Critical Care Nutrition from a Metabolic Point of View: A Narrative Review

Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier dysfunction, which contribute to increased morbidity and mortality. Emerging evidence highlights the role of the gut microbiome and it...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 17; no. 8; p. 1352
Main Authors Oami, Takehiko, Yamamoto, Akiyuki, Ishida, Shigenobu, Kondo, Kengo, Hata, Nanami, Oshima, Taku
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier dysfunction, which contribute to increased morbidity and mortality. Emerging evidence highlights the role of the gut microbiome and its metabolites in modulating systemic inflammation and immune responses during critical illness. This narrative review explores the metabolic evolution of critically ill patients, the impact of gut dysbiosis on disease progression, and the potential role of nutrition in modulating metabolism and improving patient outcomes. Methods: A comprehensive literature search was conducted across PubMed and Google Scholar for articles published up to February 2025. Search terms included “critical illness”, “metabolism”, “gut microbiota”, “nutrition”, and related keywords. Articles published in English addressing metabolic alterations, microbiome changes, and nutritional strategies in critically ill patients were included. After screening for eligibility, relevant articles were synthesized to outline current knowledge and identify gaps. Results: Metabolic changes in critical illness progress through distinct phases, from catabolism-driven hypermetabolism to gradual recovery. Gut dysbiosis, characterized by a loss of microbial diversity and increased gut permeability, contributes to systemic inflammation and organ dysfunction. Nutritional strategies, including enteral nutrition, probiotics, prebiotics, and metabolomics-driven interventions, may help restore microbial balance, preserve gut barrier integrity, and modulate immune and metabolic responses. Future nutrition therapy should focus on metabolic modulation rather than solely addressing nutrient deficits. Conclusions: Advances in gut microbiome research and metabolomics offer new avenues for personalized nutrition strategies tailored to the metabolic demands of critically ill patients. Integrating these approaches may improve clinical and functional recovery while mitigating the long-term consequences of critical illness.
AbstractList Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier dysfunction, which contribute to increased morbidity and mortality. Emerging evidence highlights the role of the gut microbiome and its metabolites in modulating systemic inflammation and immune responses during critical illness. This narrative review explores the metabolic evolution of critically ill patients, the impact of gut dysbiosis on disease progression, and the potential role of nutrition in modulating metabolism and improving patient outcomes. Methods: A comprehensive literature search was conducted across PubMed and Google Scholar for articles published up to February 2025. Search terms included “critical illness”, “metabolism”, “gut microbiota”, “nutrition”, and related keywords. Articles published in English addressing metabolic alterations, microbiome changes, and nutritional strategies in critically ill patients were included. After screening for eligibility, relevant articles were synthesized to outline current knowledge and identify gaps. Results: Metabolic changes in critical illness progress through distinct phases, from catabolism-driven hypermetabolism to gradual recovery. Gut dysbiosis, characterized by a loss of microbial diversity and increased gut permeability, contributes to systemic inflammation and organ dysfunction. Nutritional strategies, including enteral nutrition, probiotics, prebiotics, and metabolomics-driven interventions, may help restore microbial balance, preserve gut barrier integrity, and modulate immune and metabolic responses. Future nutrition therapy should focus on metabolic modulation rather than solely addressing nutrient deficits. Conclusions: Advances in gut microbiome research and metabolomics offer new avenues for personalized nutrition strategies tailored to the metabolic demands of critically ill patients. Integrating these approaches may improve clinical and functional recovery while mitigating the long-term consequences of critical illness.
Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier dysfunction, which contribute to increased morbidity and mortality. Emerging evidence highlights the role of the gut microbiome and its metabolites in modulating systemic inflammation and immune responses during critical illness. This narrative review explores the metabolic evolution of critically ill patients, the impact of gut dysbiosis on disease progression, and the potential role of nutrition in modulating metabolism and improving patient outcomes. Methods: A comprehensive literature search was conducted across PubMed and Google Scholar for articles published up to February 2025. Search terms included “critical illness”, “metabolism”, “gut microbiota”, “nutrition”, and related keywords. Articles published in English addressing metabolic alterations, microbiome changes, and nutritional strategies in critically ill patients were included. After screening for eligibility, relevant articles were synthesized to outline current knowledge and identify gaps. Results: Metabolic changes in critical illness progress through distinct phases, from catabolism-driven hypermetabolism to gradual recovery. Gut dysbiosis, characterized by a loss of microbial diversity and increased gut permeability, contributes to systemic inflammation and organ dysfunction. Nutritional strategies, including enteral nutrition, probiotics, prebiotics, and metabolomics-driven interventions, may help restore microbial balance, preserve gut barrier integrity, and modulate immune and metabolic responses. Future nutrition therapy should focus on metabolic modulation rather than solely addressing nutrient deficits. Conclusions: Advances in gut microbiome research and metabolomics offer new avenues for personalized nutrition strategies tailored to the metabolic demands of critically ill patients. Integrating these approaches may improve clinical and functional recovery while mitigating the long-term consequences of critical illness.
Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier dysfunction, which contribute to increased morbidity and mortality. Emerging evidence highlights the role of the gut microbiome and its metabolites in modulating systemic inflammation and immune responses during critical illness. This narrative review explores the metabolic evolution of critically ill patients, the impact of gut dysbiosis on disease progression, and the potential role of nutrition in modulating metabolism and improving patient outcomes. Methods: A comprehensive literature search was conducted across PubMed and Google Scholar for articles published up to February 2025. Search terms included "critical illness", "metabolism", "gut microbiota", "nutrition", and related keywords. Articles published in English addressing metabolic alterations, microbiome changes, and nutritional strategies in critically ill patients were included. After screening for eligibility, relevant articles were synthesized to outline current knowledge and identify gaps. Results: Metabolic changes in critical illness progress through distinct phases, from catabolism-driven hypermetabolism to gradual recovery. Gut dysbiosis, characterized by a loss of microbial diversity and increased gut permeability, contributes to systemic inflammation and organ dysfunction. Nutritional strategies, including enteral nutrition, probiotics, prebiotics, and metabolomics-driven interventions, may help restore microbial balance, preserve gut barrier integrity, and modulate immune and metabolic responses. Future nutrition therapy should focus on metabolic modulation rather than solely addressing nutrient deficits. Conclusions: Advances in gut microbiome research and metabolomics offer new avenues for personalized nutrition strategies tailored to the metabolic demands of critically ill patients. Integrating these approaches may improve clinical and functional recovery while mitigating the long-term consequences of critical illness.Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier dysfunction, which contribute to increased morbidity and mortality. Emerging evidence highlights the role of the gut microbiome and its metabolites in modulating systemic inflammation and immune responses during critical illness. This narrative review explores the metabolic evolution of critically ill patients, the impact of gut dysbiosis on disease progression, and the potential role of nutrition in modulating metabolism and improving patient outcomes. Methods: A comprehensive literature search was conducted across PubMed and Google Scholar for articles published up to February 2025. Search terms included "critical illness", "metabolism", "gut microbiota", "nutrition", and related keywords. Articles published in English addressing metabolic alterations, microbiome changes, and nutritional strategies in critically ill patients were included. After screening for eligibility, relevant articles were synthesized to outline current knowledge and identify gaps. Results: Metabolic changes in critical illness progress through distinct phases, from catabolism-driven hypermetabolism to gradual recovery. Gut dysbiosis, characterized by a loss of microbial diversity and increased gut permeability, contributes to systemic inflammation and organ dysfunction. Nutritional strategies, including enteral nutrition, probiotics, prebiotics, and metabolomics-driven interventions, may help restore microbial balance, preserve gut barrier integrity, and modulate immune and metabolic responses. Future nutrition therapy should focus on metabolic modulation rather than solely addressing nutrient deficits. Conclusions: Advances in gut microbiome research and metabolomics offer new avenues for personalized nutrition strategies tailored to the metabolic demands of critically ill patients. Integrating these approaches may improve clinical and functional recovery while mitigating the long-term consequences of critical illness.
Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier dysfunction, which contribute to increased morbidity and mortality. Emerging evidence highlights the role of the gut microbiome and its metabolites in modulating systemic inflammation and immune responses during critical illness. This narrative review explores the metabolic evolution of critically ill patients, the impact of gut dysbiosis on disease progression, and the potential role of nutrition in modulating metabolism and improving patient outcomes. A comprehensive literature search was conducted across PubMed and Google Scholar for articles published up to February 2025. Search terms included "critical illness", "metabolism", "gut microbiota", "nutrition", and related keywords. Articles published in English addressing metabolic alterations, microbiome changes, and nutritional strategies in critically ill patients were included. After screening for eligibility, relevant articles were synthesized to outline current knowledge and identify gaps. Metabolic changes in critical illness progress through distinct phases, from catabolism-driven hypermetabolism to gradual recovery. Gut dysbiosis, characterized by a loss of microbial diversity and increased gut permeability, contributes to systemic inflammation and organ dysfunction. Nutritional strategies, including enteral nutrition, probiotics, prebiotics, and metabolomics-driven interventions, may help restore microbial balance, preserve gut barrier integrity, and modulate immune and metabolic responses. Future nutrition therapy should focus on metabolic modulation rather than solely addressing nutrient deficits. Advances in gut microbiome research and metabolomics offer new avenues for personalized nutrition strategies tailored to the metabolic demands of critically ill patients. Integrating these approaches may improve clinical and functional recovery while mitigating the long-term consequences of critical illness.
Audience Academic
Author Ishida, Shigenobu
Yamamoto, Akiyuki
Oami, Takehiko
Kondo, Kengo
Oshima, Taku
Hata, Nanami
AuthorAffiliation 2 Institute for Advanced Academic Research, Chiba University, Chiba 263-8522, Japan
3 Research Institute of Disaster Medicine, Chiba University, Chiba 263-8522, Japan
1 Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan; seveneleven711thanks39@msn.com (T.O.)
AuthorAffiliation_xml – name: 2 Institute for Advanced Academic Research, Chiba University, Chiba 263-8522, Japan
– name: 3 Research Institute of Disaster Medicine, Chiba University, Chiba 263-8522, Japan
– name: 1 Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan; seveneleven711thanks39@msn.com (T.O.)
Author_xml – sequence: 1
  givenname: Takehiko
  surname: Oami
  fullname: Oami, Takehiko
– sequence: 2
  givenname: Akiyuki
  surname: Yamamoto
  fullname: Yamamoto, Akiyuki
– sequence: 3
  givenname: Shigenobu
  surname: Ishida
  fullname: Ishida, Shigenobu
– sequence: 4
  givenname: Kengo
  orcidid: 0009-0000-0469-4415
  surname: Kondo
  fullname: Kondo, Kengo
– sequence: 5
  givenname: Nanami
  surname: Hata
  fullname: Hata, Nanami
– sequence: 6
  givenname: Taku
  orcidid: 0000-0002-3868-8272
  surname: Oshima
  fullname: Oshima, Taku
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40284216$$D View this record in MEDLINE/PubMed
BookMark eNptkl1rFTEQhoO02Fp74w-QgDcinJrvbLyRw0FbS60i6m3IZic1ZTep2d0j_nuztPZDTC6SmTx5h5eZJ2gn5QQIPaPkiHNDXqeZatJQLtkjtM-IZiulBN-5d99Dh-N4SZaliVb8MdoThDWCUbWPTjclTtG7Hm9cAXw-T0ucEw4lD9jhjzC5NvfR4885pgnngL9H-PUGr_G5K8VNcQv4C2xr7inaDa4f4fDmPEDf3r_7ujlZnX06_rBZn6284HJaBd-2ylMpDetkcMxIkE1wreEiKK6B-476thHOaW2oFh0PHkA6cF5TAy0_QG-vda_mdoDOQ5qK6-1ViYMrv2120T58SfGHvchbSxlhxmheFV7eKJT8c4ZxskMcPfS9S5Dn0XJqpG6IlLSiL_5BL_NcUvW3UEJxKRS7oy5cDzamkGthv4jadcO1FlyJRevoP1TdHQzR17aGWPMPPjy_7_TW4t_2VeDVNeBLHscC4RahxC7jYe_Gg_8B7z6qEg
Cites_doi 10.1016/j.cell.2016.01.013
10.3389/fimmu.2019.01486
10.1038/s41591-023-02243-5
10.1053/j.gastro.2013.04.056
10.3390/jcm10081693
10.1002/jpen.2110
10.1038/s41575-023-00766-3
10.3389/fimmu.2023.1277102
10.3389/fneur.2022.909436
10.1038/nature18847
10.1097/CCM.0000000000005580
10.1097/SHK.0000000000002117
10.1002/ncp.10102
10.1016/j.clnesp.2021.04.002
10.1089/sur.2022.420
10.1038/s41579-018-0029-9
10.1002/jpen.2260
10.1186/s40560-019-0372-6
10.3390/nu11123002
10.1128/mSphere.00199-16
10.1097/00003246-199912000-00032
10.1128/spectrum.00125-22
10.1186/s13054-020-03208-7
10.1093/advances/nmz061
10.1126/science.1208344
10.1038/nrgastro.2012.156
10.1097/MCO.0000000000000451
10.1007/s13668-019-00296-y
10.1073/pnas.2217877121
10.1186/s13054-023-04412-x
10.1001/jama.2021.13355
10.1038/s41467-019-13721-1
10.3390/nu13072439
10.1016/j.bbr.2014.07.027
10.1097/MCO.0000000000000628
10.1097/SHK.0000000000002531
10.1182/blood-2016-03-708594
10.1186/s13054-024-05128-2
10.1097/CCM.0000000000002074
10.1016/j.molmed.2013.08.004
10.1007/s00134-018-5268-8
10.1080/19490976.2020.1758008
10.1053/j.gastro.2008.10.081
10.1097/CCM.0000000000002291
10.3389/fimmu.2021.658354
10.1002/jpen.2267
10.1016/j.clnesp.2023.11.003
10.1038/s41586-020-2193-0
10.1097/00005373-199105000-00006
10.3390/cells12050793
10.1111/jgh.13723
10.1053/j.gastro.2009.08.042
10.1080/07315724.2020.1727379
10.1186/s13054-022-04253-0
10.1038/nrgastro.2016.169
10.1128/spectrum.04182-23
10.1126/science.abo4220
10.1016/j.cell.2016.10.043
10.1093/ecco-jcc/jjad064
10.1186/s40560-021-00581-5
10.1016/j.chest.2019.08.2182
10.1097/MCC.0000000000000582
10.1186/s40560-024-00734-2
10.1016/j.jcmgh.2020.04.001
10.1128/msystems.00115-21
10.1016/j.chom.2017.11.004
10.1038/s41591-019-0626-9
10.1186/s13054-018-2167-x
10.3390/nu12020395
10.1097/CCM.0000000000002172
10.1038/s41586-019-1237-9
10.1038/nature12726
10.1080/19490976.2024.2351478
10.1038/s41575-020-0344-2
10.1097/SHK.0b013e31802e3f4c
10.1080/10408398.2022.2113761
10.1097/TA.0000000000002952
10.1164/rccm.201312-2257OC
10.1038/s41579-024-01068-4
10.1016/j.bbadis.2017.03.005
10.1016/j.chom.2014.02.006
10.1016/j.cell.2015.11.055
10.1038/s41467-020-15545-w
10.1016/j.clnu.2015.10.016
10.1172/jci.insight.156255
10.1056/NEJMra1600266
10.1038/s41467-019-12476-z
10.1093/burnst/tkad022
10.1101/2021.05.06.443038
10.1007/BF01706424
10.1097/CCE.0000000000000135
10.1002/jpen.2198
10.1053/j.gastro.2017.11.030
10.1038/nature11234
10.1136/bmj.k2179
10.1016/j.clnu.2013.11.008
10.3389/fcimb.2022.892232
10.1016/j.ccc.2015.11.004
10.1038/srep43522
10.1073/pnas.2000047117
10.1038/s41467-025-56237-7
10.1016/j.clnu.2023.01.019
10.1097/SHK.0000000000000565
10.1038/s41575-019-0173-3
10.1097/ALN.0b013e318291c2fc
10.1111/imm.12896
10.1017/S0007114512001213
10.1186/s13054-022-03980-8
10.1016/j.nut.2020.110863
10.1186/s13054-022-03997-z
10.1097/MPG.0b013e318216f1ec
10.3389/fnut.2024.1421632
10.4110/in.2014.14.6.277
10.1038/s41467-024-46888-3
10.1038/s41579-020-0433-9
10.1097/CCM.0000000000005499
10.1186/s12879-023-08608-y
10.1007/s10620-015-4011-3
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TS
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/nu17081352
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2072-6643
ExternalDocumentID PMC12029973
A837743641
40284216
10_3390_nu17081352
Genre Journal Article
Review
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAWTL
AAYXX
ABUWG
ACIWK
ACPRK
AENEX
AFKRA
AFRAH
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ECGQY
EIHBH
ESTFP
EYRJQ
F5P
FYUFA
GX1
HMCUK
HYE
IAO
ITC
KQ8
LK8
M1P
M48
MODMG
M~E
OK1
OZF
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7TS
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c435t-fcbb6c15592d5fa295e58fab934f637e3cd1cb84aa779174d3fcee5aeac719eb3
IEDL.DBID 7X7
ISSN 2072-6643
IngestDate Thu Aug 21 18:26:47 EDT 2025
Fri Jul 11 18:30:24 EDT 2025
Fri Jul 25 20:02:48 EDT 2025
Fri May 16 01:10:39 EDT 2025
Tue Jun 10 20:54:03 EDT 2025
Mon Jul 21 05:46:10 EDT 2025
Tue Jul 01 05:04:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords microbiota
energy expenditure
critical illness
metabolomics
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-fcbb6c15592d5fa295e58fab934f637e3cd1cb84aa779174d3fcee5aeac719eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0009-0000-0469-4415
0000-0002-3868-8272
OpenAccessLink https://www.proquest.com/docview/3194635462?pq-origsite=%requestingapplication%
PMID 40284216
PQID 3194635462
PQPubID 2032353
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12029973
proquest_miscellaneous_3195780551
proquest_journals_3194635462
gale_infotracmisc_A837743641
gale_infotracacademiconefile_A837743641
pubmed_primary_40284216
crossref_primary_10_3390_nu17081352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nutrients
PublicationTitleAlternate Nutrients
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Moreira (ref_62) 2012; 108
ref_93
ref_92
ref_91
Llewellyn (ref_68) 2018; 154
Ojima (ref_40) 2016; 61
Sanders (ref_80) 2019; 16
Lee (ref_87) 2023; 42
ref_19
McCarthy (ref_73) 2018; 33
Josefsdottir (ref_56) 2017; 129
McClave (ref_119) 2019; 8
Kim (ref_95) 2014; 14
Ma (ref_100) 2020; 11
Vojinovic (ref_106) 2019; 10
Zhang (ref_109) 2007; 27
ref_23
McClave (ref_5) 2021; 45
Otani (ref_22) 2019; 7
Sharif (ref_85) 2022; 50
Morowitz (ref_76) 2017; 45
Khailova (ref_81) 2013; 119
Wang (ref_97) 2015; 163
ref_26
Foster (ref_105) 2022; 376
Seethaler (ref_113) 2021; 43
Matejovic (ref_120) 2022; 26
Su (ref_50) 2009; 136
Simakachorn (ref_89) 2011; 53
Mittal (ref_8) 2014; 20
Sender (ref_25) 2016; 164
Forsyth (ref_44) 2022; 46
Oami (ref_11) 2019; 25
Oshima (ref_18) 2016; 35
Hildebrandt (ref_61) 2009; 137
Ross (ref_59) 2024; 22
Lou (ref_112) 2023; 11
Supinski (ref_118) 2020; 157
Stoppe (ref_74) 2020; 24
Sun (ref_6) 2023; 27
Cho (ref_13) 2024; 16
Valdes (ref_32) 2018; 361
Fan (ref_7) 2021; 19
Flint (ref_31) 2012; 9
Koch (ref_78) 2024; 28
McDonald (ref_39) 2016; 1
Lennie (ref_4) 1995; 269
Chou (ref_108) 2021; 9
Zhao (ref_55) 2018; 154
Lu (ref_54) 2017; 32
Christopher (ref_12) 2018; 21
Muller (ref_15) 2024; 15
Arpaia (ref_94) 2013; 504
Yelin (ref_88) 2019; 25
Yoseph (ref_42) 2016; 46
Pai (ref_51) 2023; 17
Yao (ref_114) 2022; 46
Khosravi (ref_57) 2014; 15
Knight (ref_29) 2018; 16
ref_58
Horn (ref_116) 2021; 90
Arze (ref_17) 2019; 569
Haines (ref_24) 2022; 50
Kim (ref_101) 2013; 145
Odenwald (ref_41) 2017; 14
Yumoto (ref_47) 2024; 63
Baggerman (ref_21) 2020; 23
Moore (ref_49) 1991; 31
Compher (ref_71) 2022; 46
Li (ref_14) 2024; 64
Lynch (ref_30) 2016; 375
Visconti (ref_107) 2019; 10
Chen (ref_83) 2020; 78
Oshima (ref_3) 2024; 12
Klingensmith (ref_33) 2016; 32
ref_67
Oami (ref_46) 2024; 121
ref_65
(ref_103) 2020; 39
ref_64
Scott (ref_99) 2020; 117
Schroeder (ref_69) 2018; 23
Klingensmith (ref_52) 2022; 7
Klingensmith (ref_9) 2023; 24
Harris (ref_43) 1992; 18
Freedberg (ref_79) 2020; 2
Fay (ref_27) 2017; 1863
Shimizu (ref_90) 2018; 22
Lou (ref_86) 2024; 59
Zhu (ref_16) 2025; 16
ref_115
ref_117
Swanson (ref_75) 2020; 17
Chen (ref_82) 2019; 43
Kim (ref_10) 2020; 11
Desai (ref_70) 2016; 167
ref_111
Prevel (ref_36) 2022; 26
ref_110
Mira (ref_1) 2017; 45
Long (ref_37) 2023; 59
Horowitz (ref_45) 2023; 20
ref_38
Johnstone (ref_84) 2021; 326
Campbell (ref_96) 2020; 581
Fazzini (ref_20) 2023; 27
Beale (ref_72) 1999; 27
ref_104
Clarke (ref_98) 2015; 277
Wu (ref_60) 2011; 334
Alverdy (ref_28) 2017; 45
Freedberg (ref_34) 2018; 44
Zuo (ref_48) 2020; 10
ref_102
Schlechte (ref_35) 2023; 29
Thaiss (ref_53) 2016; 535
Rohr (ref_63) 2020; 11
Hermans (ref_2) 2014; 190
Oliver (ref_66) 2021; 6
Majid (ref_77) 2014; 33
References_xml – volume: 164
  start-page: 337
  year: 2016
  ident: ref_25
  article-title: Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.013
– ident: ref_102
  doi: 10.3389/fimmu.2019.01486
– volume: 29
  start-page: 1017
  year: 2023
  ident: ref_35
  article-title: Dysbiosis of a microbiota-immune metasystem in critical illness is associated with nosocomial infections
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02243-5
– volume: 145
  start-page: 396
  year: 2013
  ident: ref_101
  article-title: Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.04.056
– ident: ref_23
  doi: 10.3390/jcm10081693
– volume: 46
  start-page: 454
  year: 2022
  ident: ref_44
  article-title: Use of a sensitive multisugar test for measuring segmental intestinal permeability in critically ill, mechanically ventilated adults: A pilot study
  publication-title: JPEN J. Parenter. Enteral Nutr.
  doi: 10.1002/jpen.2110
– volume: 20
  start-page: 417
  year: 2023
  ident: ref_45
  article-title: Paracellular permeability and tight junction regulation in gut health and disease
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-023-00766-3
– ident: ref_91
  doi: 10.3389/fimmu.2023.1277102
– ident: ref_110
  doi: 10.3389/fneur.2022.909436
– volume: 535
  start-page: 65
  year: 2016
  ident: ref_53
  article-title: The microbiome and innate immunity
  publication-title: Nature
  doi: 10.1038/nature18847
– volume: 50
  start-page: 1175
  year: 2022
  ident: ref_85
  article-title: Probiotics in Critical Illness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000005580
– volume: 59
  start-page: 716
  year: 2023
  ident: ref_37
  article-title: Global Signatures of the Microbiome and Metabolome during Hospitalization of Septic Patients
  publication-title: Shock
  doi: 10.1097/SHK.0000000000002117
– volume: 33
  start-page: 348
  year: 2018
  ident: ref_73
  article-title: Immunonutrition in Critical Illness: What Is the Role?
  publication-title: Nutr. Clin. Pract.
  doi: 10.1002/ncp.10102
– volume: 43
  start-page: 267
  year: 2021
  ident: ref_113
  article-title: Effect of an intensified individual nutrition therapy on serum metabolites in critically ill patients—A targeted metabolomics analysis of the ONCA study
  publication-title: Clin. Nutr. ESPEN
  doi: 10.1016/j.clnesp.2021.04.002
– volume: 24
  start-page: 250
  year: 2023
  ident: ref_9
  article-title: Gut Microbiome in Sepsis
  publication-title: Surg. Infect.
  doi: 10.1089/sur.2022.420
– volume: 16
  start-page: 410
  year: 2018
  ident: ref_29
  article-title: Best practices for analysing microbiomes
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0029-9
– volume: 45
  start-page: 66
  year: 2021
  ident: ref_5
  article-title: Can feeding strategies alter immune signaling and gut sepsis in critical illness?
  publication-title: JPEN J. Parenter. Enteral Nutr.
  doi: 10.1002/jpen.2260
– volume: 7
  start-page: 17
  year: 2019
  ident: ref_22
  article-title: Gut integrity in critical illness
  publication-title: J. Intensive Care
  doi: 10.1186/s40560-019-0372-6
– ident: ref_58
  doi: 10.3390/nu11123002
– volume: 1
  start-page: e00199-16
  year: 2016
  ident: ref_39
  article-title: Extreme Dysbiosis of the Microbiome in Critical Illness
  publication-title: mSphere
  doi: 10.1128/mSphere.00199-16
– volume: 27
  start-page: 2799
  year: 1999
  ident: ref_72
  article-title: Immunonutrition in the critically ill: A systematic review of clinical outcome
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-199912000-00032
– ident: ref_111
  doi: 10.1128/spectrum.00125-22
– volume: 24
  start-page: 499
  year: 2020
  ident: ref_74
  article-title: Biomarkers in critical care nutrition
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-03208-7
– volume: 11
  start-page: 77
  year: 2020
  ident: ref_63
  article-title: Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review
  publication-title: Adv. Nutr.
  doi: 10.1093/advances/nmz061
– volume: 334
  start-page: 105
  year: 2011
  ident: ref_60
  article-title: Linking long-term dietary patterns with gut microbial enterotypes
  publication-title: Science
  doi: 10.1126/science.1208344
– volume: 9
  start-page: 577
  year: 2012
  ident: ref_31
  article-title: The role of the gut microbiota in nutrition and health
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2012.156
– volume: 21
  start-page: 121
  year: 2018
  ident: ref_12
  article-title: Nutritional metabolomics in critical illness
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/MCO.0000000000000451
– volume: 8
  start-page: 363
  year: 2019
  ident: ref_119
  article-title: Mitochondrial Dysfunction in Critical Illness: Implications for Nutritional Therapy
  publication-title: Curr. Nutr. Rep.
  doi: 10.1007/s13668-019-00296-y
– volume: 121
  start-page: e2217877121
  year: 2024
  ident: ref_46
  article-title: Claudin-2 upregulation enhances intestinal permeability, immune activation, dysbiosis, and mortality in sepsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2217877121
– volume: 27
  start-page: 127
  year: 2023
  ident: ref_6
  article-title: Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis
  publication-title: Crit. Care
  doi: 10.1186/s13054-023-04412-x
– volume: 326
  start-page: 1024
  year: 2021
  ident: ref_84
  article-title: Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial
  publication-title: JAMA
  doi: 10.1001/jama.2021.13355
– volume: 10
  start-page: 5813
  year: 2019
  ident: ref_106
  article-title: Relationship between gut microbiota and circulating metabolites in population-based cohorts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13721-1
– ident: ref_115
  doi: 10.3390/nu13072439
– volume: 277
  start-page: 32
  year: 2015
  ident: ref_98
  article-title: Serotonin, tryptophan metabolism and the brain-gut-microbiome axis
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2014.07.027
– volume: 23
  start-page: 96
  year: 2020
  ident: ref_21
  article-title: Metabolic aspects of muscle wasting during critical illness
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/MCO.0000000000000628
– volume: 63
  start-page: 597
  year: 2024
  ident: ref_47
  article-title: Intestinal epithelial-specific occludin deletion worsens gut permeability and survival following sepsis
  publication-title: Shock
  doi: 10.1097/SHK.0000000000002531
– volume: 129
  start-page: 729
  year: 2017
  ident: ref_56
  article-title: Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota
  publication-title: Blood
  doi: 10.1182/blood-2016-03-708594
– volume: 28
  start-page: 359
  year: 2024
  ident: ref_78
  article-title: The efficacy of fiber-supplemented enteral nutrition in critically ill patients: A systematic review and meta-analysis of randomized controlled trials with trial sequential analysis
  publication-title: Crit. Care
  doi: 10.1186/s13054-024-05128-2
– volume: 45
  start-page: 253
  year: 2017
  ident: ref_1
  article-title: Sepsis Pathophysiology, Chronic Critical Illness, and Persistent Inflammation-Immunosuppression and Catabolism Syndrome
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000002074
– volume: 20
  start-page: 214
  year: 2014
  ident: ref_8
  article-title: Redefining the gut as the motor of critical illness
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2013.08.004
– volume: 44
  start-page: 1203
  year: 2018
  ident: ref_34
  article-title: Pathogen colonization of the gastrointestinal microbiome at intensive care unit admission and risk for subsequent death or infection
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-018-5268-8
– volume: 11
  start-page: 1203
  year: 2020
  ident: ref_100
  article-title: Host-microbiome interactions: The aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2020.1758008
– volume: 136
  start-page: 551
  year: 2009
  ident: ref_50
  article-title: Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.10.081
– volume: 45
  start-page: e516
  year: 2017
  ident: ref_76
  article-title: Dietary Supplementation With Nonfermentable Fiber Alters the Gut Microbiota and Confers Protection in Murine Models of Sepsis
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000002291
– ident: ref_93
  doi: 10.3389/fimmu.2021.658354
– volume: 46
  start-page: 12
  year: 2022
  ident: ref_71
  article-title: Guidelines for the provision of nutrition support therapy in the adult critically ill patient: The American Society for Parenteral and Enteral Nutrition
  publication-title: JPEN J. Parenter. Enteral Nutr.
  doi: 10.1002/jpen.2267
– volume: 59
  start-page: 48
  year: 2024
  ident: ref_86
  article-title: Efficacy of probiotics or synbiotics in critically ill patients: A systematic review and meta-analysis
  publication-title: Clin. Nutr. ESPEN
  doi: 10.1016/j.clnesp.2023.11.003
– volume: 581
  start-page: 475
  year: 2020
  ident: ref_96
  article-title: Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
  publication-title: Nature
  doi: 10.1038/s41586-020-2193-0
– volume: 31
  start-page: 629
  year: 1991
  ident: ref_49
  article-title: Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma
  publication-title: J. Trauma
  doi: 10.1097/00005373-199105000-00006
– ident: ref_92
  doi: 10.3390/cells12050793
– volume: 32
  start-page: 975
  year: 2017
  ident: ref_54
  article-title: Crosstalk between intestinal epithelial cell and adaptive immune cell in intestinal mucosal immunity
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.13723
– volume: 137
  start-page: 1716-24.e1-2
  year: 2009
  ident: ref_61
  article-title: High-fat diet determines the composition of the murine gut microbiome independently of obesity
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.08.042
– volume: 39
  start-page: 706
  year: 2020
  ident: ref_103
  article-title: Stool Short-Chain Fatty Acids in Critically Ill Patients with Sepsis
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.2020.1727379
– volume: 27
  start-page: 2
  year: 2023
  ident: ref_20
  article-title: The rate and assessment of muscle wasting during critical illness: A systematic review and meta-analysis
  publication-title: Crit. Care
  doi: 10.1186/s13054-022-04253-0
– volume: 14
  start-page: 9
  year: 2017
  ident: ref_41
  article-title: The intestinal epithelial barrier: A therapeutic target?
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2016.169
– ident: ref_64
  doi: 10.1128/spectrum.04182-23
– volume: 269
  start-page: R1024
  year: 1995
  ident: ref_4
  article-title: Body energy status and the metabolic response to acute inflammation
  publication-title: Am. J. Physiol.
– volume: 376
  start-page: 936
  year: 2022
  ident: ref_105
  article-title: Modulating brain function with microbiota
  publication-title: Science
  doi: 10.1126/science.abo4220
– volume: 167
  start-page: 1339
  year: 2016
  ident: ref_70
  article-title: A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.043
– volume: 17
  start-page: 1471
  year: 2023
  ident: ref_51
  article-title: Transepithelial Barrier Dysfunction Drives Microbiota Dysbiosis to Initiate Epithelial Clock-driven Inflammation
  publication-title: J. Crohns Colitis
  doi: 10.1093/ecco-jcc/jjad064
– volume: 9
  start-page: 65
  year: 2021
  ident: ref_108
  article-title: Paradox of trimethylamine-N-oxide, the impact of malnutrition on microbiota-derived metabolites and septic patients
  publication-title: J. Intensive Care
  doi: 10.1186/s40560-021-00581-5
– volume: 157
  start-page: 310
  year: 2020
  ident: ref_118
  article-title: Mitochondria and Critical Illness
  publication-title: Chest
  doi: 10.1016/j.chest.2019.08.2182
– volume: 25
  start-page: 145
  year: 2019
  ident: ref_11
  article-title: The microbiome and nutrition in critical illness
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000582
– volume: 12
  start-page: 29
  year: 2024
  ident: ref_3
  article-title: Nutritional therapy for the prevention of post-intensive care syndrome
  publication-title: J. Intensive Care
  doi: 10.1186/s40560-024-00734-2
– volume: 10
  start-page: 327
  year: 2020
  ident: ref_48
  article-title: Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis
  publication-title: Cell Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2020.04.001
– volume: 6
  start-page: e00115-21
  year: 2021
  ident: ref_66
  article-title: High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids
  publication-title: mSystems
  doi: 10.1128/msystems.00115-21
– volume: 23
  start-page: 27
  year: 2018
  ident: ref_69
  article-title: Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.11.004
– volume: 25
  start-page: 1728
  year: 2019
  ident: ref_88
  article-title: Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0626-9
– volume: 22
  start-page: 239
  year: 2018
  ident: ref_90
  article-title: Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: A randomized controlled trial
  publication-title: Crit. Care
  doi: 10.1186/s13054-018-2167-x
– ident: ref_117
  doi: 10.3390/nu12020395
– volume: 45
  start-page: 337
  year: 2017
  ident: ref_28
  article-title: Collapse of the Microbiome, Emergence of the Pathobiome, and the Immunopathology of Sepsis
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000002172
– volume: 569
  start-page: 655
  year: 2019
  ident: ref_17
  article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
  publication-title: Nature
  doi: 10.1038/s41586-019-1237-9
– volume: 504
  start-page: 451
  year: 2013
  ident: ref_94
  article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
  publication-title: Nature
  doi: 10.1038/nature12726
– volume: 16
  start-page: 2351478
  year: 2024
  ident: ref_13
  article-title: Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2024.2351478
– volume: 17
  start-page: 687
  year: 2020
  ident: ref_75
  article-title: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-020-0344-2
– volume: 27
  start-page: 672
  year: 2007
  ident: ref_109
  article-title: Sodium butyrate prevents lethality of severe sepsis in rats
  publication-title: Shock
  doi: 10.1097/SHK.0b013e31802e3f4c
– volume: 64
  start-page: 1213
  year: 2024
  ident: ref_14
  article-title: The emerging roles of next-generation metabolomics in critical care nutrition
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2022.2113761
– volume: 90
  start-page: 35
  year: 2021
  ident: ref_116
  article-title: Persistent metabolomic alterations characterize chronic critical illness after severe trauma
  publication-title: J. Trauma Acute Care Surg.
  doi: 10.1097/TA.0000000000002952
– volume: 190
  start-page: 410
  year: 2014
  ident: ref_2
  article-title: Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201312-2257OC
– volume: 22
  start-page: 671
  year: 2024
  ident: ref_59
  article-title: The interplay between diet and the gut microbiome: Implications for health and disease
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-024-01068-4
– volume: 1863
  start-page: 2574
  year: 2017
  ident: ref_27
  article-title: The intestinal microenvironment in sepsis
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2017.03.005
– volume: 15
  start-page: 374
  year: 2014
  ident: ref_57
  article-title: Gut microbiota promote hematopoiesis to control bacterial infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.02.006
– volume: 163
  start-page: 1585
  year: 2015
  ident: ref_97
  article-title: Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.055
– volume: 43
  start-page: 1139
  year: 2019
  ident: ref_82
  article-title: Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis
  publication-title: Int. J. Mol. Med.
– volume: 11
  start-page: 2354
  year: 2020
  ident: ref_10
  article-title: Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15545-w
– volume: 35
  start-page: 968
  year: 2016
  ident: ref_18
  article-title: Protein-energy nutrition in the ICU is the power couple: A hypothesis forming analysis
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2015.10.016
– volume: 7
  start-page: 156255
  year: 2022
  ident: ref_52
  article-title: Junctional adhesion molecule-A deletion increases phagocytosis and improves survival in a murine model of sepsis
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.156255
– volume: 375
  start-page: 2369
  year: 2016
  ident: ref_30
  article-title: The Human Intestinal Microbiome in Health and Disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1600266
– volume: 10
  start-page: 4505
  year: 2019
  ident: ref_107
  article-title: Interplay between the human gut microbiome and host metabolism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12476-z
– volume: 11
  start-page: tkad022
  year: 2023
  ident: ref_112
  article-title: Postbiotics as potential new therapeutic agents for sepsis
  publication-title: Burns Trauma
  doi: 10.1093/burnst/tkad022
– ident: ref_65
  doi: 10.1101/2021.05.06.443038
– volume: 18
  start-page: 38
  year: 1992
  ident: ref_43
  article-title: Intestinal permeability in the critically ill
  publication-title: Intensive Care Med.
  doi: 10.1007/BF01706424
– volume: 2
  start-page: e0135
  year: 2020
  ident: ref_79
  article-title: Impact of Fiber-Based Enteral Nutrition on the Gut Microbiome of ICU Patients Receiving Broad-Spectrum Antibiotics: A Randomized Pilot Trial
  publication-title: Crit. Care Explor.
  doi: 10.1097/CCE.0000000000000135
– volume: 46
  start-page: 538
  year: 2022
  ident: ref_114
  article-title: Alteration of gut microbiota and metabolomics in critically ill patients by sequential feeding: A pilot study
  publication-title: JPEN J. Parenter. Enteral Nutr.
  doi: 10.1002/jpen.2198
– volume: 154
  start-page: 1037
  year: 2018
  ident: ref_68
  article-title: Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.11.030
– ident: ref_26
  doi: 10.1038/nature11234
– volume: 361
  start-page: k2179
  year: 2018
  ident: ref_32
  article-title: Role of the gut microbiota in nutrition and health
  publication-title: BMJ
  doi: 10.1136/bmj.k2179
– volume: 33
  start-page: 966
  year: 2014
  ident: ref_77
  article-title: Additional oligofructose/inulin does not increase faecal bifidobacteria in critically ill patients receiving enteral nutrition: A randomised controlled trial
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2013.11.008
– ident: ref_104
  doi: 10.3389/fcimb.2022.892232
– volume: 32
  start-page: 203
  year: 2016
  ident: ref_33
  article-title: The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness
  publication-title: Crit. Care Clin.
  doi: 10.1016/j.ccc.2015.11.004
– ident: ref_67
  doi: 10.1038/srep43522
– volume: 117
  start-page: 19376
  year: 2020
  ident: ref_99
  article-title: Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2000047117
– volume: 16
  start-page: 1230
  year: 2025
  ident: ref_16
  article-title: A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-025-56237-7
– volume: 42
  start-page: 519
  year: 2023
  ident: ref_87
  article-title: Benefits and harm of probiotics and synbiotics in adult critically ill patients. A systematic review and meta-analysis of randomized controlled trials with trial sequential analysis
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2023.01.019
– volume: 46
  start-page: 52
  year: 2016
  ident: ref_42
  article-title: Mechanisms of Intestinal Barrier Dysfunction in Sepsis
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000565
– volume: 16
  start-page: 605
  year: 2019
  ident: ref_80
  article-title: Probiotics and prebiotics in intestinal health and disease: From biology to the clinic
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0173-3
– volume: 119
  start-page: 166
  year: 2013
  ident: ref_81
  article-title: Probiotic administration reduces mortality and improves intestinal epithelial homeostasis in experimental sepsis
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e318291c2fc
– volume: 154
  start-page: 28
  year: 2018
  ident: ref_55
  article-title: Adaptive immune education by gut microbiota antigens
  publication-title: Immunology
  doi: 10.1111/imm.12896
– volume: 108
  start-page: 801
  year: 2012
  ident: ref_62
  article-title: Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114512001213
– volume: 26
  start-page: 105
  year: 2022
  ident: ref_36
  article-title: Gut bacteriobiota and mycobiota are both associated with Day-28 mortality among critically ill patients
  publication-title: Crit. Care
  doi: 10.1186/s13054-022-03980-8
– volume: 78
  start-page: 110863
  year: 2020
  ident: ref_83
  article-title: Probiotic Lactobacillus rhamnosus GG reduces mortality of septic mice by modulating gut microbiota composition and metabolic profiles
  publication-title: Nutrition
  doi: 10.1016/j.nut.2020.110863
– volume: 26
  start-page: 143
  year: 2022
  ident: ref_120
  article-title: Medical nutrition therapy and clinical outcomes in critically ill adults: A European multinational, prospective observational cohort study (EuroPN)
  publication-title: Crit. Care
  doi: 10.1186/s13054-022-03997-z
– volume: 53
  start-page: 174
  year: 2011
  ident: ref_89
  article-title: Tolerance, safety, and effect on the faecal microbiota of an enteral formula supplemented with pre- and probiotics in critically ill children
  publication-title: J. Pediatr. Gastroenterol. Nutr.
  doi: 10.1097/MPG.0b013e318216f1ec
– ident: ref_19
  doi: 10.3389/fnut.2024.1421632
– volume: 14
  start-page: 277
  year: 2014
  ident: ref_95
  article-title: Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation
  publication-title: Immune Netw.
  doi: 10.4110/in.2014.14.6.277
– volume: 15
  start-page: 2621
  year: 2024
  ident: ref_15
  article-title: Multi-omic integration of microbiome data for identifying disease-associated modules
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46888-3
– volume: 19
  start-page: 55
  year: 2021
  ident: ref_7
  article-title: Gut microbiota in human metabolic health and disease
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0433-9
– volume: 50
  start-page: 1072
  year: 2022
  ident: ref_24
  article-title: Catabolism in Critical Illness: A Reanalysis of the REducing Deaths due to OXidative Stress (REDOXS) Trial
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0000000000005499
– ident: ref_38
  doi: 10.1186/s12879-023-08608-y
– volume: 61
  start-page: 1628
  year: 2016
  ident: ref_40
  article-title: Metagenomic Analysis Reveals Dynamic Changes of Whole Gut Microbiota in the Acute Phase of Intensive Care Unit Patients
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-015-4011-3
SSID ssj0000070763
Score 2.3989048
SecondaryResourceType review_article
Snippet Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut...
Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut barrier...
Background: Critical illness induces profound metabolic alterations, characterized by a hypermetabolic state, insulin resistance, protein catabolism, and gut...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1352
SubjectTerms Catastrophic illness
Clinical trials
Complications and side effects
Critical care
Critical Care - methods
Critical Illness - therapy
Critically ill
Development and progression
Diet therapy
Dysbiosis
Energy
Gastrointestinal Microbiome - physiology
Health aspects
Homeostasis
Humans
Illnesses
Inflammation
Insulin resistance
Kinases
Medical nutrition therapy
Metabolism
Metabolites
Methods
Microbiota
Microorganisms
Mortality
Nosocomial infections
Nutrition therapy
Nutrition Therapy - methods
Observational studies
Patients
Permeability
Physiological aspects
Prebiotics - administration & dosage
Probiotics
Proteins
Review
Sepsis
Trauma
Virulence
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB58XLyIb6tVVhQ9RU32kUQQKaKUgsWDFW9hs91goaZaU7T_3pk8qhHxvJMHM5ud78vOfgNwZBG1eVpaR4RcOqQp5cSh1I6S_UAYpWOZ5AWyXdXuic6TfJqDqn9n6cD3P6kd9ZPqjYenn2_TK_zgL4lxImU_Syeuj5kNocQ8LGJG8qmTwV0J8wsY7CNd54U66a9Lavno96r8Iy3VSyZ_5KDbFVguwSNrFdFehTmbrsF6K0Xi_DJlxywv58z_k69Dp2piwOiIEetWqvuMDpQwze5shvEfDgy7Hw3SjI0S9jiwHxesxbp6XOiBs2LnYAN6tzcP122nbJzgGEQ_mZOYOFaGNhy9vky0F0org0THIReJ4r7lpu-aOBBa-z7SNdHnCeZKqXER9t0Q6fUmLKSj1G4D0zF3uUpC9JoRodEBrpBkZ_DW1DqpAYeV-6LXQh8jQl5BTo6-ndyAE_JsRGFE9xld1v7jM0h-KmohTUYoo4TbgGbNEie7qQ9XsYmquRLhKiIQNwmFzzmYDdOVVECW2tEkt5HUvkHiLbaKUM7eFyl0IDxXNSCoBXlmQBLc9ZF08JxLcbveOeZzn-_8_167sORR32DSiJRNWMjGE7uHYCaL9_OZ-gXWw_PC
  priority: 102
  providerName: Scholars Portal
Title Critical Care Nutrition from a Metabolic Point of View: A Narrative Review
URI https://www.ncbi.nlm.nih.gov/pubmed/40284216
https://www.proquest.com/docview/3194635462
https://www.proquest.com/docview/3195780551
https://pubmed.ncbi.nlm.nih.gov/PMC12029973
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4V9sIF0S6PUIpctSqnCBI_kvRSbSuWFRIrhAraW-Q4jlgJkgWyh_77zjjJsuHAJVJkJ3FmxvOwx98AfLfotYVaWl8kXPqEKeVnidS-knksjNKZLFyC7FRNbsXlTM7aBbeXNq2y04lOUeeVoTXyUxQVgcZRqPDX4smnqlG0u9qW0NiAAUGXkVRHs2i1xuKwbBRvUEk5Rven5TKI0Ai6c0ZrduitNl4zR_1UyTXbM96B7dZpZKOGyx_hgy0_wXBUYsD8-I_9YC6N062PD-GyK17A6GgRm3Zo-4wOkjDNrmyNfH-YG3ZdzcuaVQW7wz__yUZsqp8bHHDW7Bjswu34_O-fid8WTPANej21X5gsU4Y2GsNcFjpMpJVxobOEi0LxyHKTByaLhdZRhGGayHmBNlJqVL5RkGBYvQebZVXaA2A64wFXRYJUMyIxOkbNSP0MvppKJnnwrSNfumhwMVKMJ4jI6SuRPTghyqY0WZB8Rrc5__gNgp1KRxgeowujRODBUa8nCrnpN3e8SdtJ9pK-ioQHX1fN9CQljpW2Wro-kso2SHzFfsPK1XgxdI5FGCgP4h6TVx0IervfUs7vHQR3EJ6hHY_44fvj-gxbIdULJmxIeQSb9fPSfkEnps6OnaQew-D3-fT6Bu8uZgFer0T8H3j89VM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXCmiBlEKNeJ2ibvxKgoTQqlBtXysOLdpb6jiOWKlNSpsV6p_iNzLjbLYbDtx6tuNYM-N52DPfALxz6LVxo1woU6FCwpQK81SZUKsikVabXJU-QXasR2fycKImK_Cnq4WhtMpOJ3pFXdSW7sh3UVQkGkep-ZerXyF1jaLX1a6FRisWR-72N4ZsN58PviJ_33O-_-10bxTOuwqEFl2DJixtnmtLr3G8UKXhqXIqKU2eCllqETthi8jmiTQmjjGWkYUo0ZAogxoqjlKMPXHdB_AQDe-Agr14Ei_udDx2jhYtCqoQ6WC3mkUxGl1f17Rk9_7V_kvmr5-auWTr9h_D-txJZcNWqp7AiquewsawwgD98pZ9YD5t1N_Hb8Bh1yyBUSkTG3fo_owKV5hhJ65BObuYWva9nlYNq0v2Ayn9iQ3Z2Fy3uOOsfaHYhLN7IeUzWK3qyr0AZnIRCV2mSDUrU2sS1MQ0z-LS1KIpgLcd-bKrFocjw_iFiJzdETmAj0TZjA4nks-aeY0B_oNgrrIhhuPoMmkZBbDdm4mHyvaHO95k80N9k92JYABvFsP0JSWqVa6e-TmK2kQoXOJ5y8rFfjFUTySPdABJj8mLCQT13R-ppj895HfEB-g3xGLr__vagbXR6clxdnwwPnoJjzj1KiZcSrUNq831zL1CB6rJX3upZXB-38fkL4oWMVo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QUA5QgsYcT1F28RHEiSEFtpVD4hWiKK-BcexxUo0KW1WVf9afx0zObYbHnjrsx3HmsMzY898A_DaotcWaml9kXDpE6aUnydS-0oWsTBK59I1CbKp2jsSB8fyeA2u-loYSqvsz8TmoC4qQ3fkYxQVgcZRqHDsurSI2c704-kfnzpI0Utr306jFZFDe3mB4dv5h_0d5PWbMJzufv-853cdBnyDbkLtO5PnytDLXFhIp8NEWhk7nSdcOMUjy00RmDwWWkcRxjWi4A6NitR4WkVBgnEornsL1iOKikaw_mk3nX1b3vA0SDqKt5ionCfb43IRRGiCmyqnFSv4ry1YMYbDRM0Vyze9B3c7l5VNWhm7D2u2fAAbkxLD9ZNL9pY1SaTN7fwGHPStExgVNrG0x_pnVMbCNPtqa5S633PDZtW8rFnl2A-k-3s2Yak-a1HIWfte8RCOboSYj2BUVqV9AkznPODKJUg1IxKjYzyXaZ7BpalhkwevevJlpy0qR4bRDBE5uyayB--IshmpKpLP6K7iAP9BoFfZBINzdKCUCDzYGsxEFTPD4Z43Wafi59m1QHrwcjlMX1LaWmmrRTNHUtMIiUs8blm53C8G7rEIA-VBPGDycgIBfw9HyvmvBgA8CLfRi4j40__v6wXcRhXJvuynh5twJ6TGxQRSKbdgVJ8t7DP0pur8eSe2DH7etKb8BacbNvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+Care+Nutrition+from+a+Metabolic+Point+of+View%3A+A+Narrative+Review&rft.jtitle=Nutrients&rft.au=Oami+Takehiko&rft.au=Yamamoto+Akiyuki&rft.au=Ishida+Shigenobu&rft.au=Kondo+Kengo&rft.date=2025-04-15&rft.pub=MDPI+AG&rft.eissn=2072-6643&rft.volume=17&rft.issue=8&rft.spage=1352&rft_id=info:doi/10.3390%2Fnu17081352&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon