Uniqueness of Radial Solutions for the Fractional Laplacian

We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)s with s ∊ (0,1) for any space dimensions N ≥ 1. By extending a monotonicity formula found by Cabré and Sire , we show that the linear equation (−Δ)su+Vu=0 in ℝN has at m...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 69; no. 9; pp. 1671 - 1726
Main Authors Frank, Rupert L., Lenzmann, Enno, Silvestre, Luis
Format Journal Article
LanguageEnglish
Published New York Blackwell Publishing Ltd 01.09.2016
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)s with s ∊ (0,1) for any space dimensions N ≥ 1. By extending a monotonicity formula found by Cabré and Sire , we show that the linear equation (−Δ)su+Vu=0 in ℝN has at most one radial and bounded solution vanishing at infinity, provided that the potential V is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrödinger operator H = (−Δ)s + V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half‐space ℝ+N+1, we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation −Δ)sQ+Q−|Q|αQ=0 in ℝN for arbitrary space dimensions N ≥ 1 and all admissible exponents α > 0. This generalizes the nondegeneracy and uniqueness result for dimension N = 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin‐Ono equation found by Amick and Toland .© 2016 Wiley Periodicals, Inc.
AbstractList We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ) s with s  ∊ (0,1) for any space dimensions N  ≥ 1. By extending a monotonicity formula found by Cabré and Sire , we show that the linear equation urn:x-wiley:00103640:media:cpa21591:cpa21591-math-0001 has at most one radial and bounded solution vanishing at infinity, provided that the potential V is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrödinger operator H = (−Δ) s  +  V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half‐space , we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation urn:x-wiley:00103640:media:cpa21591:cpa21591-math-0003 for arbitrary space dimensions N  ≥ 1 and all admissible exponents α  > 0. This generalizes the nondegeneracy and uniqueness result for dimension N = 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin‐Ono equation found by Amick and Toland .© 2016 Wiley Periodicals, Inc.
We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (...)^sup s^ with s... (0,1) for any space dimensions N ≥ 1. By extending a monotonicity formula found by Cabre and Sire , we show that the linear equation ... has at most one radial and bounded solution vanishing at infinity, provided that the potential V is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrodinger operator H = (-...)^sup s^ + V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half-space ..., we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation ... for arbitrary space dimensions N ≥ 1 and all admissible exponents a > 0. This generalizes the nondegeneracy and uniqueness result for dimension N = 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin-Ono equation found by Amick and Toland. (ProQuest: ... denotes formulae/symbols omitted.)
We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)s with s ∊ (0,1) for any space dimensions N ≥ 1. By extending a monotonicity formula found by Cabré and Sire , we show that the linear equation (−Δ)su+Vu=0 in ℝN has at most one radial and bounded solution vanishing at infinity, provided that the potential V is radial and nondecreasing. In particular, this result implies that all radial eigenvalues of the corresponding fractional Schrödinger operator H = (−Δ)s + V are simple. Furthermore, by combining these findings on linear equations with topological bounds for a related problem on the upper half‐space ℝ+N+1, we show uniqueness and nondegeneracy of ground state solutions for the nonlinear equation −Δ)sQ+Q−|Q|αQ=0 in ℝN for arbitrary space dimensions N ≥ 1 and all admissible exponents α > 0. This generalizes the nondegeneracy and uniqueness result for dimension N = 1 recently obtained by the first two authors and, in particular, the uniqueness result for solitary waves of the Benjamin‐Ono equation found by Amick and Toland .© 2016 Wiley Periodicals, Inc.
Author Lenzmann, Enno
Frank, Rupert L.
Silvestre, Luis
Author_xml – sequence: 1
  givenname: Rupert L.
  surname: Frank
  fullname: Frank, Rupert L.
  email: rlfrank@caltech.edu
  organization: Caltech Mathematics, 253-37, CA, 91125, Pasadena, USA
– sequence: 2
  givenname: Enno
  surname: Lenzmann
  fullname: Lenzmann, Enno
  email: enno.lenzmann@unibas.ch
  organization: University of Basel, Department of Mathematics and Computer Science, Spiegelgasse 1, CH-4051, Basel, Switzerland
– sequence: 3
  givenname: Luis
  surname: Silvestre
  fullname: Silvestre, Luis
  email: luis@math.uchicago.edu
  organization: University of Chicago, Mathematics Department, 5734 S. University Ave. Office Ry 360-E, IL, 60637, Chicago, USA
BookMark eNp1kEtPwzAQhC0EEuVx4B9E4sQhdNdJbEecUEULUsWrFI7WxnWEISTFTgX996QUOCA4rXZ3vtFodthm3dSWsQOEYwTgfTOnY45Zjhush5DLGBLkm6wHgBAnIoVtthPCU7diqpIeO5nW7nVhaxtC1JTRLc0cVdGkqRata-oQlY2P2kcbDT2Z1aV7jmlekXFU77Gtkqpg97_mLpsOz-4G5_H4anQxOB3HJk0ExqmUYLJSKBKpLSRyBJ6nSho5kzNQBZAARaogBbOEk-RoRKZyjoJnVhRZsssO175z33RZQ6ufmoXvogSNCkEJlSN2qv5aZXwTgrelNq6lVebWk6s0gl41pLuG9GdDHXH0i5h790J--af2y_3NVXb5v1APrk-_iXhNuNDa9x-C_LMWMpGZfrgc6XSirh_u8UanyQdTKYPK
CODEN CPMAMV
CitedBy_id crossref_primary_10_1017_fms_2018_22
crossref_primary_10_3390_fractalfract8070391
crossref_primary_10_3390_math12050772
crossref_primary_10_1007_s00526_020_01814_5
crossref_primary_10_1007_s00208_018_1666_z
crossref_primary_10_1016_j_jmaa_2024_128945
crossref_primary_10_1007_s12220_024_01629_2
crossref_primary_10_1016_j_jmaa_2021_125152
crossref_primary_10_1016_j_na_2024_113515
crossref_primary_10_1007_s00526_024_02851_0
crossref_primary_10_1142_S021919972250016X
crossref_primary_10_1515_ans_2020_2114
crossref_primary_10_1007_s40879_023_00647_8
crossref_primary_10_1017_prm_2021_81
crossref_primary_10_1063_5_0096488
crossref_primary_10_1016_j_na_2023_113354
crossref_primary_10_1515_anona_2025_0069
crossref_primary_10_1088_1361_6544_acdb3c
crossref_primary_10_1007_s11784_024_01140_9
crossref_primary_10_1080_17476933_2016_1245725
crossref_primary_10_1016_j_jmaa_2024_128951
crossref_primary_10_1186_s13661_019_1260_7
crossref_primary_10_1007_s00030_017_0470_x
crossref_primary_10_1007_s00033_019_1104_4
crossref_primary_10_1007_s10255_024_1097_4
crossref_primary_10_1007_s13163_021_00388_w
crossref_primary_10_1016_j_jde_2019_11_068
crossref_primary_10_1002_mma_6862
crossref_primary_10_3934_cpaa_2022038
crossref_primary_10_1112_jlms_12974
crossref_primary_10_1007_s00229_025_01612_3
crossref_primary_10_1007_s10231_020_01027_9
crossref_primary_10_1016_j_jde_2023_03_012
crossref_primary_10_1007_s11118_021_09959_4
crossref_primary_10_1007_s00025_020_01332_y
crossref_primary_10_1007_s10473_024_0313_x
crossref_primary_10_1007_s00220_019_03374_y
crossref_primary_10_1007_s00526_024_02728_2
crossref_primary_10_1007_s11425_018_9452_y
crossref_primary_10_1080_17476933_2019_1591383
crossref_primary_10_3934_cpaa_2021058
crossref_primary_10_1016_j_na_2020_112080
crossref_primary_10_1088_1742_6596_1489_1_012008
crossref_primary_10_1007_s11856_019_1854_x
crossref_primary_10_1016_j_jfa_2021_109132
crossref_primary_10_1016_j_jde_2024_10_031
crossref_primary_10_11948_20200083
crossref_primary_10_1016_j_jde_2019_09_024
crossref_primary_10_3934_mine_2022056
crossref_primary_10_3934_cpaa_2017104
crossref_primary_10_1007_s13226_022_00257_2
crossref_primary_10_1016_j_jfa_2023_110145
crossref_primary_10_1016_j_jmaa_2017_01_037
crossref_primary_10_3934_math_2022603
crossref_primary_10_1090_spmj_1829
crossref_primary_10_1016_j_jde_2018_11_023
crossref_primary_10_1063_1_5011724
crossref_primary_10_3934_cpaa_2022014
crossref_primary_10_1007_s10440_025_00713_1
crossref_primary_10_1007_s11784_023_01069_5
crossref_primary_10_14232_ejqtde_2021_1_33
crossref_primary_10_3934_dcds_2020379
crossref_primary_10_1007_s00208_018_1784_7
crossref_primary_10_1007_s00208_024_03019_z
crossref_primary_10_1007_s00526_016_1068_6
crossref_primary_10_1007_s00526_019_1670_5
crossref_primary_10_1090_tran_8406
crossref_primary_10_1007_s10114_023_1074_5
crossref_primary_10_1007_s00033_022_01792_y
crossref_primary_10_1080_17476933_2016_1178730
crossref_primary_10_1002_mma_8461
crossref_primary_10_1016_j_jde_2022_02_004
crossref_primary_10_1088_1361_6544_adbc3b
crossref_primary_10_1515_forum_2023_0424
crossref_primary_10_1016_j_jde_2022_02_001
crossref_primary_10_1007_s00526_018_1444_5
crossref_primary_10_1007_s00028_020_00564_3
crossref_primary_10_1002_mma_8696
crossref_primary_10_1016_j_jfa_2022_109438
crossref_primary_10_1002_mma_7005
crossref_primary_10_1016_j_jfa_2022_109555
crossref_primary_10_1016_j_cnsns_2025_108618
crossref_primary_10_1080_03605302_2024_2441851
crossref_primary_10_1016_j_aml_2018_08_002
crossref_primary_10_1515_ans_2015_5019
crossref_primary_10_1007_s12220_022_00980_6
crossref_primary_10_1515_ans_2018_2023
crossref_primary_10_1016_j_jmaa_2018_10_014
crossref_primary_10_1007_s00033_024_02357_x
crossref_primary_10_1186_s13661_020_01406_4
crossref_primary_10_3934_mcrf_2024065
crossref_primary_10_4153_S0008414X23000457
crossref_primary_10_1016_j_na_2018_07_001
crossref_primary_10_1063_1_4959221
crossref_primary_10_1007_s00205_025_02082_3
crossref_primary_10_1016_j_jde_2021_01_022
crossref_primary_10_1016_j_jde_2019_08_016
crossref_primary_10_3934_math_2025023
crossref_primary_10_1515_anona_2022_0234
crossref_primary_10_1063_1_4949352
crossref_primary_10_1016_j_aim_2016_11_038
crossref_primary_10_1016_j_na_2022_113141
crossref_primary_10_1007_s13398_017_0435_2
crossref_primary_10_1137_20M1341908
crossref_primary_10_14232_ejqtde_2024_1_77
crossref_primary_10_1515_ans_2015_5024
crossref_primary_10_1088_1361_6544_ac24e5
crossref_primary_10_1007_s10884_017_9590_6
crossref_primary_10_1007_s12220_024_01897_y
crossref_primary_10_1088_1361_6544_ad4503
crossref_primary_10_3934_era_2022031
crossref_primary_10_1016_j_chaos_2024_115254
crossref_primary_10_1016_j_jde_2020_04_022
crossref_primary_10_1016_j_na_2024_113653
crossref_primary_10_1063_1_5051462
crossref_primary_10_3390_fractalfract7010051
crossref_primary_10_1017_prm_2020_91
crossref_primary_10_58997_ejde_2022_61
crossref_primary_10_1016_j_jmaa_2017_06_006
crossref_primary_10_58997_ejde_2021_100
crossref_primary_10_1063_1_5027713
crossref_primary_10_1017_S0004972721000228
crossref_primary_10_1063_1_4963172
crossref_primary_10_1080_00036811_2021_1880571
crossref_primary_10_1007_s00033_021_01551_5
crossref_primary_10_1360_SSM_2024_0073
crossref_primary_10_1063_1_5067377
crossref_primary_10_1017_S0956792522000286
crossref_primary_10_1007_s00028_018_0444_4
crossref_primary_10_1515_acv_2022_0003
crossref_primary_10_1007_s00030_019_0574_6
crossref_primary_10_1063_1_5087755
crossref_primary_10_3390_sym13071199
crossref_primary_10_1142_S0219199720500583
crossref_primary_10_1007_s00033_021_01669_6
crossref_primary_10_1016_j_aml_2023_108864
crossref_primary_10_1017_prm_2022_26
crossref_primary_10_1016_j_nonrwa_2019_01_003
crossref_primary_10_1007_s10231_017_0652_5
crossref_primary_10_14232_ejqtde_2020_1_26
crossref_primary_10_1016_j_na_2022_113117
crossref_primary_10_1007_s00526_023_02453_2
crossref_primary_10_1063_5_0045980
crossref_primary_10_1007_s42967_023_00350_1
crossref_primary_10_1007_s00033_017_0892_7
crossref_primary_10_1007_s10884_018_9670_2
crossref_primary_10_1016_j_na_2018_06_009
crossref_primary_10_1515_ans_2016_6015
crossref_primary_10_3934_dcds_2017242
crossref_primary_10_1002_mma_5946
crossref_primary_10_1007_s00526_017_1194_9
crossref_primary_10_1080_17476933_2017_1332052
crossref_primary_10_1007_s13163_021_00421_y
crossref_primary_10_1142_S0219530523500185
crossref_primary_10_1080_03605302_2021_1950763
crossref_primary_10_1007_s00032_020_00317_4
crossref_primary_10_1112_blms_12839
crossref_primary_10_3390_math12010008
crossref_primary_10_1016_j_bulsci_2022_103170
crossref_primary_10_1007_s00013_024_02069_8
crossref_primary_10_1186_s13661_022_01615_z
crossref_primary_10_1016_j_jmaa_2021_125543
crossref_primary_10_1007_s00209_023_03405_4
crossref_primary_10_1002_mma_7320
crossref_primary_10_1007_s00526_023_02548_w
crossref_primary_10_1007_s12220_022_00880_9
crossref_primary_10_1016_j_jde_2021_05_007
crossref_primary_10_1080_17476933_2017_1370464
crossref_primary_10_1016_j_na_2019_01_016
crossref_primary_10_1007_s00526_024_02914_2
crossref_primary_10_1017_prm_2019_64
crossref_primary_10_1016_j_na_2019_01_010
crossref_primary_10_1063_1_5144695
crossref_primary_10_1007_s00028_020_00596_9
crossref_primary_10_1007_s00526_019_1626_9
crossref_primary_10_1016_j_na_2019_111732
crossref_primary_10_1016_j_jde_2023_06_032
crossref_primary_10_1016_j_na_2024_113698
crossref_primary_10_1017_prm_2024_94
crossref_primary_10_1063_5_0098126
crossref_primary_10_1186_s13661_019_01303_5
crossref_primary_10_3934_dcds_2016054
crossref_primary_10_1080_00036811_2021_1979222
crossref_primary_10_1007_s11766_024_4378_z
crossref_primary_10_1016_S0252_9602_18_30815_4
crossref_primary_10_1186_s13661_020_01424_2
crossref_primary_10_3390_fractalfract6070352
crossref_primary_10_1016_j_jmaa_2025_129249
crossref_primary_10_1093_imrn_rnab086
crossref_primary_10_1063_5_0006247
crossref_primary_10_1007_s00033_022_01866_x
crossref_primary_10_1016_j_na_2018_10_006
crossref_primary_10_12677_aam_2024_134171
crossref_primary_10_1007_s00009_023_02422_1
crossref_primary_10_1007_s00526_020_01845_y
crossref_primary_10_1002_mma_3731
crossref_primary_10_1016_j_jfa_2016_08_011
crossref_primary_10_1007_s00526_019_1641_x
crossref_primary_10_1088_1361_6544_aa5b12
crossref_primary_10_1016_j_jmaa_2023_127144
crossref_primary_10_1215_00127094_2019_0034
crossref_primary_10_2140_pjm_2023_324_1
crossref_primary_10_1002_mma_7411
crossref_primary_10_1093_imrn_rnz274
crossref_primary_10_1007_s11425_017_9195_4
crossref_primary_10_1016_j_anihpc_2020_07_003
crossref_primary_10_1515_anona_2022_0252
crossref_primary_10_1007_s12220_020_00492_1
crossref_primary_10_1142_S0219199718500487
crossref_primary_10_1016_j_anihpc_2017_04_001
crossref_primary_10_1007_s12220_022_01128_2
crossref_primary_10_3934_math_20241052
crossref_primary_10_1111_sapm_12448
crossref_primary_10_1007_s00526_024_02749_x
crossref_primary_10_11650_tjm_211203
crossref_primary_10_1007_s12220_024_01608_7
crossref_primary_10_1016_j_jfa_2022_109712
crossref_primary_10_1016_j_jde_2018_08_008
crossref_primary_10_1515_gmj_2023_2089
crossref_primary_10_1007_s11856_024_2639_4
crossref_primary_10_1186_s13661_021_01534_5
crossref_primary_10_1063_1_4960045
crossref_primary_10_3934_dcds_2022068
crossref_primary_10_1016_j_physd_2020_132691
crossref_primary_10_3934_dcds_2017168
crossref_primary_10_1090_tran_6872
crossref_primary_10_1515_forum_2024_0301
crossref_primary_10_1186_s13661_020_01463_9
crossref_primary_10_1515_anona_2024_0020
crossref_primary_10_1063_1_5121762
crossref_primary_10_1515_anona_2024_0029
crossref_primary_10_1016_j_na_2020_111801
crossref_primary_10_1063_1_5037126
crossref_primary_10_1515_anona_2024_0027
crossref_primary_10_3934_eect_2022033
crossref_primary_10_1016_j_jde_2024_11_053
crossref_primary_10_1051_cocv_2016063
crossref_primary_10_11948_20200307
crossref_primary_10_1016_j_jfa_2020_108510
crossref_primary_10_1002_mma_6543
crossref_primary_10_1016_j_jmaa_2021_125456
crossref_primary_10_1007_s00032_022_00361_2
crossref_primary_10_1090_proc_14184
crossref_primary_10_1007_s00574_016_0017_5
crossref_primary_10_1177_09217134251318427
crossref_primary_10_1007_s12220_022_01011_0
crossref_primary_10_1016_j_aml_2018_07_010
crossref_primary_10_1515_ans_2022_0002
crossref_primary_10_3103_S1068362324700341
crossref_primary_10_1016_j_jfa_2019_02_001
crossref_primary_10_1063_1_5021689
crossref_primary_10_1007_s00023_018_0711_5
crossref_primary_10_3934_dcdss_2024134
crossref_primary_10_1007_s10440_023_00627_w
crossref_primary_10_14232_ejqtde_2021_1_94
crossref_primary_10_3934_dcdsb_2022039
crossref_primary_10_1007_s00229_016_0878_3
crossref_primary_10_1007_s10473_023_0308_z
crossref_primary_10_1142_S0219199717500171
crossref_primary_10_14232_ejqtde_2022_1_62
crossref_primary_10_1007_s11868_021_00390_2
crossref_primary_10_1063_5_0208876
crossref_primary_10_3390_fractalfract8020113
crossref_primary_10_1137_22M1499650
crossref_primary_10_1017_prm_2024_58
crossref_primary_10_1080_17476933_2019_1631290
crossref_primary_10_1002_mana_202000473
crossref_primary_10_1007_s00526_021_02084_5
crossref_primary_10_1515_ans_2022_0013
crossref_primary_10_1017_prm_2018_114
crossref_primary_10_1007_s11425_021_1991_3
crossref_primary_10_1017_prm_2018_41
crossref_primary_10_2140_pjm_2017_287_439
crossref_primary_10_1007_s11118_024_10167_z
crossref_primary_10_1051_mmnp_2019008
crossref_primary_10_1002_mma_4470
crossref_primary_10_1007_s13540_024_00285_1
crossref_primary_10_3934_cpaa_2021128
crossref_primary_10_1017_prm_2024_44
crossref_primary_10_1080_17476933_2023_2185884
Cites_doi 10.3934/dcds.2005.12.347
10.1007/BF00250684
10.1002/cpa.20153
10.1080/03605308708820522
10.1002/cpa.20093
10.1080/03605300600987306
10.1137/S0036141093249080
10.2307/2154282
10.1016/0022-1236(90)90049-Q
10.2307/1993291
10.1098/rspa.1997.0068
10.1016/j.jfa.2011.12.004
10.1016/j.anihpc.2013.02.001
10.4007/annals.2005.161.157
10.1007/s00222-002-0268-1
10.1112/plms/pdq010
10.1007/s00220-014-1919-y
10.1007/s00205-008-0208-3
10.1016/j.jfa.2004.02.005
10.1016/j.jfa.2005.08.010
10.1002/cpa.20116
10.1016/j.anihpc.2011.06.005
10.1137/0516034
10.1007/s00205-013-0620-1
10.1007/BF01208265
10.1016/j.jfa.2008.05.015
10.1080/03605308208820218
10.4171/JEMS/6
10.1016/0167-2789(89)90050-X
10.2140/apde.2009.2.1
10.1007/BF02392447
10.1016/j.aim.2010.07.016
10.1007/s11511-013-0095-9
10.1137/050648389
10.1007/BF00251502
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Sep 2016
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Sep 2016
DBID BSCLL
AAYXX
CITATION
JQ2
DOI 10.1002/cpa.21591
DatabaseName Istex
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 1726
ExternalDocumentID 4145009541
10_1002_cpa_21591
CPA21591
ark_67375_WNG_4S8PWV1Q_4
Genre article
Feature
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c4361-4770c5f68a64eb7121029487c7d7d08b0a608a8ba80d32a721c658921625e6b53
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 10:57:57 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 02:50:30 EDT 2025
Wed Jan 22 16:59:27 EST 2025
Wed Oct 30 09:53:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4361-4770c5f68a64eb7121029487c7d7d08b0a608a8ba80d32a721c658921625e6b53
Notes ArticleID:CPA21591
istex:B7FB3E882EB20DD7044B8BD995F150FFDEF576B6
ark:/67375/WNG-4S8PWV1Q-4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpa.21591
PQID 1810868911
PQPubID 48818
PageCount 56
ParticipantIDs proquest_journals_1810868911
crossref_citationtrail_10_1002_cpa_21591
crossref_primary_10_1002_cpa_21591
wiley_primary_10_1002_cpa_21591_CPA21591
istex_primary_ark_67375_WNG_4S8PWV1Q_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationTitleAlternate Commun. Pur. Appl. Math
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley and Sons, Limited
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons, Limited
References Albert, J. P.; Bona, J. L.; Saut, J.-C. Model equations for waves in stratified fluids. Proc. Roy. Soc. London Ser. A 453 (1997), no. 1961, 1233-1260. doi: 10.1098/rspa.1997.0068
Abdelouhab, L.; Bona, J. L.; Felland, M.; Saut, J.-C. Nonlocal models for nonlinear, dispersive waves. Phys. D 40 (1989), no. 3, 360-392. doi: 10.1016/0167-2789(89)90050-X
Amick, C. J.; Toland, J. F. Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Math. 167 (1991), no. 1-2, 107-126. doi: 10.1007/BF02392447
Blumenthal, R. M.; Getoor, R. K. Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960), 263-273. doi: 10.2307/1993291
Weinstein, M. I. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985), no. 3, 472-491. doi: 10.1137/0516034
Graham, C. R.; Zworski, M. Scattering matrix in conformal geometry. Invent. Math. 152 (2003), no. 1, 89-118. doi: 10.1007/s00222-002-0268-1
Krieger, J.; Lenzmann, E.; Raphaël, P. Nondispersive solutions to the L2-critical half-wave equation. Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61-129. doi: 10.1007/s00205-013-0620-1
Kenig, C. E.; Martel, Y.; Robbiano, L. Local well-posedness and blow-up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 6, 853-887. doi: 10.1016/j.anihpc.2011.06.005
Lieb, E. H.; Loss, M. Analysis. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, R.I., 1997.
McLeod, K. Uniqueness of positive radial solutions of Δ u + f(u) = 0 in Rn. II. Trans. Amer. Math. Soc. 339 (1993), no. 2, 495-505. doi: 10.2307/2154282
Chang, S.-M.; Gustafson, S.; Nakanishi, K.; Tsai, T.-P. Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39 (2007/08), no. 4, 1070-1111. doi: 10.1137/050648389
Kwong, M. K. Uniqueness of positive solutions of Δ u-u + up = 0 in Rn. Arch. Rational Mech. Anal. 105 (1989), no. 3, 243-266. doi: 10.1007/BF00251502
Banica, V.; del Mar González, M.; Saéz, M. Some constructions for the fractional Laplacian on noncompact manifolds. Rev. Mat. Iber., forthcoming. arxiv:1212.3109 [math.DG]
Weinstein, M. I. Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Comm. Partial Differential Equations 12 (1987), no. 10, 1133-1173. doi: 10.1080/03605308708820522
Bañuelos, R.; Kulczycki, T. The Cauchy process and the Steklov problem. J. Funct. Anal. 211 (2004), no. 2, 355-423. doi: 10.1016/j.jfa.2004.02.005
Fabes, E. B.; Kenig, C. E.; Serapioni, R. P. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. doi: 10.1080/03605308208820218
Silvestre, L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112. doi: 10.1002/cpa.20153
Carmona, R.; Masters, W. C.; Simon, B. Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91 (1990), no. 1, 117-142. doi: 10.1016/0022-1236(90)90049-Q
Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. doi: 10.1080/03605300600987306
Kulczycki, T.; Kwaśnicki, M.; Mał;ecki, J.; Stos, A. Spectral properties of the Cauchy process on half-line and interval. Proc. Lond. Math. Soc. (3) 101 (2010), no. 2, 589-622. doi: 10.1112/plms/pdq010
Weinstein, M. I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1982/83), no. 4, 567-576.
Alessandrini, G.; Magnanini, R. Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal. 25 (1994), no. 5, 1259-1268. doi: 10.1137/S0036141093249080
Molčanov, S. A.; Ostrovskiĭ, E. Symmetric stable processes as traces of degenerate diffusion processes. Teor. Verojatnost. i Primenen. 14 (1969), 127-130.
Chang, S.-Y. A.; Gonzàlez, M. d. M. Fractional Laplacian in conformal geometry. Adv. Math. 226 (2011), no. 2, 1410-1432. doi: 10.1016/j.aim.2010.07.016
Frank, R. L.; Seiringer, R. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255 (2008), no. 12, 3407-3430. doi: 10.1016/j.jfa.2008.05.015
Kwaśnicki, M. Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262 (2012), no. 5, 2379-2402. doi: 10.1016/j.jfa.2011.12.004
Chen, W.; Li, C.; Ou, B. Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343. doi: 10.1002/cpa.20116
Reed, M.; Simon, B. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York-London, 1978.
Cabré, X.; Sire, Y. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23-53. doi: 10.1016/j.anihpc.2013.02.001
Fall, M. M.; Valdinoci, E. Uniqueness and nondegeneracy of positive solutions of (−Δ)su + u = up in ℝN when s is close to 1. Comm. Math. Phys. 329 (2014), no. 1, 383-404. doi: 10.1007/s00220-014-1919-y
Cabré, X.; Solà-Morales, J. Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58 (2005), no. 12, 1678-1732. doi: 10.1002/cpa.20093
Frank, R. L.; Lenzmann, E. Uniqueness of non-linear ground states for fractional Laplacians in ℝ. Acta Math. 210 (2013), no. 2, 261-318. doi: 10.1007/s11511-013-0095-9
Chen, W.; Li, C.; Ou, B. Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12 (2005), no. 2, 347-354.
Lenzmann, E. Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2 (2009), no. 1, 1-27. doi: 10.2140/apde.2009.2.1
Coffman, C. V. Uniqueness of the ground state solution for Δ u-u + u3 = 0 and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46 (1972), 81-95. doi: 10.1007/BF00250684
Burchard, A.; Hajaiej, H. Rearrangement inequalities for functionals with monotone integrands. J. Funct. Anal. 233 (2006), no. 2, 561-582. doi: 10.1016/j.jfa.2005.08.010
Li, Y. Y. Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153-180.
Ma, L.; Zhao, L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455-467. doi: 10.1007/s00205-008-0208-3
Merle, F.; Raphael, P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. of Math. (2) 161 (2005), no. 1, 157-222. doi: 10.4007/annals.2005.161.157
1989; 40
1960; 95
2012; 262
1987; 12
2013; 209
2010; 101
1997; 453
2006; 59
1997
1994; 25
2004; 6
1969; 14
2007; 32
1972; 46
2006; 233
1982/83; 87
1978
2003; 152
2004; 211
2011; 226
1989; 105
2005; 161
1991; 167
2014; 329
1993; 339
2013; 210
1982; 7
2007; 60
2010; 195
2008; 255
2011; 28
2009; 2
1990; 91
2005; 12
1985; 16
2007/08; 39
2014; 31
2005; 58
e_1_2_1_20_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
Lieb E. H. (e_1_2_1_31_1) 1997
Reed M. (e_1_2_1_36_1) 1978
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
Banica V. (e_1_2_1_6_1)
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
Molčanov S. A. (e_1_2_1_35_1) 1969; 14
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Cabré, X.; Sire, Y. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23-53. doi: 10.1016/j.anihpc.2013.02.001
– reference: Chang, S.-M.; Gustafson, S.; Nakanishi, K.; Tsai, T.-P. Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39 (2007/08), no. 4, 1070-1111. doi: 10.1137/050648389
– reference: Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. doi: 10.1080/03605300600987306
– reference: Lieb, E. H.; Loss, M. Analysis. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, R.I., 1997.
– reference: Frank, R. L.; Lenzmann, E. Uniqueness of non-linear ground states for fractional Laplacians in ℝ. Acta Math. 210 (2013), no. 2, 261-318. doi: 10.1007/s11511-013-0095-9
– reference: Weinstein, M. I. Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Comm. Partial Differential Equations 12 (1987), no. 10, 1133-1173. doi: 10.1080/03605308708820522
– reference: Banica, V.; del Mar González, M.; Saéz, M. Some constructions for the fractional Laplacian on noncompact manifolds. Rev. Mat. Iber., forthcoming. arxiv:1212.3109 [math.DG]
– reference: Frank, R. L.; Seiringer, R. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255 (2008), no. 12, 3407-3430. doi: 10.1016/j.jfa.2008.05.015
– reference: Kenig, C. E.; Martel, Y.; Robbiano, L. Local well-posedness and blow-up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 6, 853-887. doi: 10.1016/j.anihpc.2011.06.005
– reference: Blumenthal, R. M.; Getoor, R. K. Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960), 263-273. doi: 10.2307/1993291
– reference: Fall, M. M.; Valdinoci, E. Uniqueness and nondegeneracy of positive solutions of (−Δ)su + u = up in ℝN when s is close to 1. Comm. Math. Phys. 329 (2014), no. 1, 383-404. doi: 10.1007/s00220-014-1919-y
– reference: Cabré, X.; Solà-Morales, J. Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58 (2005), no. 12, 1678-1732. doi: 10.1002/cpa.20093
– reference: Molčanov, S. A.; Ostrovskiĭ, E. Symmetric stable processes as traces of degenerate diffusion processes. Teor. Verojatnost. i Primenen. 14 (1969), 127-130.
– reference: Burchard, A.; Hajaiej, H. Rearrangement inequalities for functionals with monotone integrands. J. Funct. Anal. 233 (2006), no. 2, 561-582. doi: 10.1016/j.jfa.2005.08.010
– reference: Alessandrini, G.; Magnanini, R. Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal. 25 (1994), no. 5, 1259-1268. doi: 10.1137/S0036141093249080
– reference: Lenzmann, E. Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2 (2009), no. 1, 1-27. doi: 10.2140/apde.2009.2.1
– reference: Carmona, R.; Masters, W. C.; Simon, B. Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91 (1990), no. 1, 117-142. doi: 10.1016/0022-1236(90)90049-Q
– reference: McLeod, K. Uniqueness of positive radial solutions of Δ u + f(u) = 0 in Rn. II. Trans. Amer. Math. Soc. 339 (1993), no. 2, 495-505. doi: 10.2307/2154282
– reference: Abdelouhab, L.; Bona, J. L.; Felland, M.; Saut, J.-C. Nonlocal models for nonlinear, dispersive waves. Phys. D 40 (1989), no. 3, 360-392. doi: 10.1016/0167-2789(89)90050-X
– reference: Albert, J. P.; Bona, J. L.; Saut, J.-C. Model equations for waves in stratified fluids. Proc. Roy. Soc. London Ser. A 453 (1997), no. 1961, 1233-1260. doi: 10.1098/rspa.1997.0068
– reference: Silvestre, L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112. doi: 10.1002/cpa.20153
– reference: Weinstein, M. I. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985), no. 3, 472-491. doi: 10.1137/0516034
– reference: Bañuelos, R.; Kulczycki, T. The Cauchy process and the Steklov problem. J. Funct. Anal. 211 (2004), no. 2, 355-423. doi: 10.1016/j.jfa.2004.02.005
– reference: Ma, L.; Zhao, L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455-467. doi: 10.1007/s00205-008-0208-3
– reference: Coffman, C. V. Uniqueness of the ground state solution for Δ u-u + u3 = 0 and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46 (1972), 81-95. doi: 10.1007/BF00250684
– reference: Kulczycki, T.; Kwaśnicki, M.; Mał;ecki, J.; Stos, A. Spectral properties of the Cauchy process on half-line and interval. Proc. Lond. Math. Soc. (3) 101 (2010), no. 2, 589-622. doi: 10.1112/plms/pdq010
– reference: Fabes, E. B.; Kenig, C. E.; Serapioni, R. P. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. doi: 10.1080/03605308208820218
– reference: Krieger, J.; Lenzmann, E.; Raphaël, P. Nondispersive solutions to the L2-critical half-wave equation. Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61-129. doi: 10.1007/s00205-013-0620-1
– reference: Chang, S.-Y. A.; Gonzàlez, M. d. M. Fractional Laplacian in conformal geometry. Adv. Math. 226 (2011), no. 2, 1410-1432. doi: 10.1016/j.aim.2010.07.016
– reference: Chen, W.; Li, C.; Ou, B. Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12 (2005), no. 2, 347-354.
– reference: Weinstein, M. I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1982/83), no. 4, 567-576.
– reference: Kwong, M. K. Uniqueness of positive solutions of Δ u-u + up = 0 in Rn. Arch. Rational Mech. Anal. 105 (1989), no. 3, 243-266. doi: 10.1007/BF00251502
– reference: Reed, M.; Simon, B. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press, New York-London, 1978.
– reference: Amick, C. J.; Toland, J. F. Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Math. 167 (1991), no. 1-2, 107-126. doi: 10.1007/BF02392447
– reference: Li, Y. Y. Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153-180.
– reference: Graham, C. R.; Zworski, M. Scattering matrix in conformal geometry. Invent. Math. 152 (2003), no. 1, 89-118. doi: 10.1007/s00222-002-0268-1
– reference: Kwaśnicki, M. Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262 (2012), no. 5, 2379-2402. doi: 10.1016/j.jfa.2011.12.004
– reference: Chen, W.; Li, C.; Ou, B. Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343. doi: 10.1002/cpa.20116
– reference: Merle, F.; Raphael, P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. of Math. (2) 161 (2005), no. 1, 157-222. doi: 10.4007/annals.2005.161.157
– volume: 7
  start-page: 77
  issue: 1
  year: 1982
  end-page: 116
  article-title: The local regularity of solutions of degenerate elliptic equations
  publication-title: Comm. Partial Differential Equations
– volume: 105
  start-page: 243
  issue: 3
  year: 1989
  end-page: 266
  article-title: Uniqueness of positive solutions of Δ ‐  +  = 0 in
  publication-title: Arch. Rational Mech. Anal.
– volume: 40
  start-page: 360
  issue: 3
  year: 1989
  end-page: 392
  article-title: Nonlocal models for nonlinear, dispersive waves
  publication-title: Phys. D
– volume: 167
  start-page: 107
  issue: 1‐2
  year: 1991
  end-page: 126
  article-title: Uniqueness and related analytic properties for the Benjamin‐Ono equation—a nonlinear Neumann problem in the plane
  publication-title: Acta Math.
– volume: 87
  start-page: 567
  issue: 4
  year: 1982/83
  end-page: 576
  article-title: Nonlinear Schrödinger equations and sharp interpolation estimates
  publication-title: Comm. Math. Phys.
– volume: 211
  start-page: 355
  issue: 2
  year: 2004
  end-page: 423
  article-title: The Cauchy process and the Steklov problem
  publication-title: J. Funct. Anal.
– volume: 329
  start-page: 383
  issue: 1
  year: 2014
  end-page: 404
  article-title: Uniqueness and nondegeneracy of positive solutions of (−Δ)  +  = in ℝ when is close to 1
  publication-title: Comm. Math. Phys.
– volume: 226
  start-page: 1410
  issue: 2
  year: 2011
  end-page: 1432
  article-title: Fractional Laplacian in conformal geometry
  publication-title: Adv. Math.
– volume: 210
  start-page: 261
  issue: 2
  year: 2013
  end-page: 318
  article-title: Uniqueness of non‐linear ground states for fractional Laplacians in ℝ
  publication-title: Acta Math
– volume: 60
  start-page: 67
  issue: 1
  year: 2007
  end-page: 112
  article-title: Regularity of the obstacle problem for a fractional power of the Laplace operator
  publication-title: Comm. Pure Appl. Math.
– volume: 255
  start-page: 3407
  issue: 12
  year: 2008
  end-page: 3430
  article-title: Non‐linear ground state representations and sharp Hardy inequalities
  publication-title: J. Funct. Anal.
– volume: 161
  start-page: 157
  issue: 1
  year: 2005
  end-page: 222
  article-title: The blow‐up dynamic and upper bound on the blow‐up rate for critical nonlinear Schrödinger equation
  publication-title: Ann. of Math. (2)
– volume: 39
  start-page: 1070
  issue: 4
  year: 2007/08
  end-page: 1111
  article-title: Spectra of linearized operators for NLS solitary waves
  publication-title: SIAM J. Math. Anal.
– volume: 46
  start-page: 81
  year: 1972
  end-page: 95
  article-title: Uniqueness of the ground state solution for Δ ‐  +  = 0 and a variational characterization of other solutions
  publication-title: Arch. Rational Mech. Anal.
– volume: 339
  start-page: 495
  issue: 2
  year: 1993
  end-page: 505
  article-title: Uniqueness of positive radial solutions of Δ  +  ( ) = 0 in . II
  publication-title: Trans. Amer. Math. Soc.
– volume: 32
  start-page: 1245
  issue: 7‐9
  year: 2007
  end-page: 1260
  article-title: An extension problem related to the fractional Laplacian
  publication-title: Comm. Partial Differential Equations
– volume: 195
  start-page: 455
  issue: 2
  year: 2010
  end-page: 467
  article-title: Classification of positive solitary solutions of the nonlinear Choquard equation
  publication-title: Arch. Ration. Mech. Anal.
– volume: 16
  start-page: 472
  issue: 3
  year: 1985
  end-page: 491
  article-title: Modulational stability of ground states of nonlinear Schrödinger equations
  publication-title: SIAM J. Math. Anal.
– volume: 209
  start-page: 61
  issue: 1
  year: 2013
  end-page: 129
  article-title: Nondispersive solutions to the ‐critical half‐wave equation
  publication-title: Arch. Ration. Mech. Anal.
– volume: 59
  start-page: 330
  issue: 3
  year: 2006
  end-page: 343
  article-title: Classification of solutions for an integral equation
  publication-title: Comm. Pure Appl. Math.
– volume: 233
  start-page: 561
  issue: 2
  year: 2006
  end-page: 582
  article-title: Rearrangement inequalities for functionals with monotone integrands
  publication-title: J. Funct. Anal.
– volume: 31
  start-page: 23
  issue: 1
  year: 2014
  end-page: 53
  article-title: Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 12
  start-page: 347
  issue: 2
  year: 2005
  end-page: 354
  article-title: Qualitative properties of solutions for an integral equation
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 6
  start-page: 153
  issue: 2
  year: 2004
  end-page: 180
  article-title: Remark on some conformally invariant integral equations: the method of moving spheres
  publication-title: J. Eur. Math. Soc. (JEMS)
– volume: 91
  start-page: 117
  issue: 1
  year: 1990
  end-page: 142
  article-title: Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions
  publication-title: J. Funct. Anal.
– volume: 101
  start-page: 589
  issue: 2
  year: 2010
  end-page: 622
  article-title: Spectral properties of the Cauchy process on half‐line and interval
  publication-title: Proc. Lond. Math. Soc. (3)
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  end-page: 27
  article-title: Uniqueness of ground states for pseudorelativistic Hartree equations
  publication-title: Anal. PDE
– volume: 14
  start-page: 127
  year: 1969
  end-page: 130
  article-title: Symmetric stable processes as traces of degenerate diffusion processes
  publication-title: Teor. Verojatnost. i Primenen.
– year: 1997
– volume: 453
  start-page: 1233
  issue: 1961
  year: 1997
  end-page: 1260
  article-title: Model equations for waves in stratified fluids
  publication-title: Proc. Roy. Soc. London Ser. A
– volume: 25
  start-page: 1259
  issue: 5
  year: 1994
  end-page: 1268
  article-title: Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions
  publication-title: SIAM J. Math. Anal.
– volume: 152
  start-page: 89
  issue: 1
  year: 2003
  end-page: 118
  article-title: Scattering matrix in conformal geometry
  publication-title: Invent. Math.
– volume: 262
  start-page: 2379
  issue: 5
  year: 2012
  end-page: 2402
  article-title: Eigenvalues of the fractional Laplace operator in the interval
  publication-title: J. Funct. Anal.
– volume: 58
  start-page: 1678
  issue: 12
  year: 2005
  end-page: 1732
  article-title: Layer solutions in a half‐space for boundary reactions
  publication-title: Comm. Pure Appl. Math.
– year: 1978
– volume: 12
  start-page: 1133
  issue: 10
  year: 1987
  end-page: 1173
  article-title: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation
  publication-title: Comm. Partial Differential Equations
– article-title: Some constructions for the fractional Laplacian on noncompact manifolds
  publication-title: Rev. Mat. Iber.
– volume: 95
  start-page: 263
  year: 1960
  end-page: 273
  article-title: Some theorems on stable processes
  publication-title: Trans. Amer. Math. Soc.
– volume: 28
  start-page: 853
  issue: 6
  year: 2011
  end-page: 887
  article-title: Local well‐posedness and blow‐up in the energy space for a class of critical dispersion generalized Benjamin‐Ono equations
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– ident: e_1_2_1_16_1
  doi: 10.3934/dcds.2005.12.347
– ident: e_1_2_1_18_1
  doi: 10.1007/BF00250684
– ident: e_1_2_1_37_1
  doi: 10.1002/cpa.20153
– ident: e_1_2_1_40_1
  doi: 10.1080/03605308708820522
– ident: e_1_2_1_11_1
  doi: 10.1002/cpa.20093
– ident: e_1_2_1_12_1
  doi: 10.1080/03605300600987306
– ident: e_1_2_1_4_1
  doi: 10.1137/S0036141093249080
– ident: e_1_2_1_33_1
  doi: 10.2307/2154282
– ident: e_1_2_1_13_1
  doi: 10.1016/0022-1236(90)90049-Q
– ident: e_1_2_1_8_1
  doi: 10.2307/1993291
– ident: e_1_2_1_3_1
  doi: 10.1098/rspa.1997.0068
– ident: e_1_2_1_27_1
  doi: 10.1016/j.jfa.2011.12.004
– ident: e_1_2_1_10_1
  doi: 10.1016/j.anihpc.2013.02.001
– ident: e_1_2_1_34_1
  doi: 10.4007/annals.2005.161.157
– volume-title: Methods of modern mathematical physics. IV. Analysis of operators
  year: 1978
  ident: e_1_2_1_36_1
– ident: e_1_2_1_23_1
  doi: 10.1007/s00222-002-0268-1
– ident: e_1_2_1_26_1
  doi: 10.1112/plms/pdq010
– ident: e_1_2_1_20_1
  doi: 10.1007/s00220-014-1919-y
– ident: e_1_2_1_32_1
  doi: 10.1007/s00205-008-0208-3
– ident: e_1_2_1_7_1
  doi: 10.1016/j.jfa.2004.02.005
– ident: e_1_2_1_9_1
  doi: 10.1016/j.jfa.2005.08.010
– ident: e_1_2_1_17_1
  doi: 10.1002/cpa.20116
– ident: e_1_2_1_24_1
  doi: 10.1016/j.anihpc.2011.06.005
– ident: e_1_2_1_39_1
  doi: 10.1137/0516034
– ident: e_1_2_1_25_1
  doi: 10.1007/s00205-013-0620-1
– volume-title: Analysis
  year: 1997
  ident: e_1_2_1_31_1
– ident: e_1_2_1_38_1
  doi: 10.1007/BF01208265
– ident: e_1_2_1_22_1
  doi: 10.1016/j.jfa.2008.05.015
– ident: e_1_2_1_19_1
  doi: 10.1080/03605308208820218
– ident: e_1_2_1_30_1
  doi: 10.4171/JEMS/6
– volume: 14
  start-page: 127
  year: 1969
  ident: e_1_2_1_35_1
  article-title: Symmetric stable processes as traces of degenerate diffusion processes
  publication-title: Teor. Verojatnost. i Primenen.
– ident: e_1_2_1_2_1
  doi: 10.1016/0167-2789(89)90050-X
– ident: e_1_2_1_29_1
  doi: 10.2140/apde.2009.2.1
– ident: e_1_2_1_5_1
  doi: 10.1007/BF02392447
– ident: e_1_2_1_15_1
  doi: 10.1016/j.aim.2010.07.016
– ident: e_1_2_1_21_1
  doi: 10.1007/s11511-013-0095-9
– ident: e_1_2_1_14_1
  doi: 10.1137/050648389
– ident: e_1_2_1_6_1
  article-title: Some constructions for the fractional Laplacian on noncompact manifolds
  publication-title: Rev. Mat. Iber.
– ident: e_1_2_1_28_1
  doi: 10.1007/BF00251502
SSID ssj0011483
Score 2.625449
Snippet We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ)s with s ∊ (0,1) for any...
We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−Δ) s with s  ∊ (0,1) for any...
We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (...)^sup s^ with s... (0,1) for...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1671
SubjectTerms Laplace transforms
Linear equations
Nonlinear equations
Schrodinger equation
Title Uniqueness of Radial Solutions for the Fractional Laplacian
URI https://api.istex.fr/ark:/67375/WNG-4S8PWV1Q-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.21591
https://www.proquest.com/docview/1810868911
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX_TBuzhvFBHxpVuW5lZ8EnGKqMzL3B6EkKTdy8Y2dgHx13uSrtWJgvhW6ClpT87lO-nJF4SOqZUdyGQ6JDomIWQIERoT87DGZMKsTLCRbjfy3T2_btKbNmsvoLN8L0zGD1EsuDnP8PHaObg24-onaagd6grkK79z3fVqOUD0WFBHOZif_V12cYZTnLMKYVItnpzLRYtOrW9zQPMrXPX5pr6KXvM3zdpMupXpxFTs-zcSx39-yhpameHQ4DwznHW0kPY30PJdQeI63kRnTU_u6mJhMOgEj47FoBcU62gBwN0AxIP6KNscATdvtevxAovbQs365fPFdTg7ayG0NOJQRgqBLetwqTlNjfC0YjEUM1YkIsHSYM2x1NJoiZOIaKgbLWCXmNSgfkq5YdE2KvUH_XQHBeDjgpkaS2icUs6IjoQAQ8BMakJ0SsvoNNe6sjMicnceRk9lFMpEgT6U10cZHRWiw4x94yehEz91hYQedV27mmCqdX-l6JNstF5qDwoG3s_nVs08dawA4UBVJyHmw3v5Sfp9JHXROPcXu38X3UNLgLF41pa2j0qT0TQ9ABwzMYfeYD8AnN_prw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB4hONAeWuhDTcvDqtqqlw1eZ9f2CnFACWkoSUQpgdxc27u5gAJKgnj8Jv4K_4mx99FStVIvHHpbaUdaazyPb7zjbwA-RFaOMJPpgOmEBZghRGBMwoMwlmlsZUqNdLeRe33eGURfh_FwDm7LuzA5P0R14OY8w8dr5-DuQHrjJ2uoPdd1TFhJWLRU7mXXl1iwTbd2W7i7Hxlr7xw2O0ExUyCwUYNjuSQEtfGIS82jzAhPn5UgaLciFSmVhmpOpZZGS5o2mMb6yGKOTliIdULGjZsRgQF_wU0Qd0z9rYOKrMoVFvn_bBfZeERLHiPKNqqlPsh-C24jrx5A218Bss9w7edwV-omb2w5qV_MTN3e_EYb-b8obwmeFVCbbOe-sQxz2fgFPO1VPLXTl7A58Py1LtyTsxE5cEQNp6Q6KiSI6AmKk_Ykv_-BL7vatbGhU72CwaOs_jXMj8_G2RsgGMZEbMI4jZIMTYHphhBo6zSWmjGdRTX4XG6zsgXXuhv5capylmimUP_K678G7yvR85xg5E9Cn7ytVBJ6cuI68kSsjvtfVPRd7h8fhd8UfnilNCZVBKOpQhCHhavEtIbr8lbx9y-p5v62f3j776LrsNg57HVVd7e_9w6eIKTkeRfeCszPJhfZKsK2mVnz3kLgx2Nb2D1uTUOS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4QSIgeFHxEXtoxarzM0tPbr4nhQFhXENis6Aq3trtn9gJZNrtLfPwl_go_iuqeh2I08cLB2yRTSXeq6_HVTPVXAC-410PMZDZhNmMJZgiVOJfJJBU6F17n1OlwG_mwJ3cH_P2JOJmDy_ouTMkP0XxwC54R43Vw8HE-3PxJGurHtoX5Kkurjsr94vtXrNemW3sdPNyXjHXfftrZTaqRAonnbYnVklLUi6HUVvLCqcielSFm9ypXOdWOWkm11c5qmreZxfLIY4rOWIplQiFdGBGB8X6BS5qFORGdo4arKtQV5e_sENgkpzWNEWWbzVZvJL-FcI7fbiDbX_FxTHDd-3BVq6bsazltXcxcy__4jTXyP9HdEtyrgDbZLj1jGeaK0QO4e9iw1E4fwptBZK8NwZ6cD8lRoGk4I82HQoJ4nqA46U7K2x_48sCGJjZ0qUcwuJXdP4b50fmoeAIEg5gSLhU5zwouBbNtpdDSqdCWMVvwFXhdn7LxFdN6GPhxZkqOaGZQ_ybqfwWeN6Ljkl7kT0Kvoqk0EnZyGvrxlDDHvXeGf9T948_pB4MLr9e2ZKpQNDUI4bBs1ZjUcF_RKP6-ktnpb8eH1X8XfQaL_U7XHOz19tfgDuJJWbbgrcP8bHJRbCBmm7mn0VcIfLltA7sGLkhCQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniqueness+of+Radial+Solutions+for+the+Fractional+Laplacian&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Frank%2C+Rupert+L.&rft.au=Lenzmann%2C+Enno&rft.au=Silvestre%2C+Luis&rft.date=2016-09-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=69&rft.issue=9&rft.spage=1671&rft.epage=1726&rft_id=info:doi/10.1002%2Fcpa.21591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_21591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon