The search for cerebral biomarkers of Huntington's disease: a review of genetic models of age at onset prediction
The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5′ translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36–41) showing a very low penetrance, po...
Saved in:
Published in | European journal of neurology Vol. 13; no. 4; pp. 408 - 415 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 1351-5101 1468-1331 |
DOI | 10.1111/j.1468-1331.2006.01264.x |
Cover
Loading…
Abstract | The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5′ translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36–41) showing a very low penetrance, possibly associated with late ages at onset. No research has so far yielded biomarkers for accurately predicting either age at onset or disease progression in at risk individuals. Specific markers able to follow‐up mutation carrier subjects from the pre‐symptomatic stages of life are crucial for testing experimental neuroprotective preventive therapies. Nevertheless, the factor accounting for the largest percentage of age at onset variation is the expanded repeat number within the gene. Over the years, this factor has helped in setting up models for genetically predicting age at onset. Once available for practical application in clinics, such models allowed phenotype‐genotype correlations that were hitherto inconceivable. In this review, we discuss how these genetic models have been applied in clinical practice and comment on their potential value in searching for cerebral biomarkers of disease onset and severity and in designing trials of therapeutic drugs. |
---|---|
AbstractList | The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5' translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36-41) showing a very low penetrance, possibly associated with late ages at onset. No research has so far yielded biomarkers for accurately predicting either age at onset or disease progression in at risk individuals. Specific markers able to follow-up mutation carrier subjects from the pre-symptomatic stages of life are crucial for testing experimental neuroprotective preventive therapies. Nevertheless, the factor accounting for the largest percentage of age at onset variation is the expanded repeat number within the gene. Over the years, this factor has helped in setting up models for genetically predicting age at onset. Once available for practical application in clinics, such models allowed phenotype-genotype correlations that were hitherto inconceivable. In this review, we discuss how these genetic models have been applied in clinical practice and comment on their potential value in searching for cerebral biomarkers of disease onset and severity and in designing trials of therapeutic drugs.The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5' translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36-41) showing a very low penetrance, possibly associated with late ages at onset. No research has so far yielded biomarkers for accurately predicting either age at onset or disease progression in at risk individuals. Specific markers able to follow-up mutation carrier subjects from the pre-symptomatic stages of life are crucial for testing experimental neuroprotective preventive therapies. Nevertheless, the factor accounting for the largest percentage of age at onset variation is the expanded repeat number within the gene. Over the years, this factor has helped in setting up models for genetically predicting age at onset. Once available for practical application in clinics, such models allowed phenotype-genotype correlations that were hitherto inconceivable. In this review, we discuss how these genetic models have been applied in clinical practice and comment on their potential value in searching for cerebral biomarkers of disease onset and severity and in designing trials of therapeutic drugs. The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5' translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36-41) showing a very low penetrance, possibly associated with late ages at onset. No research has so far yielded biomarkers for accurately predicting either age at onset or disease progression in at risk individuals. Specific markers able to follow-up mutation carrier subjects from the pre-symptomatic stages of life are crucial for testing experimental neuroprotective preventive therapies. Nevertheless, the factor accounting for the largest percentage of age at onset variation is the expanded repeat number within the gene. Over the years, this factor has helped in setting up models for genetically predicting age at onset. Once available for practical application in clinics, such models allowed phenotype-genotype correlations that were hitherto inconceivable. In this review, we discuss how these genetic models have been applied in clinical practice and comment on their potential value in searching for cerebral biomarkers of disease onset and severity and in designing trials of therapeutic drugs. |
Author | Squitieri, F. Di Donato, S. Ciarmiello, A. Frati, L. |
Author_xml | – sequence: 1 givenname: F. surname: Squitieri fullname: Squitieri, F. organization: Neurogenetics Unit, IRCCS Neuromed, Pozzilli (IS), Italy – sequence: 2 givenname: A. surname: Ciarmiello fullname: Ciarmiello, A. organization: Nuclear Medicine Unit, IRCCS Pascale, Naples, Italy – sequence: 3 givenname: S. surname: Di Donato fullname: Di Donato, S. organization: Division of Biochemistry and Genetics, IRCCS Besta, Milan, Italy – sequence: 4 givenname: L. surname: Frati fullname: Frati, L. organization: Neurogenetics Unit, IRCCS Neuromed, Pozzilli (IS), Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16643321$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gLyCf4JTgiRMnRgIJVdsvlUWgoj1aXmey9ZKNt7aXbv89TrfsgUvxxSP5fWY07-tjcjC4AQmhwHJI58Myh1I0GXAOecGYyBkUosy3L8jR_uEg1byCrAIGh-Q4hCVjrKgL9oocghAl5wUckbubW6QBtTe3tHOeGvQ497qnc-tW2v9CH6jr6MVmiHZYRDe8D7S1CQj4kWrq8bfF-1GxwAGjNXTlWuwfGb1AqiN1Q8BI1x5ba6J1w2vystN9wDdP9wn5eTa5Ob3Irr-dX55-uc5MyUWZzSXXlURpOEBtmhIMl13daMEraVgrmhartE0BJQoGra6wlRUWhakkb0qO_IS82_Vde3e3wRDVygaDfa8HdJugRC0BBC-eFYIseRolk_Dtk3AzX2Gr1t4mix7UXzeT4PNOYLwLwWOnjI16XDp6bXsFTI3xqaUaU1JjSmqMTz3Gp7apQfNPg_2M59FPO_Te9vjw35yaTCdjlfhsx9sQcbvn0xdITvG6UrPpufp-1lx9_TGbqSn_A8wLv_4 |
CitedBy_id | crossref_primary_10_3233_JHD_160208 crossref_primary_10_1016_j_mehy_2007_06_043 crossref_primary_10_1038_s41582_020_0389_4 crossref_primary_10_1111_j_1582_4934_2010_01011_x crossref_primary_10_1371_journal_pcbi_0030235 crossref_primary_10_1016_j_celrep_2015_08_060 crossref_primary_10_1111_j_1755_5949_2010_00157_x crossref_primary_10_1177_0883073808314152 crossref_primary_10_1196_annals_1427_018 crossref_primary_10_7554_eLife_64674 crossref_primary_10_1002_mds_27595 crossref_primary_10_3390_jcm10133001 crossref_primary_10_1007_s00259_009_1103_3 |
Cites_doi | 10.1002/hbm.460020402 10.1046/j.1468-1331.2003.00601.x 10.1212/01.WNL.0000138434.68093.67 10.1017/S0033291700047966 10.1093/hmg/2.10.1535 10.1136/jnnp.64.2.172 10.1002/ajmg.1400 10.1136/jmg.30.4.289 10.1038/ng0893-387 10.1016/S0140-6736(94)92208-X 10.1001/archneur.1995.00540320021009 10.1093/hmg/6.2.301 10.1007/BF00193190 10.1002/(SICI)1098-1004(1997)10:6<458::AID-HUMU7>3.0.CO;2-9 10.1002/mds.870100116 10.1093/brain/122.9.1667 10.1093/jnen/60.2.161 10.1093/hmg/8.2.173 10.1136/jmg.30.12.991 10.1002/ajmg.b.20110 10.1046/j.1399-0004.2003.00155.x 10.1073/pnas.0308679101 10.1001/archneur.57.9.1326 10.1001/archneur.55.6.801 10.1086/302810 10.1093/hmg/3.12.2103 10.1038/ng0594-113b 10.1093/brain/122.12.2353 10.1093/hmg/6.5.775 10.1007/s100720200092 10.1056/NEJM199405193302001 10.1097/00001756-200402090-00030 10.1212/WNL.44.5.823 10.1212/WNL.44.8.1533 10.1073/pnas.98.4.1811 10.1093/brain/awg077 10.1093/hmg/3.1.93 10.1038/ng0894-525 10.1093/hmg/2.10.1547 10.1093/brain/awg119 10.1007/s10048-004-0198-8 10.1093/hmg/4.5.974-b 10.1002/ana.20121 10.1016/j.neulet.2004.10.018 10.1212/01.WNL.0000065888.88988.6E 10.1016/S0361-9230(01)00648-7 10.1212/WNL.53.6.1330 10.1086/302374 10.1034/j.1399-0004.2000.580108.x 10.1007/s10072-003-0137-8 10.1073/pnas.94.8.3872 10.1038/ng1193-259 10.1093/brain/awf179 10.1038/ng0893-398 10.1007/s100720170044 10.1038/jcbfm.1992.81 10.1016/S0092-8674(00)80623-6 10.1212/WNL.57.4.658 10.1093/brain/119.6.2085 10.1002/ana.410150723 10.1212/WNL.36.7.888 10.1002/ana.410360412 10.1136/jnnp.66.1.52 10.1002/1096-8628(20001211)95:4<366::AID-AJMG13>3.0.CO;2-2 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 P64 RC3 7X8 |
DOI | 10.1111/j.1468-1331.2006.01264.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1468-1331 |
EndPage | 415 |
ExternalDocumentID | 16643321 10_1111_j_1468_1331_2006_01264_x ENE1264 ark_67375_WNG_QF8JMRWW_N |
Genre | article Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 169 1OB 1OC 24P 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABPVW ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADPDF ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F5P FEDTE FUBAC FYBCS FYUFA G-S G.N GODZA H.X HF~ HMCUK HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD OVEED P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIG RIWAO RJQFR ROL RPM RX1 SAMSI SUPJJ TEORI UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AFWVQ AAYXX AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 RC3 WIN 7X8 |
ID | FETCH-LOGICAL-c4364-b93a59e9c3117c841c39f78a6359c0d68de5272214e601da5ed95e22c593843e3 |
IEDL.DBID | DR2 |
ISSN | 1351-5101 |
IngestDate | Fri Sep 05 08:28:25 EDT 2025 Tue Aug 05 10:45:56 EDT 2025 Wed Feb 19 01:53:34 EST 2025 Thu Apr 24 23:10:06 EDT 2025 Tue Jul 01 02:47:25 EDT 2025 Wed Jan 22 16:21:42 EST 2025 Wed Oct 30 09:53:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4364-b93a59e9c3117c841c39f78a6359c0d68de5272214e601da5ed95e22c593843e3 |
Notes | ArticleID:ENE1264 ark:/67375/WNG-QF8JMRWW-N istex:8D93D0EC537F6074C2D04759F36337F6A4ED25E2 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 |
PMID | 16643321 |
PQID | 19435279 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_67911632 proquest_miscellaneous_19435279 pubmed_primary_16643321 crossref_citationtrail_10_1111_j_1468_1331_2006_01264_x crossref_primary_10_1111_j_1468_1331_2006_01264_x wiley_primary_10_1111_j_1468_1331_2006_01264_x_ENE1264 istex_primary_ark_67375_WNG_QF8JMRWW_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-04 April 2006 2006-04-00 2006-Apr 20060401 |
PublicationDateYYYYMMDD | 2006-04-01 |
PublicationDate_xml | – month: 04 year: 2006 text: 2006-04 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | European journal of neurology |
PublicationTitleAlternate | Eur J Neurol |
PublicationYear | 2006 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Paulsen JS, Zhao H, Stout JC, et al. Clinical markers of early disease in persons near onset of Huntington's disease. Neurology 2001; 57: 658-662. Pavese N, Andrews TC, Brooks DJ, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study. Brain 2003; 126: 1127-1135. Squitieri F, Sabbadini G, Mandich P, et al. 2000b; Family and molecular data for a fine analysis of age at onset in Huntington disease. American Journal of Medical Genetics 95: 366-373. Squitieri F, Pustorino G, Cannella M, et al. 2003c; Highly disabling, ''cerebellar'', juvenile-onset Huntington disease. European Journal of Neurology 10: 443-444. Giovannone B, Sabbadini G, Di Maio L, et al. Analysis of (CAG)n size heterogeneity in somatic and sperm cell DNA from intermediate and expanded Huntington disease gene carriers. Human Mutation 1997; 10: 458-464. Brinkman RR, Mezei MM, Theilmann J, et al. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. American Journal of Human Genetics 1997; 60: 1202-1210. Aylward EH, Brandt J, Codori AM, Mangus RS, Barta PE, Harris GJ. Reduced basal ganglia volume associated with the gene for Huntington's disease in asymptomatic at-risk persons. Neurology 2004; 44: 823-828. Andrews TC, Weeks RA, Turjanski N, et al. Huntington's disease progression. PET and clinical observation. Brain 1999; 122: 2352-2363. Claes S, Van Zand K, Legius E, et al. Correlations between triplet repeat expansion and clinical features in Huntington's disease. Archives of Neurology 1995; 52: 749-753. Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 2000; 101: 57-66. Wexler NS, Lorimer J, Porter J, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 3498-3503. Rubinsztein DC, Amos W, Leggo J, et al. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nature Genetics 1994; 7: 525-530. Foroud T, Gray J, Ivashina J, Conneally PM.. Differences in duration of Huntington's disease based on age at onset. Journal of Neurology, Neurosurgery and Psychiatry 1999; 66: 52-56. Holbert S, Denghien I, Kiechle T, et al. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathological and genetic evidence for a role in Huntington's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 1811-1816. Rosenblatt A, Brinkman RR, Liang KY, et al. Familial influence on age of onset among siblings with Huntington disease. American Journal of Medical Genetics 2001; 105: 399-403. McNeil SM, Novelletto A, Srinidhi J, et al. Reduced penetrance of the Huntington's disease mutation. Human Molecular Genetics 1997; 6: 775-779. Squitieri F, Gellera C, Cannella M, et al. 2003b; Homozygosity for CAG mutation in Huntington Disease is associated with a more severe clinical course. Brain 126: 946-955. Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ.. Statistical parametric maps in functional neuroimaging: a general linear approach. Human Brain Mapping 1995; 2: 189-210. Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. Journal of Neuropathology and Experimental Neurology 2001; 60: 161-172. Kremer B, Squitieri F, Telenius H, et al. Molecular analysis of late onset Huntington's disease. Journal of Medical Genetics 1993; 30: 991-995. Rousset OG, Ma Y, Evans AC.. Correction for partial volume effects in PET: principle and validation. Journal of Nuclear Medicine 1998; 39: 904-911. Strong TV, Tagle DA, Valdes JM, et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nature Genetics 1993; 5: 259-265 Telenius H, Almqvist E, Kremer B, et al. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Human Molecular Genetics 1995; 4: 974-984. Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 2005; 6: 25-28. Snowden JS, Craufurd D, Griffiths HL, Neary D.. Awareness of involuntary mevements in Huntington disease. Archives of Neurology 1998; 55: 801-805. International Huntington Association and World Federation of Neurology Research Group of Huntington's chorea (Guidelines for the molecular gnetics predictive test in Huntington's disease. Neurology 1994; 44: 1533-1536. Leeflang EP, Tavare S, Marjoram P, et al. Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Human Molecular Genetics 1999; 8: 717-727. Andrew SE, Golberg YP, Kremer B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genetics 1993; 4: 398-403. Cannella M, Simonelli M, D'Alessio C, Pierelli F, Ruggieri S, Squitieri F. Presymptomatic tests in Huntington's disease and dominant ataxias. Neurological Science 2001; 22: 55-56. Illarioshkin SN, Igarashi S, Onodera O, et al. Trinucleotide repeat length and rate of progression of Huntington's disease. Annals of Neurology 1994; 36: 630-635. MacDonald ME, Vonsattel JP, Shrinidhi J, et al. Evidence for the GluR6 gene associated with younger onset age of Huntington's disease. Neurology 1999; 53: 1330-1332. Folstein S, Abbott MH, Chase GA, Jensen BA, Folstein MF.. The association of effective disorder with Huntington's disease in a case series and in families. Psychological Medicine 1983; 13: 537-542. Rosas HH, Koroshetz WJ, Chen YJ, et al. Evidence for more widespread cerebral pathology in early HD. Neurology 2003; 60: 1615-1620. Squitieri F, Cannella M, Giallonardo P, Maglione V, Mariotti C, Hayden MR.. Onset and pre-onset studies to define the Huntington's disease natural history. Brain Research Bulletin 2001; 56: 233-238. Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genetics 1993; 4: 387-392. Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL.. Age of onset in Huntington's disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. Journal of Medical Genetics 1999; 36: 108-111. Hahn-Barma V, Deweer B, Dürr A, et al. Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers. Journal of Neurology, Neurosurgery and Psychiatry 1998; 64: 172-177. Chong SS, Almqvist E, Telenius H, et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Human Molecular Genetics 1997; 6: 301-309. Kuhl DE, Metter EJ, Riege WH, Markham CH.. Patterns of cerebral glucose utilization in Parkinson's disease and Huntington's disease. Annals of Neurology 1984; 15: S119-S125 Benjamin CM, Adam S, Wiggins S, et al. Proceed with care: direct predictive testing for Huntington disease. American Journal of Human Genetics 2002; 1994; 55: 606-617. Frontali M, Malaspina P, Rossi C, et al. Epidemiological and linkage studies on Huntington's disease in Italy. Human Genetics 1990; 85: 165-170. Squitieri F, Berardelli A, Nargi E, et al. 2000a; Atypical movement disorders in early stages of Huntington's disease: clinical and genetic analysis. Clinical Genetics 58: 50-56. Almqvist EW, Bloch M, Brinkman R, Craufurd D, Hayden MR. A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease. American Journal of Human Genetics 1999; 64: 1293-1304. Davis MB, Bateman D, Quinn NP, Marsden CD, Harding AE.. Mutation analysis in patients with possible but apparently sporadic Huntington's disease. Lancet 1994; 344: 714-717. Quarantelli M, Berkouk K, Prinster A, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. Journal of Nuclear Medicine 2004; 45: 192-201. Reading SAJ, Dziorny AC, Peroutka LA, et al. Functional brain changes in presymptomatic huntington's disease. Annals of Neurology 2004; 55: 879-883. Muller-Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. Journal of Cerebral Blood Flow and Metabolism 1992; 12: 571-583. Thieben MJ, Duggins AJ, Good CD, et al. The distribution of structural neuropathology in pre-clinical Huntington's disease. Brain 2002; 125: 1815-1828. Louis ED, Anderson KE, Moskowitz C, Thorne DZ, Marder K. Dystonia-predominant adult-onset Huntington disease: association between motor phenotype and age of onset in adults. Archives of Neurology 2000; 57: 1326-1330. Antonini A, Leenders KL, Spiegel R, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain 1996; 119: 2085-2095. Di Maio L, Squitieri F, Campanella G, Trofatter J, Conneally PM.. Onset symptoms in 510 patients with Huntington's disease. Journal of Medical Genetics 1993; 30: 289-292. The Huntington's Disease Collaborative Group (A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72: 1-20. Hayden MR, Martin WRW, Stoessl AJ, et al. Positron emission tomography in the early diagnosis of Huntington's disease. Neurology 1986; 36: 88-94. Telenius H, Kremer HP, Theilmann J, et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Human Molecular Genetics 1993; 2: 1535-1540. Fennema-Notestine C, Archibald SL, Jacobson MW, et al. In vivo evidence of cerebe 2004; 66 1994; 330 2004; 63 1986; 36 2002; 55 1999; 122 2000a; 58 1997; 6 1993; 2 1992; 12 1983; 13 1993; 4 1993; 5 2001; 105 1994; 344 1990; 85 2004; 374 2001; 60 2004; 125B 1997; 94 1993; 72 1997; 10 1984; 15 2000; 57 2000b; 95 1993; 30 2003c; 10 1994; 36 1999; 53 2003; 126 2001; 56 2001; 57 1998; 55 2003a; 24 2001; 98 2004; 101 2004; 44 1995; 52 1997; 60 1995; 57 2000; 66 2004; 45 1995; 10 1994; 44 1999; 66 1999; 64 2002 1999; 8 2001; 22 1995; 2 1995; 4 1996; 59 1998; 64 2004; 55 2003d; 64 2003b; 126 1998; 39 2002; 23 2002; 125 2004; 15 1999; 36 2005; 6 2000; 101 2003; 60 1994; 3 1996; 119 1994; 7 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_47_2 e_1_2_8_68_2 Langbehn DR (e_1_2_8_26_2) 2004; 66 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_41_2 e_1_2_8_66_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_64_2 e_1_2_8_62_2 The Huntington's Disease Collaborative Group (e_1_2_8_9_2) 1993; 72 e_1_2_8_60_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_59_2 e_1_2_8_15_2 e_1_2_8_57_2 Brinkman RR (e_1_2_8_23_2) 1997; 60 Quarantelli M (e_1_2_8_72_2) 2004; 45 e_1_2_8_30_2 e_1_2_8_55_2 e_1_2_8_32_2 e_1_2_8_53_2 e_1_2_8_51_2 Ranen NG (e_1_2_8_70_2) 1995; 57 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_61_2 e_1_2_8_40_2 Kehoe P (e_1_2_8_36_2) 1999; 36 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_14_2 Benjamin CM (e_1_2_8_20_2) 2002; 55 e_1_2_8_37_2 e_1_2_8_56_2 Rubinsztein DC (e_1_2_8_11_2) 1996; 59 Rousset OG (e_1_2_8_74_2) 1998; 39 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_71_2 |
References_xml | – reference: Aylward EH, Brandt J, Codori AM, Mangus RS, Barta PE, Harris GJ. Reduced basal ganglia volume associated with the gene for Huntington's disease in asymptomatic at-risk persons. Neurology 2004; 44: 823-828. – reference: Andrews TC, Weeks RA, Turjanski N, et al. Huntington's disease progression. PET and clinical observation. Brain 1999; 122: 2352-2363. – reference: Holbert S, Denghien I, Kiechle T, et al. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathological and genetic evidence for a role in Huntington's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 1811-1816. – reference: Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, International Huntington's Disease Collaborative Group (A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical Genetics 2004; 66: 81-91. – reference: Squitieri F, Andrew SE, Goldberg YP, et al. DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons of geographic variations of prevalence. Human Molecular Genetics 1994; 3: 2103-2114. – reference: Chong SS, Almqvist E, Telenius H, et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Human Molecular Genetics 1997; 6: 301-309. – reference: Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ.. Statistical parametric maps in functional neuroimaging: a general linear approach. Human Brain Mapping 1995; 2: 189-210. – reference: MacDonald ME, Vonsattel JP, Shrinidhi J, et al. Evidence for the GluR6 gene associated with younger onset age of Huntington's disease. Neurology 1999; 53: 1330-1332. – reference: Frontali M, Malaspina P, Rossi C, et al. Epidemiological and linkage studies on Huntington's disease in Italy. Human Genetics 1990; 85: 165-170. – reference: Laccone F, Christian W. A recurrent expansion of a maternal allele with 36 CAG repeats causes Huntington disease in two sisters. American Journal of Human Genetics 2000; 66: 1145-1148. – reference: Kuhl DE, Metter EJ, Riege WH, Markham CH.. Patterns of cerebral glucose utilization in Parkinson's disease and Huntington's disease. Annals of Neurology 1984; 15: S119-S125 – reference: Kassubek J, Landwehrmeyer BG, Ecker D, et al. Global cerebral atrophy in early stages of Huntington's disease: quantitative MRI study. Neuroreport 2004; 15: 363-365. – reference: Stine OC, Pleasant N, Franz ML, Abbott MH, Folstein SE, Ross CA.. Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15. Human Molecular Genetics 1993; 2: 1547-1549. – reference: Novelletto A, Persichetti F, Sabbadini G, et al. Analysis of the trinucleotide expansion in italian families affected with huntington disease. Human Molecular Genetics 1994; 3: 93-98. – reference: Squitieri F, Pustorino G, Cannella M, et al. 2003c; Highly disabling, ''cerebellar'', juvenile-onset Huntington disease. European Journal of Neurology 10: 443-444. – reference: Chattopadhyay B, Baksi K, Mukhopadhyay S, Bhattacharyya NP.. Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes. Neuroscience Letters 2004; 374: 81-86. – reference: Foroud T, Gray J, Ivashina J, Conneally PM.. Differences in duration of Huntington's disease based on age at onset. Journal of Neurology, Neurosurgery and Psychiatry 1999; 66: 52-56. – reference: Brinkman RR, Mezei MM, Theilmann J, et al. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. American Journal of Human Genetics 1997; 60: 1202-1210. – reference: Louis ED, Anderson KE, Moskowitz C, Thorne DZ, Marder K. Dystonia-predominant adult-onset Huntington disease: association between motor phenotype and age of onset in adults. Archives of Neurology 2000; 57: 1326-1330. – reference: Rosenblatt A, Brinkman RR, Liang KY, et al. Familial influence on age of onset among siblings with Huntington disease. American Journal of Medical Genetics 2001; 105: 399-403. – reference: Squitieri F, Cannella M, Simonelli M.. CAG mutation effect on rate of progression in Huntington's disease. Neurological Science 2002; 23: 107-108. – reference: Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 2000; 101: 57-66. – reference: Andrew SE, Golberg YP, Kremer B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genetics 1993; 4: 398-403. – reference: Davis MB, Bateman D, Quinn NP, Marsden CD, Harding AE.. Mutation analysis in patients with possible but apparently sporadic Huntington's disease. Lancet 1994; 344: 714-717. – reference: Kremer B, Squitieri F, Telenius H, et al. Molecular analysis of late onset Huntington's disease. Journal of Medical Genetics 1993; 30: 991-995. – reference: Leeflang EP, Tavare S, Marjoram P, et al. Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Human Molecular Genetics 1999; 8: 717-727. – reference: Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J.. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain 1999; 122: 1667-1678. – reference: Rosas HH, Koroshetz WJ, Chen YJ, et al. Evidence for more widespread cerebral pathology in early HD. Neurology 2003; 60: 1615-1620. – reference: Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL.. Age of onset in Huntington's disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. Journal of Medical Genetics 1999; 36: 108-111. – reference: Muller-Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. Journal of Cerebral Blood Flow and Metabolism 1992; 12: 571-583. – reference: Strong TV, Tagle DA, Valdes JM, et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nature Genetics 1993; 5: 259-265 – reference: Wexler NS, Lorimer J, Porter J, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 3498-3503. – reference: Claes S, Van Zand K, Legius E, et al. Correlations between triplet repeat expansion and clinical features in Huntington's disease. Archives of Neurology 1995; 52: 749-753. – reference: The Huntington's Disease Collaborative Group (A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72: 1-20. – reference: Snowden JS, Craufurd D, Griffiths HL, Neary D.. Awareness of involuntary mevements in Huntington disease. Archives of Neurology 1998; 55: 801-805. – reference: Squitieri F, Cannella M, Giallonardo P, Maglione V, Mariotti C, Hayden MR.. Onset and pre-onset studies to define the Huntington's disease natural history. Brain Research Bulletin 2001; 56: 233-238. – reference: Fennema-Notestine C, Archibald SL, Jacobson MW, et al. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 2004; 63: 989-995. – reference: Telenius H, Kremer HP, Theilmann J, et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Human Molecular Genetics 1993; 2: 1535-1540. – reference: Cannella M, Simonelli M, D'Alessio C, Pierelli F, Ruggieri S, Squitieri F. Presymptomatic tests in Huntington's disease and dominant ataxias. Neurological Science 2001; 22: 55-56. – reference: Folstein S, Abbott MH, Chase GA, Jensen BA, Folstein MF.. The association of effective disorder with Huntington's disease in a case series and in families. Psychological Medicine 1983; 13: 537-542. – reference: Hahn-Barma V, Deweer B, Dürr A, et al. Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers. Journal of Neurology, Neurosurgery and Psychiatry 1998; 64: 172-177. – reference: Squitieri F, Sabbadini G, Mandich P, et al. 2000b; Family and molecular data for a fine analysis of age at onset in Huntington disease. American Journal of Medical Genetics 95: 366-373. – reference: Hayden MR, Martin WRW, Stoessl AJ, et al. Positron emission tomography in the early diagnosis of Huntington's disease. Neurology 1986; 36: 88-94. – reference: Thieben MJ, Duggins AJ, Good CD, et al. The distribution of structural neuropathology in pre-clinical Huntington's disease. Brain 2002; 125: 1815-1828. – reference: Paulsen JS, Zhao H, Stout JC, et al. Clinical markers of early disease in persons near onset of Huntington's disease. Neurology 2001; 57: 658-662. – reference: McNeil SM, Novelletto A, Srinidhi J, et al. Reduced penetrance of the Huntington's disease mutation. Human Molecular Genetics 1997; 6: 775-779. – reference: Quarantelli M, Berkouk K, Prinster A, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. Journal of Nuclear Medicine 2004; 45: 192-201. – reference: Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. Journal of Neuropathology and Experimental Neurology 2001; 60: 161-172. – reference: Squitieri F, Berardelli A, Nargi E, et al. 2000a; Atypical movement disorders in early stages of Huntington's disease: clinical and genetic analysis. Clinical Genetics 58: 50-56. – reference: Kremer B, Goldgerg P, Andrew SE, et al. A worldwide study of the Huntington's disease mutation. New England Journal of Medicine 1994; 330: 1401-1406. – reference: Telenius H, Almqvist E, Kremer B, et al. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Human Molecular Genetics 1995; 4: 974-984. – reference: Rubinsztein DC, Amos W, Leggo J, et al. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nature Genetics 1994; 7: 525-530. – reference: Jankovic J, Ashizawa T.. Tourettism associated with Huntington's disease. Movement Disorders 1995; 10: 103-105. – reference: Rousset OG, Ma Y, Evans AC.. Correction for partial volume effects in PET: principle and validation. Journal of Nuclear Medicine 1998; 39: 904-911. – reference: Reading SAJ, Dziorny AC, Peroutka LA, et al. Functional brain changes in presymptomatic huntington's disease. Annals of Neurology 2004; 55: 879-883. – reference: Rubinsztein DC, Leggo J, Chiano M, et al. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 3872-3876. – reference: Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genetics 1993; 4: 387-392. – reference: Squitieri F, Cannella M, Gaudio L, et al. 2003a; Italian Huntington disease patients-data and tissue bank. Neurological Science 24: 215-216. – reference: Giovannone B, Sabbadini G, Di Maio L, et al. Analysis of (CAG)n size heterogeneity in somatic and sperm cell DNA from intermediate and expanded Huntington disease gene carriers. Human Mutation 1997; 10: 458-464. – reference: Benjamin CM, Adam S, Wiggins S, et al. Proceed with care: direct predictive testing for Huntington disease. American Journal of Human Genetics 2002; 1994; 55: 606-617. – reference: Ranen NG, Stine C, Abbott MH, et al. Anticipation and instability of IT-15 (CAG)N repeats in parent-offspring pairs with Huntington Disease. American Journal of Human Genetics 1995; 57: 593-602. – reference: Almqvist EW, Bloch M, Brinkman R, Craufurd D, Hayden MR. A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease. American Journal of Human Genetics 1999; 64: 1293-1304. – reference: Squitieri F, Almqvist EW, Cannella M, Cislaghi G, Hayden MR.. 2003d; Predictive testing for persons at risk for homozygosity for CAG expansion in the Huntington disease gene. Clinical Genetics 64: 524-525. – reference: Illarioshkin SN, Igarashi S, Onodera O, et al. Trinucleotide repeat length and rate of progression of Huntington's disease. Annals of Neurology 1994; 36: 630-635. – reference: International Huntington Association and World Federation of Neurology Research Group of Huntington's chorea (Guidelines for the molecular gnetics predictive test in Huntington's disease. Neurology 1994; 44: 1533-1536. – reference: Squitieri F, Gellera C, Cannella M, et al. 2003b; Homozygosity for CAG mutation in Huntington Disease is associated with a more severe clinical course. Brain 126: 946-955. – reference: Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 2005; 6: 25-28. – reference: Pavese N, Andrews TC, Brooks DJ, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study. Brain 2003; 126: 1127-1135. – reference: Antonini A, Leenders KL, Spiegel R, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain 1996; 119: 2085-2095. – reference: Rubinsztein DC, Leggo J, Coles R, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repears and apparently elderly individuals with 36-39 repeats. American Journal of Human Genetics 1996; 59: 16-22. – reference: Di Maio L, Squitieri F, Campanella G, Trofatter J, Conneally PM.. Onset symptoms in 510 patients with Huntington's disease. Journal of Medical Genetics 1993; 30: 289-292. – reference: Cannella M, Gellera C, Maglione V, et al. The gender effect in juvenile Huntington disease patients of Italian origin. American Journal of Medical Genetics 2004; 125B: 92-98. – reference: Telenius H, Kremer B, Goldberg YP, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nature Genetics 1994; 7: 113-118. – volume: 64 start-page: 1293 year: 1999 end-page: 1304 article-title: A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease publication-title: American Journal of Human Genetics – volume: 125B start-page: 92 year: 2004 end-page: 98 article-title: The gender effect in juvenile Huntington disease patients of Italian origin publication-title: American Journal of Medical Genetics – volume: 10 start-page: 443 year: 2003c end-page: 444 article-title: Highly disabling, ‘‘cerebellar’’, juvenile‐onset Huntington disease publication-title: European Journal of Neurology – volume: 126 start-page: 1127 year: 2003 end-page: 1135 article-title: Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study publication-title: Brain – volume: 24 start-page: 215 year: 2003a end-page: 216 article-title: Italian Huntington disease patients‐data and tissue bank publication-title: Neurological Science – volume: 66 start-page: 52 year: 1999 end-page: 56 article-title: Differences in duration of Huntington's disease based on age at onset publication-title: Journal of Neurology, Neurosurgery and Psychiatry – volume: 122 start-page: 2352 year: 1999 end-page: 2363 article-title: Huntington's disease progression. PET and clinical observation publication-title: Brain – volume: 12 start-page: 571 year: 1992 end-page: 583 article-title: Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI‐based correction for partial volume effects publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 55 start-page: 801 year: 1998 end-page: 805 article-title: Awareness of involuntary mevements in Huntington disease publication-title: Archives of Neurology – volume: 3 start-page: 93 year: 1994 end-page: 98 article-title: Analysis of the trinucleotide expansion in italian families affected with huntington disease publication-title: Human Molecular Genetics – volume: 39 start-page: 904 year: 1998 end-page: 911 article-title: Correction for partial volume effects in PET: principle and validation publication-title: Journal of Nuclear Medicine – volume: 15 start-page: 363 year: 2004 end-page: 365 article-title: Global cerebral atrophy in early stages of Huntington's disease: quantitative MRI study publication-title: Neuroreport – volume: 101 start-page: 57 year: 2000 end-page: 66 article-title: Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease publication-title: Cell – volume: 2 start-page: 189 year: 1995 end-page: 210 article-title: Statistical parametric maps in functional neuroimaging: a general linear approach publication-title: Human Brain Mapping – volume: 5 start-page: 259 year: 1993 end-page: 265 article-title: Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues publication-title: Nature Genetics – volume: 10 start-page: 103 year: 1995 end-page: 105 article-title: Tourettism associated with Huntington's disease publication-title: Movement Disorders – volume: 95 start-page: 366 year: 2000b end-page: 373 article-title: Family and molecular data for a fine analysis of age at onset in Huntington disease publication-title: American Journal of Medical Genetics – volume: 66 start-page: 81 year: 2004 end-page: 91 article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length publication-title: Clinical Genetics – volume: 94 start-page: 3872 year: 1997 end-page: 3876 article-title: Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 60 start-page: 161 year: 2001 end-page: 172 article-title: Early and progressive accumulation of reactive microglia in the Huntington disease brain publication-title: Journal of Neuropathology and Experimental Neurology – volume: 59 start-page: 16 year: 1996 end-page: 22 article-title: Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repears and apparently elderly individuals with 36–39 repeats publication-title: American Journal of Human Genetics – volume: 60 start-page: 1202 year: 1997 end-page: 1210 article-title: The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size publication-title: American Journal of Human Genetics – volume: 374 start-page: 81 year: 2004 end-page: 86 article-title: Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes publication-title: Neuroscience Letters – volume: 330 start-page: 1401 year: 1994 end-page: 1406 article-title: A worldwide study of the Huntington's disease mutation publication-title: New England Journal of Medicine – volume: 3 start-page: 2103 year: 1994 end-page: 2114 article-title: DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons of geographic variations of prevalence publication-title: Human Molecular Genetics – volume: 85 start-page: 165 year: 1990 end-page: 170 article-title: Epidemiological and linkage studies on Huntington's disease in Italy publication-title: Human Genetics – volume: 57 start-page: 658 year: 2001 end-page: 662 article-title: Clinical markers of early disease in persons near onset of Huntington's disease publication-title: Neurology – volume: 98 start-page: 1811 year: 2001 end-page: 1816 article-title: The Gln‐Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathological and genetic evidence for a role in Huntington's disease pathogenesis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 36 start-page: 630 year: 1994 end-page: 635 article-title: Trinucleotide repeat length and rate of progression of Huntington's disease publication-title: Annals of Neurology – volume: 10 start-page: 458 year: 1997 end-page: 464 article-title: Analysis of (CAG)n size heterogeneity in somatic and sperm cell DNA from intermediate and expanded Huntington disease gene carriers publication-title: Human Mutation – volume: 22 start-page: 55 year: 2001 end-page: 56 article-title: Presymptomatic tests in Huntington's disease and dominant ataxias publication-title: Neurological Science – volume: 6 start-page: 301 year: 1997 end-page: 309 article-title: Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses publication-title: Human Molecular Genetics – volume: 13 start-page: 537 year: 1983 end-page: 542 article-title: The association of effective disorder with Huntington's disease in a case series and in families publication-title: Psychological Medicine – volume: 66 start-page: 1145 year: 2000 end-page: 1148 article-title: A recurrent expansion of a maternal allele with 36 CAG repeats causes Huntington disease in two sisters publication-title: American Journal of Human Genetics – volume: 52 start-page: 749 year: 1995 end-page: 753 article-title: Correlations between triplet repeat expansion and clinical features in Huntington's disease publication-title: Archives of Neurology – volume: 6 start-page: 775 year: 1997 end-page: 779 article-title: Reduced penetrance of the Huntington's disease mutation publication-title: Human Molecular Genetics – volume: 57 start-page: 1326 year: 2000 end-page: 1330 article-title: Dystonia‐predominant adult‐onset Huntington disease: association between motor phenotype and age of onset in adults publication-title: Archives of Neurology – volume: 64 start-page: 524 year: 2003d end-page: 525 article-title: Predictive testing for persons at risk for homozygosity for CAG expansion in the Huntington disease gene publication-title: Clinical Genetics – volume: 8 start-page: 717 year: 1999 end-page: 727 article-title: Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism publication-title: Human Molecular Genetics – volume: 36 start-page: 88 year: 1986 end-page: 94 article-title: Positron emission tomography in the early diagnosis of Huntington's disease publication-title: Neurology – volume: 60 start-page: 1615 year: 2003 end-page: 1620 article-title: Evidence for more widespread cerebral pathology in early HD publication-title: Neurology – volume: 45 start-page: 192 year: 2004 end-page: 201 article-title: Integrated software for the analysis of brain PET/SPECT studies with partial‐volume‐effect correction publication-title: Journal of Nuclear Medicine – volume: 7 start-page: 113 year: 1994 end-page: 118 article-title: Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm publication-title: Nature Genetics – volume: 55 start-page: 606 year: 2002 end-page: 617 article-title: Proceed with care: direct predictive testing for Huntington disease publication-title: American Journal of Human Genetics – volume: 2 start-page: 1535 year: 1993 end-page: 1540 article-title: Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent publication-title: Human Molecular Genetics – volume: 105 start-page: 399 year: 2001 end-page: 403 article-title: Familial influence on age of onset among siblings with Huntington disease publication-title: American Journal of Medical Genetics – volume: 6 start-page: 25 year: 2005 end-page: 28 article-title: NR2A and NR2B receptor gene variations modify age at onset in Huntington disease publication-title: Neurogenetics – volume: 44 start-page: 1533 year: 1994 end-page: 1536 article-title: Guidelines for the molecular gnetics predictive test in Huntington's disease publication-title: Neurology – volume: 64 start-page: 172 year: 1998 end-page: 177 article-title: Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers publication-title: Journal of Neurology, Neurosurgery and Psychiatry – volume: 344 start-page: 714 year: 1994 end-page: 717 article-title: Mutation analysis in patients with possible but apparently sporadic Huntington's disease publication-title: Lancet – volume: 2 start-page: 1547 year: 1993 end-page: 1549 article-title: Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT‐15 publication-title: Human Molecular Genetics – volume: 126 start-page: 946 year: 2003b end-page: 955 article-title: Homozygosity for CAG mutation in Huntington Disease is associated with a more severe clinical course publication-title: Brain – volume: 101 start-page: 3498 year: 2004 end-page: 3503 article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 4 start-page: 387 year: 1993 end-page: 392 article-title: Trinucleotide repeat length instability and age of onset in Huntington's disease publication-title: Nature Genetics – volume: 57 start-page: 593 year: 1995 end-page: 602 article-title: Anticipation and instability of IT‐15 (CAG)N repeats in parent‐offspring pairs with Huntington Disease publication-title: American Journal of Human Genetics – volume: 30 start-page: 991 year: 1993 end-page: 995 article-title: Molecular analysis of late onset Huntington's disease publication-title: Journal of Medical Genetics – volume: 58 start-page: 50 year: 2000a end-page: 56 article-title: Atypical movement disorders in early stages of Huntington's disease: clinical and genetic analysis publication-title: Clinical Genetics – year: 2002 – volume: 63 start-page: 989 year: 2004 end-page: 995 article-title: In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease publication-title: Neurology – volume: 30 start-page: 289 year: 1993 end-page: 292 article-title: Onset symptoms in 510 patients with Huntington's disease publication-title: Journal of Medical Genetics – volume: 122 start-page: 1667 year: 1999 end-page: 1678 article-title: Reduced basal ganglia blood flow and volume in pre‐symptomatic, gene‐tested persons at‐risk for Huntington's disease publication-title: Brain – volume: 36 start-page: 108 year: 1999 end-page: 111 article-title: Age of onset in Huntington's disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length publication-title: Journal of Medical Genetics – volume: 4 start-page: 398 year: 1993 end-page: 403 article-title: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease publication-title: Nature Genetics – volume: 4 start-page: 974 year: 1995 end-page: 984 article-title: Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease publication-title: Human Molecular Genetics – volume: 15 start-page: S119 year: 1984 end-page: S125 article-title: Patterns of cerebral glucose utilization in Parkinson's disease and Huntington's disease publication-title: Annals of Neurology – volume: 119 start-page: 2085 year: 1996 end-page: 2095 article-title: Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease publication-title: Brain – volume: 125 start-page: 1815 year: 2002 end-page: 1828 article-title: The distribution of structural neuropathology in pre‐clinical Huntington's disease publication-title: Brain – volume: 53 start-page: 1330 year: 1999 end-page: 1332 article-title: Evidence for the GluR6 gene associated with younger onset age of Huntington's disease publication-title: Neurology – volume: 44 start-page: 823 year: 2004 end-page: 828 article-title: Reduced basal ganglia volume associated with the gene for Huntington's disease in asymptomatic at‐risk persons publication-title: Neurology – volume: 23 start-page: 107 year: 2002 end-page: 108 article-title: CAG mutation effect on rate of progression in Huntington's disease publication-title: Neurological Science – volume: 56 start-page: 233 year: 2001 end-page: 238 article-title: Onset and pre‐onset studies to define the Huntington's disease natural history publication-title: Brain Research Bulletin – volume: 72 start-page: 1 year: 1993 end-page: 20 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes publication-title: Cell – volume: 55 start-page: 879 year: 2004 end-page: 883 article-title: Functional brain changes in presymptomatic huntington's disease publication-title: Annals of Neurology – volume: 7 start-page: 525 year: 1994 end-page: 530 article-title: Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence publication-title: Nature Genetics – ident: e_1_2_8_75_2 doi: 10.1002/hbm.460020402 – ident: e_1_2_8_6_2 doi: 10.1046/j.1468-1331.2003.00601.x – ident: e_1_2_8_49_2 doi: 10.1212/01.WNL.0000138434.68093.67 – volume: 72 start-page: 1 year: 1993 ident: e_1_2_8_9_2 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes publication-title: Cell – ident: e_1_2_8_44_2 doi: 10.1017/S0033291700047966 – ident: e_1_2_8_28_2 doi: 10.1093/hmg/2.10.1535 – ident: e_1_2_8_59_2 doi: 10.1136/jnnp.64.2.172 – ident: e_1_2_8_25_2 doi: 10.1002/ajmg.1400 – ident: e_1_2_8_61_2 doi: 10.1136/jmg.30.4.289 – ident: e_1_2_8_67_2 doi: 10.1038/ng0893-387 – ident: e_1_2_8_41_2 doi: 10.1016/S0140-6736(94)92208-X – ident: e_1_2_8_71_2 doi: 10.1001/archneur.1995.00540320021009 – volume: 57 start-page: 593 year: 1995 ident: e_1_2_8_70_2 article-title: Anticipation and instability of IT‐15 (CAG)N repeats in parent‐offspring pairs with Huntington Disease publication-title: American Journal of Human Genetics – ident: e_1_2_8_31_2 doi: 10.1093/hmg/6.2.301 – ident: e_1_2_8_43_2 doi: 10.1007/BF00193190 – ident: e_1_2_8_32_2 doi: 10.1002/(SICI)1098-1004(1997)10:6<458::AID-HUMU7>3.0.CO;2-9 – ident: e_1_2_8_45_2 doi: 10.1002/mds.870100116 – ident: e_1_2_8_51_2 doi: 10.1093/brain/122.9.1667 – volume: 39 start-page: 904 year: 1998 ident: e_1_2_8_74_2 article-title: Correction for partial volume effects in PET: principle and validation publication-title: Journal of Nuclear Medicine – ident: e_1_2_8_47_2 doi: 10.1093/jnen/60.2.161 – ident: e_1_2_8_33_2 doi: 10.1093/hmg/8.2.173 – ident: e_1_2_8_27_2 doi: 10.1136/jmg.30.12.991 – ident: e_1_2_8_13_2 doi: 10.1002/ajmg.b.20110 – ident: e_1_2_8_65_2 doi: 10.1046/j.1399-0004.2003.00155.x – ident: e_1_2_8_22_2 doi: 10.1073/pnas.0308679101 – ident: e_1_2_8_46_2 doi: 10.1001/archneur.57.9.1326 – ident: e_1_2_8_7_2 doi: 10.1001/archneur.55.6.801 – ident: e_1_2_8_34_2 doi: 10.1086/302810 – ident: e_1_2_8_4_2 doi: 10.1093/hmg/3.12.2103 – ident: e_1_2_8_29_2 doi: 10.1038/ng0594-113b – ident: e_1_2_8_56_2 doi: 10.1093/brain/122.12.2353 – volume: 36 start-page: 108 year: 1999 ident: e_1_2_8_36_2 article-title: Age of onset in Huntington's disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length publication-title: Journal of Medical Genetics – ident: e_1_2_8_12_2 doi: 10.1093/hmg/6.5.775 – ident: e_1_2_8_18_2 doi: 10.1007/s100720200092 – ident: e_1_2_8_2_2 doi: 10.1056/NEJM199405193302001 – volume: 45 start-page: 192 year: 2004 ident: e_1_2_8_72_2 article-title: Integrated software for the analysis of brain PET/SPECT studies with partial‐volume‐effect correction publication-title: Journal of Nuclear Medicine – ident: e_1_2_8_50_2 doi: 10.1097/00001756-200402090-00030 – volume: 60 start-page: 1202 year: 1997 ident: e_1_2_8_23_2 article-title: The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size publication-title: American Journal of Human Genetics – ident: e_1_2_8_48_2 doi: 10.1212/WNL.44.5.823 – ident: e_1_2_8_62_2 doi: 10.1212/WNL.44.8.1533 – ident: e_1_2_8_38_2 doi: 10.1073/pnas.98.4.1811 – ident: e_1_2_8_16_2 doi: 10.1093/brain/awg077 – ident: e_1_2_8_69_2 doi: 10.1093/hmg/3.1.93 – ident: e_1_2_8_3_2 doi: 10.1038/ng0894-525 – volume: 66 start-page: 81 year: 2004 ident: e_1_2_8_26_2 article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length publication-title: Clinical Genetics – ident: e_1_2_8_66_2 doi: 10.1093/hmg/2.10.1547 – ident: e_1_2_8_57_2 doi: 10.1093/brain/awg119 – volume: 59 start-page: 16 year: 1996 ident: e_1_2_8_11_2 article-title: Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repears and apparently elderly individuals with 36–39 repeats publication-title: American Journal of Human Genetics – ident: e_1_2_8_40_2 doi: 10.1007/s10048-004-0198-8 – ident: e_1_2_8_30_2 doi: 10.1093/hmg/4.5.974-b – ident: e_1_2_8_52_2 doi: 10.1002/ana.20121 – ident: e_1_2_8_42_2 – ident: e_1_2_8_39_2 doi: 10.1016/j.neulet.2004.10.018 – ident: e_1_2_8_15_2 doi: 10.1212/01.WNL.0000065888.88988.6E – ident: e_1_2_8_21_2 doi: 10.1016/S0361-9230(01)00648-7 – ident: e_1_2_8_37_2 doi: 10.1212/WNL.53.6.1330 – ident: e_1_2_8_64_2 doi: 10.1086/302374 – ident: e_1_2_8_5_2 doi: 10.1034/j.1399-0004.2000.580108.x – ident: e_1_2_8_19_2 doi: 10.1007/s10072-003-0137-8 – ident: e_1_2_8_35_2 doi: 10.1073/pnas.94.8.3872 – ident: e_1_2_8_10_2 doi: 10.1038/ng1193-259 – ident: e_1_2_8_14_2 doi: 10.1093/brain/awf179 – ident: e_1_2_8_68_2 doi: 10.1038/ng0893-398 – ident: e_1_2_8_63_2 doi: 10.1007/s100720170044 – ident: e_1_2_8_73_2 doi: 10.1038/jcbfm.1992.81 – ident: e_1_2_8_58_2 doi: 10.1016/S0092-8674(00)80623-6 – ident: e_1_2_8_60_2 doi: 10.1212/WNL.57.4.658 – ident: e_1_2_8_55_2 doi: 10.1093/brain/119.6.2085 – ident: e_1_2_8_53_2 doi: 10.1002/ana.410150723 – ident: e_1_2_8_54_2 doi: 10.1212/WNL.36.7.888 – ident: e_1_2_8_17_2 doi: 10.1002/ana.410360412 – volume: 55 start-page: 606 year: 2002 ident: e_1_2_8_20_2 article-title: Proceed with care: direct predictive testing for Huntington disease publication-title: American Journal of Human Genetics – ident: e_1_2_8_8_2 doi: 10.1136/jnnp.66.1.52 – ident: e_1_2_8_24_2 doi: 10.1002/1096-8628(20001211)95:4<366::AID-AJMG13>3.0.CO;2-2 |
SSID | ssj0002720 |
Score | 1.8466302 |
SecondaryResourceType | review_article |
Snippet | The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5′ translated region of the gene. The mutation... The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5' translated region of the gene. The mutation... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 408 |
SubjectTerms | Adult age at onset Age of Onset Biomarkers Disease Progression Female Humans Huntington Disease - genetics Male Middle Aged Models, Genetic onset prediction models Pedigree positron emission tomography predictive testing |
Title | The search for cerebral biomarkers of Huntington's disease: a review of genetic models of age at onset prediction |
URI | https://api.istex.fr/ark:/67375/WNG-QF8JMRWW-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1468-1331.2006.01264.x https://www.ncbi.nlm.nih.gov/pubmed/16643321 https://www.proquest.com/docview/19435279 https://www.proquest.com/docview/67911632 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlgdJLkz6zSR86lOS0xlq9eyvFrgnY0NDg3ISk1V4S7MReQ8ivj0ZaOzikEEpve9DsakffSJ80oxmEvnknmXV9V8aJkJaM1KzUtLFlCEooFxrPU8r88USMztnpBb_o4p_gLkzOD7E5cAPLSPM1GLh1y8dGHndAlJLOp0Di4t4DPgmhW8CPzh4ySYG7Me29OCkBhttBPU--aGul2gWl3z5FQ7dZbVqWhnvocv1DORrlsrdqXc_fPcr1-H_-eB-97tgr_pHh9ga9CLO36OW488-_QzcRdTgbD45sGPuwAMf0FYZb_hAItFjieYNHuT5FpJ0nS9y5iL5ji_M9GmgRYQ23K3Eq1JNk4ryHbYsh-LvF1wv4JGDqPTofDv78HJVdUYfSMypY6TS1XAftKSHSK0Y81Y1UNhIf7fu1UHXgcbAqwkLcK9aWh1rzUFWea6oYDfQD2pnNZ-EAYad0LYkOgljOCBFWecmbOKHUoe8qVRdIrgfQ-C7jORTeuDJbOx9lQKNQj1OYpFFzWyCykbzOWT-eIXOcMLIRiFqFqDnJzXTyy_weqtPx2XRqJgX6ugaRibYMDho7C_PV0hAdyWsl9d9bCBkXJ0GrAn3M6HvonhCQio4USCQMPbvfZjAZwNPhvwoeoVf5XArCmT6hnXaxCp8jU2vdl2SD98vcLDY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQKwEXKK-yUKgPCE4bxes3NwRJQ2lWomqV3izb670QJSXZSBW_Ho93kypVK1WI2x48u97xN_Znz3gGoQ_eSWZd3-VxIqQ5IxXLNa1tHoISyoXa85Qyf1yK0Tk7vuAXXTkguAvT5ofYHLiBZaT5GgwcDqRvWnncAlFKOqcCiat7LxLKXSjwDVb67fQ6lxQ4HNPui5McgLgd1nPrm7bWql1Q-9VtRHSb16aFafgUTde_1Maj_OqtGtfzf25ke_xP_7yHnnQEFn9pEfcMPQiz5-jhuHPRv0C_I_Bwaz84EmLswwJ801MMF_0hFmixxPMaj9oSFZF5flrizkv0GVvcXqWBFhHZcMESp1o9SSZOfdg2GOK_G3y5gE8CrF6i8-Hg7Oso7-o65J5RwXKnqeU6aE8JkV4x4qmupbKR-2jfr4SqAo-jVRAW4naxsjxUmoei8FxTxWigr9DObD4LrxF2SleS6CCI5YwQYZWXvI5zShX6rlBVhuR6BI3vkp5D7Y2p2dr8KAMahZKcwiSNmqsMkY3kZZv44x4yHxNINgJRqxA4J7mZlEfm51Adj08nE1Nm6HCNIhPNGXw0dhbmq6UhOvLXQuq7WwgZ1ydBiwztt_C77p4QkI2OZEgkEN2732ZQDuDpzb8KHqJHo7PxiTn5Xv54ix63x1QQ3XSAdprFKryLxK1x75NB_gWPrTBP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlgdBL349NH9GhtKc11uqdW2jsumm9tKHBuQlJq70k2I69htBfX4127eCQQii97UGzq5W-kb7RjGYQ-uCdZNb1XR4XQpozUrFc09rmISihXKg9Tynzx6UYnbGTc37exT_BXZg2P8TmwA00I63XoODzqr6t5NECopR0PgUSN_de5JO7TPQVGGLHpzeppMDfmIwvTnLA4XZUz51v2tqqdmHUr-_iodu0Nu1Lw8foYv1HbTjKRW_VuJ7_fSvZ4__55SfoUUdf8VGLt6foQZg-Q3vjzkH_HF1F2OFWe3Ckw9iHBXimLzFc84dIoMUSz2o8agtURN75aYk7H9Ehtri9SAMtIq7heiVOlXqSTFz4sG0wRH83eL6ATwKoXqCz4eDX51HeVXXIPaOC5U5Ty3XQnhIivWLEU11LZSPz0b5fCVUFHierICxEY7GyPFSah6LwXFPFaKAv0c50Ng2vEXZKV5LoIIjljBBhlZe8jitKFfquUFWG5HoCje9SnkPljUuzZfooAyMKBTmFSSNqrjNENpLzNu3HPWQ-JoxsBOKoQtic5GZSfjE_h-pkfDqZmDJDB2sQmajM4KGx0zBbLQ3Rkb0WUv-9hZBxdxK0yNCrFn033RMCctGRDImEoXv32wzKATzt_6vgAdr7cTw037-W396gh-0ZFYQ2vUU7zWIV3kXW1rj3SR3_AN4ILwc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+search+for+cerebral+biomarkers+of+Huntington%27s+disease%3A+a+review+of+genetic+models+of+age+at+onset+prediction&rft.jtitle=European+journal+of+neurology&rft.au=Squitieri%2C+F.&rft.au=Ciarmiello%2C+A.&rft.au=Di+Donato%2C+S.&rft.au=Frati%2C+L.&rft.date=2006-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1351-5101&rft.eissn=1468-1331&rft.volume=13&rft.issue=4&rft.spage=408&rft.epage=415&rft_id=info:doi/10.1111%2Fj.1468-1331.2006.01264.x&rft.externalDBID=10.1111%252Fj.1468-1331.2006.01264.x&rft.externalDocID=ENE1264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-5101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-5101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-5101&client=summon |