Toward an improved estimation of flood frequency statistics from simulated flows
The estimation of extreme flood frequency for ungauged or poorly gauged catchments is a longstanding problem of great practical importance. Simulated streamflow derived from distributed hydrological models can be used to address this issue, but their representation of extreme flood peaks is often pr...
Saved in:
Published in | Journal of flood risk management Vol. 16; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2023
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1753-318X 1753-318X |
DOI | 10.1111/jfr3.12891 |
Cover
Loading…
Abstract | The estimation of extreme flood frequency for ungauged or poorly gauged catchments is a longstanding problem of great practical importance. Simulated streamflow derived from distributed hydrological models can be used to address this issue, but their representation of extreme flood peaks is often prone to large biases. This study evaluates the potential of a nonasymptotic statistical approach able to consider all the independent flood peaks instead of extremes only, the Simplified Metastatistical Extreme Value (SMEV), for the estimation of extreme flood frequency from time series of simulated streamflow. We examined 28 years of simulated daily streamflow across the contiguous United States and compared SMEV to traditional statistical models based on annual maxima. Our results suggest that when its assumptions are met SMEV can moderate the impact of hydrological model biases in the quantification of extreme flood frequency. SMEV exhibits a lower relative difference between quantiles derived from observations and simulations for all return periods and forcing dataset. Quantiles estimated from simulated streamflow time series (28‐year records) using SMEV are usually in better agreement with the estimates based on 70‐year‐long observations. Geographical variations in the results of SMEV are noticed, with a better performance of SMEV in the east and west coasts (California, New England, and Mid‐Atlantic) and in the southwestern regions (Texas‐Gulf). These results indicate that the potential of SMEV for flood frequency analyses in ungauged and poorly gauged basins deserves further investigations. |
---|---|
AbstractList | The estimation of extreme flood frequency for ungauged or poorly gauged catchments is a longstanding problem of great practical importance. Simulated streamflow derived from distributed hydrological models can be used to address this issue, but their representation of extreme flood peaks is often prone to large biases. This study evaluates the potential of a nonasymptotic statistical approach able to consider all the independent flood peaks instead of extremes only, the Simplified Metastatistical Extreme Value (SMEV), for the estimation of extreme flood frequency from time series of simulated streamflow. We examined 28 years of simulated daily streamflow across the contiguous United States and compared SMEV to traditional statistical models based on annual maxima. Our results suggest that when its assumptions are met SMEV can moderate the impact of hydrological model biases in the quantification of extreme flood frequency. SMEV exhibits a lower relative difference between quantiles derived from observations and simulations for all return periods and forcing dataset. Quantiles estimated from simulated streamflow time series (28‐year records) using SMEV are usually in better agreement with the estimates based on 70‐year‐long observations. Geographical variations in the results of SMEV are noticed, with a better performance of SMEV in the east and west coasts (California, New England, and Mid‐Atlantic) and in the southwestern regions (Texas‐Gulf). These results indicate that the potential of SMEV for flood frequency analyses in ungauged and poorly gauged basins deserves further investigations. Abstract The estimation of extreme flood frequency for ungauged or poorly gauged catchments is a longstanding problem of great practical importance. Simulated streamflow derived from distributed hydrological models can be used to address this issue, but their representation of extreme flood peaks is often prone to large biases. This study evaluates the potential of a nonasymptotic statistical approach able to consider all the independent flood peaks instead of extremes only, the Simplified Metastatistical Extreme Value (SMEV), for the estimation of extreme flood frequency from time series of simulated streamflow. We examined 28 years of simulated daily streamflow across the contiguous United States and compared SMEV to traditional statistical models based on annual maxima. Our results suggest that when its assumptions are met SMEV can moderate the impact of hydrological model biases in the quantification of extreme flood frequency. SMEV exhibits a lower relative difference between quantiles derived from observations and simulations for all return periods and forcing dataset. Quantiles estimated from simulated streamflow time series (28‐year records) using SMEV are usually in better agreement with the estimates based on 70‐year‐long observations. Geographical variations in the results of SMEV are noticed, with a better performance of SMEV in the east and west coasts (California, New England, and Mid‐Atlantic) and in the southwestern regions (Texas‐Gulf). These results indicate that the potential of SMEV for flood frequency analyses in ungauged and poorly gauged basins deserves further investigations. |
Author | Hu, Lanxin Nikolopoulos, Efthymios I. Anagnostou, Emmanouil N. Marra, Francesco |
Author_xml | – sequence: 1 givenname: Lanxin surname: Hu fullname: Hu, Lanxin organization: University of Connecticut – sequence: 2 givenname: Efthymios I. orcidid: 0000-0002-5206-1249 surname: Nikolopoulos fullname: Nikolopoulos, Efthymios I. organization: Rutgers University – sequence: 3 givenname: Francesco surname: Marra fullname: Marra, Francesco organization: National Research Council (CNR‐ISAC) – sequence: 4 givenname: Emmanouil N. orcidid: 0000-0002-1622-0302 surname: Anagnostou fullname: Anagnostou, Emmanouil N. email: emmanouil.anagnostou@uconn.edu organization: University of Connecticut |
BookMark | eNp9kVFrHCEUhaWk0CTtS3_BQF5KYVP1Ouo-lpBNEwItZR_6Js5Vi8vMmOpslv33cXcaKCHUF-X6neM93jNyMqbRE_KR0UtW15dNyHDJuF6yN-SUqRYWwPSvk3_O78hZKRtKpdJKnJIf67Sz2TV2bOLwkNOjd40vUxzsFNPYpNCEPiXXhOz_bP2I-6ZM9aoSWGoxDU2Jw7a3U9VVclfek7fB9sV_-Lufk_Xqen31bXH__eb26uv9AgVItpABcEm9EFJw4AjIJaB3GpTolKNoXeg6joqDDJRJ1koMCK0VLcLSOzgnt7OtS3ZjHnJtOO9NstEcCyn_NjbXJntvdIf1BaV5aFuhrLRdq5fcWSekkkpg9fo0e9X8NWSZzBAL-r63o0_bYrgGwZnQQCt68QLdpG0ea9BKMRCtYuxA0ZnCnErJPhiM0_FDp2xjbxg1h2mZw7TMcVpV8vmF5DnTqzCb4V3s_f4_pLlb_YRZ8wQHnqau |
CitedBy_id | crossref_primary_10_1111_jfr3_70001 crossref_primary_10_1111_jfr3_12914 crossref_primary_10_1016_j_ijdrr_2025_105330 crossref_primary_10_5194_hess_27_4369_2023 |
Cites_doi | 10.1111/j.2517-6161.1990.tb01775.x 10.5194/hess-12-1141-2008 10.1007/s11069-013-0819-3 10.1016/j.advwatres.2019.103498 10.1007/s10584-008-9471-4 10.1016/j.jhydrol.2007.09.044 10.5194/hess-23-1973-2019 10.1029/1999WR900330 10.1007/s00477-006-0047-4 10.1016/j.advwatres.2022.104127 10.1016/0169-2070(92)90028-8 10.1061/(ASCE)1084-0699(2007)12:5(492) 10.3390/w6123841 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2 10.1016/j.jhydrol.2020.125254 10.5194/hess-11-939-2007 10.1016/j.jhydrol.2020.125206 10.1016/j.envres.2015.01.002 10.1029/2001WR000232 10.1016/j.jhydrol.2017.05.048 10.1029/1999WR900119 10.1016/0022-1694(94)90057-4 10.1061/(ASCE)0733-9429(1983)109:1(13) 10.1002/2014WR015814 10.1016/j.advwatres.2020.103686 10.1029/92WR01207 10.1007/978-94-009-4678-1_6 10.5194/hess-18-353-2014 10.1002/hyp.5752 10.2307/1968974 10.1029/2020GL090209 10.1061/(ASCE)HE.1943-5584.0001544 10.1111/jfr3.12580 10.1080/15715124.2008.9635344 10.1002/2016WR019959 10.1029/2011JD016051 10.1029/2008WR007645 10.1016/j.jhydrol.2022.127736 10.1016/j.jhydrol.2019.04.081 10.1007/s11069-013-0925-2 10.1111/jfr3.12512 10.1002/esp.3290120109 10.1029/2010JD014741 10.1002/joc.1539 10.1016/j.advwatres.2015.03.001 10.1016/j.renene.2017.02.041 10.1017/S0305004100015681 10.1002/hyp.8189 10.1002/2016GL069445 10.3390/w10121798 10.5194/hess-13-1019-2009 10.1080/02626667.2018.1432056 10.1038/s41586-019-1495-6 10.1016/j.advwatres.2019.04.002 10.1016/j.jhydrol.2016.12.041 10.1029/2019WR0260659 10.5194/hess-21-5293-2017 10.5194/hess-19-209-2015 10.1016/j.advwatres.2022.104244 10.3390/w9110904 10.1016/j.jhydrol.2007.09.046 10.1016/j.advwatres.2018.05.001 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 H97 KL. L.G 7S9 L.6 DOA |
DOI | 10.1111/jfr3.12891 |
DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1753-318X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_8bc32c782f5547a6ab5892dad467674c 10_1111_jfr3_12891 JFR312891 |
Genre | article |
GeographicLocations | United States--US New England region California |
GeographicLocations_xml | – name: United States--US – name: New England region – name: California |
GrantInformation_xml | – fundername: CARIPARO Foundation – fundername: Eversource Energy Center at the University of Connecticut |
GroupedDBID | 05W 0R~ 1OC 24P 29K 31~ 4.4 5DZ 5GY 6KP 8-1 AAESR AAHHS AANHP AAYCA AAZKR ABCUV ABJCF ACBWZ ACCFJ ACCMX ACGFO ACGFS ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADMGS ADNMO ADPDF ADXAS AEEZP AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ASPBG ATCPS AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BRXPI C45 CAG CCPQU COF CS3 D-I DCZOG EBS EJD FEDTE G-S GODZA GROUPED_DOAJ HCIFZ HVGLF HZ~ LH4 LITHE LOXES LUTES LW6 LYRES M7S MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OIG OK1 OVD OVEED P2P P2W PATMY PCBAR PIMPY PTHSS PYCSY ROL SUPJJ TEORI WBKPD WIN WOHZO XV2 ZZTAW AAYXX AGQPQ CITATION PHGZM PHGZT 7QH 7TG 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H96 H97 KL. L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c4361-6f3c90e4464232c3c263ced8374b7d0cadfbb2c7236f016156cfc35a45c39ed3 |
IEDL.DBID | 24P |
ISSN | 1753-318X |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Fri Jul 11 18:38:56 EDT 2025 Thu Aug 28 21:20:42 EDT 2025 Tue Jul 01 00:44:30 EDT 2025 Thu Apr 24 23:01:56 EDT 2025 Wed Jan 22 16:23:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4361-6f3c90e4464232c3c263ced8374b7d0cadfbb2c7236f016156cfc35a45c39ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5206-1249 0000-0002-1622-0302 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.12891 |
PQID | 2813457110 |
PQPubID | 1006409 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8bc32c782f5547a6ab5892dad467674c proquest_miscellaneous_2834214830 proquest_journals_2813457110 crossref_citationtrail_10_1111_jfr3_12891 crossref_primary_10_1111_jfr3_12891 wiley_primary_10_1111_jfr3_12891_JFR312891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: London |
PublicationTitle | Journal of flood risk management |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: Wiley |
References | 2011; 116 2015; 79 2009; 45 1990; 52 2002; 15 2019; 55 2019; 12 2019; 127 2008; 348 2020; 13 2008; 6 2020; 12 2017; 552 2017; 9 2022; 166 1992; 7 2009; 13 2022; 161 2009; 92 2006; 21 2019; 23 1943; 44 1986; 6 1987 2016; 43 2022; 609 2020; 47 2014; 18 2015; 139 2012; 26 2020; 136 2014; 6 1983; 109 2007; 27 2002; 38 1987; 12 1994; 158 2015; 19 2015; 51 2017; 22 2017; 21 2022; X 2008; 12 2006; 3 2020; 144 2018; 63 2007; 12 2017; 109 2017; 53 2018; 117 2000; 36 2004; 18 1928; 24 2020 2020; 590 1992; 28 1999; 35 2016 2014 2018; 10 2014; 71 2012; 117 2019; 573 2019; 574 2017; 545 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 Thornton P. E. (e_1_2_8_64_1) 2014 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Thornton M. M. (e_1_2_8_63_1) 2020 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Marra F. (e_1_2_8_33_1) 2022 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 Ball J. (e_1_2_8_7_1) 2016 Rahman A. (e_1_2_8_49_1) 2014 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Seaber P. R. (e_1_2_8_54_1) 1987 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 63 start-page: 426 year: 2018 end-page: 440 article-title: Regional flood frequency analysis using support vector regression in arid and semi‐arid regions of Iran publication-title: Hydrological Sciences Journal – volume: 18 start-page: 3119 year: 2004 end-page: 3132 article-title: Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan publication-title: Hydrological Processes – volume: 43 start-page: 8076 year: 2016 end-page: 8082 article-title: On the emergence of rainfall extremes from ordinary events publication-title: Geophysical Research Letters – volume: 23 start-page: 1973 year: 2019 end-page: 1994 article-title: Assessment of precipitation error propagation in multi‐model global water resource reanalysis publication-title: Hydrology and Earth System Sciences – volume: 3 start-page: 561 year: 2006 end-page: 594 article-title: Evaluation of bias‐correction methods for ensemble streamflow volume forecasts publication-title: Hydrology and Earth System Sciences Discussions – volume: 6 year: 1986 – volume: 116 year: 2011 article-title: Evaluation of satellite‐retrieved extreme precipitation rates across the central United States publication-title: Journal of Geophysical Research: Atmospheres – volume: 38 year: 2002 article-title: Flood frequency analysis: Evidence and implications of secular climate variability, New South Wales publication-title: Water Resources Research – volume: 53 start-page: 2312 year: 2017 end-page: 2327 article-title: Reducing uncertainty with flood frequency analysis: The contribution of paleoflood and historical flood information publication-title: Water Resources Research – volume: 22 year: 2017 article-title: Effect of river network geometry on flood frequency: A tale of two watersheds in Iowa publication-title: Journal of Hydrologic Engineering – volume: 139 start-page: 36 year: 2015 end-page: 45 article-title: Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications publication-title: Environmental Research – volume: 136 year: 2020 article-title: Metastatistical extreme value distribution applied to floods across the continental United States publication-title: Advances in Water Resources – volume: 92 start-page: 41 year: 2009 end-page: 63 article-title: Comparison of uncertainty sources for climate change impacts: Flood frequency in England publication-title: Climatic Change – volume: 552 start-page: 1 year: 2017 end-page: 12 article-title: A framework to improve hyper‐resolution hydrological simulation in snow‐affected regions publication-title: Journal of Hydrology – year: 2014 – volume: 609 year: 2022 article-title: Advancing flood warning procedures in ungauged basins with machine learning publication-title: Journal of Hydrology – volume: 71 start-page: 403 year: 2014 end-page: 417 article-title: Flood frequency analysis based on simulated peak discharges publication-title: Natural Hazards – volume: 348 start-page: 148 year: 2008 end-page: 166 article-title: Regional flood frequency analysis by combining self‐organizing feature map and fuzzy clustering publication-title: Journal of Hydrology – volume: 44 start-page: 423 year: 1943 end-page: 453 article-title: Sur la distribution limite du terme maximum d'une serie aleatoire publication-title: Annals of Mathematics – volume: 51 start-page: 539 year: 2015 end-page: 553 article-title: Regional flood frequency analysis at the global scale publication-title: Water Resources Research – volume: 21 start-page: 5293 year: 2017 end-page: 5313 article-title: The CAMELS data set: Catchment attributes and meteorology for large‐sample studies publication-title: Hydrology and Earth System Sciences – volume: 71 start-page: 1227 year: 2014 end-page: 1239 article-title: Quantifying uncertainties associated with depth duration frequency curves publication-title: Natural Hazards – volume: 47 year: 2020 article-title: A unified framework for extreme subdaily precipitation frequency analyses based on ordinary events publication-title: Geophysical Research Letters – volume: 35 start-page: 3103 year: 1999 end-page: 3114 article-title: Calibration of a conceptual rainfall‐runoff model for flood frequency estimation by continuous simulation publication-title: Water Resources Research – volume: 117 start-page: 27 year: 2018 end-page: 39 article-title: Metastatistical extreme value analysis of hourly rainfall from short records: Estimation of high quantiles and impact of measurement errors publication-title: Advances in Water Resources – volume: 109 start-page: 510 year: 2017 end-page: 517 article-title: Climate change impact assessment on hydropower generation using multi‐model climate ensemble publication-title: Renewable Energy – volume: 127 start-page: 280 year: 2019 end-page: 290 article-title: A simplified MEV formulation to model extremes emerging from multiple nonstationary underlying processes publication-title: Advances in Water Resources – volume: 545 start-page: 339 year: 2017 end-page: 354 article-title: Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula) publication-title: Journal of Hydrology – volume: 27 start-page: 1657 year: 2007 end-page: 1671 article-title: Use of a grid‐based hydrological model and regional climate model outputs to assess changing flood risk publication-title: International Journal of Climatology: A Journal of the Royal Meteorological Society – start-page: 451 year: 2014 end-page: 469) article-title: Regional flood frequency analysis publication-title: Handbook of Engineering Hydrology: Modeling, Climate Change and Variability – volume: 12 start-page: 620 year: 2020 article-title: Hydrological model application in the Sirba River: Early warning system and GloFAS improvements publication-title: Water – volume: 12 start-page: 69 year: 1987 end-page: 82 article-title: Towards the use of catchment geomorphology in flood frequency predictions publication-title: Earth Surface Processes and Landforms – volume: 117 start-page: 3110 year: 2012 article-title: Continental‐scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS‐2): 2. Validation of model‐simulated streamflow publication-title: Journal of Geophysical Research: Atmospheres – volume: 590 year: 2020 article-title: A physical process and machine learning combined hydrological model for daily streamflow simulations of large watersheds with limited observation data publication-title: Journal of Hydrology – volume: 7 start-page: 435 year: 1992 end-page: 455 article-title: Diagnostic verification of probability forecasts publication-title: International Journal of Forecasting – volume: 79 start-page: 121 year: 2015 end-page: 126 article-title: A metastatistical approach to rainfall extremes publication-title: Advances in Water Resources – volume: 13 year: 2020 article-title: Sensitivity of flood frequency analysis to data record, statistical model, and parameter estimation methods: An evaluation over the contiguous United States publication-title: Journal of Flood Risk Management – volume: 28 start-page: 2375 year: 1992 end-page: 2385 article-title: Flood frequency analysis of simulated flows publication-title: Water Resources Research – year: 1987 – volume: 6 start-page: 149 year: 2008 end-page: 162 article-title: Quantification of uncertainties in flood risk assessments publication-title: International Journal of River Basin Management – volume: 36 start-page: 737 year: 2000 end-page: 744 article-title: Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data publication-title: Water Resources Research – volume: 24 start-page: 180 year: 1928 end-page: 190 article-title: Limiting forms of the frequency distribution of the largest or smallest member of a sample publication-title: Mathematical Proceedings of the Cambridge Philosophical Society – volume: 45 start-page: 8 year: 2009 article-title: On the stationarity of annual flood peaks in the continental United States during the 20th century publication-title: Water Resources Research – year: 2016 – volume: 13 start-page: 1019 year: 2009 end-page: 1029 article-title: A look at the links between drainage density and flood statistics publication-title: Hydrology and Earth System Sciences – volume: 590 year: 2020 article-title: Flood frequency estimation and uncertainty in arid/semi‐arid regions publication-title: Journal of Hydrology – volume: 573 start-page: 108 year: 2019 end-page: 111 article-title: Changing climate both increases and decreases European river floods publication-title: Nature – volume: 12 start-page: 492 year: 2007 end-page: 500 article-title: Log‐Pearson type 3 distribution and its application in flood frequency analysis. II: Parameter estimation methods publication-title: Journal of Hydrologic Engineering – volume: 18 start-page: 353 year: 2014 end-page: 365 article-title: Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows publication-title: Hydrology and Earth System Sciences – volume: 26 start-page: 1008 year: 2012 end-page: 1021 article-title: Regional flood frequency analysis using Bayesian generalized least squares: A comparison between quantile and parameter regression techniques publication-title: Hydrological Processes – volume: 9 year: 2017 article-title: An improved coupled routing and excess storage (CREST) distributed hydrological model and its verification in Ganjiang River Basin, China publication-title: Water – volume: 55 start-page: 11344 year: 2019 end-page: 11354 article-title: Toward improved predictions in ungauged basins: Exploiting the power of machine learning publication-title: Water Resources Research – volume: 161 year: 2022 article-title: Reliable estimation of high floods: A method to select the most suitable ordinary distribution in the metastatistical extreme value framework publication-title: Advances in Water Resources – volume: 348 start-page: 124 year: 2008 end-page: 134 article-title: Rainfall depth‐duration‐frequency curves and their uncertainties publication-title: Journal of Hydrology – volume: 6 start-page: 3841 year: 2014 end-page: 3863 article-title: Flood frequency analysis for the annual peak flows simulated by an event‐based rainfall‐runoff model in an urban drainage basin publication-title: Water – volume: 52 start-page: 105 year: 1990 end-page: 124 article-title: L‐moments: Analysis and estimation of distributions using linear combinations of order statistics publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 158 start-page: 265 year: 1994 end-page: 284 article-title: Optimal use of the SCE‐UA global optimization method for calibrating watershed models publication-title: Journal of Hydrology – volume: 21 start-page: 97 year: 2006 end-page: 112 article-title: Statistical analysis of extreme events in a non‐stationary context via a Bayesian framework: Case study with peak‐over‐threshold data publication-title: Stochastic Environmental Research and Risk Assessment – year: 2020 – volume: 19 start-page: 209 year: 2015 end-page: 223 article-title: Development of a large‐sample watershed‐scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance publication-title: Hydrology and Earth System Sciences – volume: 166 year: 2022 article-title: Hydrological frequency analysis under nonstationarity using the metastatistical approach and its simplified version publication-title: Advances in Water Resources – volume: 15 start-page: 3237 year: 2002 end-page: 3251 article-title: A long‐term hydrologically based dataset of land surface fluxes and states for the conterminous United States publication-title: Journal of Climate – volume: 574 start-page: 699 year: 2019 end-page: 705 article-title: Precipitation frequency analysis from remotely sensed datasets: A focused review publication-title: Journal of Hydrology – volume: 12 year: 2019 article-title: The weight of the flood‐of‐record in flood frequency analysis publication-title: Journal of Flood Risk Management – volume: 12 start-page: 1141 year: 2008 end-page: 1152 article-title: Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall‐runoff model publication-title: Hydrology and Earth System Sciences – volume: 144 year: 2020 article-title: All in order: Distribution of serially correlated order statistics with applications to hydrological extremes publication-title: Advances in Water Resources – volume: 109 start-page: 13 year: 1983 end-page: 27 article-title: Confidence intervals for design events publication-title: Journal of Hydraulic Engineering – volume: 10 year: 2018 article-title: A numerical framework for evaluating flood inundation hazard under different dam operation scenarios—A case study in Naugatuck River publication-title: Water – volume: X year: 2022 article-title: Changes in extreme daily precipitation over Africa: Insights from a non‐asymptotic statistical approach publication-title: Journal of Hydrology – year: 2022 ident: e_1_2_8_33_1 article-title: Changes in extreme daily precipitation over Africa: Insights from a non‐asymptotic statistical approach publication-title: Journal of Hydrology – ident: e_1_2_8_24_1 doi: 10.1111/j.2517-6161.1990.tb01775.x – ident: e_1_2_8_42_1 doi: 10.5194/hess-12-1141-2008 – ident: e_1_2_8_41_1 doi: 10.1007/s11069-013-0819-3 – start-page: 451 year: 2014 ident: e_1_2_8_49_1 article-title: Regional flood frequency analysis publication-title: Handbook of Engineering Hydrology: Modeling, Climate Change and Variability – ident: e_1_2_8_40_1 doi: 10.1016/j.advwatres.2019.103498 – ident: e_1_2_8_27_1 doi: 10.1007/s10584-008-9471-4 – ident: e_1_2_8_46_1 doi: 10.1016/j.jhydrol.2007.09.044 – ident: e_1_2_8_15_1 doi: 10.5194/hess-23-1973-2019 – ident: e_1_2_8_37_1 doi: 10.1029/1999WR900330 – ident: e_1_2_8_51_1 doi: 10.1007/s00477-006-0047-4 – ident: e_1_2_8_44_1 doi: 10.1016/j.advwatres.2022.104127 – ident: e_1_2_8_43_1 doi: 10.1016/0169-2070(92)90028-8 – ident: e_1_2_8_19_1 doi: 10.1061/(ASCE)1084-0699(2007)12:5(492) – ident: e_1_2_8_4_1 doi: 10.3390/w6123841 – ident: e_1_2_8_38_1 doi: 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2 – ident: e_1_2_8_39_1 doi: 10.1016/j.jhydrol.2020.125254 – ident: e_1_2_8_23_1 doi: 10.5194/hess-11-939-2007 – ident: e_1_2_8_69_1 doi: 10.1016/j.jhydrol.2020.125206 – volume-title: Daymet: Daily surface weather data on a 1‐km grid for North America, Version 4 year: 2020 ident: e_1_2_8_63_1 – ident: e_1_2_8_62_1 doi: 10.1016/j.envres.2015.01.002 – ident: e_1_2_8_17_1 doi: 10.1029/2001WR000232 – ident: e_1_2_8_57_1 doi: 10.1016/j.jhydrol.2017.05.048 – ident: e_1_2_8_30_1 doi: 10.1029/1999WR900119 – ident: e_1_2_8_14_1 doi: 10.1016/0022-1694(94)90057-4 – volume-title: Hydrologic unit maps year: 1987 ident: e_1_2_8_54_1 – ident: e_1_2_8_61_1 doi: 10.1061/(ASCE)0733-9429(1983)109:1(13) – ident: e_1_2_8_58_1 doi: 10.1002/2014WR015814 – ident: e_1_2_8_55_1 doi: 10.1016/j.advwatres.2020.103686 – ident: e_1_2_8_12_1 doi: 10.1029/92WR01207 – ident: e_1_2_8_9_1 doi: 10.1007/978-94-009-4678-1_6 – ident: e_1_2_8_20_1 doi: 10.5194/hess-18-353-2014 – ident: e_1_2_8_68_1 doi: 10.1002/hyp.5752 – volume-title: Australian rainfall and runoff—A guide to flood estimation year: 2016 ident: e_1_2_8_7_1 – ident: e_1_2_8_18_1 doi: 10.2307/1968974 – ident: e_1_2_8_32_1 doi: 10.1029/2020GL090209 – ident: e_1_2_8_6_1 doi: 10.1061/(ASCE)HE.1943-5584.0001544 – ident: e_1_2_8_25_1 doi: 10.1111/jfr3.12580 – ident: e_1_2_8_5_1 doi: 10.1080/15715124.2008.9635344 – ident: e_1_2_8_29_1 doi: 10.1002/2016WR019959 – ident: e_1_2_8_67_1 doi: 10.1029/2011JD016051 – ident: e_1_2_8_66_1 doi: 10.1029/2008WR007645 – ident: e_1_2_8_50_1 doi: 10.1016/j.jhydrol.2022.127736 – ident: e_1_2_8_34_1 doi: 10.1016/j.jhydrol.2019.04.081 – volume-title: Daymet: Daily surface weather data on a 1‐km grid for North America, Version 2 year: 2014 ident: e_1_2_8_64_1 – ident: e_1_2_8_53_1 doi: 10.1007/s11069-013-0925-2 – ident: e_1_2_8_60_1 doi: 10.1111/jfr3.12512 – ident: e_1_2_8_10_1 doi: 10.1002/esp.3290120109 – ident: e_1_2_8_3_1 doi: 10.1029/2010JD014741 – ident: e_1_2_8_8_1 doi: 10.1002/joc.1539 – ident: e_1_2_8_31_1 doi: 10.1016/j.advwatres.2015.03.001 – ident: e_1_2_8_13_1 doi: 10.1016/j.renene.2017.02.041 – ident: e_1_2_8_16_1 doi: 10.1017/S0305004100015681 – ident: e_1_2_8_21_1 doi: 10.1002/hyp.8189 – ident: e_1_2_8_70_1 doi: 10.1002/2016GL069445 – ident: e_1_2_8_22_1 doi: 10.3390/w10121798 – ident: e_1_2_8_47_1 doi: 10.5194/hess-13-1019-2009 – ident: e_1_2_8_56_1 doi: 10.1080/02626667.2018.1432056 – ident: e_1_2_8_11_1 doi: 10.1038/s41586-019-1495-6 – ident: e_1_2_8_36_1 doi: 10.1016/j.advwatres.2019.04.002 – ident: e_1_2_8_48_1 doi: 10.5194/hess-13-1019-2009 – ident: e_1_2_8_52_1 doi: 10.1016/j.jhydrol.2016.12.041 – ident: e_1_2_8_28_1 doi: 10.1029/2019WR0260659 – ident: e_1_2_8_2_1 doi: 10.5194/hess-21-5293-2017 – ident: e_1_2_8_45_1 doi: 10.5194/hess-19-209-2015 – ident: e_1_2_8_65_1 doi: 10.1016/j.advwatres.2022.104244 – ident: e_1_2_8_26_1 doi: 10.3390/w9110904 – ident: e_1_2_8_59_1 doi: 10.1016/j.jhydrol.2007.09.046 – ident: e_1_2_8_35_1 doi: 10.1016/j.advwatres.2018.05.001 |
SSID | ssj0067874 |
Score | 2.2974927 |
Snippet | The estimation of extreme flood frequency for ungauged or poorly gauged catchments is a longstanding problem of great practical importance. Simulated... Abstract The estimation of extreme flood frequency for ungauged or poorly gauged catchments is a longstanding problem of great practical importance. Simulated... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bias California Catchments data collection Datasets Discharge measurement Extreme values Flood frequency flood frequency analysis Floods Frequency analysis Geographical variations Hydrologic models Hydrology Mathematical models New England region Parameter estimation Precipitation Quantiles Rain risk management River discharge River networks simulated streamflow Simulation SMEV Statistical analysis Statistical methods Statistical models Stream discharge Stream flow Time series time series analysis uncertainty Watersheds |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE6urRPSiUG2b9HVUcVkWFJEV9hbSPGBBu7IPxH_vTNItuyB68VbaKYRvmnk0M98QcgFOBNy0TkMJpi7kMcdpgFUZFpxlTBkWRRq7kR-fst4r7w_T4dKoL6wJ8_TAHribolIsUeDHLDi-XGaySosy0VJzpBrjCq0v-LxFMuVtMFjgnDdkpK5ux07YNVjiMl5xP46lfyW0XA5QnYfpbpOtJjSkt35JO2TN1Ltkc4kwcI88D1yVK5U1Hbm_AUZTpMnw_Yd0bKnFQnRqJ75C-otiw5DnYqbYSUKno3cc2AXvgeTndJ8Mug-D-17YzEQIFaAXh5llqowMJHF4wqqYShBSDWkmr3IdKaltVQFeCcusi-YyZRVLJU8VK41mB2S9HtfmkNBcxzK1sUmYllxnmdRpYSF7kAbsnyqrgFwukBKq4QvHsRVvos0bAFXhUA3IeSv74VkyfpS6Q8BbCWS2djdA36LRt_hL3wHpLNQlmu02FUkRM57mEMoE5Kx9DBsFTz9kbcZzlGE8geSPgcyVU_MvSxX97gtzV0f_sehjsoFj6n2JWYeszyZzcwLBzKw6dd_tNxEk8Nc priority: 102 providerName: Directory of Open Access Journals |
Title | Toward an improved estimation of flood frequency statistics from simulated flows |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.12891 https://www.proquest.com/docview/2813457110 https://www.proquest.com/docview/2834214830 https://doaj.org/article/8bc32c782f5547a6ab5892dad467674c |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KvehBfGK1lhW9KESa7OYFXlQspaAUqdBb2KcImkraIv57ZzYPWhDBW0gmkMzuzH6zO_MNIRewiMAyrUNPgKvzuM-xG6BMvYSziCnD-n2N1ciPT9HwhY-m4bRFbupamJIfotlwQ8tw_hoNXMj5qpHbgl2Dd8XS9Q2srcVZHvBx7YfBCzsOZqSixBrhaUVO6vJ4mnfXliPH2r8GNVcBq1txBjtku4KK9LYc213SMvke2VohENwn44nLeqUip29ud8BoirQZZT0inVlqMTGd2qLMmP6mWEBUcjNTrCyh87cPbOAF74Hk1_yATAYPk_uhV_VI8BRo0_ciy1TaNxDU4YmrYipAFWsIO7mMdV8JbaUMVBywyDp0FymrWCh4qFhqNDsk7XyWmyNCY-2L0PomYFpwHUVCh4mFaEIY8IcqlR1yWWsqUxV_OLaxeM-aOAK0mjmtdsh5I_tZsmb8KnWHCm8kkOna3ZgVr1llOFkiFfwX4BgLwCcWkZBhkgZaaI5Uc1x1SLcerqwyv3kWJD7jYQzQpkPOmsdgOHgaInIzW6IM4wEEgwxkrtww__Gp2WjwzNzV8X-ET8gmtqcvU8u6pL0oluYUQMxC9txc7bktgB9T1Owv |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnF9RvSiUNkmadoeVVzWJyIr7C2keciCdmVXEf-9M2m3rCCCt9JOoJ10Jt8kM98QcgSLCCzTNok0uLpIxAK7ARZ5lAkuuXG83bZYjXx3L7tP4rqf9OvcHKyFqfghmg03tIzgr9HAcUN62sr9iJ-Ce8Xa9TkhWYqdG5h4mDhicMOBhBm5KLFIuF-zk4ZEnmbsj_Uo0Pb_wJrTiDUsOZ1lslRjRXpWTe4KmXHlKlmcYhBcIw-9kPZKdUkHYXvAWYq8GVVBIh166jEznfpRlTL9RbGCqCJnplhaQseDV-zgBeNA8nO8Tnqdy95FN6qbJEQG1BlH0nOTtx1EdXjkarhhqGMLcacoUts22vqiYCZlXPoA76TxhidaJIbnzvINMlsOS7dJaGpjnfjYMW61sFJqm2QewgntwCGavGiR44mmlKkJxLGPxYtqAgnQqgpabZHDRvatos34VeocFd5IINV1uDEcPavaclRWGPguADIekE-qpS6SLGdWW4Fcc8K0yM5kulRtf2PFspiLJAVs0yIHzWOwHDwO0aUbfqAMFwyiQQ4yJ2Ga_3hVdd155OFq6z_C-2S-27u7VbdX9zfbZAF71Vd5Zjtk9n304XYB0bwXe-G__QaGJ-6m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB8OBWkfxPpBr2pdaV8UIkl28wV9sdXjtFaOcsK9LZv9KEKbO-48xP--M5sPThDBt5BMIJndmf3N7sxvAL7iIoLLtEkCha4uEJGgboBlEeSCp1xbHoaGqpF_3abDO3E9SSY9-NbWwtT8EN2GG1mG99dk4DPjVo3czfkZelcqXV-n0z6a37EYtX4YvbDnYCYqSqoRnjTkpD6Pp3v32XLkWfufQc1VwOpXnMEWbDZQkZ3XY_sBerbahvcrBII7MBr7rFemKnbvdwesYUSbUdcjsqljjhLTmZvXGdNPjAqIam5mRpUlbHH_jxp44Xso-bjYhfHgcvxjGDQ9EgKN2oyC1HFdhBaDOjpx1VzHpGKDYacoMxNqZVxZxjqLeeo8uku10zxRItG8sIbvwVo1rexHYJmJVOIiG3OjhElTZZLcYTShLPpDXZR9OGk1JXXDH05tLP7KLo5ArUqv1T586WRnNWvGi1LfSeGdBDFd-xvT-R_ZGI7MS43_hTjGIfDJVKrKJC9io4wgqjmh-3DQDpdszG8h4zziIskQ2vThuHuMhkOnIaqy0yXJcBFjMMhR5tQP8yufKq8Hv7m_-vQW4SPYGF0M5M3V7c99eEed6ussswNYe5gv7SHimYfys5-2_wEwje3Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+an+improved+estimation+of+flood+frequency+statistics+from+simulated+flows&rft.jtitle=Journal+of+flood+risk+management&rft.au=Hu%2C+Lanxin&rft.au=Nikolopoulos%2C+Efthymios+I.&rft.au=Marra%2C+Francesco&rft.au=Anagnostou%2C+Emmanouil+N.&rft.date=2023-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1753-318X&rft.eissn=1753-318X&rft.volume=16&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fjfr3.12891&rft.externalDBID=10.1111%252Fjfr3.12891&rft.externalDocID=JFR312891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-318X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-318X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-318X&client=summon |