Genomic selection methods for crop improvement: Current status and prospects
With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as t...
Saved in:
Published in | The Crop journal Vol. 6; no. 4; pp. 330 - 340 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2018
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as to achieve more comprehensive and reliable selection and to accelerate genetic progress in crop breeding. GS models usually face the problem that the number of markers is much higher than the number of phenotypic observations. To overcome this issue and improve prediction accuracy, many models and algorithms, including GBLUP, Bayes, and machine learning have been employed for GS. As hot issues in GS research, the estimation of non-additive genetic effects and the combined analysis of multiple traits or multiple environments are also important for improving the accuracy of prediction. In recent years, crop breeding has taken advantage of the development of GS. The principles and characteristics of current popular GS methods and research progress in these methods for crop improvement are reviewed in this paper. |
---|---|
AbstractList | With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as to achieve more comprehensive and reliable selection and to accelerate genetic progress in crop breeding. GS models usually face the problem that the number of markers is much higher than the number of phenotypic observations. To overcome this issue and improve prediction accuracy, many models and algorithms, including GBLUP, Bayes, and machine learning have been employed for GS. As hot issues in GS research, the estimation of non-additive genetic effects and the combined analysis of multiple traits or multiple environments are also important for improving the accuracy of prediction. In recent years, crop breeding has taken advantage of the development of GS. The principles and characteristics of current popular GS methods and research progress in these methods for crop improvement are reviewed in this paper. With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as to achieve more comprehensive and reliable selection and to accelerate genetic progress in crop breeding. GS models usually face the problem that the number of markers is much higher than the number of phenotypic observations. To overcome this issue and improve prediction accuracy, many models and algorithms, including GBLUP, Bayes, and machine learning have been employed for GS. As hot issues in GS research, the estimation of non-additive genetic effects and the combined analysis of multiple traits or multiple environments are also important for improving the accuracy of prediction. In recent years, crop breeding has taken advantage of the development of GS. The principles and characteristics of current popular GS methods and research progress in these methods for crop improvement are reviewed in this paper. Keywords: Genomic selection, Prediction, Accuracy, Crop |
Author | Xu, Yang Hu, Zhongli Xu, Chenwu Wang, Xin |
Author_xml | – sequence: 1 givenname: Xin surname: Wang fullname: Wang, Xin organization: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China – sequence: 2 givenname: Yang surname: Xu fullname: Xu, Yang organization: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China – sequence: 3 givenname: Zhongli surname: Hu fullname: Hu, Zhongli organization: State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China – sequence: 4 givenname: Chenwu surname: Xu fullname: Xu, Chenwu email: cwxu@yzu.edu.cn organization: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China |
BookMark | eNp9kc1r3DAQxUVJoek29x517GVdfXudW1mSNLCQS3IW8njUytjWVtIG8t9Hm20hBNKTBs17j5nffCZnS1yQkK-cNZxx831sYGwE45uGyYYx_oGcC8HVWnPFz17Vn8hFziOrCqmUMOyc7G5wiXMAmnFCKCEudMbyOw6Z-pgopLinYd6n-IgzLuWSbg8p1YLm4sohU7cMtHbzvprzF_LRuynjxd93RR6ur-63P9e7u5vb7Y_dGpTUZe07rXohO4GOcd9ydHroZZ2RdxuvQYA2TAxdr4xyRvUbrQE707ViYL1wbStX5PaUO0Q32n0Ks0tPNrpgXz5i-mVdKgEmtBKRoWIGaogyve-N8x04wQds0SPUrG-nrLrFnwPmYueQAafJLRgP2Qoh2KZVrdRVak7SSiXnhN5CqBQqs5JcmCxn9ngNO1oY7fEalkl7ZL0i7I3x38z_sVyeLFg5PgZMNkPABXAIqaKui4b3zc_NE6Mt |
CitedBy_id | crossref_primary_10_3390_ijms25094687 crossref_primary_10_3389_fgene_2021_600789 crossref_primary_10_3390_f11111190 crossref_primary_10_1007_s11032_019_0986_3 crossref_primary_10_1093_jxb_eraa034 crossref_primary_10_3389_fpls_2021_718713 crossref_primary_10_3390_ijms221910583 crossref_primary_10_3390_agronomy11020376 crossref_primary_10_1007_s00122_020_03703_z crossref_primary_10_3389_fpls_2021_708233 crossref_primary_10_3390_agronomy14122795 crossref_primary_10_1111_pbr_13127 crossref_primary_10_3390_life11060502 crossref_primary_10_1007_s11032_019_1048_6 crossref_primary_10_3390_agronomy12051126 crossref_primary_10_1038_s41598_019_49618_8 crossref_primary_10_1002_tpg2_20148 crossref_primary_10_1007_s00018_021_03844_4 crossref_primary_10_1093_insilicoplants_diad007 crossref_primary_10_1002_tpg2_20384 crossref_primary_10_1109_ACCESS_2020_3015814 crossref_primary_10_1002_csc2_21000 crossref_primary_10_1002_tpg2_20264 crossref_primary_10_3389_fgene_2022_835781 crossref_primary_10_3389_fgene_2022_832153 crossref_primary_10_3389_fpls_2021_724847 crossref_primary_10_3390_agronomy10091255 crossref_primary_10_35407_bag_2020_31_01_03 crossref_primary_10_1016_j_ygeno_2021_01_012 crossref_primary_10_1093_jxb_eraa388 crossref_primary_10_31083_j_fbe1601002 crossref_primary_10_1007_s10681_021_02825_9 crossref_primary_10_1111_pbr_12967 crossref_primary_10_3390_agriculture14030347 crossref_primary_10_1007_s10681_022_03048_2 crossref_primary_10_1007_s00122_021_03996_8 crossref_primary_10_1007_s00122_024_04754_2 crossref_primary_10_3389_fgene_2021_710485 crossref_primary_10_1007_s10725_020_00658_5 crossref_primary_10_1016_j_xplc_2019_100005 crossref_primary_10_1007_s11295_020_01453_z crossref_primary_10_3389_fpls_2021_779386 crossref_primary_10_1007_s00425_022_03996_y crossref_primary_10_1016_j_ygeno_2021_02_007 crossref_primary_10_3390_plants12162970 crossref_primary_10_1016_j_cj_2021_03_008 crossref_primary_10_1093_g3journal_jkaf048 crossref_primary_10_3389_fpls_2019_00427 crossref_primary_10_3390_ijms20020359 crossref_primary_10_3389_fpls_2024_1373081 crossref_primary_10_1093_bib_bbae385 crossref_primary_10_3389_fpls_2021_664148 crossref_primary_10_3390_plants9101263 crossref_primary_10_1111_pbi_14412 crossref_primary_10_1093_jxb_erac236 crossref_primary_10_3390_agronomy12010007 crossref_primary_10_46909_alse_571125 crossref_primary_10_3389_fpls_2022_923381 crossref_primary_10_1186_s12864_022_08487_8 crossref_primary_10_1111_jipb_13791 crossref_primary_10_1038_s41598_024_70630_0 crossref_primary_10_1534_g3_118_200998 crossref_primary_10_3390_genes14071484 crossref_primary_10_3389_fpls_2021_709545 crossref_primary_10_3390_plants13202855 crossref_primary_10_3389_fpls_2024_1402693 crossref_primary_10_3389_fpls_2024_1451784 crossref_primary_10_1007_s00425_023_04252_7 crossref_primary_10_1093_g3journal_jkac245 crossref_primary_10_1038_s41598_024_55243_x crossref_primary_10_3389_fpls_2019_01129 crossref_primary_10_1016_j_cj_2023_09_009 crossref_primary_10_3390_agriculture12091330 crossref_primary_10_3390_agriculture10120638 crossref_primary_10_3390_plants13213073 crossref_primary_10_3390_agronomy10111843 crossref_primary_10_18699_vjgb_24_51 crossref_primary_10_3390_genes11010016 crossref_primary_10_3390_su13158600 crossref_primary_10_3389_fpls_2021_697688 crossref_primary_10_1111_eva_13638 crossref_primary_10_3390_f11020239 crossref_primary_10_3390_v14122765 crossref_primary_10_3389_fpls_2024_1429802 crossref_primary_10_1007_s10722_021_01190_9 crossref_primary_10_1093_g3journal_jkad286 crossref_primary_10_1007_s11032_022_01341_5 crossref_primary_10_9787_PBB_2022_10_1_1 crossref_primary_10_1002_tpg2_20471 crossref_primary_10_3389_fpls_2023_1320506 crossref_primary_10_3390_plants10010043 crossref_primary_10_1007_s11032_022_01326_4 crossref_primary_10_3390_genes11070779 crossref_primary_10_1016_j_cj_2020_04_012 crossref_primary_10_3390_plants9091236 crossref_primary_10_1016_j_aquaculture_2023_740212 crossref_primary_10_1016_j_eja_2024_127391 crossref_primary_10_1186_s12870_024_04934_8 crossref_primary_10_3390_genes12030332 crossref_primary_10_3390_plants9070817 crossref_primary_10_1007_s00122_021_03865_4 crossref_primary_10_3389_fpls_2021_671060 crossref_primary_10_1016_j_softx_2024_101770 crossref_primary_10_1186_s12864_022_08337_7 crossref_primary_10_1093_g3journal_jkac022 crossref_primary_10_3390_genes13122247 crossref_primary_10_3390_plants11162139 crossref_primary_10_1111_pbi_70011 crossref_primary_10_3390_agronomy14122756 crossref_primary_10_1038_s41598_022_20416_z crossref_primary_10_1186_s43170_024_00293_4 crossref_primary_10_1002_csc2_20854 crossref_primary_10_3389_fpls_2023_1171135 crossref_primary_10_3389_fpls_2022_904131 crossref_primary_10_1093_bib_bbaa197 crossref_primary_10_3390_ijms242417624 crossref_primary_10_1186_s12864_019_5920_x crossref_primary_10_1016_j_cj_2021_04_007 crossref_primary_10_3390_ijms21072414 crossref_primary_10_1007_s10681_021_02774_3 crossref_primary_10_1007_s12892_020_00039_4 crossref_primary_10_3389_fpls_2020_572027 crossref_primary_10_1007_s00438_023_02026_0 crossref_primary_10_3389_frai_2022_1040295 crossref_primary_10_1016_j_ygeno_2021_12_016 crossref_primary_10_3390_plants11141866 crossref_primary_10_1186_s12870_022_03975_1 crossref_primary_10_3390_plants10091904 crossref_primary_10_1186_s13007_022_00845_7 crossref_primary_10_3389_fpls_2021_731949 crossref_primary_10_1186_s12864_021_07834_5 crossref_primary_10_3389_fpls_2023_1248978 crossref_primary_10_1007_s00122_020_03673_2 crossref_primary_10_3389_fsufs_2023_1203721 crossref_primary_10_3389_fgene_2021_717457 crossref_primary_10_3389_fpls_2022_1048860 crossref_primary_10_1016_j_stress_2024_100731 crossref_primary_10_1002_csc2_20092 crossref_primary_10_1007_s11816_021_00713_1 crossref_primary_10_1111_pce_13880 crossref_primary_10_1016_j_plantsci_2019_04_018 crossref_primary_10_3390_ijms23052838 crossref_primary_10_1002_csc2_20377 crossref_primary_10_1007_s00122_020_03658_1 crossref_primary_10_1007_s00299_021_02784_4 crossref_primary_10_1007_s10681_024_03425_z crossref_primary_10_3389_fpls_2021_715983 crossref_primary_10_1002_tpg2_20127 crossref_primary_10_1111_pbr_13061 crossref_primary_10_3389_fpls_2023_1156430 crossref_primary_10_1016_j_fcr_2024_109344 crossref_primary_10_1016_j_rsci_2022_05_002 crossref_primary_10_1002_csc2_20518 crossref_primary_10_1007_s11032_023_01357_5 crossref_primary_10_3390_plants10040745 crossref_primary_10_3390_ijms241814275 crossref_primary_10_1016_j_cj_2021_09_001 crossref_primary_10_3390_plants14020148 crossref_primary_10_1038_s41437_022_00537_x crossref_primary_10_1186_s12863_023_01179_6 crossref_primary_10_1111_pbr_13235 crossref_primary_10_3389_fgene_2022_953833 crossref_primary_10_1080_07060661_2020_1861102 crossref_primary_10_1002_ppp3_10136 crossref_primary_10_1007_s12042_023_09348_8 crossref_primary_10_1186_s40104_023_00875_8 crossref_primary_10_1094_PDIS_07_20_1531_RE crossref_primary_10_3835_plantgenome2018_10_0082 |
Cites_doi | 10.1016/j.livsci.2014.05.036 10.2135/cropsci1989.0011183X002900020019x 10.1186/1471-2156-12-15 10.2135/cropsci2006.11.0690 10.1111/j.2517-6161.1996.tb02080.x 10.1007/s10709-008-9308-0 10.1198/016214508000000337 10.3168/jds.2012-6406 10.2135/cropsci2015.11.0718 10.1111/j.1439-0388.2008.00747.x 10.1534/g3.114.016261 10.1007/s10681-007-9584-2 10.1017/S0016672308009981 10.1017/S1751731112000742 10.1007/s00122-015-2626-6 10.2135/cropsci2009.11.0662 10.1111/jbg.12165 10.1007/s00122-012-1991-7 10.2527/jas1976.4361188x 10.2135/cropsci1996.0011183X003600050023x 10.1186/1297-9686-42-5 10.1007/s00122-007-0627-9 10.1007/s10681-011-0395-0 10.1534/g3.112.005066 10.2307/2527598 10.1186/1297-9686-46-17 10.1186/1297-9686-44-4 10.1007/s11434-015-0791-2 10.1534/genetics.112.144246 10.1038/hdy.2016.87 10.3168/jds.S0022-0302(97)76022-3 10.1007/s11295-012-0528-1 10.2135/cropsci2011.06.0297 10.1534/g3.112.003665 10.4238/vol9-2gmr791 10.3168/jds.2009-2061 10.1017/S0016672312000018 10.1371/journal.pone.0005220 10.2135/cropsci1975.0011183X001500060025x 10.1038/ng.608 10.3168/jds.2012-5379 10.1073/pnas.1413750111 10.3389/fpls.2016.01666 10.1093/genetics/124.3.743 10.1534/g3.115.019869 10.18637/jss.v033.i01 10.1038/hdy.2017.27 10.1534/genetics.107.081190 10.1186/s12284-017-0163-4 10.1186/1471-2105-14-34 10.1016/j.tplants.2017.08.011 10.1038/hdy.2012.44 10.2135/cropsci2008.08.0491er 10.1534/g3.116.035584 10.1534/genetics.107.080838 10.2307/2529430 10.2135/cropsci2011.05.0253 10.1186/1471-2156-13-100 10.1186/1471-2156-15-30 10.1007/s00122-014-2341-8 10.1007/s00122-013-2231-5 10.1186/2047-217X-3-8 10.1111/j.1439-0388.2007.00701.x 10.2135/cropsci2011.06.0299 10.1534/genetics.114.165704 10.1534/g3.116.031286 10.1093/genetics/157.4.1819 10.1534/g3.114.016097 10.1093/oxfordjournals.jhered.a105102 10.1007/s00122-011-1587-7 10.3168/jds.2011-4256 10.2135/cropsci1970.0011183X001000020023x 10.1093/genetics/163.2.789 10.1007/s11032-015-0324-3 10.3168/jds.2007-0980 10.1038/ng.1033 10.1016/j.aquaculture.2009.01.027 10.1007/s11032-017-0681-1 10.1534/genetics.108.098277 10.1007/s00122-013-2160-3 10.1111/j.1439-0388.2011.00964.x 10.1093/bfgp/elq001 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.cj.2018.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2214-5141 |
EndPage | 340 |
ExternalDocumentID | oai_doaj_org_article_3ee0e406c55c46bfb6af9ca21de7efec 10_1016_j_cj_2018_03_001 S2214514118300400 |
GroupedDBID | -04 -0D -SD -S~ 0SF 4.4 457 5VR 5VS 6I. 92M 93N 93Q 9D9 9DD AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABDBF ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJED CAJUS CCEZO CHBEP CHDYS EBS EJD FA0 FDB GROUPED_DOAJ IPNFZ IXB JUIAU KQ8 M41 M~E NCXOZ OK1 Q-- Q-3 R-D RIG ROL RT4 SSZ T8T TCJ TGD U1F U1G U5D U5N ~MK 0R~ 7X2 AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP ATCPS BENPR BHPHI CCPQU CITATION HCIFZ M0K PHGZM PHGZT PIMPY 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-f954b2392ea01f71ea5db3214198f5c2c5602d9b464a64b855ce96972d0b2a773 |
IEDL.DBID | IXB |
ISSN | 2214-5141 |
IngestDate | Wed Aug 27 00:23:57 EDT 2025 Fri Jul 11 14:43:17 EDT 2025 Tue Jul 01 04:30:38 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Thu Jul 20 20:01:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Crop Accuracy Genomic selection Prediction |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-f954b2392ea01f71ea5db3214198f5c2c5602d9b464a64b855ce96972d0b2a773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214514118300400 |
PQID | 2220874735 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3ee0e406c55c46bfb6af9ca21de7efec proquest_miscellaneous_2220874735 crossref_citationtrail_10_1016_j_cj_2018_03_001 crossref_primary_10_1016_j_cj_2018_03_001 elsevier_sciencedirect_doi_10_1016_j_cj_2018_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationTitle | The Crop journal |
PublicationYear | 2018 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | Tibshirani (bb0100) 1996 Li, Wang, Zeigler (bb0080) 2014; 3 Dolan, Stuthman, Kolb, Hewings (bb0340) 1996; 36 Xu, Xu, Xu (bb0190) 2017; 119 Dudley, Johnson (bb0245) 2009; 49 Heffner, Lorenz, Jannink, Sorrells (bb0040) 2010; 50 Jia, Jannink (bb0260) 2012; 192 Calus, Meuwissen, de Roos, Veerkamp (bb0390) 2008; 178 Kadam, Potts, Bohn, Lipka, Lorenz (bb0055) 2016; 6 Misztal, Lawlor, Fernando (bb0215) 1997; 80 Hayashi, Iwata (bb0290) 2013; 14 Neves, Carvalheiro, Queiroz (bb0085) 2012; 13 Guo, Zhao, Wang, Zhang, Du, Su (bb0300) 2014; 15 Kempthorne, Nordskog (bb0325) 1959; 15 Wang, El-Basyoni, Baenziger, Crossa, Eskridge, Dweikat (bb0210) 2012; 109 Tsuruta, Misztal, Aguilar, Lawlor (bb0295) 2011; 94 Wang, Li, Yang, Zheng, Yu, Xu, Hu (bb0075) 2017; 118 Heslot, Akdemir, Sorrells, Jannink (bb0315) 2014; 127 Schulthess, Wang, Miedaner, Wilde, Reif, Zhao (bb0270) 2016; 129 Yang, Benyamin, McEvoy, Gordon, Henders, Nyholt, Madden, Heath, Martin, Montgomery (bb0135) 2010; 42 Hayes, Visscher, Goddard (bb0125) 2009; 91 Balestre, Von Pinho, Souza (bb0230) 2010; 9 Elgin, Hill, Zeiders (bb0335) 1970; 10 Nielsen, Sonesson, Yazdi, Meuwissen (bb0370) 2009; 289 Henderson, Quaas (bb0285) 1976; 43 Villumsen, Janss, Lund (bb0395) 2009; 126 Burgueño, de los Campos, Weigel, Crossa (bb0310) 2012; 52 Habier, Fernando, Dekkers (bb0170) 2007; 177 Goddard, Hayes, Meuwissen (bb0140) 2011; 128 Gao, Su, Janss, Zhang, Lund (bb0175) 2013; 96 Jannink, Lorenz, Iwata (bb0405) 2010; 9 Su, Brondum, Ma, Guldbrandtsen, Aamand, Lund (bb0380) 2012; 95 Hu, Li, Song, Han, Cai, Xu, Li (bb0255) 2011; 12 Riedelsheimer, Czedik-Eysenberg, Grieder, Lisec, Technow, Sulpice, Altmann, Stitt, Willmitzer, Melchinger (bb0020) 2012; 44 Gartner, Steinfath, Andorf, Lisec, Meyer, Altmann, Willmitzer, Selbig (bb0420) 2009; 4 Uwatoko, Onishi, Ikeda, Kontani, Sasaki, Matsubara, Itoh, Sano (bb0235) 2008; 163 VanRaden (bb0120) 2008; 91 Legarra, Aguilar, Misztal (bb0150) 2009; 92 Crossa, Perez-Rodriguez, Cuevas, Montesinos-Lopez, Jarquin, de los Campos, Burgueno, Gonzalez-Camacho, Perez-Elizalde, Beyene, Dreisigacker, Singh, Zhang, Gowda, Roorkiwal, Rutkoski, Varshney (bb0165) 2017; 22 Xu (bb0095) 2003; 163 Maenhout, De Baets, Haesaert, van Bockstaele (bb0155) 2007; 115 Roorkiwal, Rathore, Das, Singh, Jain, Srinivasan, Gaur, Chellapilla, Tripathi, Li (bb0200) 2016; 7 Cuevas, Crossa, Montesinos-Lopez, Burgueno, Perez-Rodriguez, de los Campos (bb0320) 2017; 7 Lande, Thompson (bb0015) 1990; 124 Würschum, Maurer, Dreyer, Reif (bb0250) 2013; 126 Hazel, Lush (bb0005) 1942; 33 Albrecht, Wimmer, Auinger, Erbe, Knaak, Ouzunova, Simianer, Schön (bb0050) 2011; 123 Christensen, Madsen, Nielsen, Ostersen, Su (bb0145) 2012; 6 Bao, Kurle, Anderson, Young (bb0305) 2015; 35 Zhong, Dekkers, Fernando, Jannink (bb0400) 2009; 182 Beukert, Li, Liu, Zhao, Ramachandra, Mirdita, Pita, Pillen, Reif (bb0060) 2017; 10 Wu, Lund, Sun, Zhang, Su (bb0180) 2015; 132 Friedman, Hastie, Tibshirani (bb0110) 2010; 33 Lyra, de Freitas Mendonça, Galli, Alves, Granato, Fritsche-Neto (bb0365) 2017; 37 Heffner, Jannink, Iwata, Souza, Sorrells (bb0385) 2011; 51 Zhang, Erbe, He, Ober, Gao, Zhang, Simianer, Li (bb0035) 2015; 5 Cerón-Rojas, Crossa, Arief, Basford, Rutkoski, Jarquin, Alvarado, Beyene, Semagn, DeLacy (bb0360) 2015; 5 Perez-Rodriguez, Gianola, Gonzalez-Camacho, Crossa, Manes, Dreisigacker (bb0195) 2012; 2 Gonzalez-Recio, Rosa, Gianola (bb0205) 2014; 166 Goddard (bb0025) 2009; 136 Neves, Carvalheiro, Perez, O'Brien, Utsunomiya, do Carmo, Schenkel, Soelkner, McEwan, Van Tassell, da Cole, Silva, Queiroz, Sonstegard (bb0185) 2014; 46 Mao, Liu, Xu, Li, Xing (bb0240) 2011; 180 Clark, Hickey, Daetwyler, van der Werf (bb0375) 2012; 44 Alimi, Bink, Dieleman, Magán, Wubs, Palloix, Eeuwijk (bb0410) 2013; 126 Bernardo, Yu (bb0045) 2007; 47 Xu, Zhu, Zhang (bb0065) 2014; 111 Daetwyler, Bansal, Bariana, Hayden, Hayes (bb0070) 2014; 127 Dekkers (bb0355) 2007; 124 Lopez-Cruz, Crossa, Bonnett, Dreisigacker, Poland, Jannink, Singh, Autrique, de los Campos (bb0265) 2015; 5 Suwantaradon, Eberhart, Mock, Owens, Guthrie (bb0345) 1975; 15 Henderson (bb0010) 1975; 31 Habier, Tetens, Seefried, Lichtner, Thaller (bb0130) 2010; 42 Guo, Tucker, Wang, Basten, Ersoz, Briggs, Lu, Li, Gay (bb0275) 2013; 3 Cerón-Rojas, Crossa, Toledo, Sahagún-Castellanos (bb0330) 2016; 56 Heslot, Yang, Sorrells, Jannink (bb0160) 2012; 52 Chen, Li, Sargolzaei, Schenkel (bb0030) 2014; 9 Wellmann, Bennewitz (bb0225) 2012; 94 Scutari, Howell, Balding, Mackay (bb0280) 2014; 198 Holbrook, Burton, Carter (bb0350) 1989; 29 Park, Casella (bb0105) 2008; 103 Meuwissen, Hayes, Goddard (bb0090) 2001; 157 Wang, Yang, Xu (bb0115) 2015; 60 Denis, Bouvet (bb0220) 2013; 9 Perez-Rodriguez (10.1016/j.cj.2018.03.001_bb0195) 2012; 2 Suwantaradon (10.1016/j.cj.2018.03.001_bb0345) 1975; 15 Yang (10.1016/j.cj.2018.03.001_bb0135) 2010; 42 Henderson (10.1016/j.cj.2018.03.001_bb0010) 1975; 31 Zhang (10.1016/j.cj.2018.03.001_bb0035) 2015; 5 Villumsen (10.1016/j.cj.2018.03.001_bb0395) 2009; 126 Cerón-Rojas (10.1016/j.cj.2018.03.001_bb0360) 2015; 5 Dekkers (10.1016/j.cj.2018.03.001_bb0355) 2007; 124 Heslot (10.1016/j.cj.2018.03.001_bb0160) 2012; 52 Guo (10.1016/j.cj.2018.03.001_bb0275) 2013; 3 Xu (10.1016/j.cj.2018.03.001_bb0065) 2014; 111 Balestre (10.1016/j.cj.2018.03.001_bb0230) 2010; 9 Würschum (10.1016/j.cj.2018.03.001_bb0250) 2013; 126 Cerón-Rojas (10.1016/j.cj.2018.03.001_bb0330) 2016; 56 Beukert (10.1016/j.cj.2018.03.001_bb0060) 2017; 10 Holbrook (10.1016/j.cj.2018.03.001_bb0350) 1989; 29 Dolan (10.1016/j.cj.2018.03.001_bb0340) 1996; 36 Scutari (10.1016/j.cj.2018.03.001_bb0280) 2014; 198 Legarra (10.1016/j.cj.2018.03.001_bb0150) 2009; 92 Henderson (10.1016/j.cj.2018.03.001_bb0285) 1976; 43 Su (10.1016/j.cj.2018.03.001_bb0380) 2012; 95 Nielsen (10.1016/j.cj.2018.03.001_bb0370) 2009; 289 Goddard (10.1016/j.cj.2018.03.001_bb0140) 2011; 128 Mao (10.1016/j.cj.2018.03.001_bb0240) 2011; 180 Kadam (10.1016/j.cj.2018.03.001_bb0055) 2016; 6 Heffner (10.1016/j.cj.2018.03.001_bb0040) 2010; 50 Friedman (10.1016/j.cj.2018.03.001_bb0110) 2010; 33 Maenhout (10.1016/j.cj.2018.03.001_bb0155) 2007; 115 Schulthess (10.1016/j.cj.2018.03.001_bb0270) 2016; 129 Misztal (10.1016/j.cj.2018.03.001_bb0215) 1997; 80 Lande (10.1016/j.cj.2018.03.001_bb0015) 1990; 124 Bao (10.1016/j.cj.2018.03.001_bb0305) 2015; 35 Chen (10.1016/j.cj.2018.03.001_bb0030) 2014; 9 Wang (10.1016/j.cj.2018.03.001_bb0115) 2015; 60 Wu (10.1016/j.cj.2018.03.001_bb0180) 2015; 132 Habier (10.1016/j.cj.2018.03.001_bb0170) 2007; 177 Xu (10.1016/j.cj.2018.03.001_bb0190) 2017; 119 Kempthorne (10.1016/j.cj.2018.03.001_bb0325) 1959; 15 Uwatoko (10.1016/j.cj.2018.03.001_bb0235) 2008; 163 Albrecht (10.1016/j.cj.2018.03.001_bb0050) 2011; 123 Alimi (10.1016/j.cj.2018.03.001_bb0410) 2013; 126 Heslot (10.1016/j.cj.2018.03.001_bb0315) 2014; 127 Lyra (10.1016/j.cj.2018.03.001_bb0365) 2017; 37 Guo (10.1016/j.cj.2018.03.001_bb0300) 2014; 15 Clark (10.1016/j.cj.2018.03.001_bb0375) 2012; 44 Hazel (10.1016/j.cj.2018.03.001_bb0005) 1942; 33 Goddard (10.1016/j.cj.2018.03.001_bb0025) 2009; 136 Wang (10.1016/j.cj.2018.03.001_bb0075) 2017; 118 Xu (10.1016/j.cj.2018.03.001_bb0095) 2003; 163 VanRaden (10.1016/j.cj.2018.03.001_bb0120) 2008; 91 Heffner (10.1016/j.cj.2018.03.001_bb0385) 2011; 51 Bernardo (10.1016/j.cj.2018.03.001_bb0045) 2007; 47 Wellmann (10.1016/j.cj.2018.03.001_bb0225) 2012; 94 Tibshirani (10.1016/j.cj.2018.03.001_bb0100) 1996 Habier (10.1016/j.cj.2018.03.001_bb0130) 2010; 42 Dudley (10.1016/j.cj.2018.03.001_bb0245) 2009; 49 Hayashi (10.1016/j.cj.2018.03.001_bb0290) 2013; 14 Roorkiwal (10.1016/j.cj.2018.03.001_bb0200) 2016; 7 Gao (10.1016/j.cj.2018.03.001_bb0175) 2013; 96 Riedelsheimer (10.1016/j.cj.2018.03.001_bb0020) 2012; 44 Zhong (10.1016/j.cj.2018.03.001_bb0400) 2009; 182 Crossa (10.1016/j.cj.2018.03.001_bb0165) 2017; 22 Hayes (10.1016/j.cj.2018.03.001_bb0125) 2009; 91 Hu (10.1016/j.cj.2018.03.001_bb0255) 2011; 12 Gartner (10.1016/j.cj.2018.03.001_bb0420) 2009; 4 Gonzalez-Recio (10.1016/j.cj.2018.03.001_bb0205) 2014; 166 Elgin (10.1016/j.cj.2018.03.001_bb0335) 1970; 10 Denis (10.1016/j.cj.2018.03.001_bb0220) 2013; 9 Lopez-Cruz (10.1016/j.cj.2018.03.001_bb0265) 2015; 5 Cuevas (10.1016/j.cj.2018.03.001_bb0320) 2017; 7 Meuwissen (10.1016/j.cj.2018.03.001_bb0090) 2001; 157 Park (10.1016/j.cj.2018.03.001_bb0105) 2008; 103 Tsuruta (10.1016/j.cj.2018.03.001_bb0295) 2011; 94 Daetwyler (10.1016/j.cj.2018.03.001_bb0070) 2014; 127 Christensen (10.1016/j.cj.2018.03.001_bb0145) 2012; 6 Wang (10.1016/j.cj.2018.03.001_bb0210) 2012; 109 Neves (10.1016/j.cj.2018.03.001_bb0085) 2012; 13 Neves (10.1016/j.cj.2018.03.001_bb0185) 2014; 46 Burgueño (10.1016/j.cj.2018.03.001_bb0310) 2012; 52 Jannink (10.1016/j.cj.2018.03.001_bb0405) 2010; 9 Calus (10.1016/j.cj.2018.03.001_bb0390) 2008; 178 Jia (10.1016/j.cj.2018.03.001_bb0260) 2012; 192 Li (10.1016/j.cj.2018.03.001_bb0080) 2014; 3 |
References_xml | – volume: 123 start-page: 339 year: 2011 end-page: 350 ident: bb0050 article-title: Genome-based prediction of testcross values in maize publication-title: Theor. Appl. Genet. – volume: 5 start-page: 2155 year: 2015 end-page: 2164 ident: bb0360 article-title: A genomic selection index applied to simulated and real data publication-title: G3-Genes Genomes Genet. – volume: 136 start-page: 245 year: 2009 end-page: 257 ident: bb0025 article-title: Genomic selection: prediction of accuracy and maximisation of long term response publication-title: Genetica – volume: 94 start-page: 4198 year: 2011 end-page: 4204 ident: bb0295 article-title: Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins publication-title: J. Dairy Sci. – volume: 50 start-page: 1681 year: 2010 end-page: 1690 ident: bb0040 article-title: Plant breeding with genomic selection: gain per unit time and cost publication-title: Crop Sci. – volume: 103 start-page: 681 year: 2008 end-page: 686 ident: bb0105 article-title: The bayesian lasso publication-title: J. Am. Stat. Assoc. – volume: 177 start-page: 2389 year: 2007 end-page: 2397 ident: bb0170 article-title: The impact of genetic relationship information on genome-assisted breeding values publication-title: Genetics – volume: 5 start-page: 569 year: 2015 end-page: 582 ident: bb0265 article-title: Increased prediction accuracy in wheat breeding trials using a marker× environment interaction genomic selection model publication-title: G3-Genes Genomes Genet. – volume: 10 start-page: 190 year: 1970 end-page: 193 ident: bb0335 article-title: Comparison of four methods of multiple trait selection for five traits in alfalfa publication-title: Crop Sci. – volume: 9 year: 2014 ident: bb0030 article-title: Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction publication-title: PLoS One – volume: 289 start-page: 259 year: 2009 end-page: 264 ident: bb0370 article-title: Comparison of accuracy of genome-wide and BLUP breeding value estimates in sib based aquaculture breeding schemes publication-title: Aquaculture – volume: 127 start-page: 1795 year: 2014 end-page: 1803 ident: bb0070 article-title: Genomic prediction for rust resistance in diverse wheat landraces publication-title: Theor. Appl. Genet. – volume: 47 start-page: 1082 year: 2007 end-page: 1090 ident: bb0045 article-title: Prospects for genomewide selection for quantitative traits in maize publication-title: Crop Sci. – volume: 80 start-page: 975 year: 1997 end-page: 978 ident: bb0215 article-title: Dominance models with method R for stature of Holsteins publication-title: J. Dairy Sci. – volume: 182 start-page: 355 year: 2009 end-page: 364 ident: bb0400 article-title: Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study publication-title: Genetics – volume: 4 year: 2009 ident: bb0420 article-title: Improved heterosis prediction by combining information on DNA- and metabolic markers publication-title: PLoS One – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bb0110 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – volume: 94 start-page: 21 year: 2012 end-page: 37 ident: bb0225 article-title: Bayesian models with dominance effects for genomic evaluation of quantitative traits publication-title: Genet. Res. – volume: 132 start-page: 366 year: 2015 end-page: 375 ident: bb0180 article-title: Impact of relationships between test and training animals and among training animals on reliability of genomic prediction publication-title: J. Anim. Breed. Genet. – volume: 9 start-page: 1054 year: 2010 end-page: 1068 ident: bb0230 article-title: Prediction of maize single-cross performance by mixed linear models with microsatellite marker information publication-title: Genet. Mol. Res. – volume: 126 start-page: 3 year: 2009 end-page: 13 ident: bb0395 article-title: The importance of haplotype length and heritability using genomic selection in dairy cattle publication-title: J. Anim. Breed. Genet. – volume: 109 start-page: 313 year: 2012 end-page: 319 ident: bb0210 article-title: Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations publication-title: Heredity – volume: 9 start-page: 37 year: 2013 end-page: 51 ident: bb0220 article-title: Efficiency of genomic selection with models including dominance effect in the context of eucalyptus breeding publication-title: Tree Genet. Genomes – volume: 15 start-page: 827 year: 1975 end-page: 833 ident: bb0345 article-title: Index selection for several agronomic traits in the BSSS2 maize population publication-title: Crop Sci. – volume: 115 start-page: 1003 year: 2007 end-page: 1013 ident: bb0155 article-title: Support vector machine regression for the prediction of maize hybrid performance publication-title: Theor. Appl. Genet. – volume: 44 start-page: 217 year: 2012 end-page: 220 ident: bb0020 article-title: Genomic and metabolic prediction of complex heterotic traits in hybrid maize publication-title: Nat. Genet. – volume: 46 start-page: 17 year: 2014 ident: bb0185 article-title: Accuracy of genomic predictions in Bos indicus (Nellore) cattle publication-title: Genet. Sel. Evol. – volume: 49 start-page: 1533 year: 2009 ident: bb0245 article-title: Epistatic models improve prediction of performance in corn publication-title: Crop Sci. – volume: 3 start-page: 263 year: 2013 end-page: 272 ident: bb0275 article-title: Accuracy of across-environment genome-wide prediction in maize nested association mapping populations publication-title: G3-Genes Genomes Genet. – volume: 42 start-page: 5 year: 2010 ident: bb0130 article-title: The impact of genetic relationship information on genomic breeding values in German Holstein cattle publication-title: Genet. Sel. Evol. – volume: 192 start-page: 1513 year: 2012 end-page: 1522 ident: bb0260 article-title: Multiple-trait genomic selection methods increase genetic value prediction accuracy publication-title: Genetics – volume: 10 start-page: 22 year: 2017 ident: bb0060 article-title: Genome-based identification of heterotic patterns in rice publication-title: Rice – volume: 6 start-page: 1565 year: 2012 end-page: 1571 ident: bb0145 article-title: Single-step methods for genomic evaluation in pigs publication-title: Animal – volume: 96 start-page: 4678 year: 2013 end-page: 4687 ident: bb0175 article-title: Model comparison on genomic predictions using high-density markers for different groups of bulls in the Nordic Holstein population publication-title: J. Dairy Sci. – volume: 51 start-page: 2597 year: 2011 ident: bb0385 article-title: Genomic selection accuracy for grain quality traits in biparental wheat populations publication-title: Crop Sci. – volume: 91 start-page: 4414 year: 2008 end-page: 4423 ident: bb0120 article-title: Efficient methods to compute genomic predictions publication-title: J. Dairy Sci. – volume: 42 start-page: 565 year: 2010 end-page: 569 ident: bb0135 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. – volume: 111 start-page: 12456 year: 2014 end-page: 12461 ident: bb0065 article-title: Predicting hybrid performance in rice using genomic best linear unbiased prediction publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 157 start-page: 1819 year: 2001 end-page: 1829 ident: bb0090 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics – volume: 6 start-page: 3443 year: 2016 end-page: 3453 ident: bb0055 article-title: Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline publication-title: G3-Genes Genomes Genet. – volume: 52 start-page: 707 year: 2012 end-page: 719 ident: bb0310 article-title: Genomic prediction of breeding values when modeling genotype×environment interaction using pedigree and dense molecular markers publication-title: Crop Sci. – volume: 43 start-page: 1188 year: 1976 end-page: 1197 ident: bb0285 article-title: Multiple trait evaluation using relatives' records publication-title: J. Anim. Sci. – volume: 9 start-page: 166 year: 2010 end-page: 177 ident: bb0405 article-title: Genomic selection in plant breeding: from theory to practice publication-title: Brief. Funct. Genomics – volume: 52 start-page: 146 year: 2012 end-page: 160 ident: bb0160 article-title: Genomic selection in plant breeding: a comparison of models publication-title: Crop Sci. – volume: 91 start-page: 47 year: 2009 end-page: 60 ident: bb0125 article-title: Increased accuracy of artificial selection by using the realized relationship matrix publication-title: Genet. Res. – volume: 13 start-page: 100 year: 2012 ident: bb0085 article-title: A comparison of statistical methods for genomic selection in a mice population publication-title: BMC Genet. – volume: 22 start-page: 961 year: 2017 end-page: 975 ident: bb0165 article-title: Genomic selection in plant breeding: methods, models, and perspectives publication-title: Trends Plant Sci. – volume: 127 start-page: 463 year: 2014 end-page: 480 ident: bb0315 article-title: Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions publication-title: Theor. Appl. Genet. – volume: 15 start-page: 10 year: 1959 end-page: 19 ident: bb0325 article-title: Restricted selection indices publication-title: Biometrics – start-page: 267 year: 1996 end-page: 288 ident: bb0100 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B – volume: 7 start-page: 41 year: 2017 end-page: 53 ident: bb0320 article-title: Bayesian genomic prediction with genotype × environment interaction kernel models publication-title: G3-Genes Genomes Genet. – volume: 44 start-page: 4 year: 2012 ident: bb0375 article-title: The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes publication-title: Genet. Sel. Evol. – volume: 163 start-page: 789 year: 2003 end-page: 801 ident: bb0095 article-title: Estimating polygenic effects using markers of the entire genome publication-title: Genetics – volume: 118 start-page: 302 year: 2017 end-page: 310 ident: bb0075 article-title: Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II publication-title: Heredity – volume: 92 start-page: 4656 year: 2009 end-page: 4663 ident: bb0150 article-title: A relationship matrix including full pedigree and genomic information publication-title: J. Dairy Sci. – volume: 129 start-page: 273 year: 2016 end-page: 287 ident: bb0270 article-title: Multiple-trait and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes publication-title: Theor. Appl. Genet. – volume: 166 start-page: 217 year: 2014 end-page: 231 ident: bb0205 article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits publication-title: Livest. Sci. – volume: 198 start-page: 129 year: 2014 end-page: 137 ident: bb0280 article-title: Multiple quantitative trait analysis using Bayesian networks publication-title: Genetics – volume: 7 start-page: 1666 year: 2016 ident: bb0200 article-title: Genome-enabled prediction models for yield related traits in chickpea publication-title: Front. Plant Sci. – volume: 3 start-page: 8 year: 2014 ident: bb0080 article-title: The 3,000 rice genomes project: new opportunities and challenges for future rice research publication-title: Gigascience – volume: 126 start-page: 2597 year: 2013 end-page: 2625 ident: bb0410 article-title: Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper publication-title: Theor. Appl. Genet. – volume: 56 start-page: 2436 year: 2016 end-page: 2447 ident: bb0330 article-title: A predetermined proportional gains eigen selection index method publication-title: Crop Sci. – volume: 33 start-page: 393 year: 1942 end-page: 399 ident: bb0005 article-title: The efficiency of three methods of selection publication-title: J. Hered. – volume: 119 start-page: 174 year: 2017 end-page: 184 ident: bb0190 article-title: Prediction and association mapping of agronomic traits in maize using multiple omic data publication-title: Heredity – volume: 36 start-page: 1207 year: 1996 end-page: 1211 ident: bb0340 article-title: Multiple trait selection in a recurrent selection population in oat ( publication-title: Crop Sci. – volume: 124 start-page: 331 year: 2007 end-page: 341 ident: bb0355 article-title: Prediction of response to marker-assisted and genomic selection using selection index theory publication-title: J. Anim. Breed. Genet. – volume: 29 start-page: 324 year: 1989 end-page: 329 ident: bb0350 article-title: Evaluation of recurrent restricted index selection for increasing yield while holding seed protein constant in soybean publication-title: Crop Sci. – volume: 60 start-page: 925 year: 2015 end-page: 935 ident: bb0115 article-title: A comparison of genomic selection methods for breeding value prediction publication-title: Sci. Bull. – volume: 2 start-page: 1595 year: 2012 end-page: 1605 ident: bb0195 article-title: Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat publication-title: G3-Genes Genomes Genet. – volume: 14 start-page: 34 year: 2013 ident: bb0290 article-title: A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits publication-title: BMC Bioinf. – volume: 35 start-page: 128 year: 2015 ident: bb0305 article-title: Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm publication-title: Mol. Breed. – volume: 178 start-page: 553 year: 2008 end-page: 561 ident: bb0390 article-title: Accuracy of genomic selection using different methods to define haplotypes publication-title: Genetics – volume: 95 start-page: 4657 year: 2012 end-page: 4665 ident: bb0380 article-title: Comparison of genomic predictions using medium-density (similar to 54,000) and high-density (similar to 777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations publication-title: J. Dairy Sci. – volume: 5 start-page: 615 year: 2015 end-page: 627 ident: bb0035 article-title: Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix publication-title: G3-Genes Genomes Genet. – volume: 126 start-page: 435 year: 2013 end-page: 441 ident: bb0250 article-title: Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed ( publication-title: Theor. Appl. Genet. – volume: 180 start-page: 261 year: 2011 end-page: 271 ident: bb0240 article-title: Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice publication-title: Euphytica – volume: 15 start-page: 30 year: 2014 ident: bb0300 article-title: Comparison of single-trait and multiple-trait genomic prediction models publication-title: BMC Genet. – volume: 31 start-page: 423 year: 1975 end-page: 447 ident: bb0010 article-title: Best linear unbiased estimation and prediction under a selection model publication-title: Biometrics – volume: 124 start-page: 743 year: 1990 end-page: 756 ident: bb0015 article-title: Efficiency of marker-assisted selection in the improvement of quantitative traits publication-title: Genetics – volume: 163 start-page: 167 year: 2008 end-page: 175 ident: bb0235 article-title: Epistasis among the three major flowering time genes in rice: coordinate changes of photoperiod sensitivity, basic vegetative growth and optimum photoperiod publication-title: Euphytica – volume: 37 start-page: 80 year: 2017 ident: bb0365 article-title: Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids publication-title: Mol. Breed. – volume: 128 start-page: 409 year: 2011 end-page: 421 ident: bb0140 article-title: Using the genomic relationship matrix to predict the accuracy of genomic selection publication-title: J. Anim. Breed. Genet. – volume: 12 start-page: 15 year: 2011 ident: bb0255 article-title: Genomic value prediction for quantitative traits under the epistatic model publication-title: BMC Genet. – volume: 166 start-page: 217 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0205 article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits publication-title: Livest. Sci. doi: 10.1016/j.livsci.2014.05.036 – volume: 29 start-page: 324 year: 1989 ident: 10.1016/j.cj.2018.03.001_bb0350 article-title: Evaluation of recurrent restricted index selection for increasing yield while holding seed protein constant in soybean publication-title: Crop Sci. doi: 10.2135/cropsci1989.0011183X002900020019x – volume: 12 start-page: 15 year: 2011 ident: 10.1016/j.cj.2018.03.001_bb0255 article-title: Genomic value prediction for quantitative traits under the epistatic model publication-title: BMC Genet. doi: 10.1186/1471-2156-12-15 – volume: 47 start-page: 1082 year: 2007 ident: 10.1016/j.cj.2018.03.001_bb0045 article-title: Prospects for genomewide selection for quantitative traits in maize publication-title: Crop Sci. doi: 10.2135/cropsci2006.11.0690 – start-page: 267 year: 1996 ident: 10.1016/j.cj.2018.03.001_bb0100 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 136 start-page: 245 year: 2009 ident: 10.1016/j.cj.2018.03.001_bb0025 article-title: Genomic selection: prediction of accuracy and maximisation of long term response publication-title: Genetica doi: 10.1007/s10709-008-9308-0 – volume: 103 start-page: 681 year: 2008 ident: 10.1016/j.cj.2018.03.001_bb0105 article-title: The bayesian lasso publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000000337 – volume: 96 start-page: 4678 year: 2013 ident: 10.1016/j.cj.2018.03.001_bb0175 article-title: Model comparison on genomic predictions using high-density markers for different groups of bulls in the Nordic Holstein population publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-6406 – volume: 56 start-page: 2436 year: 2016 ident: 10.1016/j.cj.2018.03.001_bb0330 article-title: A predetermined proportional gains eigen selection index method publication-title: Crop Sci. doi: 10.2135/cropsci2015.11.0718 – volume: 126 start-page: 3 year: 2009 ident: 10.1016/j.cj.2018.03.001_bb0395 article-title: The importance of haplotype length and heritability using genomic selection in dairy cattle publication-title: J. Anim. Breed. Genet. doi: 10.1111/j.1439-0388.2008.00747.x – volume: 5 start-page: 615 year: 2015 ident: 10.1016/j.cj.2018.03.001_bb0035 article-title: Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix publication-title: G3-Genes Genomes Genet. doi: 10.1534/g3.114.016261 – volume: 163 start-page: 167 year: 2008 ident: 10.1016/j.cj.2018.03.001_bb0235 article-title: Epistasis among the three major flowering time genes in rice: coordinate changes of photoperiod sensitivity, basic vegetative growth and optimum photoperiod publication-title: Euphytica doi: 10.1007/s10681-007-9584-2 – volume: 91 start-page: 47 year: 2009 ident: 10.1016/j.cj.2018.03.001_bb0125 article-title: Increased accuracy of artificial selection by using the realized relationship matrix publication-title: Genet. Res. doi: 10.1017/S0016672308009981 – volume: 6 start-page: 1565 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0145 article-title: Single-step methods for genomic evaluation in pigs publication-title: Animal doi: 10.1017/S1751731112000742 – volume: 129 start-page: 273 year: 2016 ident: 10.1016/j.cj.2018.03.001_bb0270 article-title: Multiple-trait and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-015-2626-6 – volume: 50 start-page: 1681 year: 2010 ident: 10.1016/j.cj.2018.03.001_bb0040 article-title: Plant breeding with genomic selection: gain per unit time and cost publication-title: Crop Sci. doi: 10.2135/cropsci2009.11.0662 – volume: 132 start-page: 366 year: 2015 ident: 10.1016/j.cj.2018.03.001_bb0180 article-title: Impact of relationships between test and training animals and among training animals on reliability of genomic prediction publication-title: J. Anim. Breed. Genet. doi: 10.1111/jbg.12165 – volume: 126 start-page: 435 year: 2013 ident: 10.1016/j.cj.2018.03.001_bb0250 article-title: Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.) publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-012-1991-7 – volume: 43 start-page: 1188 year: 1976 ident: 10.1016/j.cj.2018.03.001_bb0285 article-title: Multiple trait evaluation using relatives' records publication-title: J. Anim. Sci. doi: 10.2527/jas1976.4361188x – volume: 36 start-page: 1207 year: 1996 ident: 10.1016/j.cj.2018.03.001_bb0340 article-title: Multiple trait selection in a recurrent selection population in oat (Avena sativa L.) publication-title: Crop Sci. doi: 10.2135/cropsci1996.0011183X003600050023x – volume: 9 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0030 article-title: Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction publication-title: PLoS One – volume: 42 start-page: 5 year: 2010 ident: 10.1016/j.cj.2018.03.001_bb0130 article-title: The impact of genetic relationship information on genomic breeding values in German Holstein cattle publication-title: Genet. Sel. Evol. doi: 10.1186/1297-9686-42-5 – volume: 115 start-page: 1003 year: 2007 ident: 10.1016/j.cj.2018.03.001_bb0155 article-title: Support vector machine regression for the prediction of maize hybrid performance publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-007-0627-9 – volume: 180 start-page: 261 year: 2011 ident: 10.1016/j.cj.2018.03.001_bb0240 article-title: Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice publication-title: Euphytica doi: 10.1007/s10681-011-0395-0 – volume: 3 start-page: 263 year: 2013 ident: 10.1016/j.cj.2018.03.001_bb0275 article-title: Accuracy of across-environment genome-wide prediction in maize nested association mapping populations publication-title: G3-Genes Genomes Genet. doi: 10.1534/g3.112.005066 – volume: 15 start-page: 10 year: 1959 ident: 10.1016/j.cj.2018.03.001_bb0325 article-title: Restricted selection indices publication-title: Biometrics doi: 10.2307/2527598 – volume: 46 start-page: 17 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0185 article-title: Accuracy of genomic predictions in Bos indicus (Nellore) cattle publication-title: Genet. Sel. Evol. doi: 10.1186/1297-9686-46-17 – volume: 44 start-page: 4 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0375 article-title: The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes publication-title: Genet. Sel. Evol. doi: 10.1186/1297-9686-44-4 – volume: 60 start-page: 925 year: 2015 ident: 10.1016/j.cj.2018.03.001_bb0115 article-title: A comparison of genomic selection methods for breeding value prediction publication-title: Sci. Bull. doi: 10.1007/s11434-015-0791-2 – volume: 192 start-page: 1513 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0260 article-title: Multiple-trait genomic selection methods increase genetic value prediction accuracy publication-title: Genetics doi: 10.1534/genetics.112.144246 – volume: 118 start-page: 302 year: 2017 ident: 10.1016/j.cj.2018.03.001_bb0075 article-title: Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II publication-title: Heredity doi: 10.1038/hdy.2016.87 – volume: 80 start-page: 975 year: 1997 ident: 10.1016/j.cj.2018.03.001_bb0215 article-title: Dominance models with method R for stature of Holsteins publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(97)76022-3 – volume: 9 start-page: 37 year: 2013 ident: 10.1016/j.cj.2018.03.001_bb0220 article-title: Efficiency of genomic selection with models including dominance effect in the context of eucalyptus breeding publication-title: Tree Genet. Genomes doi: 10.1007/s11295-012-0528-1 – volume: 52 start-page: 146 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0160 article-title: Genomic selection in plant breeding: a comparison of models publication-title: Crop Sci. doi: 10.2135/cropsci2011.06.0297 – volume: 2 start-page: 1595 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0195 article-title: Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat publication-title: G3-Genes Genomes Genet. doi: 10.1534/g3.112.003665 – volume: 9 start-page: 1054 year: 2010 ident: 10.1016/j.cj.2018.03.001_bb0230 article-title: Prediction of maize single-cross performance by mixed linear models with microsatellite marker information publication-title: Genet. Mol. Res. doi: 10.4238/vol9-2gmr791 – volume: 92 start-page: 4656 year: 2009 ident: 10.1016/j.cj.2018.03.001_bb0150 article-title: A relationship matrix including full pedigree and genomic information publication-title: J. Dairy Sci. doi: 10.3168/jds.2009-2061 – volume: 94 start-page: 21 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0225 article-title: Bayesian models with dominance effects for genomic evaluation of quantitative traits publication-title: Genet. Res. doi: 10.1017/S0016672312000018 – volume: 4 year: 2009 ident: 10.1016/j.cj.2018.03.001_bb0420 article-title: Improved heterosis prediction by combining information on DNA- and metabolic markers publication-title: PLoS One doi: 10.1371/journal.pone.0005220 – volume: 15 start-page: 827 year: 1975 ident: 10.1016/j.cj.2018.03.001_bb0345 article-title: Index selection for several agronomic traits in the BSSS2 maize population publication-title: Crop Sci. doi: 10.2135/cropsci1975.0011183X001500060025x – volume: 42 start-page: 565 year: 2010 ident: 10.1016/j.cj.2018.03.001_bb0135 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. doi: 10.1038/ng.608 – volume: 95 start-page: 4657 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0380 article-title: Comparison of genomic predictions using medium-density (similar to 54,000) and high-density (similar to 777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations publication-title: J. Dairy Sci. doi: 10.3168/jds.2012-5379 – volume: 111 start-page: 12456 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0065 article-title: Predicting hybrid performance in rice using genomic best linear unbiased prediction publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1413750111 – volume: 7 start-page: 1666 year: 2016 ident: 10.1016/j.cj.2018.03.001_bb0200 article-title: Genome-enabled prediction models for yield related traits in chickpea publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01666 – volume: 124 start-page: 743 year: 1990 ident: 10.1016/j.cj.2018.03.001_bb0015 article-title: Efficiency of marker-assisted selection in the improvement of quantitative traits publication-title: Genetics doi: 10.1093/genetics/124.3.743 – volume: 5 start-page: 2155 year: 2015 ident: 10.1016/j.cj.2018.03.001_bb0360 article-title: A genomic selection index applied to simulated and real data publication-title: G3-Genes Genomes Genet. doi: 10.1534/g3.115.019869 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.cj.2018.03.001_bb0110 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – volume: 119 start-page: 174 year: 2017 ident: 10.1016/j.cj.2018.03.001_bb0190 article-title: Prediction and association mapping of agronomic traits in maize using multiple omic data publication-title: Heredity doi: 10.1038/hdy.2017.27 – volume: 177 start-page: 2389 year: 2007 ident: 10.1016/j.cj.2018.03.001_bb0170 article-title: The impact of genetic relationship information on genome-assisted breeding values publication-title: Genetics doi: 10.1534/genetics.107.081190 – volume: 10 start-page: 22 year: 2017 ident: 10.1016/j.cj.2018.03.001_bb0060 article-title: Genome-based identification of heterotic patterns in rice publication-title: Rice doi: 10.1186/s12284-017-0163-4 – volume: 14 start-page: 34 year: 2013 ident: 10.1016/j.cj.2018.03.001_bb0290 article-title: A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-34 – volume: 22 start-page: 961 year: 2017 ident: 10.1016/j.cj.2018.03.001_bb0165 article-title: Genomic selection in plant breeding: methods, models, and perspectives publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.08.011 – volume: 109 start-page: 313 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0210 article-title: Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations publication-title: Heredity doi: 10.1038/hdy.2012.44 – volume: 49 start-page: 1533 year: 2009 ident: 10.1016/j.cj.2018.03.001_bb0245 article-title: Epistatic models improve prediction of performance in corn publication-title: Crop Sci. doi: 10.2135/cropsci2008.08.0491er – volume: 7 start-page: 41 year: 2017 ident: 10.1016/j.cj.2018.03.001_bb0320 article-title: Bayesian genomic prediction with genotype × environment interaction kernel models publication-title: G3-Genes Genomes Genet. doi: 10.1534/g3.116.035584 – volume: 178 start-page: 553 year: 2008 ident: 10.1016/j.cj.2018.03.001_bb0390 article-title: Accuracy of genomic selection using different methods to define haplotypes publication-title: Genetics doi: 10.1534/genetics.107.080838 – volume: 31 start-page: 423 year: 1975 ident: 10.1016/j.cj.2018.03.001_bb0010 article-title: Best linear unbiased estimation and prediction under a selection model publication-title: Biometrics doi: 10.2307/2529430 – volume: 51 start-page: 2597 year: 2011 ident: 10.1016/j.cj.2018.03.001_bb0385 article-title: Genomic selection accuracy for grain quality traits in biparental wheat populations publication-title: Crop Sci. doi: 10.2135/cropsci2011.05.0253 – volume: 13 start-page: 100 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0085 article-title: A comparison of statistical methods for genomic selection in a mice population publication-title: BMC Genet. doi: 10.1186/1471-2156-13-100 – volume: 15 start-page: 30 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0300 article-title: Comparison of single-trait and multiple-trait genomic prediction models publication-title: BMC Genet. doi: 10.1186/1471-2156-15-30 – volume: 127 start-page: 1795 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0070 article-title: Genomic prediction for rust resistance in diverse wheat landraces publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-014-2341-8 – volume: 127 start-page: 463 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0315 article-title: Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-013-2231-5 – volume: 3 start-page: 8 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0080 article-title: The 3,000 rice genomes project: new opportunities and challenges for future rice research publication-title: Gigascience doi: 10.1186/2047-217X-3-8 – volume: 124 start-page: 331 year: 2007 ident: 10.1016/j.cj.2018.03.001_bb0355 article-title: Prediction of response to marker-assisted and genomic selection using selection index theory publication-title: J. Anim. Breed. Genet. doi: 10.1111/j.1439-0388.2007.00701.x – volume: 52 start-page: 707 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0310 article-title: Genomic prediction of breeding values when modeling genotype×environment interaction using pedigree and dense molecular markers publication-title: Crop Sci. doi: 10.2135/cropsci2011.06.0299 – volume: 198 start-page: 129 year: 2014 ident: 10.1016/j.cj.2018.03.001_bb0280 article-title: Multiple quantitative trait analysis using Bayesian networks publication-title: Genetics doi: 10.1534/genetics.114.165704 – volume: 6 start-page: 3443 year: 2016 ident: 10.1016/j.cj.2018.03.001_bb0055 article-title: Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline publication-title: G3-Genes Genomes Genet. doi: 10.1534/g3.116.031286 – volume: 157 start-page: 1819 year: 2001 ident: 10.1016/j.cj.2018.03.001_bb0090 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 5 start-page: 569 year: 2015 ident: 10.1016/j.cj.2018.03.001_bb0265 article-title: Increased prediction accuracy in wheat breeding trials using a marker× environment interaction genomic selection model publication-title: G3-Genes Genomes Genet. doi: 10.1534/g3.114.016097 – volume: 33 start-page: 393 year: 1942 ident: 10.1016/j.cj.2018.03.001_bb0005 article-title: The efficiency of three methods of selection publication-title: J. Hered. doi: 10.1093/oxfordjournals.jhered.a105102 – volume: 123 start-page: 339 year: 2011 ident: 10.1016/j.cj.2018.03.001_bb0050 article-title: Genome-based prediction of testcross values in maize publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-011-1587-7 – volume: 94 start-page: 4198 year: 2011 ident: 10.1016/j.cj.2018.03.001_bb0295 article-title: Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins publication-title: J. Dairy Sci. doi: 10.3168/jds.2011-4256 – volume: 10 start-page: 190 year: 1970 ident: 10.1016/j.cj.2018.03.001_bb0335 article-title: Comparison of four methods of multiple trait selection for five traits in alfalfa publication-title: Crop Sci. doi: 10.2135/cropsci1970.0011183X001000020023x – volume: 163 start-page: 789 year: 2003 ident: 10.1016/j.cj.2018.03.001_bb0095 article-title: Estimating polygenic effects using markers of the entire genome publication-title: Genetics doi: 10.1093/genetics/163.2.789 – volume: 35 start-page: 128 year: 2015 ident: 10.1016/j.cj.2018.03.001_bb0305 article-title: Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm publication-title: Mol. Breed. doi: 10.1007/s11032-015-0324-3 – volume: 91 start-page: 4414 year: 2008 ident: 10.1016/j.cj.2018.03.001_bb0120 article-title: Efficient methods to compute genomic predictions publication-title: J. Dairy Sci. doi: 10.3168/jds.2007-0980 – volume: 44 start-page: 217 year: 2012 ident: 10.1016/j.cj.2018.03.001_bb0020 article-title: Genomic and metabolic prediction of complex heterotic traits in hybrid maize publication-title: Nat. Genet. doi: 10.1038/ng.1033 – volume: 289 start-page: 259 year: 2009 ident: 10.1016/j.cj.2018.03.001_bb0370 article-title: Comparison of accuracy of genome-wide and BLUP breeding value estimates in sib based aquaculture breeding schemes publication-title: Aquaculture doi: 10.1016/j.aquaculture.2009.01.027 – volume: 37 start-page: 80 year: 2017 ident: 10.1016/j.cj.2018.03.001_bb0365 article-title: Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids publication-title: Mol. Breed. doi: 10.1007/s11032-017-0681-1 – volume: 182 start-page: 355 year: 2009 ident: 10.1016/j.cj.2018.03.001_bb0400 article-title: Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study publication-title: Genetics doi: 10.1534/genetics.108.098277 – volume: 126 start-page: 2597 year: 2013 ident: 10.1016/j.cj.2018.03.001_bb0410 article-title: Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-013-2160-3 – volume: 128 start-page: 409 year: 2011 ident: 10.1016/j.cj.2018.03.001_bb0140 article-title: Using the genomic relationship matrix to predict the accuracy of genomic selection publication-title: J. Anim. Breed. Genet. doi: 10.1111/j.1439-0388.2011.00964.x – volume: 9 start-page: 166 year: 2010 ident: 10.1016/j.cj.2018.03.001_bb0405 article-title: Genomic selection in plant breeding: from theory to practice publication-title: Brief. Funct. Genomics doi: 10.1093/bfgp/elq001 |
SSID | ssj0001344260 |
Score | 2.5174782 |
SecondaryResourceType | review_article |
Snippet | With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes.... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 330 |
SubjectTerms | Accuracy algorithms artificial intelligence Crop Genomic selection loci marker-assisted selection phenotype plant breeding Prediction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQnsoBlbaIbaFypV56iEj8HW5QQVFVOIHEzfLHBO0KhYrs_n_Gdna1cIAL18SJrfHE82LPvEfITyd0ZEaGimP8qEQHumqjVxWPmknfSA1ZDujySl3ciL-38nZD6ivlhBV64GK4Iw5QA0adIGUQyndeua4NjjURNHQQ0uqLMW_jZyrvrnCRqNeTshxrRIWooBnPKEtyV5inrC5T-E2bZzEpU_c_C00vFukcec4_kp0RMtKTMtRdsgX9J7J9cvc40mbAZ_LvD-TyYjpkWRu0NS3S0ANFUEqTTBed5e2DvBt4TEdaJprqiZYDdX2keDeXXQ5fyM352fXvi2rUSagCgp1F1bVSeIZAB1zddLoBJ6NPAkRNazoZWEBUw2LrhRJOCW_QktCqVrNYe-a05ntk0j_0sE8oN8ADYiQfQiu0ib4zEQLTRnmltJBTcrSylA0jiXjSsri3q2yxuQ1zm2xra54S5qbk1_qJ_4VA45W2p8n463aJ-jpfQIewo0PYtxxiSvhq6uyIIgo6wFfNXun6x2qWLX5g6dTE9fCwHCwCqNropND89T2G9418SN2WHMIDMlk8LuEQcc3Cf88u_AQsb_V- priority: 102 providerName: Directory of Open Access Journals |
Title | Genomic selection methods for crop improvement: Current status and prospects |
URI | https://dx.doi.org/10.1016/j.cj.2018.03.001 https://www.proquest.com/docview/2220874735 https://doaj.org/article/3ee0e406c55c46bfb6af9ca21de7efec |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJy6IqkUsLciVeukh2sTvcCuogKrSS0Ham-XHpNpVlUVk9__jcRzQ9sChxzh2HmNn_MWe-T5CvjihIzMyVDzNH5XoQFdt9KriUTPpG6khywHd_VK3D-LHQi72yNWUC4NhlcX3jz49e-tSMi_WnD8ul_PfDEm2G5EQMs9DMflhLkxO4ltcvq6zcIEk7Kgxl-pX2KDsVo5hXmGF8V1mZDptdmanTOK_M0n9467zHHR9RA4LeKTfxud7R_agf09-3kBOLaZDlrRJdqajLPRAEyClKNFFl3npIK8EXtBCyUQxl2g7UNdHms7mlMvhA3m4_n5_dVsVjYQqJKCzqbpWCs8SyAFXN51uwMnoUXyoaU0nAwsJ0bDYeqGEU8IbKQO0qtUs1p45rfkx2e_XPZwQyg3wkPCRD6EV2kTfmQiBaaO8UlrIGZlPtrGhEIijjsVfO0WKrWxYWbSmrTkGy83I15cWjyN5xht1L9HcL_WQ9joXrJ_-2NLvlgPUkCBISK8hlO-8cl0bHGsiaOggzAifOsvujKJ0qeUbt_489atNHxfumLge1tvBJvBUG43qzKf_deWP5ACPxoDBT2R_87SFswRiNv48__yf57H6DFHT7uY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFgQCx0BYjceEQbeLv9NZWLVvY9kIr7c2K7QnaVZWtmt3_j8dxipZDD1z9lWTsjJ_smfcI-doIHZiRvuBx_yhEC7qog1MFD5pJV0kNSQ7o6lrNbsWPhVzskbMxFwbDKrPvH3x68ta5ZJqtOb1fLqe_GJJsVyIiZJ6W4jPyPKIBjfoNl4vTvwctXCALO4rMxQ4F9sjXlUOcl19hgJcZqE6rne0psfjv7FL_-Ou0CV28Jq8yeqQnwwu-IXvQvSXz75Byi2mfNG2ioemgC93TiEgpanTRZTo7SEeBxzRzMlFMJtr2tOkCjbUp57J_R24vzm_OZkUWSSh8RDqboq2lcCyiHGjKqtUVNDI4VB-qatNKz3yENCzUTijRKOGMlB5qVWsWSscarfl7st-tO_hAKDfAfQRIzvtaaBNcawJ4po1ySmkhJ2Q62sb6zCCOQhZ3dgwVW1m_smhNW3KMlpuQb4897gf2jCfanqK5H9sh73UqWD_8tnniLQcoIWIQHz9DKNc61bS1b1gVQEMLfkL4OFl2ZxnFoZZPPPrLOK82_l14ZdJ0sN72NqKn0miUZ_74XyN_Ji9mN1dzO7-8_vmJvMSaIXrwgOxvHrZwGBHNxh2lFfsHuADxEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+selection+methods+for+crop+improvement%3A+Current+status+and+prospects&rft.jtitle=The+Crop+journal&rft.au=Wang%2C+Xin&rft.au=Xu%2C+Yang&rft.au=Hu%2C+Zhongli&rft.au=Xu%2C+Chenwu&rft.date=2018-08-01&rft.issn=2214-5141&rft.eissn=2214-5141&rft.volume=6&rft.issue=4&rft.spage=330&rft.epage=340&rft_id=info:doi/10.1016%2Fj.cj.2018.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cj_2018_03_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5141&client=summon |