The search for cerebral biomarkers of Huntington's disease: a review of genetic models of age at onset prediction

The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5′ translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36–41) showing a very low penetrance, po...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of neurology Vol. 13; no. 4; pp. 408 - 415
Main Authors Squitieri, F., Ciarmiello, A., Di Donato, S., Frati, L.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2006
Subjects
Online AccessGet full text
ISSN1351-5101
1468-1331
DOI10.1111/j.1468-1331.2006.01264.x

Cover

Loading…
Abstract The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5′ translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36–41) showing a very low penetrance, possibly associated with late ages at onset. No research has so far yielded biomarkers for accurately predicting either age at onset or disease progression in at risk individuals. Specific markers able to follow‐up mutation carrier subjects from the pre‐symptomatic stages of life are crucial for testing experimental neuroprotective preventive therapies. Nevertheless, the factor accounting for the largest percentage of age at onset variation is the expanded repeat number within the gene. Over the years, this factor has helped in setting up models for genetically predicting age at onset. Once available for practical application in clinics, such models allowed phenotype‐genotype correlations that were hitherto inconceivable. In this review, we discuss how these genetic models have been applied in clinical practice and comment on their potential value in searching for cerebral biomarkers of disease onset and severity and in designing trials of therapeutic drugs.
AbstractList The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5' translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36-41) showing a very low penetrance, possibly associated with late ages at onset. No research has so far yielded biomarkers for accurately predicting either age at onset or disease progression in at risk individuals. Specific markers able to follow-up mutation carrier subjects from the pre-symptomatic stages of life are crucial for testing experimental neuroprotective preventive therapies. Nevertheless, the factor accounting for the largest percentage of age at onset variation is the expanded repeat number within the gene. Over the years, this factor has helped in setting up models for genetically predicting age at onset. Once available for practical application in clinics, such models allowed phenotype-genotype correlations that were hitherto inconceivable. In this review, we discuss how these genetic models have been applied in clinical practice and comment on their potential value in searching for cerebral biomarkers of disease onset and severity and in designing trials of therapeutic drugs.The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5' translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36-41) showing a very low penetrance, possibly associated with late ages at onset. No research has so far yielded biomarkers for accurately predicting either age at onset or disease progression in at risk individuals. Specific markers able to follow-up mutation carrier subjects from the pre-symptomatic stages of life are crucial for testing experimental neuroprotective preventive therapies. Nevertheless, the factor accounting for the largest percentage of age at onset variation is the expanded repeat number within the gene. Over the years, this factor has helped in setting up models for genetically predicting age at onset. Once available for practical application in clinics, such models allowed phenotype-genotype correlations that were hitherto inconceivable. In this review, we discuss how these genetic models have been applied in clinical practice and comment on their potential value in searching for cerebral biomarkers of disease onset and severity and in designing trials of therapeutic drugs.
The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5' translated region of the gene. The mutation penetrance varies widely and depends on the CAG expansion length, the low pathological triplet range (36-41) showing a very low penetrance, possibly associated with late ages at onset. No research has so far yielded biomarkers for accurately predicting either age at onset or disease progression in at risk individuals. Specific markers able to follow-up mutation carrier subjects from the pre-symptomatic stages of life are crucial for testing experimental neuroprotective preventive therapies. Nevertheless, the factor accounting for the largest percentage of age at onset variation is the expanded repeat number within the gene. Over the years, this factor has helped in setting up models for genetically predicting age at onset. Once available for practical application in clinics, such models allowed phenotype-genotype correlations that were hitherto inconceivable. In this review, we discuss how these genetic models have been applied in clinical practice and comment on their potential value in searching for cerebral biomarkers of disease onset and severity and in designing trials of therapeutic drugs.
Author Squitieri, F.
Di Donato, S.
Ciarmiello, A.
Frati, L.
Author_xml – sequence: 1
  givenname: F.
  surname: Squitieri
  fullname: Squitieri, F.
  organization: Neurogenetics Unit, IRCCS Neuromed, Pozzilli (IS), Italy
– sequence: 2
  givenname: A.
  surname: Ciarmiello
  fullname: Ciarmiello, A.
  organization: Nuclear Medicine Unit, IRCCS Pascale, Naples, Italy
– sequence: 3
  givenname: S.
  surname: Di Donato
  fullname: Di Donato, S.
  organization: Division of Biochemistry and Genetics, IRCCS Besta, Milan, Italy
– sequence: 4
  givenname: L.
  surname: Frati
  fullname: Frati, L.
  organization: Neurogenetics Unit, IRCCS Neuromed, Pozzilli (IS), Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16643321$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gLyCf4JTgiRMnRgIJVdsvlUWgoj1aXmey9ZKNt7aXbv89TrfsgUvxxSP5fWY07-tjcjC4AQmhwHJI58Myh1I0GXAOecGYyBkUosy3L8jR_uEg1byCrAIGh-Q4hCVjrKgL9oocghAl5wUckbubW6QBtTe3tHOeGvQ497qnc-tW2v9CH6jr6MVmiHZYRDe8D7S1CQj4kWrq8bfF-1GxwAGjNXTlWuwfGb1AqiN1Q8BI1x5ba6J1w2vystN9wDdP9wn5eTa5Ob3Irr-dX55-uc5MyUWZzSXXlURpOEBtmhIMl13daMEraVgrmhartE0BJQoGra6wlRUWhakkb0qO_IS82_Vde3e3wRDVygaDfa8HdJugRC0BBC-eFYIseRolk_Dtk3AzX2Gr1t4mix7UXzeT4PNOYLwLwWOnjI16XDp6bXsFTI3xqaUaU1JjSmqMTz3Gp7apQfNPg_2M59FPO_Te9vjw35yaTCdjlfhsx9sQcbvn0xdITvG6UrPpufp-1lx9_TGbqSn_A8wLv_4
CitedBy_id crossref_primary_10_3233_JHD_160208
crossref_primary_10_1016_j_mehy_2007_06_043
crossref_primary_10_1038_s41582_020_0389_4
crossref_primary_10_1111_j_1582_4934_2010_01011_x
crossref_primary_10_1371_journal_pcbi_0030235
crossref_primary_10_1016_j_celrep_2015_08_060
crossref_primary_10_1111_j_1755_5949_2010_00157_x
crossref_primary_10_1177_0883073808314152
crossref_primary_10_1196_annals_1427_018
crossref_primary_10_7554_eLife_64674
crossref_primary_10_1002_mds_27595
crossref_primary_10_3390_jcm10133001
crossref_primary_10_1007_s00259_009_1103_3
Cites_doi 10.1002/hbm.460020402
10.1046/j.1468-1331.2003.00601.x
10.1212/01.WNL.0000138434.68093.67
10.1017/S0033291700047966
10.1093/hmg/2.10.1535
10.1136/jnnp.64.2.172
10.1002/ajmg.1400
10.1136/jmg.30.4.289
10.1038/ng0893-387
10.1016/S0140-6736(94)92208-X
10.1001/archneur.1995.00540320021009
10.1093/hmg/6.2.301
10.1007/BF00193190
10.1002/(SICI)1098-1004(1997)10:6<458::AID-HUMU7>3.0.CO;2-9
10.1002/mds.870100116
10.1093/brain/122.9.1667
10.1093/jnen/60.2.161
10.1093/hmg/8.2.173
10.1136/jmg.30.12.991
10.1002/ajmg.b.20110
10.1046/j.1399-0004.2003.00155.x
10.1073/pnas.0308679101
10.1001/archneur.57.9.1326
10.1001/archneur.55.6.801
10.1086/302810
10.1093/hmg/3.12.2103
10.1038/ng0594-113b
10.1093/brain/122.12.2353
10.1093/hmg/6.5.775
10.1007/s100720200092
10.1056/NEJM199405193302001
10.1097/00001756-200402090-00030
10.1212/WNL.44.5.823
10.1212/WNL.44.8.1533
10.1073/pnas.98.4.1811
10.1093/brain/awg077
10.1093/hmg/3.1.93
10.1038/ng0894-525
10.1093/hmg/2.10.1547
10.1093/brain/awg119
10.1007/s10048-004-0198-8
10.1093/hmg/4.5.974-b
10.1002/ana.20121
10.1016/j.neulet.2004.10.018
10.1212/01.WNL.0000065888.88988.6E
10.1016/S0361-9230(01)00648-7
10.1212/WNL.53.6.1330
10.1086/302374
10.1034/j.1399-0004.2000.580108.x
10.1007/s10072-003-0137-8
10.1073/pnas.94.8.3872
10.1038/ng1193-259
10.1093/brain/awf179
10.1038/ng0893-398
10.1007/s100720170044
10.1038/jcbfm.1992.81
10.1016/S0092-8674(00)80623-6
10.1212/WNL.57.4.658
10.1093/brain/119.6.2085
10.1002/ana.410150723
10.1212/WNL.36.7.888
10.1002/ana.410360412
10.1136/jnnp.66.1.52
10.1002/1096-8628(20001211)95:4<366::AID-AJMG13>3.0.CO;2-2
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
DOI 10.1111/j.1468-1331.2006.01264.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Genetics Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-1331
EndPage 415
ExternalDocumentID 16643321
10_1111_j_1468_1331_2006_01264_x
ENE1264
ark_67375_WNG_QF8JMRWW_N
Genre article
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
169
1OB
1OC
24P
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABPVW
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F5P
FEDTE
FUBAC
FYBCS
FYUFA
G-S
G.N
GODZA
H.X
HF~
HMCUK
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIG
RIWAO
RJQFR
ROL
RPM
RX1
SAMSI
SUPJJ
TEORI
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
RC3
WIN
7X8
ID FETCH-LOGICAL-c4364-b93a59e9c3117c841c39f78a6359c0d68de5272214e601da5ed95e22c593843e3
IEDL.DBID DR2
ISSN 1351-5101
IngestDate Fri Sep 05 08:28:25 EDT 2025
Tue Aug 05 10:45:56 EDT 2025
Wed Feb 19 01:53:34 EST 2025
Thu Apr 24 23:10:06 EDT 2025
Tue Jul 01 02:47:25 EDT 2025
Wed Jan 22 16:21:42 EST 2025
Wed Oct 30 09:53:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4364-b93a59e9c3117c841c39f78a6359c0d68de5272214e601da5ed95e22c593843e3
Notes ArticleID:ENE1264
ark:/67375/WNG-QF8JMRWW-N
istex:8D93D0EC537F6074C2D04759F36337F6A4ED25E2
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
PMID 16643321
PQID 19435279
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_67911632
proquest_miscellaneous_19435279
pubmed_primary_16643321
crossref_citationtrail_10_1111_j_1468_1331_2006_01264_x
crossref_primary_10_1111_j_1468_1331_2006_01264_x
wiley_primary_10_1111_j_1468_1331_2006_01264_x_ENE1264
istex_primary_ark_67375_WNG_QF8JMRWW_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-04
April 2006
2006-04-00
2006-Apr
20060401
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle European journal of neurology
PublicationTitleAlternate Eur J Neurol
PublicationYear 2006
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Paulsen JS, Zhao H, Stout JC, et al. Clinical markers of early disease in persons near onset of Huntington's disease. Neurology 2001; 57: 658-662.
Pavese N, Andrews TC, Brooks DJ, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study. Brain 2003; 126: 1127-1135.
Squitieri F, Sabbadini G, Mandich P, et al. 2000b; Family and molecular data for a fine analysis of age at onset in Huntington disease. American Journal of Medical Genetics 95: 366-373.
Squitieri F, Pustorino G, Cannella M, et al. 2003c; Highly disabling, ''cerebellar'', juvenile-onset Huntington disease. European Journal of Neurology 10: 443-444.
Giovannone B, Sabbadini G, Di Maio L, et al. Analysis of (CAG)n size heterogeneity in somatic and sperm cell DNA from intermediate and expanded Huntington disease gene carriers. Human Mutation 1997; 10: 458-464.
Brinkman RR, Mezei MM, Theilmann J, et al. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. American Journal of Human Genetics 1997; 60: 1202-1210.
Aylward EH, Brandt J, Codori AM, Mangus RS, Barta PE, Harris GJ. Reduced basal ganglia volume associated with the gene for Huntington's disease in asymptomatic at-risk persons. Neurology 2004; 44: 823-828.
Andrews TC, Weeks RA, Turjanski N, et al. Huntington's disease progression. PET and clinical observation. Brain 1999; 122: 2352-2363.
Claes S, Van Zand K, Legius E, et al. Correlations between triplet repeat expansion and clinical features in Huntington's disease. Archives of Neurology 1995; 52: 749-753.
Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 2000; 101: 57-66.
Wexler NS, Lorimer J, Porter J, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 3498-3503.
Rubinsztein DC, Amos W, Leggo J, et al. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nature Genetics 1994; 7: 525-530.
Foroud T, Gray J, Ivashina J, Conneally PM.. Differences in duration of Huntington's disease based on age at onset. Journal of Neurology, Neurosurgery and Psychiatry 1999; 66: 52-56.
Holbert S, Denghien I, Kiechle T, et al. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathological and genetic evidence for a role in Huntington's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 1811-1816.
Rosenblatt A, Brinkman RR, Liang KY, et al. Familial influence on age of onset among siblings with Huntington disease. American Journal of Medical Genetics 2001; 105: 399-403.
McNeil SM, Novelletto A, Srinidhi J, et al. Reduced penetrance of the Huntington's disease mutation. Human Molecular Genetics 1997; 6: 775-779.
Squitieri F, Gellera C, Cannella M, et al. 2003b; Homozygosity for CAG mutation in Huntington Disease is associated with a more severe clinical course. Brain 126: 946-955.
Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ.. Statistical parametric maps in functional neuroimaging: a general linear approach. Human Brain Mapping 1995; 2: 189-210.
Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. Journal of Neuropathology and Experimental Neurology 2001; 60: 161-172.
Kremer B, Squitieri F, Telenius H, et al. Molecular analysis of late onset Huntington's disease. Journal of Medical Genetics 1993; 30: 991-995.
Rousset OG, Ma Y, Evans AC.. Correction for partial volume effects in PET: principle and validation. Journal of Nuclear Medicine 1998; 39: 904-911.
Strong TV, Tagle DA, Valdes JM, et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nature Genetics 1993; 5: 259-265
Telenius H, Almqvist E, Kremer B, et al. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Human Molecular Genetics 1995; 4: 974-984.
Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 2005; 6: 25-28.
Snowden JS, Craufurd D, Griffiths HL, Neary D.. Awareness of involuntary mevements in Huntington disease. Archives of Neurology 1998; 55: 801-805.
International Huntington Association and World Federation of Neurology Research Group of Huntington's chorea (Guidelines for the molecular gnetics predictive test in Huntington's disease. Neurology 1994; 44: 1533-1536.
Leeflang EP, Tavare S, Marjoram P, et al. Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Human Molecular Genetics 1999; 8: 717-727.
Andrew SE, Golberg YP, Kremer B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genetics 1993; 4: 398-403.
Cannella M, Simonelli M, D'Alessio C, Pierelli F, Ruggieri S, Squitieri F. Presymptomatic tests in Huntington's disease and dominant ataxias. Neurological Science 2001; 22: 55-56.
Illarioshkin SN, Igarashi S, Onodera O, et al. Trinucleotide repeat length and rate of progression of Huntington's disease. Annals of Neurology 1994; 36: 630-635.
MacDonald ME, Vonsattel JP, Shrinidhi J, et al. Evidence for the GluR6 gene associated with younger onset age of Huntington's disease. Neurology 1999; 53: 1330-1332.
Folstein S, Abbott MH, Chase GA, Jensen BA, Folstein MF.. The association of effective disorder with Huntington's disease in a case series and in families. Psychological Medicine 1983; 13: 537-542.
Rosas HH, Koroshetz WJ, Chen YJ, et al. Evidence for more widespread cerebral pathology in early HD. Neurology 2003; 60: 1615-1620.
Squitieri F, Cannella M, Giallonardo P, Maglione V, Mariotti C, Hayden MR.. Onset and pre-onset studies to define the Huntington's disease natural history. Brain Research Bulletin 2001; 56: 233-238.
Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genetics 1993; 4: 387-392.
Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL.. Age of onset in Huntington's disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. Journal of Medical Genetics 1999; 36: 108-111.
Hahn-Barma V, Deweer B, Dürr A, et al. Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers. Journal of Neurology, Neurosurgery and Psychiatry 1998; 64: 172-177.
Chong SS, Almqvist E, Telenius H, et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Human Molecular Genetics 1997; 6: 301-309.
Kuhl DE, Metter EJ, Riege WH, Markham CH.. Patterns of cerebral glucose utilization in Parkinson's disease and Huntington's disease. Annals of Neurology 1984; 15: S119-S125
Benjamin CM, Adam S, Wiggins S, et al. Proceed with care: direct predictive testing for Huntington disease. American Journal of Human Genetics 2002; 1994; 55: 606-617.
Frontali M, Malaspina P, Rossi C, et al. Epidemiological and linkage studies on Huntington's disease in Italy. Human Genetics 1990; 85: 165-170.
Squitieri F, Berardelli A, Nargi E, et al. 2000a; Atypical movement disorders in early stages of Huntington's disease: clinical and genetic analysis. Clinical Genetics 58: 50-56.
Almqvist EW, Bloch M, Brinkman R, Craufurd D, Hayden MR. A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease. American Journal of Human Genetics 1999; 64: 1293-1304.
Davis MB, Bateman D, Quinn NP, Marsden CD, Harding AE.. Mutation analysis in patients with possible but apparently sporadic Huntington's disease. Lancet 1994; 344: 714-717.
Quarantelli M, Berkouk K, Prinster A, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. Journal of Nuclear Medicine 2004; 45: 192-201.
Reading SAJ, Dziorny AC, Peroutka LA, et al. Functional brain changes in presymptomatic huntington's disease. Annals of Neurology 2004; 55: 879-883.
Muller-Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. Journal of Cerebral Blood Flow and Metabolism 1992; 12: 571-583.
Thieben MJ, Duggins AJ, Good CD, et al. The distribution of structural neuropathology in pre-clinical Huntington's disease. Brain 2002; 125: 1815-1828.
Louis ED, Anderson KE, Moskowitz C, Thorne DZ, Marder K. Dystonia-predominant adult-onset Huntington disease: association between motor phenotype and age of onset in adults. Archives of Neurology 2000; 57: 1326-1330.
Antonini A, Leenders KL, Spiegel R, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain 1996; 119: 2085-2095.
Di Maio L, Squitieri F, Campanella G, Trofatter J, Conneally PM.. Onset symptoms in 510 patients with Huntington's disease. Journal of Medical Genetics 1993; 30: 289-292.
The Huntington's Disease Collaborative Group (A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72: 1-20.
Hayden MR, Martin WRW, Stoessl AJ, et al. Positron emission tomography in the early diagnosis of Huntington's disease. Neurology 1986; 36: 88-94.
Telenius H, Kremer HP, Theilmann J, et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Human Molecular Genetics 1993; 2: 1535-1540.
Fennema-Notestine C, Archibald SL, Jacobson MW, et al. In vivo evidence of cerebe
2004; 66
1994; 330
2004; 63
1986; 36
2002; 55
1999; 122
2000a; 58
1997; 6
1993; 2
1992; 12
1983; 13
1993; 4
1993; 5
2001; 105
1994; 344
1990; 85
2004; 374
2001; 60
2004; 125B
1997; 94
1993; 72
1997; 10
1984; 15
2000; 57
2000b; 95
1993; 30
2003c; 10
1994; 36
1999; 53
2003; 126
2001; 56
2001; 57
1998; 55
2003a; 24
2001; 98
2004; 101
2004; 44
1995; 52
1997; 60
1995; 57
2000; 66
2004; 45
1995; 10
1994; 44
1999; 66
1999; 64
2002
1999; 8
2001; 22
1995; 2
1995; 4
1996; 59
1998; 64
2004; 55
2003d; 64
2003b; 126
1998; 39
2002; 23
2002; 125
2004; 15
1999; 36
2005; 6
2000; 101
2003; 60
1994; 3
1996; 119
1994; 7
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_47_2
e_1_2_8_68_2
Langbehn DR (e_1_2_8_26_2) 2004; 66
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_41_2
e_1_2_8_66_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_64_2
e_1_2_8_62_2
The Huntington's Disease Collaborative Group (e_1_2_8_9_2) 1993; 72
e_1_2_8_60_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_59_2
e_1_2_8_15_2
e_1_2_8_57_2
Brinkman RR (e_1_2_8_23_2) 1997; 60
Quarantelli M (e_1_2_8_72_2) 2004; 45
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_51_2
Ranen NG (e_1_2_8_70_2) 1995; 57
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_61_2
e_1_2_8_40_2
Kehoe P (e_1_2_8_36_2) 1999; 36
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_14_2
Benjamin CM (e_1_2_8_20_2) 2002; 55
e_1_2_8_37_2
e_1_2_8_56_2
Rubinsztein DC (e_1_2_8_11_2) 1996; 59
Rousset OG (e_1_2_8_74_2) 1998; 39
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_71_2
References_xml – reference: Aylward EH, Brandt J, Codori AM, Mangus RS, Barta PE, Harris GJ. Reduced basal ganglia volume associated with the gene for Huntington's disease in asymptomatic at-risk persons. Neurology 2004; 44: 823-828.
– reference: Andrews TC, Weeks RA, Turjanski N, et al. Huntington's disease progression. PET and clinical observation. Brain 1999; 122: 2352-2363.
– reference: Holbert S, Denghien I, Kiechle T, et al. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathological and genetic evidence for a role in Huntington's disease pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 1811-1816.
– reference: Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, International Huntington's Disease Collaborative Group (A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical Genetics 2004; 66: 81-91.
– reference: Squitieri F, Andrew SE, Goldberg YP, et al. DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons of geographic variations of prevalence. Human Molecular Genetics 1994; 3: 2103-2114.
– reference: Chong SS, Almqvist E, Telenius H, et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Human Molecular Genetics 1997; 6: 301-309.
– reference: Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ.. Statistical parametric maps in functional neuroimaging: a general linear approach. Human Brain Mapping 1995; 2: 189-210.
– reference: MacDonald ME, Vonsattel JP, Shrinidhi J, et al. Evidence for the GluR6 gene associated with younger onset age of Huntington's disease. Neurology 1999; 53: 1330-1332.
– reference: Frontali M, Malaspina P, Rossi C, et al. Epidemiological and linkage studies on Huntington's disease in Italy. Human Genetics 1990; 85: 165-170.
– reference: Laccone F, Christian W. A recurrent expansion of a maternal allele with 36 CAG repeats causes Huntington disease in two sisters. American Journal of Human Genetics 2000; 66: 1145-1148.
– reference: Kuhl DE, Metter EJ, Riege WH, Markham CH.. Patterns of cerebral glucose utilization in Parkinson's disease and Huntington's disease. Annals of Neurology 1984; 15: S119-S125
– reference: Kassubek J, Landwehrmeyer BG, Ecker D, et al. Global cerebral atrophy in early stages of Huntington's disease: quantitative MRI study. Neuroreport 2004; 15: 363-365.
– reference: Stine OC, Pleasant N, Franz ML, Abbott MH, Folstein SE, Ross CA.. Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15. Human Molecular Genetics 1993; 2: 1547-1549.
– reference: Novelletto A, Persichetti F, Sabbadini G, et al. Analysis of the trinucleotide expansion in italian families affected with huntington disease. Human Molecular Genetics 1994; 3: 93-98.
– reference: Squitieri F, Pustorino G, Cannella M, et al. 2003c; Highly disabling, ''cerebellar'', juvenile-onset Huntington disease. European Journal of Neurology 10: 443-444.
– reference: Chattopadhyay B, Baksi K, Mukhopadhyay S, Bhattacharyya NP.. Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes. Neuroscience Letters 2004; 374: 81-86.
– reference: Foroud T, Gray J, Ivashina J, Conneally PM.. Differences in duration of Huntington's disease based on age at onset. Journal of Neurology, Neurosurgery and Psychiatry 1999; 66: 52-56.
– reference: Brinkman RR, Mezei MM, Theilmann J, et al. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. American Journal of Human Genetics 1997; 60: 1202-1210.
– reference: Louis ED, Anderson KE, Moskowitz C, Thorne DZ, Marder K. Dystonia-predominant adult-onset Huntington disease: association between motor phenotype and age of onset in adults. Archives of Neurology 2000; 57: 1326-1330.
– reference: Rosenblatt A, Brinkman RR, Liang KY, et al. Familial influence on age of onset among siblings with Huntington disease. American Journal of Medical Genetics 2001; 105: 399-403.
– reference: Squitieri F, Cannella M, Simonelli M.. CAG mutation effect on rate of progression in Huntington's disease. Neurological Science 2002; 23: 107-108.
– reference: Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 2000; 101: 57-66.
– reference: Andrew SE, Golberg YP, Kremer B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genetics 1993; 4: 398-403.
– reference: Davis MB, Bateman D, Quinn NP, Marsden CD, Harding AE.. Mutation analysis in patients with possible but apparently sporadic Huntington's disease. Lancet 1994; 344: 714-717.
– reference: Kremer B, Squitieri F, Telenius H, et al. Molecular analysis of late onset Huntington's disease. Journal of Medical Genetics 1993; 30: 991-995.
– reference: Leeflang EP, Tavare S, Marjoram P, et al. Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Human Molecular Genetics 1999; 8: 717-727.
– reference: Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J.. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain 1999; 122: 1667-1678.
– reference: Rosas HH, Koroshetz WJ, Chen YJ, et al. Evidence for more widespread cerebral pathology in early HD. Neurology 2003; 60: 1615-1620.
– reference: Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL.. Age of onset in Huntington's disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. Journal of Medical Genetics 1999; 36: 108-111.
– reference: Muller-Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. Journal of Cerebral Blood Flow and Metabolism 1992; 12: 571-583.
– reference: Strong TV, Tagle DA, Valdes JM, et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nature Genetics 1993; 5: 259-265
– reference: Wexler NS, Lorimer J, Porter J, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 3498-3503.
– reference: Claes S, Van Zand K, Legius E, et al. Correlations between triplet repeat expansion and clinical features in Huntington's disease. Archives of Neurology 1995; 52: 749-753.
– reference: The Huntington's Disease Collaborative Group (A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72: 1-20.
– reference: Snowden JS, Craufurd D, Griffiths HL, Neary D.. Awareness of involuntary mevements in Huntington disease. Archives of Neurology 1998; 55: 801-805.
– reference: Squitieri F, Cannella M, Giallonardo P, Maglione V, Mariotti C, Hayden MR.. Onset and pre-onset studies to define the Huntington's disease natural history. Brain Research Bulletin 2001; 56: 233-238.
– reference: Fennema-Notestine C, Archibald SL, Jacobson MW, et al. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 2004; 63: 989-995.
– reference: Telenius H, Kremer HP, Theilmann J, et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Human Molecular Genetics 1993; 2: 1535-1540.
– reference: Cannella M, Simonelli M, D'Alessio C, Pierelli F, Ruggieri S, Squitieri F. Presymptomatic tests in Huntington's disease and dominant ataxias. Neurological Science 2001; 22: 55-56.
– reference: Folstein S, Abbott MH, Chase GA, Jensen BA, Folstein MF.. The association of effective disorder with Huntington's disease in a case series and in families. Psychological Medicine 1983; 13: 537-542.
– reference: Hahn-Barma V, Deweer B, Dürr A, et al. Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers. Journal of Neurology, Neurosurgery and Psychiatry 1998; 64: 172-177.
– reference: Squitieri F, Sabbadini G, Mandich P, et al. 2000b; Family and molecular data for a fine analysis of age at onset in Huntington disease. American Journal of Medical Genetics 95: 366-373.
– reference: Hayden MR, Martin WRW, Stoessl AJ, et al. Positron emission tomography in the early diagnosis of Huntington's disease. Neurology 1986; 36: 88-94.
– reference: Thieben MJ, Duggins AJ, Good CD, et al. The distribution of structural neuropathology in pre-clinical Huntington's disease. Brain 2002; 125: 1815-1828.
– reference: Paulsen JS, Zhao H, Stout JC, et al. Clinical markers of early disease in persons near onset of Huntington's disease. Neurology 2001; 57: 658-662.
– reference: McNeil SM, Novelletto A, Srinidhi J, et al. Reduced penetrance of the Huntington's disease mutation. Human Molecular Genetics 1997; 6: 775-779.
– reference: Quarantelli M, Berkouk K, Prinster A, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. Journal of Nuclear Medicine 2004; 45: 192-201.
– reference: Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. Journal of Neuropathology and Experimental Neurology 2001; 60: 161-172.
– reference: Squitieri F, Berardelli A, Nargi E, et al. 2000a; Atypical movement disorders in early stages of Huntington's disease: clinical and genetic analysis. Clinical Genetics 58: 50-56.
– reference: Kremer B, Goldgerg P, Andrew SE, et al. A worldwide study of the Huntington's disease mutation. New England Journal of Medicine 1994; 330: 1401-1406.
– reference: Telenius H, Almqvist E, Kremer B, et al. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Human Molecular Genetics 1995; 4: 974-984.
– reference: Rubinsztein DC, Amos W, Leggo J, et al. Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nature Genetics 1994; 7: 525-530.
– reference: Jankovic J, Ashizawa T.. Tourettism associated with Huntington's disease. Movement Disorders 1995; 10: 103-105.
– reference: Rousset OG, Ma Y, Evans AC.. Correction for partial volume effects in PET: principle and validation. Journal of Nuclear Medicine 1998; 39: 904-911.
– reference: Reading SAJ, Dziorny AC, Peroutka LA, et al. Functional brain changes in presymptomatic huntington's disease. Annals of Neurology 2004; 55: 879-883.
– reference: Rubinsztein DC, Leggo J, Chiano M, et al. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 3872-3876.
– reference: Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genetics 1993; 4: 387-392.
– reference: Squitieri F, Cannella M, Gaudio L, et al. 2003a; Italian Huntington disease patients-data and tissue bank. Neurological Science 24: 215-216.
– reference: Giovannone B, Sabbadini G, Di Maio L, et al. Analysis of (CAG)n size heterogeneity in somatic and sperm cell DNA from intermediate and expanded Huntington disease gene carriers. Human Mutation 1997; 10: 458-464.
– reference: Benjamin CM, Adam S, Wiggins S, et al. Proceed with care: direct predictive testing for Huntington disease. American Journal of Human Genetics 2002; 1994; 55: 606-617.
– reference: Ranen NG, Stine C, Abbott MH, et al. Anticipation and instability of IT-15 (CAG)N repeats in parent-offspring pairs with Huntington Disease. American Journal of Human Genetics 1995; 57: 593-602.
– reference: Almqvist EW, Bloch M, Brinkman R, Craufurd D, Hayden MR. A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease. American Journal of Human Genetics 1999; 64: 1293-1304.
– reference: Squitieri F, Almqvist EW, Cannella M, Cislaghi G, Hayden MR.. 2003d; Predictive testing for persons at risk for homozygosity for CAG expansion in the Huntington disease gene. Clinical Genetics 64: 524-525.
– reference: Illarioshkin SN, Igarashi S, Onodera O, et al. Trinucleotide repeat length and rate of progression of Huntington's disease. Annals of Neurology 1994; 36: 630-635.
– reference: International Huntington Association and World Federation of Neurology Research Group of Huntington's chorea (Guidelines for the molecular gnetics predictive test in Huntington's disease. Neurology 1994; 44: 1533-1536.
– reference: Squitieri F, Gellera C, Cannella M, et al. 2003b; Homozygosity for CAG mutation in Huntington Disease is associated with a more severe clinical course. Brain 126: 946-955.
– reference: Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 2005; 6: 25-28.
– reference: Pavese N, Andrews TC, Brooks DJ, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study. Brain 2003; 126: 1127-1135.
– reference: Antonini A, Leenders KL, Spiegel R, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain 1996; 119: 2085-2095.
– reference: Rubinsztein DC, Leggo J, Coles R, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repears and apparently elderly individuals with 36-39 repeats. American Journal of Human Genetics 1996; 59: 16-22.
– reference: Di Maio L, Squitieri F, Campanella G, Trofatter J, Conneally PM.. Onset symptoms in 510 patients with Huntington's disease. Journal of Medical Genetics 1993; 30: 289-292.
– reference: Cannella M, Gellera C, Maglione V, et al. The gender effect in juvenile Huntington disease patients of Italian origin. American Journal of Medical Genetics 2004; 125B: 92-98.
– reference: Telenius H, Kremer B, Goldberg YP, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nature Genetics 1994; 7: 113-118.
– volume: 64
  start-page: 1293
  year: 1999
  end-page: 1304
  article-title: A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease
  publication-title: American Journal of Human Genetics
– volume: 125B
  start-page: 92
  year: 2004
  end-page: 98
  article-title: The gender effect in juvenile Huntington disease patients of Italian origin
  publication-title: American Journal of Medical Genetics
– volume: 10
  start-page: 443
  year: 2003c
  end-page: 444
  article-title: Highly disabling, ‘‘cerebellar’’, juvenile‐onset Huntington disease
  publication-title: European Journal of Neurology
– volume: 126
  start-page: 1127
  year: 2003
  end-page: 1135
  article-title: Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study
  publication-title: Brain
– volume: 24
  start-page: 215
  year: 2003a
  end-page: 216
  article-title: Italian Huntington disease patients‐data and tissue bank
  publication-title: Neurological Science
– volume: 66
  start-page: 52
  year: 1999
  end-page: 56
  article-title: Differences in duration of Huntington's disease based on age at onset
  publication-title: Journal of Neurology, Neurosurgery and Psychiatry
– volume: 122
  start-page: 2352
  year: 1999
  end-page: 2363
  article-title: Huntington's disease progression. PET and clinical observation
  publication-title: Brain
– volume: 12
  start-page: 571
  year: 1992
  end-page: 583
  article-title: Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI‐based correction for partial volume effects
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 55
  start-page: 801
  year: 1998
  end-page: 805
  article-title: Awareness of involuntary mevements in Huntington disease
  publication-title: Archives of Neurology
– volume: 3
  start-page: 93
  year: 1994
  end-page: 98
  article-title: Analysis of the trinucleotide expansion in italian families affected with huntington disease
  publication-title: Human Molecular Genetics
– volume: 39
  start-page: 904
  year: 1998
  end-page: 911
  article-title: Correction for partial volume effects in PET: principle and validation
  publication-title: Journal of Nuclear Medicine
– volume: 15
  start-page: 363
  year: 2004
  end-page: 365
  article-title: Global cerebral atrophy in early stages of Huntington's disease: quantitative MRI study
  publication-title: Neuroreport
– volume: 101
  start-page: 57
  year: 2000
  end-page: 66
  article-title: Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease
  publication-title: Cell
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  article-title: Statistical parametric maps in functional neuroimaging: a general linear approach
  publication-title: Human Brain Mapping
– volume: 5
  start-page: 259
  year: 1993
  end-page: 265
  article-title: Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues
  publication-title: Nature Genetics
– volume: 10
  start-page: 103
  year: 1995
  end-page: 105
  article-title: Tourettism associated with Huntington's disease
  publication-title: Movement Disorders
– volume: 95
  start-page: 366
  year: 2000b
  end-page: 373
  article-title: Family and molecular data for a fine analysis of age at onset in Huntington disease
  publication-title: American Journal of Medical Genetics
– volume: 66
  start-page: 81
  year: 2004
  end-page: 91
  article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length
  publication-title: Clinical Genetics
– volume: 94
  start-page: 3872
  year: 1997
  end-page: 3876
  article-title: Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 60
  start-page: 161
  year: 2001
  end-page: 172
  article-title: Early and progressive accumulation of reactive microglia in the Huntington disease brain
  publication-title: Journal of Neuropathology and Experimental Neurology
– volume: 59
  start-page: 16
  year: 1996
  end-page: 22
  article-title: Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repears and apparently elderly individuals with 36–39 repeats
  publication-title: American Journal of Human Genetics
– volume: 60
  start-page: 1202
  year: 1997
  end-page: 1210
  article-title: The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size
  publication-title: American Journal of Human Genetics
– volume: 374
  start-page: 81
  year: 2004
  end-page: 86
  article-title: Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes
  publication-title: Neuroscience Letters
– volume: 330
  start-page: 1401
  year: 1994
  end-page: 1406
  article-title: A worldwide study of the Huntington's disease mutation
  publication-title: New England Journal of Medicine
– volume: 3
  start-page: 2103
  year: 1994
  end-page: 2114
  article-title: DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons of geographic variations of prevalence
  publication-title: Human Molecular Genetics
– volume: 85
  start-page: 165
  year: 1990
  end-page: 170
  article-title: Epidemiological and linkage studies on Huntington's disease in Italy
  publication-title: Human Genetics
– volume: 57
  start-page: 658
  year: 2001
  end-page: 662
  article-title: Clinical markers of early disease in persons near onset of Huntington's disease
  publication-title: Neurology
– volume: 98
  start-page: 1811
  year: 2001
  end-page: 1816
  article-title: The Gln‐Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathological and genetic evidence for a role in Huntington's disease pathogenesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 36
  start-page: 630
  year: 1994
  end-page: 635
  article-title: Trinucleotide repeat length and rate of progression of Huntington's disease
  publication-title: Annals of Neurology
– volume: 10
  start-page: 458
  year: 1997
  end-page: 464
  article-title: Analysis of (CAG)n size heterogeneity in somatic and sperm cell DNA from intermediate and expanded Huntington disease gene carriers
  publication-title: Human Mutation
– volume: 22
  start-page: 55
  year: 2001
  end-page: 56
  article-title: Presymptomatic tests in Huntington's disease and dominant ataxias
  publication-title: Neurological Science
– volume: 6
  start-page: 301
  year: 1997
  end-page: 309
  article-title: Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses
  publication-title: Human Molecular Genetics
– volume: 13
  start-page: 537
  year: 1983
  end-page: 542
  article-title: The association of effective disorder with Huntington's disease in a case series and in families
  publication-title: Psychological Medicine
– volume: 66
  start-page: 1145
  year: 2000
  end-page: 1148
  article-title: A recurrent expansion of a maternal allele with 36 CAG repeats causes Huntington disease in two sisters
  publication-title: American Journal of Human Genetics
– volume: 52
  start-page: 749
  year: 1995
  end-page: 753
  article-title: Correlations between triplet repeat expansion and clinical features in Huntington's disease
  publication-title: Archives of Neurology
– volume: 6
  start-page: 775
  year: 1997
  end-page: 779
  article-title: Reduced penetrance of the Huntington's disease mutation
  publication-title: Human Molecular Genetics
– volume: 57
  start-page: 1326
  year: 2000
  end-page: 1330
  article-title: Dystonia‐predominant adult‐onset Huntington disease: association between motor phenotype and age of onset in adults
  publication-title: Archives of Neurology
– volume: 64
  start-page: 524
  year: 2003d
  end-page: 525
  article-title: Predictive testing for persons at risk for homozygosity for CAG expansion in the Huntington disease gene
  publication-title: Clinical Genetics
– volume: 8
  start-page: 717
  year: 1999
  end-page: 727
  article-title: Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism
  publication-title: Human Molecular Genetics
– volume: 36
  start-page: 88
  year: 1986
  end-page: 94
  article-title: Positron emission tomography in the early diagnosis of Huntington's disease
  publication-title: Neurology
– volume: 60
  start-page: 1615
  year: 2003
  end-page: 1620
  article-title: Evidence for more widespread cerebral pathology in early HD
  publication-title: Neurology
– volume: 45
  start-page: 192
  year: 2004
  end-page: 201
  article-title: Integrated software for the analysis of brain PET/SPECT studies with partial‐volume‐effect correction
  publication-title: Journal of Nuclear Medicine
– volume: 7
  start-page: 113
  year: 1994
  end-page: 118
  article-title: Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm
  publication-title: Nature Genetics
– volume: 55
  start-page: 606
  year: 2002
  end-page: 617
  article-title: Proceed with care: direct predictive testing for Huntington disease
  publication-title: American Journal of Human Genetics
– volume: 2
  start-page: 1535
  year: 1993
  end-page: 1540
  article-title: Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent
  publication-title: Human Molecular Genetics
– volume: 105
  start-page: 399
  year: 2001
  end-page: 403
  article-title: Familial influence on age of onset among siblings with Huntington disease
  publication-title: American Journal of Medical Genetics
– volume: 6
  start-page: 25
  year: 2005
  end-page: 28
  article-title: NR2A and NR2B receptor gene variations modify age at onset in Huntington disease
  publication-title: Neurogenetics
– volume: 44
  start-page: 1533
  year: 1994
  end-page: 1536
  article-title: Guidelines for the molecular gnetics predictive test in Huntington's disease
  publication-title: Neurology
– volume: 64
  start-page: 172
  year: 1998
  end-page: 177
  article-title: Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers
  publication-title: Journal of Neurology, Neurosurgery and Psychiatry
– volume: 344
  start-page: 714
  year: 1994
  end-page: 717
  article-title: Mutation analysis in patients with possible but apparently sporadic Huntington's disease
  publication-title: Lancet
– volume: 2
  start-page: 1547
  year: 1993
  end-page: 1549
  article-title: Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT‐15
  publication-title: Human Molecular Genetics
– volume: 126
  start-page: 946
  year: 2003b
  end-page: 955
  article-title: Homozygosity for CAG mutation in Huntington Disease is associated with a more severe clinical course
  publication-title: Brain
– volume: 101
  start-page: 3498
  year: 2004
  end-page: 3503
  article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 4
  start-page: 387
  year: 1993
  end-page: 392
  article-title: Trinucleotide repeat length instability and age of onset in Huntington's disease
  publication-title: Nature Genetics
– volume: 57
  start-page: 593
  year: 1995
  end-page: 602
  article-title: Anticipation and instability of IT‐15 (CAG)N repeats in parent‐offspring pairs with Huntington Disease
  publication-title: American Journal of Human Genetics
– volume: 30
  start-page: 991
  year: 1993
  end-page: 995
  article-title: Molecular analysis of late onset Huntington's disease
  publication-title: Journal of Medical Genetics
– volume: 58
  start-page: 50
  year: 2000a
  end-page: 56
  article-title: Atypical movement disorders in early stages of Huntington's disease: clinical and genetic analysis
  publication-title: Clinical Genetics
– year: 2002
– volume: 63
  start-page: 989
  year: 2004
  end-page: 995
  article-title: In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease
  publication-title: Neurology
– volume: 30
  start-page: 289
  year: 1993
  end-page: 292
  article-title: Onset symptoms in 510 patients with Huntington's disease
  publication-title: Journal of Medical Genetics
– volume: 122
  start-page: 1667
  year: 1999
  end-page: 1678
  article-title: Reduced basal ganglia blood flow and volume in pre‐symptomatic, gene‐tested persons at‐risk for Huntington's disease
  publication-title: Brain
– volume: 36
  start-page: 108
  year: 1999
  end-page: 111
  article-title: Age of onset in Huntington's disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length
  publication-title: Journal of Medical Genetics
– volume: 4
  start-page: 398
  year: 1993
  end-page: 403
  article-title: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease
  publication-title: Nature Genetics
– volume: 4
  start-page: 974
  year: 1995
  end-page: 984
  article-title: Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease
  publication-title: Human Molecular Genetics
– volume: 15
  start-page: S119
  year: 1984
  end-page: S125
  article-title: Patterns of cerebral glucose utilization in Parkinson's disease and Huntington's disease
  publication-title: Annals of Neurology
– volume: 119
  start-page: 2085
  year: 1996
  end-page: 2095
  article-title: Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease
  publication-title: Brain
– volume: 125
  start-page: 1815
  year: 2002
  end-page: 1828
  article-title: The distribution of structural neuropathology in pre‐clinical Huntington's disease
  publication-title: Brain
– volume: 53
  start-page: 1330
  year: 1999
  end-page: 1332
  article-title: Evidence for the GluR6 gene associated with younger onset age of Huntington's disease
  publication-title: Neurology
– volume: 44
  start-page: 823
  year: 2004
  end-page: 828
  article-title: Reduced basal ganglia volume associated with the gene for Huntington's disease in asymptomatic at‐risk persons
  publication-title: Neurology
– volume: 23
  start-page: 107
  year: 2002
  end-page: 108
  article-title: CAG mutation effect on rate of progression in Huntington's disease
  publication-title: Neurological Science
– volume: 56
  start-page: 233
  year: 2001
  end-page: 238
  article-title: Onset and pre‐onset studies to define the Huntington's disease natural history
  publication-title: Brain Research Bulletin
– volume: 72
  start-page: 1
  year: 1993
  end-page: 20
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
  publication-title: Cell
– volume: 55
  start-page: 879
  year: 2004
  end-page: 883
  article-title: Functional brain changes in presymptomatic huntington's disease
  publication-title: Annals of Neurology
– volume: 7
  start-page: 525
  year: 1994
  end-page: 530
  article-title: Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence
  publication-title: Nature Genetics
– ident: e_1_2_8_75_2
  doi: 10.1002/hbm.460020402
– ident: e_1_2_8_6_2
  doi: 10.1046/j.1468-1331.2003.00601.x
– ident: e_1_2_8_49_2
  doi: 10.1212/01.WNL.0000138434.68093.67
– volume: 72
  start-page: 1
  year: 1993
  ident: e_1_2_8_9_2
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
  publication-title: Cell
– ident: e_1_2_8_44_2
  doi: 10.1017/S0033291700047966
– ident: e_1_2_8_28_2
  doi: 10.1093/hmg/2.10.1535
– ident: e_1_2_8_59_2
  doi: 10.1136/jnnp.64.2.172
– ident: e_1_2_8_25_2
  doi: 10.1002/ajmg.1400
– ident: e_1_2_8_61_2
  doi: 10.1136/jmg.30.4.289
– ident: e_1_2_8_67_2
  doi: 10.1038/ng0893-387
– ident: e_1_2_8_41_2
  doi: 10.1016/S0140-6736(94)92208-X
– ident: e_1_2_8_71_2
  doi: 10.1001/archneur.1995.00540320021009
– volume: 57
  start-page: 593
  year: 1995
  ident: e_1_2_8_70_2
  article-title: Anticipation and instability of IT‐15 (CAG)N repeats in parent‐offspring pairs with Huntington Disease
  publication-title: American Journal of Human Genetics
– ident: e_1_2_8_31_2
  doi: 10.1093/hmg/6.2.301
– ident: e_1_2_8_43_2
  doi: 10.1007/BF00193190
– ident: e_1_2_8_32_2
  doi: 10.1002/(SICI)1098-1004(1997)10:6<458::AID-HUMU7>3.0.CO;2-9
– ident: e_1_2_8_45_2
  doi: 10.1002/mds.870100116
– ident: e_1_2_8_51_2
  doi: 10.1093/brain/122.9.1667
– volume: 39
  start-page: 904
  year: 1998
  ident: e_1_2_8_74_2
  article-title: Correction for partial volume effects in PET: principle and validation
  publication-title: Journal of Nuclear Medicine
– ident: e_1_2_8_47_2
  doi: 10.1093/jnen/60.2.161
– ident: e_1_2_8_33_2
  doi: 10.1093/hmg/8.2.173
– ident: e_1_2_8_27_2
  doi: 10.1136/jmg.30.12.991
– ident: e_1_2_8_13_2
  doi: 10.1002/ajmg.b.20110
– ident: e_1_2_8_65_2
  doi: 10.1046/j.1399-0004.2003.00155.x
– ident: e_1_2_8_22_2
  doi: 10.1073/pnas.0308679101
– ident: e_1_2_8_46_2
  doi: 10.1001/archneur.57.9.1326
– ident: e_1_2_8_7_2
  doi: 10.1001/archneur.55.6.801
– ident: e_1_2_8_34_2
  doi: 10.1086/302810
– ident: e_1_2_8_4_2
  doi: 10.1093/hmg/3.12.2103
– ident: e_1_2_8_29_2
  doi: 10.1038/ng0594-113b
– ident: e_1_2_8_56_2
  doi: 10.1093/brain/122.12.2353
– volume: 36
  start-page: 108
  year: 1999
  ident: e_1_2_8_36_2
  article-title: Age of onset in Huntington's disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length
  publication-title: Journal of Medical Genetics
– ident: e_1_2_8_12_2
  doi: 10.1093/hmg/6.5.775
– ident: e_1_2_8_18_2
  doi: 10.1007/s100720200092
– ident: e_1_2_8_2_2
  doi: 10.1056/NEJM199405193302001
– volume: 45
  start-page: 192
  year: 2004
  ident: e_1_2_8_72_2
  article-title: Integrated software for the analysis of brain PET/SPECT studies with partial‐volume‐effect correction
  publication-title: Journal of Nuclear Medicine
– ident: e_1_2_8_50_2
  doi: 10.1097/00001756-200402090-00030
– volume: 60
  start-page: 1202
  year: 1997
  ident: e_1_2_8_23_2
  article-title: The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size
  publication-title: American Journal of Human Genetics
– ident: e_1_2_8_48_2
  doi: 10.1212/WNL.44.5.823
– ident: e_1_2_8_62_2
  doi: 10.1212/WNL.44.8.1533
– ident: e_1_2_8_38_2
  doi: 10.1073/pnas.98.4.1811
– ident: e_1_2_8_16_2
  doi: 10.1093/brain/awg077
– ident: e_1_2_8_69_2
  doi: 10.1093/hmg/3.1.93
– ident: e_1_2_8_3_2
  doi: 10.1038/ng0894-525
– volume: 66
  start-page: 81
  year: 2004
  ident: e_1_2_8_26_2
  article-title: A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length
  publication-title: Clinical Genetics
– ident: e_1_2_8_66_2
  doi: 10.1093/hmg/2.10.1547
– ident: e_1_2_8_57_2
  doi: 10.1093/brain/awg119
– volume: 59
  start-page: 16
  year: 1996
  ident: e_1_2_8_11_2
  article-title: Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repears and apparently elderly individuals with 36–39 repeats
  publication-title: American Journal of Human Genetics
– ident: e_1_2_8_40_2
  doi: 10.1007/s10048-004-0198-8
– ident: e_1_2_8_30_2
  doi: 10.1093/hmg/4.5.974-b
– ident: e_1_2_8_52_2
  doi: 10.1002/ana.20121
– ident: e_1_2_8_42_2
– ident: e_1_2_8_39_2
  doi: 10.1016/j.neulet.2004.10.018
– ident: e_1_2_8_15_2
  doi: 10.1212/01.WNL.0000065888.88988.6E
– ident: e_1_2_8_21_2
  doi: 10.1016/S0361-9230(01)00648-7
– ident: e_1_2_8_37_2
  doi: 10.1212/WNL.53.6.1330
– ident: e_1_2_8_64_2
  doi: 10.1086/302374
– ident: e_1_2_8_5_2
  doi: 10.1034/j.1399-0004.2000.580108.x
– ident: e_1_2_8_19_2
  doi: 10.1007/s10072-003-0137-8
– ident: e_1_2_8_35_2
  doi: 10.1073/pnas.94.8.3872
– ident: e_1_2_8_10_2
  doi: 10.1038/ng1193-259
– ident: e_1_2_8_14_2
  doi: 10.1093/brain/awf179
– ident: e_1_2_8_68_2
  doi: 10.1038/ng0893-398
– ident: e_1_2_8_63_2
  doi: 10.1007/s100720170044
– ident: e_1_2_8_73_2
  doi: 10.1038/jcbfm.1992.81
– ident: e_1_2_8_58_2
  doi: 10.1016/S0092-8674(00)80623-6
– ident: e_1_2_8_60_2
  doi: 10.1212/WNL.57.4.658
– ident: e_1_2_8_55_2
  doi: 10.1093/brain/119.6.2085
– ident: e_1_2_8_53_2
  doi: 10.1002/ana.410150723
– ident: e_1_2_8_54_2
  doi: 10.1212/WNL.36.7.888
– ident: e_1_2_8_17_2
  doi: 10.1002/ana.410360412
– volume: 55
  start-page: 606
  year: 2002
  ident: e_1_2_8_20_2
  article-title: Proceed with care: direct predictive testing for Huntington disease
  publication-title: American Journal of Human Genetics
– ident: e_1_2_8_8_2
  doi: 10.1136/jnnp.66.1.52
– ident: e_1_2_8_24_2
  doi: 10.1002/1096-8628(20001211)95:4<366::AID-AJMG13>3.0.CO;2-2
SSID ssj0002720
Score 1.8466302
SecondaryResourceType review_article
Snippet The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5′ translated region of the gene. The mutation...
The mutation causing Huntington's disease is an expanded CAG trinucleotide repeat number beyond 35 in the 5' translated region of the gene. The mutation...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 408
SubjectTerms Adult
age at onset
Age of Onset
Biomarkers
Disease Progression
Female
Humans
Huntington Disease - genetics
Male
Middle Aged
Models, Genetic
onset prediction models
Pedigree
positron emission tomography
predictive testing
Title The search for cerebral biomarkers of Huntington's disease: a review of genetic models of age at onset prediction
URI https://api.istex.fr/ark:/67375/WNG-QF8JMRWW-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1468-1331.2006.01264.x
https://www.ncbi.nlm.nih.gov/pubmed/16643321
https://www.proquest.com/docview/19435279
https://www.proquest.com/docview/67911632
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlgdJLkz6zSR86lOS0xlq9eyvFrgnY0NDg3ISk1V4S7MReQ8ivj0ZaOzikEEpve9DsakffSJ80oxmEvnknmXV9V8aJkJaM1KzUtLFlCEooFxrPU8r88USMztnpBb_o4p_gLkzOD7E5cAPLSPM1GLh1y8dGHndAlJLOp0Di4t4DPgmhW8CPzh4ySYG7Me29OCkBhttBPU--aGul2gWl3z5FQ7dZbVqWhnvocv1DORrlsrdqXc_fPcr1-H_-eB-97tgr_pHh9ga9CLO36OW488-_QzcRdTgbD45sGPuwAMf0FYZb_hAItFjieYNHuT5FpJ0nS9y5iL5ji_M9GmgRYQ23K3Eq1JNk4ryHbYsh-LvF1wv4JGDqPTofDv78HJVdUYfSMypY6TS1XAftKSHSK0Y81Y1UNhIf7fu1UHXgcbAqwkLcK9aWh1rzUFWea6oYDfQD2pnNZ-EAYad0LYkOgljOCBFWecmbOKHUoe8qVRdIrgfQ-C7jORTeuDJbOx9lQKNQj1OYpFFzWyCykbzOWT-eIXOcMLIRiFqFqDnJzXTyy_weqtPx2XRqJgX6ugaRibYMDho7C_PV0hAdyWsl9d9bCBkXJ0GrAn3M6HvonhCQio4USCQMPbvfZjAZwNPhvwoeoVf5XArCmT6hnXaxCp8jU2vdl2SD98vcLDY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQKwEXKK-yUKgPCE4bxes3NwRJQ2lWomqV3izb670QJSXZSBW_Ho93kypVK1WI2x48u97xN_Znz3gGoQ_eSWZd3-VxIqQ5IxXLNa1tHoISyoXa85Qyf1yK0Tk7vuAXXTkguAvT5ofYHLiBZaT5GgwcDqRvWnncAlFKOqcCiat7LxLKXSjwDVb67fQ6lxQ4HNPui5McgLgd1nPrm7bWql1Q-9VtRHSb16aFafgUTde_1Maj_OqtGtfzf25ke_xP_7yHnnQEFn9pEfcMPQiz5-jhuHPRv0C_I_Bwaz84EmLswwJ801MMF_0hFmixxPMaj9oSFZF5flrizkv0GVvcXqWBFhHZcMESp1o9SSZOfdg2GOK_G3y5gE8CrF6i8-Hg7Oso7-o65J5RwXKnqeU6aE8JkV4x4qmupbKR-2jfr4SqAo-jVRAW4naxsjxUmoei8FxTxWigr9DObD4LrxF2SleS6CCI5YwQYZWXvI5zShX6rlBVhuR6BI3vkp5D7Y2p2dr8KAMahZKcwiSNmqsMkY3kZZv44x4yHxNINgJRqxA4J7mZlEfm51Adj08nE1Nm6HCNIhPNGXw0dhbmq6UhOvLXQuq7WwgZ1ydBiwztt_C77p4QkI2OZEgkEN2732ZQDuDpzb8KHqJHo7PxiTn5Xv54ix63x1QQ3XSAdprFKryLxK1x75NB_gWPrTBP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlgdBL349NH9GhtKc11uqdW2jsumm9tKHBuQlJq70k2I69htBfX4127eCQQii97UGzq5W-kb7RjGYQ-uCdZNb1XR4XQpozUrFc09rmISihXKg9Tynzx6UYnbGTc37exT_BXZg2P8TmwA00I63XoODzqr6t5NECopR0PgUSN_de5JO7TPQVGGLHpzeppMDfmIwvTnLA4XZUz51v2tqqdmHUr-_iodu0Nu1Lw8foYv1HbTjKRW_VuJ7_fSvZ4__55SfoUUdf8VGLt6foQZg-Q3vjzkH_HF1F2OFWe3Ckw9iHBXimLzFc84dIoMUSz2o8agtURN75aYk7H9Ehtri9SAMtIq7heiVOlXqSTFz4sG0wRH83eL6ATwKoXqCz4eDX51HeVXXIPaOC5U5Ty3XQnhIivWLEU11LZSPz0b5fCVUFHierICxEY7GyPFSah6LwXFPFaKAv0c50Ng2vEXZKV5LoIIjljBBhlZe8jitKFfquUFWG5HoCje9SnkPljUuzZfooAyMKBTmFSSNqrjNENpLzNu3HPWQ-JoxsBOKoQtic5GZSfjE_h-pkfDqZmDJDB2sQmajM4KGx0zBbLQ3Rkb0WUv-9hZBxdxK0yNCrFn033RMCctGRDImEoXv32wzKATzt_6vgAdr7cTw037-W396gh-0ZFYQ2vUU7zWIV3kXW1rj3SR3_AN4ILwc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+search+for+cerebral+biomarkers+of+Huntington%27s+disease%3A+a+review+of+genetic+models+of+age+at+onset+prediction&rft.jtitle=European+journal+of+neurology&rft.au=Squitieri%2C+F.&rft.au=Ciarmiello%2C+A.&rft.au=Di+Donato%2C+S.&rft.au=Frati%2C+L.&rft.date=2006-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1351-5101&rft.eissn=1468-1331&rft.volume=13&rft.issue=4&rft.spage=408&rft.epage=415&rft_id=info:doi/10.1111%2Fj.1468-1331.2006.01264.x&rft.externalDBID=10.1111%252Fj.1468-1331.2006.01264.x&rft.externalDocID=ENE1264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-5101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-5101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-5101&client=summon