Uniqueness of Radial Solutions for the Fractional Laplacian
We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)s with s ∊ (0,1) for any space dimensions N ≥ 1. By extending a monotonicity formula found by Cabré and Sire , we show that the linear equation (−Δ)su+Vu=0 in ℝN has at m...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 69; no. 9; pp. 1671 - 1726 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Blackwell Publishing Ltd
01.09.2016
John Wiley and Sons, Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)s with s ∊ (0,1) for any space dimensions N ≥ 1. By extending a monotonicity formula found by Cabré and Sire , we show that the linear equation
(−Δ)su+Vu=0 in ℝN
has at most one radial and bounded solution vanishing at infinity, provided that the potential V is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrödinger operator H = (−Δ)s + V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half‐space ℝ+N+1, we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation
−Δ)sQ+Q−|Q|αQ=0 in ℝN
for arbitrary space dimensions N ≥ 1 and all admissible exponents α > 0. This generalizes the nondegeneracy and uniqueness result for dimension N = 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin‐Ono equation found by Amick and Toland .© 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)
s
with
s
∊ (0,1) for any space dimensions
N
≥ 1. By extending a monotonicity formula found by Cabré and Sire , we show that the linear equation
urn:x-wiley:00103640:media:cpa21591:cpa21591-math-0001
has at most one radial and bounded solution vanishing at infinity, provided that the potential
V
is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrödinger operator
H
= (−Δ)
s
+
V
are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half‐space
, we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation
urn:x-wiley:00103640:media:cpa21591:cpa21591-math-0003
for arbitrary space dimensions
N
≥ 1 and all admissible exponents
α
> 0. This generalizes the nondegeneracy and uniqueness result for dimension
N
= 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin‐Ono equation found by Amick and Toland .© 2016 Wiley Periodicals, Inc. We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (...)^sup s^ with s... (0,1) for any space dimensions N ≥ 1. By extending a monotonicity formula found by Cabre and Sire , we show that the linear equation ... has at most one radial and bounded solution vanishing at infinity, provided that the potential V is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrodinger operator H = (-...)^sup s^ + V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half-space ..., we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation ... for arbitrary space dimensions N ≥ 1 and all admissible exponents a > 0. This generalizes the nondegeneracy and uniqueness result for dimension N = 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin-Ono equation found by Amick and Toland. (ProQuest: ... denotes formulae/symbols omitted.) We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)s with s ∊ (0,1) for any space dimensions N ≥ 1. By extending a monotonicity formula found by Cabré and Sire , we show that the linear equation (−Δ)su+Vu=0 in ℝN has at most one radial and bounded solution vanishing at infinity, provided that the potential V is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrödinger operator H = (−Δ)s + V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half‐space ℝ+N+1, we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation −Δ)sQ+Q−|Q|αQ=0 in ℝN for arbitrary space dimensions N ≥ 1 and all admissible exponents α > 0. This generalizes the nondegeneracy and uniqueness result for dimension N = 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin‐Ono equation found by Amick and Toland .© 2016 Wiley Periodicals, Inc. |
Author | Lenzmann, Enno Frank, Rupert L. Silvestre, Luis |
Author_xml | – sequence: 1 givenname: Rupert L. surname: Frank fullname: Frank, Rupert L. email: rlfrank@caltech.edu organization: Caltech Mathematics, 253-37, CA, 91125, Pasadena, USA – sequence: 2 givenname: Enno surname: Lenzmann fullname: Lenzmann, Enno email: enno.lenzmann@unibas.ch organization: University of Basel, Department of Mathematics and Computer Science, Spiegelgasse 1, CH-4051, Basel, Switzerland – sequence: 3 givenname: Luis surname: Silvestre fullname: Silvestre, Luis email: luis@math.uchicago.edu organization: University of Chicago, Mathematics Department, 5734 S. University Ave. Office Ry 360-E, IL, 60637, Chicago, USA |
BookMark | eNp1kEtPwzAQhC0EEuVx4B9E4sQhdNdJbEecUEULUsWrFI7WxnWEISTFTgX996QUOCA4rXZ3vtFodthm3dSWsQOEYwTgfTOnY45Zjhush5DLGBLkm6wHgBAnIoVtthPCU7diqpIeO5nW7nVhaxtC1JTRLc0cVdGkqRata-oQlY2P2kcbDT2Z1aV7jmlekXFU77Gtkqpg97_mLpsOz-4G5_H4anQxOB3HJk0ExqmUYLJSKBKpLSRyBJ6nSho5kzNQBZAARaogBbOEk-RoRKZyjoJnVhRZsssO175z33RZQ6ufmoXvogSNCkEJlSN2qv5aZXwTgrelNq6lVebWk6s0gl41pLuG9GdDHXH0i5h790J--af2y_3NVXb5v1APrk-_iXhNuNDa9x-C_LMWMpGZfrgc6XSirh_u8UanyQdTKYPK |
CODEN | CPMAMV |
CitedBy_id | crossref_primary_10_1017_fms_2018_22 crossref_primary_10_3390_fractalfract8070391 crossref_primary_10_3390_math12050772 crossref_primary_10_1007_s00526_020_01814_5 crossref_primary_10_1007_s00208_018_1666_z crossref_primary_10_1016_j_jmaa_2024_128945 crossref_primary_10_1007_s12220_024_01629_2 crossref_primary_10_1016_j_jmaa_2021_125152 crossref_primary_10_1016_j_na_2024_113515 crossref_primary_10_1007_s00526_024_02851_0 crossref_primary_10_1142_S021919972250016X crossref_primary_10_1515_ans_2020_2114 crossref_primary_10_1007_s40879_023_00647_8 crossref_primary_10_1017_prm_2021_81 crossref_primary_10_1063_5_0096488 crossref_primary_10_1016_j_na_2023_113354 crossref_primary_10_1515_anona_2025_0069 crossref_primary_10_1088_1361_6544_acdb3c crossref_primary_10_1007_s11784_024_01140_9 crossref_primary_10_1080_17476933_2016_1245725 crossref_primary_10_1016_j_jmaa_2024_128951 crossref_primary_10_1186_s13661_019_1260_7 crossref_primary_10_1007_s00030_017_0470_x crossref_primary_10_1007_s00033_019_1104_4 crossref_primary_10_1007_s10255_024_1097_4 crossref_primary_10_1007_s13163_021_00388_w crossref_primary_10_1016_j_jde_2019_11_068 crossref_primary_10_1002_mma_6862 crossref_primary_10_3934_cpaa_2022038 crossref_primary_10_1112_jlms_12974 crossref_primary_10_1007_s00229_025_01612_3 crossref_primary_10_1007_s10231_020_01027_9 crossref_primary_10_1016_j_jde_2023_03_012 crossref_primary_10_1007_s11118_021_09959_4 crossref_primary_10_1007_s00025_020_01332_y crossref_primary_10_1007_s10473_024_0313_x crossref_primary_10_1007_s00220_019_03374_y crossref_primary_10_1007_s00526_024_02728_2 crossref_primary_10_1007_s11425_018_9452_y crossref_primary_10_1080_17476933_2019_1591383 crossref_primary_10_3934_cpaa_2021058 crossref_primary_10_1016_j_na_2020_112080 crossref_primary_10_1088_1742_6596_1489_1_012008 crossref_primary_10_1007_s11856_019_1854_x crossref_primary_10_1016_j_jfa_2021_109132 crossref_primary_10_1016_j_jde_2024_10_031 crossref_primary_10_11948_20200083 crossref_primary_10_1016_j_jde_2019_09_024 crossref_primary_10_3934_mine_2022056 crossref_primary_10_3934_cpaa_2017104 crossref_primary_10_1007_s13226_022_00257_2 crossref_primary_10_1016_j_jfa_2023_110145 crossref_primary_10_1016_j_jmaa_2017_01_037 crossref_primary_10_3934_math_2022603 crossref_primary_10_1090_spmj_1829 crossref_primary_10_1016_j_jde_2018_11_023 crossref_primary_10_1063_1_5011724 crossref_primary_10_3934_cpaa_2022014 crossref_primary_10_1007_s10440_025_00713_1 crossref_primary_10_1007_s11784_023_01069_5 crossref_primary_10_14232_ejqtde_2021_1_33 crossref_primary_10_3934_dcds_2020379 crossref_primary_10_1007_s00208_018_1784_7 crossref_primary_10_1007_s00208_024_03019_z crossref_primary_10_1007_s00526_016_1068_6 crossref_primary_10_1007_s00526_019_1670_5 crossref_primary_10_1090_tran_8406 crossref_primary_10_1007_s10114_023_1074_5 crossref_primary_10_1007_s00033_022_01792_y crossref_primary_10_1080_17476933_2016_1178730 crossref_primary_10_1002_mma_8461 crossref_primary_10_1016_j_jde_2022_02_004 crossref_primary_10_1088_1361_6544_adbc3b crossref_primary_10_1515_forum_2023_0424 crossref_primary_10_1016_j_jde_2022_02_001 crossref_primary_10_1007_s00526_018_1444_5 crossref_primary_10_1007_s00028_020_00564_3 crossref_primary_10_1002_mma_8696 crossref_primary_10_1016_j_jfa_2022_109438 crossref_primary_10_1002_mma_7005 crossref_primary_10_1016_j_jfa_2022_109555 crossref_primary_10_1016_j_cnsns_2025_108618 crossref_primary_10_1080_03605302_2024_2441851 crossref_primary_10_1016_j_aml_2018_08_002 crossref_primary_10_1515_ans_2015_5019 crossref_primary_10_1007_s12220_022_00980_6 crossref_primary_10_1515_ans_2018_2023 crossref_primary_10_1016_j_jmaa_2018_10_014 crossref_primary_10_1007_s00033_024_02357_x crossref_primary_10_1186_s13661_020_01406_4 crossref_primary_10_3934_mcrf_2024065 crossref_primary_10_4153_S0008414X23000457 crossref_primary_10_1016_j_na_2018_07_001 crossref_primary_10_1063_1_4959221 crossref_primary_10_1007_s00205_025_02082_3 crossref_primary_10_1016_j_jde_2021_01_022 crossref_primary_10_1016_j_jde_2019_08_016 crossref_primary_10_3934_math_2025023 crossref_primary_10_1515_anona_2022_0234 crossref_primary_10_1063_1_4949352 crossref_primary_10_1016_j_aim_2016_11_038 crossref_primary_10_1016_j_na_2022_113141 crossref_primary_10_1007_s13398_017_0435_2 crossref_primary_10_1137_20M1341908 crossref_primary_10_14232_ejqtde_2024_1_77 crossref_primary_10_1515_ans_2015_5024 crossref_primary_10_1088_1361_6544_ac24e5 crossref_primary_10_1007_s10884_017_9590_6 crossref_primary_10_1007_s12220_024_01897_y crossref_primary_10_1088_1361_6544_ad4503 crossref_primary_10_3934_era_2022031 crossref_primary_10_1016_j_chaos_2024_115254 crossref_primary_10_1016_j_jde_2020_04_022 crossref_primary_10_1016_j_na_2024_113653 crossref_primary_10_1063_1_5051462 crossref_primary_10_3390_fractalfract7010051 crossref_primary_10_1017_prm_2020_91 crossref_primary_10_58997_ejde_2022_61 crossref_primary_10_1016_j_jmaa_2017_06_006 crossref_primary_10_58997_ejde_2021_100 crossref_primary_10_1063_1_5027713 crossref_primary_10_1017_S0004972721000228 crossref_primary_10_1063_1_4963172 crossref_primary_10_1080_00036811_2021_1880571 crossref_primary_10_1007_s00033_021_01551_5 crossref_primary_10_1360_SSM_2024_0073 crossref_primary_10_1063_1_5067377 crossref_primary_10_1017_S0956792522000286 crossref_primary_10_1007_s00028_018_0444_4 crossref_primary_10_1515_acv_2022_0003 crossref_primary_10_1007_s00030_019_0574_6 crossref_primary_10_1063_1_5087755 crossref_primary_10_3390_sym13071199 crossref_primary_10_1142_S0219199720500583 crossref_primary_10_1007_s00033_021_01669_6 crossref_primary_10_1016_j_aml_2023_108864 crossref_primary_10_1017_prm_2022_26 crossref_primary_10_1016_j_nonrwa_2019_01_003 crossref_primary_10_1007_s10231_017_0652_5 crossref_primary_10_14232_ejqtde_2020_1_26 crossref_primary_10_1016_j_na_2022_113117 crossref_primary_10_1007_s00526_023_02453_2 crossref_primary_10_1063_5_0045980 crossref_primary_10_1007_s42967_023_00350_1 crossref_primary_10_1007_s00033_017_0892_7 crossref_primary_10_1007_s10884_018_9670_2 crossref_primary_10_1016_j_na_2018_06_009 crossref_primary_10_1515_ans_2016_6015 crossref_primary_10_3934_dcds_2017242 crossref_primary_10_1002_mma_5946 crossref_primary_10_1007_s00526_017_1194_9 crossref_primary_10_1080_17476933_2017_1332052 crossref_primary_10_1007_s13163_021_00421_y crossref_primary_10_1142_S0219530523500185 crossref_primary_10_1080_03605302_2021_1950763 crossref_primary_10_1007_s00032_020_00317_4 crossref_primary_10_1112_blms_12839 crossref_primary_10_3390_math12010008 crossref_primary_10_1016_j_bulsci_2022_103170 crossref_primary_10_1007_s00013_024_02069_8 crossref_primary_10_1186_s13661_022_01615_z crossref_primary_10_1016_j_jmaa_2021_125543 crossref_primary_10_1007_s00209_023_03405_4 crossref_primary_10_1002_mma_7320 crossref_primary_10_1007_s00526_023_02548_w crossref_primary_10_1007_s12220_022_00880_9 crossref_primary_10_1016_j_jde_2021_05_007 crossref_primary_10_1080_17476933_2017_1370464 crossref_primary_10_1016_j_na_2019_01_016 crossref_primary_10_1007_s00526_024_02914_2 crossref_primary_10_1017_prm_2019_64 crossref_primary_10_1016_j_na_2019_01_010 crossref_primary_10_1063_1_5144695 crossref_primary_10_1007_s00028_020_00596_9 crossref_primary_10_1007_s00526_019_1626_9 crossref_primary_10_1016_j_na_2019_111732 crossref_primary_10_1016_j_jde_2023_06_032 crossref_primary_10_1016_j_na_2024_113698 crossref_primary_10_1017_prm_2024_94 crossref_primary_10_1063_5_0098126 crossref_primary_10_1186_s13661_019_01303_5 crossref_primary_10_3934_dcds_2016054 crossref_primary_10_1080_00036811_2021_1979222 crossref_primary_10_1007_s11766_024_4378_z crossref_primary_10_1016_S0252_9602_18_30815_4 crossref_primary_10_1186_s13661_020_01424_2 crossref_primary_10_3390_fractalfract6070352 crossref_primary_10_1016_j_jmaa_2025_129249 crossref_primary_10_1093_imrn_rnab086 crossref_primary_10_1063_5_0006247 crossref_primary_10_1007_s00033_022_01866_x crossref_primary_10_1016_j_na_2018_10_006 crossref_primary_10_12677_aam_2024_134171 crossref_primary_10_1007_s00009_023_02422_1 crossref_primary_10_1007_s00526_020_01845_y crossref_primary_10_1002_mma_3731 crossref_primary_10_1016_j_jfa_2016_08_011 crossref_primary_10_1007_s00526_019_1641_x crossref_primary_10_1088_1361_6544_aa5b12 crossref_primary_10_1016_j_jmaa_2023_127144 crossref_primary_10_1215_00127094_2019_0034 crossref_primary_10_2140_pjm_2023_324_1 crossref_primary_10_1002_mma_7411 crossref_primary_10_1093_imrn_rnz274 crossref_primary_10_1007_s11425_017_9195_4 crossref_primary_10_1016_j_anihpc_2020_07_003 crossref_primary_10_1515_anona_2022_0252 crossref_primary_10_1007_s12220_020_00492_1 crossref_primary_10_1142_S0219199718500487 crossref_primary_10_1016_j_anihpc_2017_04_001 crossref_primary_10_1007_s12220_022_01128_2 crossref_primary_10_3934_math_20241052 crossref_primary_10_1111_sapm_12448 crossref_primary_10_1007_s00526_024_02749_x crossref_primary_10_11650_tjm_211203 crossref_primary_10_1007_s12220_024_01608_7 crossref_primary_10_1016_j_jfa_2022_109712 crossref_primary_10_1016_j_jde_2018_08_008 crossref_primary_10_1515_gmj_2023_2089 crossref_primary_10_1007_s11856_024_2639_4 crossref_primary_10_1186_s13661_021_01534_5 crossref_primary_10_1063_1_4960045 crossref_primary_10_3934_dcds_2022068 crossref_primary_10_1016_j_physd_2020_132691 crossref_primary_10_3934_dcds_2017168 crossref_primary_10_1090_tran_6872 crossref_primary_10_1515_forum_2024_0301 crossref_primary_10_1186_s13661_020_01463_9 crossref_primary_10_1515_anona_2024_0020 crossref_primary_10_1063_1_5121762 crossref_primary_10_1515_anona_2024_0029 crossref_primary_10_1016_j_na_2020_111801 crossref_primary_10_1063_1_5037126 crossref_primary_10_1515_anona_2024_0027 crossref_primary_10_3934_eect_2022033 crossref_primary_10_1016_j_jde_2024_11_053 crossref_primary_10_1051_cocv_2016063 crossref_primary_10_11948_20200307 crossref_primary_10_1016_j_jfa_2020_108510 crossref_primary_10_1002_mma_6543 crossref_primary_10_1016_j_jmaa_2021_125456 crossref_primary_10_1007_s00032_022_00361_2 crossref_primary_10_1090_proc_14184 crossref_primary_10_1007_s00574_016_0017_5 crossref_primary_10_1177_09217134251318427 crossref_primary_10_1007_s12220_022_01011_0 crossref_primary_10_1016_j_aml_2018_07_010 crossref_primary_10_1515_ans_2022_0002 crossref_primary_10_3103_S1068362324700341 crossref_primary_10_1016_j_jfa_2019_02_001 crossref_primary_10_1063_1_5021689 crossref_primary_10_1007_s00023_018_0711_5 crossref_primary_10_3934_dcdss_2024134 crossref_primary_10_1007_s10440_023_00627_w crossref_primary_10_14232_ejqtde_2021_1_94 crossref_primary_10_3934_dcdsb_2022039 crossref_primary_10_1007_s00229_016_0878_3 crossref_primary_10_1007_s10473_023_0308_z crossref_primary_10_1142_S0219199717500171 crossref_primary_10_14232_ejqtde_2022_1_62 crossref_primary_10_1007_s11868_021_00390_2 crossref_primary_10_1063_5_0208876 crossref_primary_10_3390_fractalfract8020113 crossref_primary_10_1137_22M1499650 crossref_primary_10_1017_prm_2024_58 crossref_primary_10_1080_17476933_2019_1631290 crossref_primary_10_1002_mana_202000473 crossref_primary_10_1007_s00526_021_02084_5 crossref_primary_10_1515_ans_2022_0013 crossref_primary_10_1017_prm_2018_114 crossref_primary_10_1007_s11425_021_1991_3 crossref_primary_10_1017_prm_2018_41 crossref_primary_10_2140_pjm_2017_287_439 crossref_primary_10_1007_s11118_024_10167_z crossref_primary_10_1051_mmnp_2019008 crossref_primary_10_1002_mma_4470 crossref_primary_10_1007_s13540_024_00285_1 crossref_primary_10_3934_cpaa_2021128 crossref_primary_10_1017_prm_2024_44 crossref_primary_10_1080_17476933_2023_2185884 |
Cites_doi | 10.3934/dcds.2005.12.347 10.1007/BF00250684 10.1002/cpa.20153 10.1080/03605308708820522 10.1002/cpa.20093 10.1080/03605300600987306 10.1137/S0036141093249080 10.2307/2154282 10.1016/0022-1236(90)90049-Q 10.2307/1993291 10.1098/rspa.1997.0068 10.1016/j.jfa.2011.12.004 10.1016/j.anihpc.2013.02.001 10.4007/annals.2005.161.157 10.1007/s00222-002-0268-1 10.1112/plms/pdq010 10.1007/s00220-014-1919-y 10.1007/s00205-008-0208-3 10.1016/j.jfa.2004.02.005 10.1016/j.jfa.2005.08.010 10.1002/cpa.20116 10.1016/j.anihpc.2011.06.005 10.1137/0516034 10.1007/s00205-013-0620-1 10.1007/BF01208265 10.1016/j.jfa.2008.05.015 10.1080/03605308208820218 10.4171/JEMS/6 10.1016/0167-2789(89)90050-X 10.2140/apde.2009.2.1 10.1007/BF02392447 10.1016/j.aim.2010.07.016 10.1007/s11511-013-0095-9 10.1137/050648389 10.1007/BF00251502 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Sep 2016 |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Sep 2016 |
DBID | BSCLL AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.21591 |
DatabaseName | Istex CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 1726 |
ExternalDocumentID | 4145009541 10_1002_cpa_21591 CPA21591 ark_67375_WNG_4S8PWV1Q_4 |
Genre | article Feature |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABIJN ABLJU ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c4361-4770c5f68a64eb7121029487c7d7d08b0a608a8ba80d32a721c658921625e6b53 |
IEDL.DBID | DR2 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 10:57:57 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 02:50:30 EDT 2025 Wed Jan 22 16:59:27 EST 2025 Wed Oct 30 09:53:55 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4361-4770c5f68a64eb7121029487c7d7d08b0a608a8ba80d32a721c658921625e6b53 |
Notes | ArticleID:CPA21591 istex:B7FB3E882EB20DD7044B8BD995F150FFDEF576B6 ark:/67375/WNG-4S8PWV1Q-4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpa.21591 |
PQID | 1810868911 |
PQPubID | 48818 |
PageCount | 56 |
ParticipantIDs | proquest_journals_1810868911 crossref_citationtrail_10_1002_cpa_21591 crossref_primary_10_1002_cpa_21591 wiley_primary_10_1002_cpa_21591_CPA21591 istex_primary_ark_67375_WNG_4S8PWV1Q_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationTitleAlternate | Commun. Pur. Appl. Math |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons, Limited |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons, Limited |
References | Albert, J. P.; Bona, J. L.; Saut, J.-C. Model equations for waves in stratified fluids. Proc. Roy. Soc. London Ser. A 453 (1997), no. 1961, 1233-1260. doi: 10.1098/rspa.1997.0068 Abdelouhab, L.; Bona, J. L.; Felland, M.; Saut, J.-C. Nonlocal models for nonlinear, dispersive waves. Phys. D 40 (1989), no. 3, 360-392. doi: 10.1016/0167-2789(89)90050-X Amick, C. J.; Toland, J. F. Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Math. 167 (1991), no. 1-2, 107-126. doi: 10.1007/BF02392447 Blumenthal, R. M.; Getoor, R. K. Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960), 263-273. doi: 10.2307/1993291 Weinstein, M. I. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985), no. 3, 472-491. doi: 10.1137/0516034 Graham, C. R.; Zworski, M. Scattering matrix in conformal geometry. Invent. Math. 152 (2003), no. 1, 89-118. doi: 10.1007/s00222-002-0268-1 Krieger, J.; Lenzmann, E.; Raphaël, P. Nondispersive solutions to the L2-critical half-wave equation. Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61-129. doi: 10.1007/s00205-013-0620-1 Kenig, C. E.; Martel, Y.; Robbiano, L. Local well-posedness and blow-up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 6, 853-887. doi: 10.1016/j.anihpc.2011.06.005 Lieb, E. H.; Loss, M. Analysis. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, R.I., 1997. McLeod, K. Uniqueness of positive radial solutions of Δ u + f(u) = 0 in Rn. II. Trans. Amer. Math. Soc. 339 (1993), no. 2, 495-505. doi: 10.2307/2154282 Chang, S.-M.; Gustafson, S.; Nakanishi, K.; Tsai, T.-P. Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39 (2007/08), no. 4, 1070-1111. doi: 10.1137/050648389 Kwong, M. K. Uniqueness of positive solutions of Δ u-u + up = 0 in Rn. Arch. Rational Mech. Anal. 105 (1989), no. 3, 243-266. doi: 10.1007/BF00251502 Banica, V.; del Mar González, M.; Saéz, M. Some constructions for the fractional Laplacian on noncompact manifolds. Rev. Mat. Iber., forthcoming. arxiv:1212.3109 [math.DG] Weinstein, M. I. Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Comm. Partial Differential Equations 12 (1987), no. 10, 1133-1173. doi: 10.1080/03605308708820522 Bañuelos, R.; Kulczycki, T. The Cauchy process and the Steklov problem. J. Funct. Anal. 211 (2004), no. 2, 355-423. doi: 10.1016/j.jfa.2004.02.005 Fabes, E. B.; Kenig, C. E.; Serapioni, R. P. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. doi: 10.1080/03605308208820218 Silvestre, L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112. doi: 10.1002/cpa.20153 Carmona, R.; Masters, W. C.; Simon, B. Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91 (1990), no. 1, 117-142. doi: 10.1016/0022-1236(90)90049-Q Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. doi: 10.1080/03605300600987306 Kulczycki, T.; Kwaśnicki, M.; Mał;ecki, J.; Stos, A. Spectral properties of the Cauchy process on half-line and interval. Proc. Lond. Math. Soc. (3) 101 (2010), no. 2, 589-622. doi: 10.1112/plms/pdq010 Weinstein, M. I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1982/83), no. 4, 567-576. Alessandrini, G.; Magnanini, R. Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal. 25 (1994), no. 5, 1259-1268. doi: 10.1137/S0036141093249080 Molčanov, S. A.; Ostrovskiĭ, E. Symmetric stable processes as traces of degenerate diffusion processes. Teor. Verojatnost. i Primenen. 14 (1969), 127-130. Chang, S.-Y. A.; Gonzàlez, M. d. M. Fractional Laplacian in conformal geometry. Adv. Math. 226 (2011), no. 2, 1410-1432. doi: 10.1016/j.aim.2010.07.016 Frank, R. L.; Seiringer, R. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255 (2008), no. 12, 3407-3430. doi: 10.1016/j.jfa.2008.05.015 Kwaśnicki, M. Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262 (2012), no. 5, 2379-2402. doi: 10.1016/j.jfa.2011.12.004 Chen, W.; Li, C.; Ou, B. Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343. doi: 10.1002/cpa.20116 Reed, M.; Simon, B. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York-London, 1978. Cabré, X.; Sire, Y. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23-53. doi: 10.1016/j.anihpc.2013.02.001 Fall, M. M.; Valdinoci, E. Uniqueness and nondegeneracy of positive solutions of (−Δ)su + u = up in ℝN when s is close to 1. Comm. Math. Phys. 329 (2014), no. 1, 383-404. doi: 10.1007/s00220-014-1919-y Cabré, X.; Solà-Morales, J. Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58 (2005), no. 12, 1678-1732. doi: 10.1002/cpa.20093 Frank, R. L.; Lenzmann, E. Uniqueness of non-linear ground states for fractional Laplacians in ℝ. Acta Math. 210 (2013), no. 2, 261-318. doi: 10.1007/s11511-013-0095-9 Chen, W.; Li, C.; Ou, B. Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12 (2005), no. 2, 347-354. Lenzmann, E. Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2 (2009), no. 1, 1-27. doi: 10.2140/apde.2009.2.1 Coffman, C. V. Uniqueness of the ground state solution for Δ u-u + u3 = 0 and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46 (1972), 81-95. doi: 10.1007/BF00250684 Burchard, A.; Hajaiej, H. Rearrangement inequalities for functionals with monotone integrands. J. Funct. Anal. 233 (2006), no. 2, 561-582. doi: 10.1016/j.jfa.2005.08.010 Li, Y. Y. Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153-180. Ma, L.; Zhao, L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455-467. doi: 10.1007/s00205-008-0208-3 Merle, F.; Raphael, P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. of Math. (2) 161 (2005), no. 1, 157-222. doi: 10.4007/annals.2005.161.157 1989; 40 1960; 95 2012; 262 1987; 12 2013; 209 2010; 101 1997; 453 2006; 59 1997 1994; 25 2004; 6 1969; 14 2007; 32 1972; 46 2006; 233 1982/83; 87 1978 2003; 152 2004; 211 2011; 226 1989; 105 2005; 161 1991; 167 2014; 329 1993; 339 2013; 210 1982; 7 2007; 60 2010; 195 2008; 255 2011; 28 2009; 2 1990; 91 2005; 12 1985; 16 2007/08; 39 2014; 31 2005; 58 e_1_2_1_20_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 e_1_2_1_29_1 Lieb E. H. (e_1_2_1_31_1) 1997 Reed M. (e_1_2_1_36_1) 1978 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 Banica V. (e_1_2_1_6_1) e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 Molčanov S. A. (e_1_2_1_35_1) 1969; 14 e_1_2_1_37_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – reference: Cabré, X.; Sire, Y. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23-53. doi: 10.1016/j.anihpc.2013.02.001 – reference: Chang, S.-M.; Gustafson, S.; Nakanishi, K.; Tsai, T.-P. Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39 (2007/08), no. 4, 1070-1111. doi: 10.1137/050648389 – reference: Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. doi: 10.1080/03605300600987306 – reference: Lieb, E. H.; Loss, M. Analysis. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, R.I., 1997. – reference: Frank, R. L.; Lenzmann, E. Uniqueness of non-linear ground states for fractional Laplacians in ℝ. Acta Math. 210 (2013), no. 2, 261-318. doi: 10.1007/s11511-013-0095-9 – reference: Weinstein, M. I. Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Comm. Partial Differential Equations 12 (1987), no. 10, 1133-1173. doi: 10.1080/03605308708820522 – reference: Banica, V.; del Mar González, M.; Saéz, M. Some constructions for the fractional Laplacian on noncompact manifolds. Rev. Mat. Iber., forthcoming. arxiv:1212.3109 [math.DG] – reference: Frank, R. L.; Seiringer, R. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255 (2008), no. 12, 3407-3430. doi: 10.1016/j.jfa.2008.05.015 – reference: Kenig, C. E.; Martel, Y.; Robbiano, L. Local well-posedness and blow-up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 6, 853-887. doi: 10.1016/j.anihpc.2011.06.005 – reference: Blumenthal, R. M.; Getoor, R. K. Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960), 263-273. doi: 10.2307/1993291 – reference: Fall, M. M.; Valdinoci, E. Uniqueness and nondegeneracy of positive solutions of (−Δ)su + u = up in ℝN when s is close to 1. Comm. Math. Phys. 329 (2014), no. 1, 383-404. doi: 10.1007/s00220-014-1919-y – reference: Cabré, X.; Solà-Morales, J. Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58 (2005), no. 12, 1678-1732. doi: 10.1002/cpa.20093 – reference: Molčanov, S. A.; Ostrovskiĭ, E. Symmetric stable processes as traces of degenerate diffusion processes. Teor. Verojatnost. i Primenen. 14 (1969), 127-130. – reference: Burchard, A.; Hajaiej, H. Rearrangement inequalities for functionals with monotone integrands. J. Funct. Anal. 233 (2006), no. 2, 561-582. doi: 10.1016/j.jfa.2005.08.010 – reference: Alessandrini, G.; Magnanini, R. Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal. 25 (1994), no. 5, 1259-1268. doi: 10.1137/S0036141093249080 – reference: Lenzmann, E. Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2 (2009), no. 1, 1-27. doi: 10.2140/apde.2009.2.1 – reference: Carmona, R.; Masters, W. C.; Simon, B. Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91 (1990), no. 1, 117-142. doi: 10.1016/0022-1236(90)90049-Q – reference: McLeod, K. Uniqueness of positive radial solutions of Δ u + f(u) = 0 in Rn. II. Trans. Amer. Math. Soc. 339 (1993), no. 2, 495-505. doi: 10.2307/2154282 – reference: Abdelouhab, L.; Bona, J. L.; Felland, M.; Saut, J.-C. Nonlocal models for nonlinear, dispersive waves. Phys. D 40 (1989), no. 3, 360-392. doi: 10.1016/0167-2789(89)90050-X – reference: Albert, J. P.; Bona, J. L.; Saut, J.-C. Model equations for waves in stratified fluids. Proc. Roy. Soc. London Ser. A 453 (1997), no. 1961, 1233-1260. doi: 10.1098/rspa.1997.0068 – reference: Silvestre, L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112. doi: 10.1002/cpa.20153 – reference: Weinstein, M. I. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985), no. 3, 472-491. doi: 10.1137/0516034 – reference: Bañuelos, R.; Kulczycki, T. The Cauchy process and the Steklov problem. J. Funct. Anal. 211 (2004), no. 2, 355-423. doi: 10.1016/j.jfa.2004.02.005 – reference: Ma, L.; Zhao, L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455-467. doi: 10.1007/s00205-008-0208-3 – reference: Coffman, C. V. Uniqueness of the ground state solution for Δ u-u + u3 = 0 and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46 (1972), 81-95. doi: 10.1007/BF00250684 – reference: Kulczycki, T.; Kwaśnicki, M.; Mał;ecki, J.; Stos, A. Spectral properties of the Cauchy process on half-line and interval. Proc. Lond. Math. Soc. (3) 101 (2010), no. 2, 589-622. doi: 10.1112/plms/pdq010 – reference: Fabes, E. B.; Kenig, C. E.; Serapioni, R. P. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. doi: 10.1080/03605308208820218 – reference: Krieger, J.; Lenzmann, E.; Raphaël, P. Nondispersive solutions to the L2-critical half-wave equation. Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61-129. doi: 10.1007/s00205-013-0620-1 – reference: Chang, S.-Y. A.; Gonzàlez, M. d. M. Fractional Laplacian in conformal geometry. Adv. Math. 226 (2011), no. 2, 1410-1432. doi: 10.1016/j.aim.2010.07.016 – reference: Chen, W.; Li, C.; Ou, B. Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12 (2005), no. 2, 347-354. – reference: Weinstein, M. I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1982/83), no. 4, 567-576. – reference: Kwong, M. K. Uniqueness of positive solutions of Δ u-u + up = 0 in Rn. Arch. Rational Mech. Anal. 105 (1989), no. 3, 243-266. doi: 10.1007/BF00251502 – reference: Reed, M.; Simon, B. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York-London, 1978. – reference: Amick, C. J.; Toland, J. F. Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Math. 167 (1991), no. 1-2, 107-126. doi: 10.1007/BF02392447 – reference: Li, Y. Y. Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153-180. – reference: Graham, C. R.; Zworski, M. Scattering matrix in conformal geometry. Invent. Math. 152 (2003), no. 1, 89-118. doi: 10.1007/s00222-002-0268-1 – reference: Kwaśnicki, M. Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262 (2012), no. 5, 2379-2402. doi: 10.1016/j.jfa.2011.12.004 – reference: Chen, W.; Li, C.; Ou, B. Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343. doi: 10.1002/cpa.20116 – reference: Merle, F.; Raphael, P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. of Math. (2) 161 (2005), no. 1, 157-222. doi: 10.4007/annals.2005.161.157 – volume: 7 start-page: 77 issue: 1 year: 1982 end-page: 116 article-title: The local regularity of solutions of degenerate elliptic equations publication-title: Comm. Partial Differential Equations – volume: 105 start-page: 243 issue: 3 year: 1989 end-page: 266 article-title: Uniqueness of positive solutions of Δ ‐ + = 0 in publication-title: Arch. Rational Mech. Anal. – volume: 40 start-page: 360 issue: 3 year: 1989 end-page: 392 article-title: Nonlocal models for nonlinear, dispersive waves publication-title: Phys. D – volume: 167 start-page: 107 issue: 1‐2 year: 1991 end-page: 126 article-title: Uniqueness and related analytic properties for the Benjamin‐Ono equation—a nonlinear Neumann problem in the plane publication-title: Acta Math. – volume: 87 start-page: 567 issue: 4 year: 1982/83 end-page: 576 article-title: Nonlinear Schrödinger equations and sharp interpolation estimates publication-title: Comm. Math. Phys. – volume: 211 start-page: 355 issue: 2 year: 2004 end-page: 423 article-title: The Cauchy process and the Steklov problem publication-title: J. Funct. Anal. – volume: 329 start-page: 383 issue: 1 year: 2014 end-page: 404 article-title: Uniqueness and nondegeneracy of positive solutions of (−Δ) + = in ℝ when is close to 1 publication-title: Comm. Math. Phys. – volume: 226 start-page: 1410 issue: 2 year: 2011 end-page: 1432 article-title: Fractional Laplacian in conformal geometry publication-title: Adv. Math. – volume: 210 start-page: 261 issue: 2 year: 2013 end-page: 318 article-title: Uniqueness of non‐linear ground states for fractional Laplacians in ℝ publication-title: Acta Math – volume: 60 start-page: 67 issue: 1 year: 2007 end-page: 112 article-title: Regularity of the obstacle problem for a fractional power of the Laplace operator publication-title: Comm. Pure Appl. Math. – volume: 255 start-page: 3407 issue: 12 year: 2008 end-page: 3430 article-title: Non‐linear ground state representations and sharp Hardy inequalities publication-title: J. Funct. Anal. – volume: 161 start-page: 157 issue: 1 year: 2005 end-page: 222 article-title: The blow‐up dynamic and upper bound on the blow‐up rate for critical nonlinear Schrödinger equation publication-title: Ann. of Math. (2) – volume: 39 start-page: 1070 issue: 4 year: 2007/08 end-page: 1111 article-title: Spectra of linearized operators for NLS solitary waves publication-title: SIAM J. Math. Anal. – volume: 46 start-page: 81 year: 1972 end-page: 95 article-title: Uniqueness of the ground state solution for Δ ‐ + = 0 and a variational characterization of other solutions publication-title: Arch. Rational Mech. Anal. – volume: 339 start-page: 495 issue: 2 year: 1993 end-page: 505 article-title: Uniqueness of positive radial solutions of Δ + ( ) = 0 in . II publication-title: Trans. Amer. Math. Soc. – volume: 32 start-page: 1245 issue: 7‐9 year: 2007 end-page: 1260 article-title: An extension problem related to the fractional Laplacian publication-title: Comm. Partial Differential Equations – volume: 195 start-page: 455 issue: 2 year: 2010 end-page: 467 article-title: Classification of positive solitary solutions of the nonlinear Choquard equation publication-title: Arch. Ration. Mech. Anal. – volume: 16 start-page: 472 issue: 3 year: 1985 end-page: 491 article-title: Modulational stability of ground states of nonlinear Schrödinger equations publication-title: SIAM J. Math. Anal. – volume: 209 start-page: 61 issue: 1 year: 2013 end-page: 129 article-title: Nondispersive solutions to the ‐critical half‐wave equation publication-title: Arch. Ration. Mech. Anal. – volume: 59 start-page: 330 issue: 3 year: 2006 end-page: 343 article-title: Classification of solutions for an integral equation publication-title: Comm. Pure Appl. Math. – volume: 233 start-page: 561 issue: 2 year: 2006 end-page: 582 article-title: Rearrangement inequalities for functionals with monotone integrands publication-title: J. Funct. Anal. – volume: 31 start-page: 23 issue: 1 year: 2014 end-page: 53 article-title: Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – volume: 12 start-page: 347 issue: 2 year: 2005 end-page: 354 article-title: Qualitative properties of solutions for an integral equation publication-title: Discrete Contin. Dyn. Syst. – volume: 6 start-page: 153 issue: 2 year: 2004 end-page: 180 article-title: Remark on some conformally invariant integral equations: the method of moving spheres publication-title: J. Eur. Math. Soc. (JEMS) – volume: 91 start-page: 117 issue: 1 year: 1990 end-page: 142 article-title: Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions publication-title: J. Funct. Anal. – volume: 101 start-page: 589 issue: 2 year: 2010 end-page: 622 article-title: Spectral properties of the Cauchy process on half‐line and interval publication-title: Proc. Lond. Math. Soc. (3) – volume: 2 start-page: 1 issue: 1 year: 2009 end-page: 27 article-title: Uniqueness of ground states for pseudorelativistic Hartree equations publication-title: Anal. PDE – volume: 14 start-page: 127 year: 1969 end-page: 130 article-title: Symmetric stable processes as traces of degenerate diffusion processes publication-title: Teor. Verojatnost. i Primenen. – year: 1997 – volume: 453 start-page: 1233 issue: 1961 year: 1997 end-page: 1260 article-title: Model equations for waves in stratified fluids publication-title: Proc. Roy. Soc. London Ser. A – volume: 25 start-page: 1259 issue: 5 year: 1994 end-page: 1268 article-title: Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions publication-title: SIAM J. Math. Anal. – volume: 152 start-page: 89 issue: 1 year: 2003 end-page: 118 article-title: Scattering matrix in conformal geometry publication-title: Invent. Math. – volume: 262 start-page: 2379 issue: 5 year: 2012 end-page: 2402 article-title: Eigenvalues of the fractional Laplace operator in the interval publication-title: J. Funct. Anal. – volume: 58 start-page: 1678 issue: 12 year: 2005 end-page: 1732 article-title: Layer solutions in a half‐space for boundary reactions publication-title: Comm. Pure Appl. Math. – year: 1978 – volume: 12 start-page: 1133 issue: 10 year: 1987 end-page: 1173 article-title: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation publication-title: Comm. Partial Differential Equations – article-title: Some constructions for the fractional Laplacian on noncompact manifolds publication-title: Rev. Mat. Iber. – volume: 95 start-page: 263 year: 1960 end-page: 273 article-title: Some theorems on stable processes publication-title: Trans. Amer. Math. Soc. – volume: 28 start-page: 853 issue: 6 year: 2011 end-page: 887 article-title: Local well‐posedness and blow‐up in the energy space for a class of critical dispersion generalized Benjamin‐Ono equations publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – ident: e_1_2_1_16_1 doi: 10.3934/dcds.2005.12.347 – ident: e_1_2_1_18_1 doi: 10.1007/BF00250684 – ident: e_1_2_1_37_1 doi: 10.1002/cpa.20153 – ident: e_1_2_1_40_1 doi: 10.1080/03605308708820522 – ident: e_1_2_1_11_1 doi: 10.1002/cpa.20093 – ident: e_1_2_1_12_1 doi: 10.1080/03605300600987306 – ident: e_1_2_1_4_1 doi: 10.1137/S0036141093249080 – ident: e_1_2_1_33_1 doi: 10.2307/2154282 – ident: e_1_2_1_13_1 doi: 10.1016/0022-1236(90)90049-Q – ident: e_1_2_1_8_1 doi: 10.2307/1993291 – ident: e_1_2_1_3_1 doi: 10.1098/rspa.1997.0068 – ident: e_1_2_1_27_1 doi: 10.1016/j.jfa.2011.12.004 – ident: e_1_2_1_10_1 doi: 10.1016/j.anihpc.2013.02.001 – ident: e_1_2_1_34_1 doi: 10.4007/annals.2005.161.157 – volume-title: Methods of modern mathematical physics. IV. Analysis of operators year: 1978 ident: e_1_2_1_36_1 – ident: e_1_2_1_23_1 doi: 10.1007/s00222-002-0268-1 – ident: e_1_2_1_26_1 doi: 10.1112/plms/pdq010 – ident: e_1_2_1_20_1 doi: 10.1007/s00220-014-1919-y – ident: e_1_2_1_32_1 doi: 10.1007/s00205-008-0208-3 – ident: e_1_2_1_7_1 doi: 10.1016/j.jfa.2004.02.005 – ident: e_1_2_1_9_1 doi: 10.1016/j.jfa.2005.08.010 – ident: e_1_2_1_17_1 doi: 10.1002/cpa.20116 – ident: e_1_2_1_24_1 doi: 10.1016/j.anihpc.2011.06.005 – ident: e_1_2_1_39_1 doi: 10.1137/0516034 – ident: e_1_2_1_25_1 doi: 10.1007/s00205-013-0620-1 – volume-title: Analysis year: 1997 ident: e_1_2_1_31_1 – ident: e_1_2_1_38_1 doi: 10.1007/BF01208265 – ident: e_1_2_1_22_1 doi: 10.1016/j.jfa.2008.05.015 – ident: e_1_2_1_19_1 doi: 10.1080/03605308208820218 – ident: e_1_2_1_30_1 doi: 10.4171/JEMS/6 – volume: 14 start-page: 127 year: 1969 ident: e_1_2_1_35_1 article-title: Symmetric stable processes as traces of degenerate diffusion processes publication-title: Teor. Verojatnost. i Primenen. – ident: e_1_2_1_2_1 doi: 10.1016/0167-2789(89)90050-X – ident: e_1_2_1_29_1 doi: 10.2140/apde.2009.2.1 – ident: e_1_2_1_5_1 doi: 10.1007/BF02392447 – ident: e_1_2_1_15_1 doi: 10.1016/j.aim.2010.07.016 – ident: e_1_2_1_21_1 doi: 10.1007/s11511-013-0095-9 – ident: e_1_2_1_14_1 doi: 10.1137/050648389 – ident: e_1_2_1_6_1 article-title: Some constructions for the fractional Laplacian on noncompact manifolds publication-title: Rev. Mat. Iber. – ident: e_1_2_1_28_1 doi: 10.1007/BF00251502 |
SSID | ssj0011483 |
Score | 2.625449 |
Snippet | We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)s with s ∊ (0,1) for any... We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ) s with s ∊ (0,1) for any... We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (...)^sup s^ with s... (0,1) for... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1671 |
SubjectTerms | Laplace transforms Linear equations Nonlinear equations Schrodinger equation |
Title | Uniqueness of Radial Solutions for the Fractional Laplacian |
URI | https://api.istex.fr/ark:/67375/WNG-4S8PWV1Q-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21591 https://www.proquest.com/docview/1810868911 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX_TBuzhvFBHxpVuW5lZ8EnGKqMzL3B6EkKTdy8Y2dgHx13uSrtWJgvhW6ClpT87lO-nJF4SOqZUdyGQ6JDomIWQIERoT87DGZMKsTLCRbjfy3T2_btKbNmsvoLN8L0zGD1EsuDnP8PHaObg24-onaagd6grkK79z3fVqOUD0WFBHOZif_V12cYZTnLMKYVItnpzLRYtOrW9zQPMrXPX5pr6KXvM3zdpMupXpxFTs-zcSx39-yhpameHQ4DwznHW0kPY30PJdQeI63kRnTU_u6mJhMOgEj47FoBcU62gBwN0AxIP6KNscATdvtevxAovbQs365fPFdTg7ayG0NOJQRgqBLetwqTlNjfC0YjEUM1YkIsHSYM2x1NJoiZOIaKgbLWCXmNSgfkq5YdE2KvUH_XQHBeDjgpkaS2icUs6IjoQAQ8BMakJ0SsvoNNe6sjMicnceRk9lFMpEgT6U10cZHRWiw4x94yehEz91hYQedV27mmCqdX-l6JNstF5qDwoG3s_nVs08dawA4UBVJyHmw3v5Sfp9JHXROPcXu38X3UNLgLF41pa2j0qT0TQ9ABwzMYfeYD8AnN_prw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB4hONAeWuhDTcvDqtqqlw1eZ9f2CnFACWkoSUQpgdxc27u5gAJKgnj8Jv4K_4mx99FStVIvHHpbaUdaazyPb7zjbwA-RFaOMJPpgOmEBZghRGBMwoMwlmlsZUqNdLeRe33eGURfh_FwDm7LuzA5P0R14OY8w8dr5-DuQHrjJ2uoPdd1TFhJWLRU7mXXl1iwTbd2W7i7Hxlr7xw2O0ExUyCwUYNjuSQEtfGIS82jzAhPn5UgaLciFSmVhmpOpZZGS5o2mMb6yGKOTliIdULGjZsRgQF_wU0Qd0z9rYOKrMoVFvn_bBfZeERLHiPKNqqlPsh-C24jrx5A218Bss9w7edwV-omb2w5qV_MTN3e_EYb-b8obwmeFVCbbOe-sQxz2fgFPO1VPLXTl7A58Py1LtyTsxE5cEQNp6Q6KiSI6AmKk_Ykv_-BL7vatbGhU72CwaOs_jXMj8_G2RsgGMZEbMI4jZIMTYHphhBo6zSWmjGdRTX4XG6zsgXXuhv5capylmimUP_K678G7yvR85xg5E9Cn7ytVBJ6cuI68kSsjvtfVPRd7h8fhd8UfnilNCZVBKOpQhCHhavEtIbr8lbx9y-p5v62f3j776LrsNg57HVVd7e_9w6eIKTkeRfeCszPJhfZKsK2mVnz3kLgx2Nb2D1uTUOS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4QSIgeFHxEXtoxarzM0tPbr4nhQFhXENis6Aq3trtn9gJZNrtLfPwl_go_iuqeh2I08cLB2yRTSXeq6_HVTPVXAC-410PMZDZhNmMJZgiVOJfJJBU6F17n1OlwG_mwJ3cH_P2JOJmDy_ouTMkP0XxwC54R43Vw8HE-3PxJGurHtoX5Kkurjsr94vtXrNemW3sdPNyXjHXfftrZTaqRAonnbYnVklLUi6HUVvLCqcielSFm9ypXOdWOWkm11c5qmreZxfLIY4rOWIplQiFdGBGB8X6BS5qFORGdo4arKtQV5e_sENgkpzWNEWWbzVZvJL-FcI7fbiDbX_FxTHDd-3BVq6bsazltXcxcy__4jTXyP9HdEtyrgDbZLj1jGeaK0QO4e9iw1E4fwptBZK8NwZ6cD8lRoGk4I82HQoJ4nqA46U7K2x_48sCGJjZ0qUcwuJXdP4b50fmoeAIEg5gSLhU5zwouBbNtpdDSqdCWMVvwFXhdn7LxFdN6GPhxZkqOaGZQ_ybqfwWeN6Ljkl7kT0Kvoqk0EnZyGvrxlDDHvXeGf9T948_pB4MLr9e2ZKpQNDUI4bBs1ZjUcF_RKP6-ktnpb8eH1X8XfQaL_U7XHOz19tfgDuJJWbbgrcP8bHJRbCBmm7mn0VcIfLltA7sGLkhCQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniqueness+of+Radial+Solutions+for+the+Fractional+Laplacian&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Frank%2C+Rupert+L.&rft.au=Lenzmann%2C+Enno&rft.au=Silvestre%2C+Luis&rft.date=2016-09-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=69&rft.issue=9&rft.spage=1671&rft.epage=1726&rft_id=info:doi/10.1002%2Fcpa.21591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_21591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |