2024
Sun Oct 22 16:05:27 EDT 2023
Sat Aug 24 00:54:49 EDT 2024
Wed Oct 30 09:54:02 EDT 2024
Wed Dec 27 19:11:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Nuts
Seeds
Cashew seed extract
Enzyme
Anacardium occidentale
Adenosine monophosphate-activated protein kinase
Transferases
Non-specific serine/threonine protein kinase
Extract
Glucose
Uptake
Anacardic acid
Acetyl-CoA carboxylase
Dicotyledones
Angiospermae
Tree
Carbohydrate
Spermatophyta
Muscle
Diabetes
Anacardiaceae
Language English
License CC BY 4.0
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4365-5b93d86e60544cce22d23aa1d08aaa17e69323547333df528b9414f36e11b0c53
Notes http://dx.doi.org/10.1002/mnfr.201000045
istex:EC66A0F5B99AA375626E89B3063720B6BF4E98E3
Institute of Nutraceuticals and Functional Foods (INAF)
ArticleID:MNFR201000045
Laval University, Quebec
The CIHR Team in Aboriginal Anti-Diabetic Medicines of Université de Montréal, Quebec, Canada
ark:/67375/WNG-067BRC75-C
These authors have contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20603833
PQID 815964837
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_815964837
crossref_primary_10_1002_mnfr_201000045
pubmed_primary_20603833
pascalfrancis_primary_23637120
wiley_primary_10_1002_mnfr_201000045_MNFR201000045
istex_primary_ark_67375_WNG_067BRC75_C
fao_agris_US201301919240
PublicationCentury 2000
PublicationDate December 2010
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: December 2010
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol. Nutr. Food Res
PublicationYear 2010
Publisher Wiley-VCH Verlag
WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Publisher_xml – name: Wiley-VCH Verlag
– name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
References Karnieli, E., Armoni, M., Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: from physiology to pathology. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E38-E45.
Martineau, L. C., Adeyiwola-Spoor, D. C., Vallerand, D., Afshar, A. et al., Enhancement of muscle cell glucose uptake by medicinal plant species of Canada's native populations is mediated by a common, Metformin-like mechanism. J. Ethnopharmacol. 2010, 127, 396-406.
Kraegen, E. W., Bruce, C., Hegarty, B. D., Ye, J. M. et al., AMP-activated protein kinase and muscle insulin resistance. Front. Biosci. 2009, 14, 4658-4672.
Moller, D. E., New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001, 414, 821-827.
Tyman, J. H. P., Researches on the technology and bioactive properties of phenolic lipids. Front. Nat. Prod. Chem. 2005, 1, 107-120.
Dykens, J. A., Jamieson, J., Marroquin, L., Nadanaciva, S. et al., Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol. Appl. Pharmacol. 2008, 233, 203-210.
Funai, K., Cartee, G. D., Inhibition of contraction-stimulated AMP-activated protein kinase inhibits contraction-stimulated increases in PAS-TBC1D1 and glucose transport without altering PAS-AS160 in rat skeletal muscle. Diabetes 2009, 58, 1096-1104.
Ojewole, J. A., Laboratory evaluation of the hypoglycemic effect of Anacardium occidentale Linn (Anacardiaceae) stem-bark extracts in rats. Methods Find. Exp. Clin. Pharmacol. 2003, 25, 199-204.
Ligeret, H., Brault, A., Vallerand, D., Haddad, Y., Haddad, P. S., Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J. Ethnopharmacol. 2008, 115, 507-514.
Martineau, L. C., Couture, A., Spoor, D., Benhaddou-Andaloussi, A. et al., Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 2006, 13, 612-623.
Fryer, L. G., Carling, D., AMP-activated protein kinase and the metabolic syndrome. Biochem. Soc. Trans. 2005, 33, 362-366.
Trevisan, M. T., Pfundstein, B., Haubner, R., Wurtele, G. et al., Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem. Toxicol. 2006, 44, 188-197.
Poitout, V., Robertson, R. P., Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr. Rev. 2008, 29, 351-366.
Voipio-Pulkki, L. M., Nuutila, P., Knuuti, M. J., Ruotsalainen, U. et al., Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J. Nucl. Med. 1993, 34, 2064-2067.
Morais, T. C., Pinto, N. B., Carvalho, K. M., Rios, J. B. et al., Protective effect of anacardic acids from cashew (Anacardium occidentale) on ethanol-induced gastric damage in mice. Chem. Biol. Interact. 2010, 183, 264-269.
Hardie, D. G., AMPK: a key regulator of energy balance in the single cell and the whole organism. Int. J. Obes. (Lond.) 2008, 32, S7-S12.
Koska, J., Ortega, E., Bunt, J. C., Gasser, A. et al., The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 2009, 52, 385-393.
Pelletier, A., Coderre, L., Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1325-E1332.
Walter, P., Lardy, H. A., Johnson, D., Antibiotics as tools for metabolic studies. X. Inhibition of phosphoryl transfer reactions in mitochondria by peliomycin, ossamycin, and venturicidin. J. Biol. Chem. 1967, 242, 5014-5018.
Fabricant, D. S., Farnsworth, N. R., The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69-75.
Klip, A., The many ways to regulate glucose transporter 4. Appl. Physiol. Nutr. Metab. 2009, 34, 481-487.
Fleischman, A., Shoelson, S. E., Bernier, R., Goldfine, A. B., Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 2008, 31, 289-294.
Shrestha, S., Bhattarai, B. R., Lee, K. H., Cho, H., Mono- and disalicylic acid derivatives: PTP1B inhibitors as potential anti-obesity drugs. Bioorg. Med. Chem. 2007, 15, 6535-6548.
Kaddai, V., Gonzalez, T., Bolla, M., Le Marchand-Brustel, Y., Cormont, M., The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E162-E169.
Fazakerley, D. J., Holman, G. D., Marley, A., James, D. E. et al., Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMPK activators in l6 myotubes. J. Biol. Chem. 2010, 285, 1653-1660.
Habeck, M., Diabetes treatments get sweet help from nature. Nat. Med. 2003, 9, 1228.
Kamtchouing, P., Sokeng, S. D., Moundipa, P. F., Watcho, P. et al., Protective role of Anacardium occidentale extract against streptozotocin-induced diabetes in rats. J. Ethnopharmacol. 1998, 62, 95-99.
Spoor, D. C., Martineau, L. C., Leduc, C., Benhaddou-Andaloussi, A. et al., Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti-diabetic potential. Can. J. Physiol. Pharmacol. 2006, 84, 847-858.
Wang, D. S., Kusuhara, H., Kato, Y., Jonker, J. W. et al., Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol. Pharmacol. 2003, 63, 844-848.
Hundal, R. S., Petersen, K. F., Mayerson, A. B., Randhawa, P. S. et al., Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 2002, 109, 1321-1326.
Li, J. W., Vederas, J. C., Drug discovery and natural products: end of an era or an endless frontier? Science 2009, 325, 161-165.
Wasserman, D. H., Four grams of glucose. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E11-E21.
Yamaguchi, S., Katahira, H., Ozawa, S., Nakamichi, Y. et al., Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E643-E649.
Toyomizu, M., Okamoto, K., Ishibashi, T., Chen, Z., Nakatsu, T., Uncoupling effect of anacardic acids from cashew nut shell oil on oxidative phosphorylation of rat liver mitochondria. Life Sci. 2000, 66, 229-234.
2006; 13
2010; 127
2000; 66
2009
2010; 285
2010; 183
2008; 32
2009; 296
2008; 31
1998; 62
2001; 109
2007; 15
2009; 34
2009; 14
2009; 58
1993; 34
2009; 52
2006; 84
2006; 44
2005; 289
2007; 292
2008; 29
2003; 9
2003; 25
2005; 1
2008; 115
1967; 242
2002; 109
2008; 233
2003; 63
2005; 33
2008; 295
2001; 414
2009; 325
e_1_2_6_31_2
e_1_2_6_30_2
Walter P. (e_1_2_6_18_2) 1967; 242
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
Voipio‐Pulkki L. M. (e_1_2_6_21_2) 1993; 34
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 62
  start-page: 95
  year: 1998
  end-page: 99
  article-title: Protective role of extract against streptozotocin‐induced diabetes in rats
  publication-title: J. Ethnopharmacol.
– year: 2009
– volume: 33
  start-page: 362
  year: 2005
  end-page: 366
  article-title: AMP‐activated protein kinase and the metabolic syndrome
  publication-title: Biochem. Soc. Trans.
– volume: 296
  start-page: E11
  year: 2009
  end-page: E21
  article-title: Four grams of glucose
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 295
  start-page: E162
  year: 2008
  end-page: E169
  article-title: The nitric oxide‐donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3‐L1 adipocytes
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 1
  start-page: 107
  year: 2005
  end-page: 120
  article-title: Researches on the technology and bioactive properties of phenolic lipids
  publication-title: Front. Nat. Prod. Chem.
– volume: 13
  start-page: 612
  year: 2006
  end-page: 623
  article-title: Anti‐diabetic properties of the Canadian lowbush blueberry Ait
  publication-title: Phytomedicine
– volume: 127
  start-page: 396
  year: 2010
  end-page: 406
  article-title: Enhancement of muscle cell glucose uptake by medicinal plant species of Canada's native populations is mediated by a common, Metformin‐like mechanism
  publication-title: J. Ethnopharmacol.
– volume: 325
  start-page: 161
  year: 2009
  end-page: 165
  article-title: Drug discovery and natural products: end of an era or an endless frontier?
  publication-title: Science
– volume: 52
  start-page: 385
  year: 2009
  end-page: 393
  article-title: The effect of salsalate on insulin action and glucose tolerance in obese non‐diabetic patients: results of a randomised double‐blind placebo‐controlled study
  publication-title: Diabetologia
– volume: 31
  start-page: 289
  year: 2008
  end-page: 294
  article-title: Salsalate improves glycemia and inflammatory parameters in obese young adults
  publication-title: Diabetes Care
– volume: 44
  start-page: 188
  year: 2006
  end-page: 197
  article-title: Characterization of alkyl phenols in cashew ( ) products and assay of their antioxidant capacity
  publication-title: Food Chem. Toxicol.
– volume: 84
  start-page: 847
  year: 2006
  end-page: 858
  article-title: Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti‐diabetic potential
  publication-title: Can. J. Physiol. Pharmacol.
– volume: 15
  start-page: 6535
  year: 2007
  end-page: 6548
  article-title: Mono‐ and disalicylic acid derivatives: PTP1B inhibitors as potential anti‐obesity drugs
  publication-title: Bioorg. Med. Chem.
– volume: 242
  start-page: 5014
  year: 1967
  end-page: 5018
  article-title: Antibiotics as tools for metabolic studies. X. Inhibition of phosphoryl transfer reactions in mitochondria by peliomycin, ossamycin, and venturicidin
  publication-title: J. Biol. Chem.
– volume: 295
  start-page: E38
  year: 2008
  end-page: E45
  article-title: Transcriptional regulation of the insulin‐responsive glucose transporter GLUT4 gene: from physiology to pathology
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 233
  start-page: 203
  year: 2008
  end-page: 210
  article-title: Biguanide‐induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically‐poised HepG2 cells and human hepatocytes
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 289
  start-page: E643
  year: 2005
  end-page: E649
  article-title: Activators of AMP‐activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3‐L1 adipocytes
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 58
  start-page: 1096
  year: 2009
  end-page: 1104
  article-title: Inhibition of contraction‐stimulated AMP‐activated protein kinase inhibits contraction‐stimulated increases in PAS‐TBC1D1 and glucose transport without altering PAS‐AS160 in rat skeletal muscle
  publication-title: Diabetes
– volume: 34
  start-page: 2064
  year: 1993
  end-page: 2067
  article-title: Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography
  publication-title: J. Nucl. Med.
– volume: 183
  start-page: 264
  year: 2010
  end-page: 269
  article-title: Protective effect of anacardic acids from cashew ( ) on ethanol‐induced gastric damage in mice
  publication-title: Chem. Biol. Interact
– volume: 66
  start-page: 229
  year: 2000
  end-page: 234
  article-title: Uncoupling effect of anacardic acids from cashew nut shell oil on oxidative phosphorylation of rat liver mitochondria
  publication-title: Life Sci.
– volume: 34
  start-page: 481
  year: 2009
  end-page: 487
  article-title: The many ways to regulate glucose transporter 4
  publication-title: Appl. Physiol. Nutr. Metab.
– volume: 109
  start-page: 1321
  year: 2002
  end-page: 1326
  article-title: Mechanism by which high‐dose aspirin improves glucose metabolism in type 2 diabetes
  publication-title: J. Clin. Invest.
– volume: 25
  start-page: 199
  year: 2003
  end-page: 204
  article-title: Laboratory evaluation of the hypoglycemic effect of Linn (Anacardiaceae) stem‐bark extracts in rats
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 32
  start-page: S7
  year: 2008
  end-page: S12
  article-title: AMPK: a key regulator of energy balance in the single cell and the whole organism
  publication-title: Int. J. Obes. (Lond.)
– volume: 63
  start-page: 844
  year: 2003
  end-page: 848
  article-title: Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin
  publication-title: Mol. Pharmacol.
– volume: 285
  start-page: 1653
  year: 2010
  end-page: 1660
  article-title: Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMPK activators in l6 myotubes
  publication-title: J. Biol. Chem.
– volume: 115
  start-page: 507
  year: 2008
  end-page: 514
  article-title: Antioxidant and mitochondrial protective effects of silibinin in cold preservation‐warm reperfusion liver injury
  publication-title: J. Ethnopharmacol.
– volume: 292
  start-page: E1325
  year: 2007
  end-page: E1332
  article-title: Ketone bodies alter dinitrophenol‐induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 9
  start-page: 1228
  year: 2003
  article-title: Diabetes treatments get sweet help from nature
  publication-title: Nat. Med.
– volume: 14
  start-page: 4658
  year: 2009
  end-page: 4672
  article-title: AMP‐activated protein kinase and muscle insulin resistance
  publication-title: Front. Biosci.
– volume: 29
  start-page: 351
  year: 2008
  end-page: 366
  article-title: Glucolipotoxicity: fuel excess and beta‐cell dysfunction
  publication-title: Endocr. Rev.
– volume: 414
  start-page: 821
  year: 2001
  end-page: 827
  article-title: New drug targets for type 2 diabetes and the metabolic syndrome
  publication-title: Nature
– volume: 109
  start-page: 69
  year: 2001
  end-page: 75
  article-title: The value of plants used in traditional medicine for drug discovery
  publication-title: Environ. Health Perspect.
– ident: e_1_2_6_10_2
  doi: 10.1016/j.cbi.2009.10.008
– ident: e_1_2_6_36_2
  doi: 10.2337/db08-1477
– ident: e_1_2_6_32_2
  doi: 10.1152/ajpendo.00186.2006
– ident: e_1_2_6_14_2
  doi: 10.2174/1574089054583605
– ident: e_1_2_6_2_2
– ident: e_1_2_6_23_2
  doi: 10.1152/ajpendo.90563.2008
– ident: e_1_2_6_29_2
  doi: 10.2337/dc07-1338
– ident: e_1_2_6_35_2
  doi: 10.1074/jbc.M109.051185
– ident: e_1_2_6_28_2
  doi: 10.1007/s00125-008-1239-x
– ident: e_1_2_6_31_2
  doi: 10.1172/JCI0214955
– ident: e_1_2_6_34_2
  doi: 10.1016/j.taap.2008.08.013
– ident: e_1_2_6_8_2
  doi: 10.1289/ehp.01109s169
– ident: e_1_2_6_16_2
  doi: 10.1139/Y06-018
– ident: e_1_2_6_15_2
  doi: 10.1016/S0024-3205(99)00585-8
– ident: e_1_2_6_27_2
  doi: 10.1016/j.bmc.2007.07.010
– ident: e_1_2_6_26_2
  doi: 10.1016/j.jep.2009.10.026
– ident: e_1_2_6_30_2
  doi: 10.1152/ajpendo.00622.2007
– ident: e_1_2_6_17_2
  doi: 10.1016/j.phymed.2006.08.005
– volume: 242
  start-page: 5014
  year: 1967
  ident: e_1_2_6_18_2
  article-title: Antibiotics as tools for metabolic studies. X. Inhibition of phosphoryl transfer reactions in mitochondria by peliomycin, ossamycin, and venturicidin
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Walter P.
– ident: e_1_2_6_33_2
  doi: 10.1038/ijo.2008.116
– ident: e_1_2_6_4_2
  doi: 10.2741/3558
– ident: e_1_2_6_19_2
  doi: 10.1016/j.jep.2007.10.024
– ident: e_1_2_6_24_2
  doi: 10.1139/H09-047
– ident: e_1_2_6_13_2
  doi: 10.1358/mf.2003.25.3.769640
– ident: e_1_2_6_7_2
  doi: 10.1126/science.1168243
– ident: e_1_2_6_25_2
  doi: 10.1152/ajpendo.00456.2004
– ident: e_1_2_6_5_2
  doi: 10.1042/BST0330362
– ident: e_1_2_6_9_2
  doi: 10.1038/nm1003-1228a
– ident: e_1_2_6_11_2
  doi: 10.1016/j.fct.2005.06.012
– ident: e_1_2_6_6_2
  doi: 10.1038/414821a
– ident: e_1_2_6_12_2
  doi: 10.1016/S0378-8741(97)00159-1
– ident: e_1_2_6_3_2
  doi: 10.1210/er.2007-0023
– volume: 34
  start-page: 2064
  year: 1993
  ident: e_1_2_6_21_2
  article-title: Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography
  publication-title: J. Nucl. Med.
  contributor:
    fullname: Voipio‐Pulkki L. M.
– ident: e_1_2_6_22_2
  doi: 10.1152/ajpendo.90306.2008
– ident: e_1_2_6_20_2
  doi: 10.1124/mol.63.4.844
SSID ssj0031243
Score 2.1451926
Snippet Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The...
Scope: Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. Methods and results: The...
Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. The anti-diabetic properties of...
Abstract Scope: Products of cashew tree ( Anacardium occidentale ) are used in traditional medicine for various ailments, including diabetes. Methods and...
SCOPEProducts of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes.METHODS AND RESULTSThe...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1753
SubjectTerms Acetyl-CoA carboxylase
Adenosine monophosphate-activated protein kinase
Anacardic acid
Anacardic Acids - pharmacology
Anacardium - chemistry
Analysis of Variance
Animals
Biological and medical sciences
Blotting, Western
Cashew seed extract
Cell Line
Diabetes
Food industries
Fruit and vegetable industries
Fundamental and applied biological sciences. Psychology
Glucose - metabolism
Hypoglycemic Agents - pharmacology
Insulin - metabolism
Male
Mice
Mitochondria, Liver - drug effects
Muscle Cells - cytology
Muscle Cells - metabolism
Muscle Fibers, Skeletal - cytology
Nuts - chemistry
Oxidative Phosphorylation
Plant Extracts - pharmacology
Proto-Oncogene Proteins c-akt - metabolism
Rats
Rats, Wistar
Receptor, Insulin - metabolism
Seeds - chemistry
Title Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells
URI https://api.istex.fr/ark:/67375/WNG-067BRC75-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201000045
https://www.ncbi.nlm.nih.gov/pubmed/20603833
https://search.proquest.com/docview/815964837
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgVmx4w4TH6C7QANJkJrHz6nLIUCokuihUzM5ybAeq0qRqEvFY8Ql8At_Gl3Bv0mQoQkKCVRVVN62TY99z45NzGXukjYmRxueutVaQqXbiKkNGyD6Cw-dtUUFqi2k0mQcvz8PzX97i7_whhgduNDPa9ZomuMqqkwvT0FWRb1ppVktLcBH2RUyarrPZ4B8lMHm1CnvMWW6Aqbx3bfT4yW74Tla6nKsSuSpd5k-klVQVXq6863PxJyK6y2vbxDS-xlQ_pE6Psjxu6uxYf_nN7fF_xnydXd2yVjjtYHaDXbLFTeacLWwNh7C1Fv0A097Z_xb7PvlsNuWPr98sPZon72HALEBvZEGZg1bVe_sRaEMcnpwWShNMmxWUWlOPU6wH7FMomhpUYWBRV7DutgTwN0gCT52gjvC7Lk6DwqgjwLVqRb3ILGxl-NCsa7W0sCgg5anPYdVU-O-B9iqq22w-fv4mnbjbZhCuDkiJF2YjYZLIYvkVBFpbzg0XSvnGSxR-xDZCJiqok7IQJg95ko0CP8hFZH0_83Qo7rC9oizsPoNQ5IjOxI-TYBSIOFZaJwLLOGuoE5FWDnvcg0GuO88P2bk7c0l3QA53wGH7iBWp3uGCLOevOW0DYwGMNa3nsMMWQMMZ1GZJIro4lG-nLySShGezFA9Shx3sIGwI4CISsc_xTNBDTuLcp4ukCls2lUyQi0bUEsBhdzsoXgR7kScSIRzGW0D9ZSDy1XQ8G47u_UvQfXaFD1KfB2yv3jT2IRK2OjtoJ-VPYDo02g
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RcoALb6h5lDmgAlLd2rt-5VhcQoA2h9AIbqv1eg1RiB3Ftnic-An8BH4bv4QZO3YVhIQEp8iKxsmuv9mZ2f38DWOPdJqGmMZntjFGkKh2ZKuUhJBdBIfLm6KC2BbjYDT1Xr3zOzYhvQvT6kP0G27kGc16TQ5OG9KH56qhizxbNdysJi_ZYhfR5wU1MTie9ApSAsNXw7HHqGV7GMw73UaHH27ab8SlrUwVmK3SRH8mtqQqccKyttPFn1LRzcy2CU3DqyzpBtUyUuYHdZUc6K-_6T3-16ivsSvrxBWOWqRdZxdMfoNZxzNTwR6s1UU_wrgT97_Jfoy-pKvi57fvhnbnSX4YMBDQS1lQZKBV-cF8AjoThydHudKE1HoBhdbU5hRLAvMU8roClacwq0pYtqcC-BvEgqdmUPv4XWunQaHVPuBytaB2ZAbWTHyol5WaG5jlEPPY5bCoS_z3QMcV5S02HT4_i0f2uh-ErT0i4_nJQKRRYLAC8zytDecpF0q5qRMp_AhNgMmooGbKQqSZz6Nk4LleJgLjuomjfXGbbedFbnYY-CJDgEZuGHkDT4Sh0joSWMmZlJoRaWWxxx0a5LKV_ZCtwDOX9ARk_wQstoNgkeo9rsly-obTSTDWwFjWOhbbaxDU30Gt5sSjC335dvxCYp7wbBLjRWyx3Q2I9QZcBCJ0Od4JOsxJdH-aJJWboi5lhOloQF0BLHanxeK5sRM4IhLCYrxB1F8GIk_Hw0l_dfdfjB6yS6Oz0xN58nL8-h67zHvmz322Xa1q8wDztyrZbTz0F5gSOPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF3RIiFeuEPNpcwDKiA1rb3rWx5LQgi3CAUi-rZa765plMaOYltcnvgEPoFv40uYsROXICQkeIqsaJzs-qznjPf4DGMPtDER0vi0Y60VZKodd5QhI2QPweHxuqggtcUoHE78F8fB8S9v8Tf-EO0DN1oZ9f2aFvjCpIdnpqHzLF3W0qyalmyx834oXBJ19cetgZTA7FVL7DFpdXzM5WvbRpcfbsZvpKWtVOVIVmmeP5FYUhU4X2nT6OJPTHST2NaZaXCZqfWYGkHK7KAqkwP95Te7x_8Z9BV2aUVb4ajB2VV2zmbXmNOf2hL2YOUtegqjtbX_dfZ9-Nks8x9fv1l6Nk_mw4BpgF7JgjwFrYoT-xFoRxweHWVKE06rOeRaU5NTLAjsY8iqElRmYFoWsGj2BPA3SANPraD28bsmToPCqH3Am9WcmpFZWOnwoVqUamZhmkGP9zwO86rAfw-0WVHcYJPB03e9YWfVDaKjfZLiBUlXmDi0WH_5vtaWc8OFUp5xY4UfkQ2RigpqpSyESQMeJ13f81MRWs9LXB2Im2w7yzO7wyAQKcIz9qLY7_oiipTWscA6zhpqRaSVwx6uwSAXjemHbOyduaQrINsr4LAdxIpUH_COLCdvOe0DYwWMRa3rsL0aQO0Z1HJGKrookO9HzySyhCfjHh70HLa7gbA2gItQRB7HM8EachIXP02SymxeFTJGMhpSTwCH3WqgeBbshq6IhXAYrwH1l4HI16PBuD26_S9B99mFN_2BfPV89PIOu8hb2c9dtl0uK3sPyVuZ7Nbr8ye2DDej
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydro%E2%80%90ethanolic+extract+of+cashew+tree+%28+Anacardium+occidentale+%29+nut+and+its+principal+compound%2C+anacardic+acid%2C+stimulate+glucose+uptake+in+C2C12+muscle+cells&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Tedong%2C+Leonard&rft.au=Madiraju%2C+Padma&rft.au=Martineau%2C+Louis+C.&rft.au=Vallerand%2C+Diane&rft.date=2010-12-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=54&rft.issue=12&rft.spage=1753&rft.epage=1762&rft_id=info:doi/10.1002%2Fmnfr.201000045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mnfr_201000045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon