Genomic selection methods for crop improvement: Current status and prospects

With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as t...

Full description

Saved in:
Bibliographic Details
Published inThe Crop journal Vol. 6; no. 4; pp. 330 - 340
Main Authors Wang, Xin, Xu, Yang, Hu, Zhongli, Xu, Chenwu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2018
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as to achieve more comprehensive and reliable selection and to accelerate genetic progress in crop breeding. GS models usually face the problem that the number of markers is much higher than the number of phenotypic observations. To overcome this issue and improve prediction accuracy, many models and algorithms, including GBLUP, Bayes, and machine learning have been employed for GS. As hot issues in GS research, the estimation of non-additive genetic effects and the combined analysis of multiple traits or multiple environments are also important for improving the accuracy of prediction. In recent years, crop breeding has taken advantage of the development of GS. The principles and characteristics of current popular GS methods and research progress in these methods for crop improvement are reviewed in this paper.
AbstractList With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as to achieve more comprehensive and reliable selection and to accelerate genetic progress in crop breeding. GS models usually face the problem that the number of markers is much higher than the number of phenotypic observations. To overcome this issue and improve prediction accuracy, many models and algorithms, including GBLUP, Bayes, and machine learning have been employed for GS. As hot issues in GS research, the estimation of non-additive genetic effects and the combined analysis of multiple traits or multiple environments are also important for improving the accuracy of prediction. In recent years, crop breeding has taken advantage of the development of GS. The principles and characteristics of current popular GS methods and research progress in these methods for crop improvement are reviewed in this paper.
With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as to achieve more comprehensive and reliable selection and to accelerate genetic progress in crop breeding. GS models usually face the problem that the number of markers is much higher than the number of phenotypic observations. To overcome this issue and improve prediction accuracy, many models and algorithms, including GBLUP, Bayes, and machine learning have been employed for GS. As hot issues in GS research, the estimation of non-additive genetic effects and the combined analysis of multiple traits or multiple environments are also important for improving the accuracy of prediction. In recent years, crop breeding has taken advantage of the development of GS. The principles and characteristics of current popular GS methods and research progress in these methods for crop improvement are reviewed in this paper. Keywords: Genomic selection, Prediction, Accuracy, Crop
Author Xu, Yang
Hu, Zhongli
Xu, Chenwu
Wang, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
– sequence: 2
  givenname: Yang
  surname: Xu
  fullname: Xu, Yang
  organization: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
– sequence: 3
  givenname: Zhongli
  surname: Hu
  fullname: Hu, Zhongli
  organization: State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
– sequence: 4
  givenname: Chenwu
  surname: Xu
  fullname: Xu, Chenwu
  email: cwxu@yzu.edu.cn
  organization: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
BookMark eNp9kc1r3DAQxUVJoek29x517GVdfXudW1mSNLCQS3IW8njUytjWVtIG8t9Hm20hBNKTBs17j5nffCZnS1yQkK-cNZxx831sYGwE45uGyYYx_oGcC8HVWnPFz17Vn8hFziOrCqmUMOyc7G5wiXMAmnFCKCEudMbyOw6Z-pgopLinYd6n-IgzLuWSbg8p1YLm4sohU7cMtHbzvprzF_LRuynjxd93RR6ur-63P9e7u5vb7Y_dGpTUZe07rXohO4GOcd9ydHroZZ2RdxuvQYA2TAxdr4xyRvUbrQE707ViYL1wbStX5PaUO0Q32n0Ks0tPNrpgXz5i-mVdKgEmtBKRoWIGaogyve-N8x04wQds0SPUrG-nrLrFnwPmYueQAafJLRgP2Qoh2KZVrdRVak7SSiXnhN5CqBQqs5JcmCxn9ngNO1oY7fEalkl7ZL0i7I3x38z_sVyeLFg5PgZMNkPABXAIqaKui4b3zc_NE6Mt
CitedBy_id crossref_primary_10_3390_ijms25094687
crossref_primary_10_3389_fgene_2021_600789
crossref_primary_10_3390_f11111190
crossref_primary_10_1007_s11032_019_0986_3
crossref_primary_10_1093_jxb_eraa034
crossref_primary_10_3389_fpls_2021_718713
crossref_primary_10_3390_ijms221910583
crossref_primary_10_3390_agronomy11020376
crossref_primary_10_1007_s00122_020_03703_z
crossref_primary_10_3389_fpls_2021_708233
crossref_primary_10_3390_agronomy14122795
crossref_primary_10_1111_pbr_13127
crossref_primary_10_3390_life11060502
crossref_primary_10_1007_s11032_019_1048_6
crossref_primary_10_3390_agronomy12051126
crossref_primary_10_1038_s41598_019_49618_8
crossref_primary_10_1002_tpg2_20148
crossref_primary_10_1007_s00018_021_03844_4
crossref_primary_10_1093_insilicoplants_diad007
crossref_primary_10_1002_tpg2_20384
crossref_primary_10_1109_ACCESS_2020_3015814
crossref_primary_10_1002_csc2_21000
crossref_primary_10_1002_tpg2_20264
crossref_primary_10_3389_fgene_2022_835781
crossref_primary_10_3389_fgene_2022_832153
crossref_primary_10_3389_fpls_2021_724847
crossref_primary_10_3390_agronomy10091255
crossref_primary_10_35407_bag_2020_31_01_03
crossref_primary_10_1016_j_ygeno_2021_01_012
crossref_primary_10_1093_jxb_eraa388
crossref_primary_10_31083_j_fbe1601002
crossref_primary_10_1007_s10681_021_02825_9
crossref_primary_10_1111_pbr_12967
crossref_primary_10_3390_agriculture14030347
crossref_primary_10_1007_s10681_022_03048_2
crossref_primary_10_1007_s00122_021_03996_8
crossref_primary_10_1007_s00122_024_04754_2
crossref_primary_10_3389_fgene_2021_710485
crossref_primary_10_1007_s10725_020_00658_5
crossref_primary_10_1016_j_xplc_2019_100005
crossref_primary_10_1007_s11295_020_01453_z
crossref_primary_10_3389_fpls_2021_779386
crossref_primary_10_1007_s00425_022_03996_y
crossref_primary_10_1016_j_ygeno_2021_02_007
crossref_primary_10_3390_plants12162970
crossref_primary_10_1016_j_cj_2021_03_008
crossref_primary_10_1093_g3journal_jkaf048
crossref_primary_10_3389_fpls_2019_00427
crossref_primary_10_3390_ijms20020359
crossref_primary_10_3389_fpls_2024_1373081
crossref_primary_10_1093_bib_bbae385
crossref_primary_10_3389_fpls_2021_664148
crossref_primary_10_3390_plants9101263
crossref_primary_10_1111_pbi_14412
crossref_primary_10_1093_jxb_erac236
crossref_primary_10_3390_agronomy12010007
crossref_primary_10_46909_alse_571125
crossref_primary_10_3389_fpls_2022_923381
crossref_primary_10_1186_s12864_022_08487_8
crossref_primary_10_1111_jipb_13791
crossref_primary_10_1038_s41598_024_70630_0
crossref_primary_10_1534_g3_118_200998
crossref_primary_10_3390_genes14071484
crossref_primary_10_3389_fpls_2021_709545
crossref_primary_10_3390_plants13202855
crossref_primary_10_3389_fpls_2024_1402693
crossref_primary_10_3389_fpls_2024_1451784
crossref_primary_10_1007_s00425_023_04252_7
crossref_primary_10_1093_g3journal_jkac245
crossref_primary_10_1038_s41598_024_55243_x
crossref_primary_10_3389_fpls_2019_01129
crossref_primary_10_1016_j_cj_2023_09_009
crossref_primary_10_3390_agriculture12091330
crossref_primary_10_3390_agriculture10120638
crossref_primary_10_3390_plants13213073
crossref_primary_10_3390_agronomy10111843
crossref_primary_10_18699_vjgb_24_51
crossref_primary_10_3390_genes11010016
crossref_primary_10_3390_su13158600
crossref_primary_10_3389_fpls_2021_697688
crossref_primary_10_1111_eva_13638
crossref_primary_10_3390_f11020239
crossref_primary_10_3390_v14122765
crossref_primary_10_3389_fpls_2024_1429802
crossref_primary_10_1007_s10722_021_01190_9
crossref_primary_10_1093_g3journal_jkad286
crossref_primary_10_1007_s11032_022_01341_5
crossref_primary_10_9787_PBB_2022_10_1_1
crossref_primary_10_1002_tpg2_20471
crossref_primary_10_3389_fpls_2023_1320506
crossref_primary_10_3390_plants10010043
crossref_primary_10_1007_s11032_022_01326_4
crossref_primary_10_3390_genes11070779
crossref_primary_10_1016_j_cj_2020_04_012
crossref_primary_10_3390_plants9091236
crossref_primary_10_1016_j_aquaculture_2023_740212
crossref_primary_10_1016_j_eja_2024_127391
crossref_primary_10_1186_s12870_024_04934_8
crossref_primary_10_3390_genes12030332
crossref_primary_10_3390_plants9070817
crossref_primary_10_1007_s00122_021_03865_4
crossref_primary_10_3389_fpls_2021_671060
crossref_primary_10_1016_j_softx_2024_101770
crossref_primary_10_1186_s12864_022_08337_7
crossref_primary_10_1093_g3journal_jkac022
crossref_primary_10_3390_genes13122247
crossref_primary_10_3390_plants11162139
crossref_primary_10_1111_pbi_70011
crossref_primary_10_3390_agronomy14122756
crossref_primary_10_1038_s41598_022_20416_z
crossref_primary_10_1186_s43170_024_00293_4
crossref_primary_10_1002_csc2_20854
crossref_primary_10_3389_fpls_2023_1171135
crossref_primary_10_3389_fpls_2022_904131
crossref_primary_10_1093_bib_bbaa197
crossref_primary_10_3390_ijms242417624
crossref_primary_10_1186_s12864_019_5920_x
crossref_primary_10_1016_j_cj_2021_04_007
crossref_primary_10_3390_ijms21072414
crossref_primary_10_1007_s10681_021_02774_3
crossref_primary_10_1007_s12892_020_00039_4
crossref_primary_10_3389_fpls_2020_572027
crossref_primary_10_1007_s00438_023_02026_0
crossref_primary_10_3389_frai_2022_1040295
crossref_primary_10_1016_j_ygeno_2021_12_016
crossref_primary_10_3390_plants11141866
crossref_primary_10_1186_s12870_022_03975_1
crossref_primary_10_3390_plants10091904
crossref_primary_10_1186_s13007_022_00845_7
crossref_primary_10_3389_fpls_2021_731949
crossref_primary_10_1186_s12864_021_07834_5
crossref_primary_10_3389_fpls_2023_1248978
crossref_primary_10_1007_s00122_020_03673_2
crossref_primary_10_3389_fsufs_2023_1203721
crossref_primary_10_3389_fgene_2021_717457
crossref_primary_10_3389_fpls_2022_1048860
crossref_primary_10_1016_j_stress_2024_100731
crossref_primary_10_1002_csc2_20092
crossref_primary_10_1007_s11816_021_00713_1
crossref_primary_10_1111_pce_13880
crossref_primary_10_1016_j_plantsci_2019_04_018
crossref_primary_10_3390_ijms23052838
crossref_primary_10_1002_csc2_20377
crossref_primary_10_1007_s00122_020_03658_1
crossref_primary_10_1007_s00299_021_02784_4
crossref_primary_10_1007_s10681_024_03425_z
crossref_primary_10_3389_fpls_2021_715983
crossref_primary_10_1002_tpg2_20127
crossref_primary_10_1111_pbr_13061
crossref_primary_10_3389_fpls_2023_1156430
crossref_primary_10_1016_j_fcr_2024_109344
crossref_primary_10_1016_j_rsci_2022_05_002
crossref_primary_10_1002_csc2_20518
crossref_primary_10_1007_s11032_023_01357_5
crossref_primary_10_3390_plants10040745
crossref_primary_10_3390_ijms241814275
crossref_primary_10_1016_j_cj_2021_09_001
crossref_primary_10_3390_plants14020148
crossref_primary_10_1038_s41437_022_00537_x
crossref_primary_10_1186_s12863_023_01179_6
crossref_primary_10_1111_pbr_13235
crossref_primary_10_3389_fgene_2022_953833
crossref_primary_10_1080_07060661_2020_1861102
crossref_primary_10_1002_ppp3_10136
crossref_primary_10_1007_s12042_023_09348_8
crossref_primary_10_1186_s40104_023_00875_8
crossref_primary_10_1094_PDIS_07_20_1531_RE
crossref_primary_10_3835_plantgenome2018_10_0082
Cites_doi 10.1016/j.livsci.2014.05.036
10.2135/cropsci1989.0011183X002900020019x
10.1186/1471-2156-12-15
10.2135/cropsci2006.11.0690
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s10709-008-9308-0
10.1198/016214508000000337
10.3168/jds.2012-6406
10.2135/cropsci2015.11.0718
10.1111/j.1439-0388.2008.00747.x
10.1534/g3.114.016261
10.1007/s10681-007-9584-2
10.1017/S0016672308009981
10.1017/S1751731112000742
10.1007/s00122-015-2626-6
10.2135/cropsci2009.11.0662
10.1111/jbg.12165
10.1007/s00122-012-1991-7
10.2527/jas1976.4361188x
10.2135/cropsci1996.0011183X003600050023x
10.1186/1297-9686-42-5
10.1007/s00122-007-0627-9
10.1007/s10681-011-0395-0
10.1534/g3.112.005066
10.2307/2527598
10.1186/1297-9686-46-17
10.1186/1297-9686-44-4
10.1007/s11434-015-0791-2
10.1534/genetics.112.144246
10.1038/hdy.2016.87
10.3168/jds.S0022-0302(97)76022-3
10.1007/s11295-012-0528-1
10.2135/cropsci2011.06.0297
10.1534/g3.112.003665
10.4238/vol9-2gmr791
10.3168/jds.2009-2061
10.1017/S0016672312000018
10.1371/journal.pone.0005220
10.2135/cropsci1975.0011183X001500060025x
10.1038/ng.608
10.3168/jds.2012-5379
10.1073/pnas.1413750111
10.3389/fpls.2016.01666
10.1093/genetics/124.3.743
10.1534/g3.115.019869
10.18637/jss.v033.i01
10.1038/hdy.2017.27
10.1534/genetics.107.081190
10.1186/s12284-017-0163-4
10.1186/1471-2105-14-34
10.1016/j.tplants.2017.08.011
10.1038/hdy.2012.44
10.2135/cropsci2008.08.0491er
10.1534/g3.116.035584
10.1534/genetics.107.080838
10.2307/2529430
10.2135/cropsci2011.05.0253
10.1186/1471-2156-13-100
10.1186/1471-2156-15-30
10.1007/s00122-014-2341-8
10.1007/s00122-013-2231-5
10.1186/2047-217X-3-8
10.1111/j.1439-0388.2007.00701.x
10.2135/cropsci2011.06.0299
10.1534/genetics.114.165704
10.1534/g3.116.031286
10.1093/genetics/157.4.1819
10.1534/g3.114.016097
10.1093/oxfordjournals.jhered.a105102
10.1007/s00122-011-1587-7
10.3168/jds.2011-4256
10.2135/cropsci1970.0011183X001000020023x
10.1093/genetics/163.2.789
10.1007/s11032-015-0324-3
10.3168/jds.2007-0980
10.1038/ng.1033
10.1016/j.aquaculture.2009.01.027
10.1007/s11032-017-0681-1
10.1534/genetics.108.098277
10.1007/s00122-013-2160-3
10.1111/j.1439-0388.2011.00964.x
10.1093/bfgp/elq001
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.cj.2018.03.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2214-5141
EndPage 340
ExternalDocumentID oai_doaj_org_article_3ee0e406c55c46bfb6af9ca21de7efec
10_1016_j_cj_2018_03_001
S2214514118300400
GroupedDBID -04
-0D
-SD
-S~
0SF
4.4
457
5VR
5VS
6I.
92M
93N
93Q
9D9
9DD
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABDBF
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CAJED
CAJUS
CCEZO
CHBEP
CHDYS
EBS
EJD
FA0
FDB
GROUPED_DOAJ
IPNFZ
IXB
JUIAU
KQ8
M41
M~E
NCXOZ
OK1
Q--
Q-3
R-D
RIG
ROL
RT4
SSZ
T8T
TCJ
TGD
U1F
U1G
U5D
U5N
~MK
0R~
7X2
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
ATCPS
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
7S9
L.6
ID FETCH-LOGICAL-c435t-f954b2392ea01f71ea5db3214198f5c2c5602d9b464a64b855ce96972d0b2a773
IEDL.DBID IXB
ISSN 2214-5141
IngestDate Wed Aug 27 00:23:57 EDT 2025
Fri Jul 11 14:43:17 EDT 2025
Tue Jul 01 04:30:38 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Thu Jul 20 20:01:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Crop
Accuracy
Genomic selection
Prediction
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c435t-f954b2392ea01f71ea5db3214198f5c2c5602d9b464a64b855ce96972d0b2a773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214514118300400
PQID 2220874735
PQPubID 24069
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_3ee0e406c55c46bfb6af9ca21de7efec
proquest_miscellaneous_2220874735
crossref_citationtrail_10_1016_j_cj_2018_03_001
crossref_primary_10_1016_j_cj_2018_03_001
elsevier_sciencedirect_doi_10_1016_j_cj_2018_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle The Crop journal
PublicationYear 2018
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Tibshirani (bb0100) 1996
Li, Wang, Zeigler (bb0080) 2014; 3
Dolan, Stuthman, Kolb, Hewings (bb0340) 1996; 36
Xu, Xu, Xu (bb0190) 2017; 119
Dudley, Johnson (bb0245) 2009; 49
Heffner, Lorenz, Jannink, Sorrells (bb0040) 2010; 50
Jia, Jannink (bb0260) 2012; 192
Calus, Meuwissen, de Roos, Veerkamp (bb0390) 2008; 178
Kadam, Potts, Bohn, Lipka, Lorenz (bb0055) 2016; 6
Misztal, Lawlor, Fernando (bb0215) 1997; 80
Hayashi, Iwata (bb0290) 2013; 14
Neves, Carvalheiro, Queiroz (bb0085) 2012; 13
Guo, Zhao, Wang, Zhang, Du, Su (bb0300) 2014; 15
Kempthorne, Nordskog (bb0325) 1959; 15
Wang, El-Basyoni, Baenziger, Crossa, Eskridge, Dweikat (bb0210) 2012; 109
Tsuruta, Misztal, Aguilar, Lawlor (bb0295) 2011; 94
Wang, Li, Yang, Zheng, Yu, Xu, Hu (bb0075) 2017; 118
Heslot, Akdemir, Sorrells, Jannink (bb0315) 2014; 127
Schulthess, Wang, Miedaner, Wilde, Reif, Zhao (bb0270) 2016; 129
Yang, Benyamin, McEvoy, Gordon, Henders, Nyholt, Madden, Heath, Martin, Montgomery (bb0135) 2010; 42
Hayes, Visscher, Goddard (bb0125) 2009; 91
Balestre, Von Pinho, Souza (bb0230) 2010; 9
Elgin, Hill, Zeiders (bb0335) 1970; 10
Nielsen, Sonesson, Yazdi, Meuwissen (bb0370) 2009; 289
Henderson, Quaas (bb0285) 1976; 43
Villumsen, Janss, Lund (bb0395) 2009; 126
Burgueño, de los Campos, Weigel, Crossa (bb0310) 2012; 52
Habier, Fernando, Dekkers (bb0170) 2007; 177
Goddard, Hayes, Meuwissen (bb0140) 2011; 128
Gao, Su, Janss, Zhang, Lund (bb0175) 2013; 96
Jannink, Lorenz, Iwata (bb0405) 2010; 9
Su, Brondum, Ma, Guldbrandtsen, Aamand, Lund (bb0380) 2012; 95
Hu, Li, Song, Han, Cai, Xu, Li (bb0255) 2011; 12
Riedelsheimer, Czedik-Eysenberg, Grieder, Lisec, Technow, Sulpice, Altmann, Stitt, Willmitzer, Melchinger (bb0020) 2012; 44
Gartner, Steinfath, Andorf, Lisec, Meyer, Altmann, Willmitzer, Selbig (bb0420) 2009; 4
Uwatoko, Onishi, Ikeda, Kontani, Sasaki, Matsubara, Itoh, Sano (bb0235) 2008; 163
VanRaden (bb0120) 2008; 91
Legarra, Aguilar, Misztal (bb0150) 2009; 92
Crossa, Perez-Rodriguez, Cuevas, Montesinos-Lopez, Jarquin, de los Campos, Burgueno, Gonzalez-Camacho, Perez-Elizalde, Beyene, Dreisigacker, Singh, Zhang, Gowda, Roorkiwal, Rutkoski, Varshney (bb0165) 2017; 22
Xu (bb0095) 2003; 163
Maenhout, De Baets, Haesaert, van Bockstaele (bb0155) 2007; 115
Roorkiwal, Rathore, Das, Singh, Jain, Srinivasan, Gaur, Chellapilla, Tripathi, Li (bb0200) 2016; 7
Cuevas, Crossa, Montesinos-Lopez, Burgueno, Perez-Rodriguez, de los Campos (bb0320) 2017; 7
Lande, Thompson (bb0015) 1990; 124
Würschum, Maurer, Dreyer, Reif (bb0250) 2013; 126
Hazel, Lush (bb0005) 1942; 33
Albrecht, Wimmer, Auinger, Erbe, Knaak, Ouzunova, Simianer, Schön (bb0050) 2011; 123
Christensen, Madsen, Nielsen, Ostersen, Su (bb0145) 2012; 6
Bao, Kurle, Anderson, Young (bb0305) 2015; 35
Zhong, Dekkers, Fernando, Jannink (bb0400) 2009; 182
Beukert, Li, Liu, Zhao, Ramachandra, Mirdita, Pita, Pillen, Reif (bb0060) 2017; 10
Wu, Lund, Sun, Zhang, Su (bb0180) 2015; 132
Friedman, Hastie, Tibshirani (bb0110) 2010; 33
Lyra, de Freitas Mendonça, Galli, Alves, Granato, Fritsche-Neto (bb0365) 2017; 37
Heffner, Jannink, Iwata, Souza, Sorrells (bb0385) 2011; 51
Zhang, Erbe, He, Ober, Gao, Zhang, Simianer, Li (bb0035) 2015; 5
Cerón-Rojas, Crossa, Arief, Basford, Rutkoski, Jarquin, Alvarado, Beyene, Semagn, DeLacy (bb0360) 2015; 5
Perez-Rodriguez, Gianola, Gonzalez-Camacho, Crossa, Manes, Dreisigacker (bb0195) 2012; 2
Gonzalez-Recio, Rosa, Gianola (bb0205) 2014; 166
Goddard (bb0025) 2009; 136
Neves, Carvalheiro, Perez, O'Brien, Utsunomiya, do Carmo, Schenkel, Soelkner, McEwan, Van Tassell, da Cole, Silva, Queiroz, Sonstegard (bb0185) 2014; 46
Mao, Liu, Xu, Li, Xing (bb0240) 2011; 180
Clark, Hickey, Daetwyler, van der Werf (bb0375) 2012; 44
Alimi, Bink, Dieleman, Magán, Wubs, Palloix, Eeuwijk (bb0410) 2013; 126
Bernardo, Yu (bb0045) 2007; 47
Xu, Zhu, Zhang (bb0065) 2014; 111
Daetwyler, Bansal, Bariana, Hayden, Hayes (bb0070) 2014; 127
Dekkers (bb0355) 2007; 124
Lopez-Cruz, Crossa, Bonnett, Dreisigacker, Poland, Jannink, Singh, Autrique, de los Campos (bb0265) 2015; 5
Suwantaradon, Eberhart, Mock, Owens, Guthrie (bb0345) 1975; 15
Henderson (bb0010) 1975; 31
Habier, Tetens, Seefried, Lichtner, Thaller (bb0130) 2010; 42
Guo, Tucker, Wang, Basten, Ersoz, Briggs, Lu, Li, Gay (bb0275) 2013; 3
Cerón-Rojas, Crossa, Toledo, Sahagún-Castellanos (bb0330) 2016; 56
Heslot, Yang, Sorrells, Jannink (bb0160) 2012; 52
Chen, Li, Sargolzaei, Schenkel (bb0030) 2014; 9
Wellmann, Bennewitz (bb0225) 2012; 94
Scutari, Howell, Balding, Mackay (bb0280) 2014; 198
Holbrook, Burton, Carter (bb0350) 1989; 29
Park, Casella (bb0105) 2008; 103
Meuwissen, Hayes, Goddard (bb0090) 2001; 157
Wang, Yang, Xu (bb0115) 2015; 60
Denis, Bouvet (bb0220) 2013; 9
Perez-Rodriguez (10.1016/j.cj.2018.03.001_bb0195) 2012; 2
Suwantaradon (10.1016/j.cj.2018.03.001_bb0345) 1975; 15
Yang (10.1016/j.cj.2018.03.001_bb0135) 2010; 42
Henderson (10.1016/j.cj.2018.03.001_bb0010) 1975; 31
Zhang (10.1016/j.cj.2018.03.001_bb0035) 2015; 5
Villumsen (10.1016/j.cj.2018.03.001_bb0395) 2009; 126
Cerón-Rojas (10.1016/j.cj.2018.03.001_bb0360) 2015; 5
Dekkers (10.1016/j.cj.2018.03.001_bb0355) 2007; 124
Heslot (10.1016/j.cj.2018.03.001_bb0160) 2012; 52
Guo (10.1016/j.cj.2018.03.001_bb0275) 2013; 3
Xu (10.1016/j.cj.2018.03.001_bb0065) 2014; 111
Balestre (10.1016/j.cj.2018.03.001_bb0230) 2010; 9
Würschum (10.1016/j.cj.2018.03.001_bb0250) 2013; 126
Cerón-Rojas (10.1016/j.cj.2018.03.001_bb0330) 2016; 56
Beukert (10.1016/j.cj.2018.03.001_bb0060) 2017; 10
Holbrook (10.1016/j.cj.2018.03.001_bb0350) 1989; 29
Dolan (10.1016/j.cj.2018.03.001_bb0340) 1996; 36
Scutari (10.1016/j.cj.2018.03.001_bb0280) 2014; 198
Legarra (10.1016/j.cj.2018.03.001_bb0150) 2009; 92
Henderson (10.1016/j.cj.2018.03.001_bb0285) 1976; 43
Su (10.1016/j.cj.2018.03.001_bb0380) 2012; 95
Nielsen (10.1016/j.cj.2018.03.001_bb0370) 2009; 289
Goddard (10.1016/j.cj.2018.03.001_bb0140) 2011; 128
Mao (10.1016/j.cj.2018.03.001_bb0240) 2011; 180
Kadam (10.1016/j.cj.2018.03.001_bb0055) 2016; 6
Heffner (10.1016/j.cj.2018.03.001_bb0040) 2010; 50
Friedman (10.1016/j.cj.2018.03.001_bb0110) 2010; 33
Maenhout (10.1016/j.cj.2018.03.001_bb0155) 2007; 115
Schulthess (10.1016/j.cj.2018.03.001_bb0270) 2016; 129
Misztal (10.1016/j.cj.2018.03.001_bb0215) 1997; 80
Lande (10.1016/j.cj.2018.03.001_bb0015) 1990; 124
Bao (10.1016/j.cj.2018.03.001_bb0305) 2015; 35
Chen (10.1016/j.cj.2018.03.001_bb0030) 2014; 9
Wang (10.1016/j.cj.2018.03.001_bb0115) 2015; 60
Wu (10.1016/j.cj.2018.03.001_bb0180) 2015; 132
Habier (10.1016/j.cj.2018.03.001_bb0170) 2007; 177
Xu (10.1016/j.cj.2018.03.001_bb0190) 2017; 119
Kempthorne (10.1016/j.cj.2018.03.001_bb0325) 1959; 15
Uwatoko (10.1016/j.cj.2018.03.001_bb0235) 2008; 163
Albrecht (10.1016/j.cj.2018.03.001_bb0050) 2011; 123
Alimi (10.1016/j.cj.2018.03.001_bb0410) 2013; 126
Heslot (10.1016/j.cj.2018.03.001_bb0315) 2014; 127
Lyra (10.1016/j.cj.2018.03.001_bb0365) 2017; 37
Guo (10.1016/j.cj.2018.03.001_bb0300) 2014; 15
Clark (10.1016/j.cj.2018.03.001_bb0375) 2012; 44
Hazel (10.1016/j.cj.2018.03.001_bb0005) 1942; 33
Goddard (10.1016/j.cj.2018.03.001_bb0025) 2009; 136
Wang (10.1016/j.cj.2018.03.001_bb0075) 2017; 118
Xu (10.1016/j.cj.2018.03.001_bb0095) 2003; 163
VanRaden (10.1016/j.cj.2018.03.001_bb0120) 2008; 91
Heffner (10.1016/j.cj.2018.03.001_bb0385) 2011; 51
Bernardo (10.1016/j.cj.2018.03.001_bb0045) 2007; 47
Wellmann (10.1016/j.cj.2018.03.001_bb0225) 2012; 94
Tibshirani (10.1016/j.cj.2018.03.001_bb0100) 1996
Habier (10.1016/j.cj.2018.03.001_bb0130) 2010; 42
Dudley (10.1016/j.cj.2018.03.001_bb0245) 2009; 49
Hayashi (10.1016/j.cj.2018.03.001_bb0290) 2013; 14
Roorkiwal (10.1016/j.cj.2018.03.001_bb0200) 2016; 7
Gao (10.1016/j.cj.2018.03.001_bb0175) 2013; 96
Riedelsheimer (10.1016/j.cj.2018.03.001_bb0020) 2012; 44
Zhong (10.1016/j.cj.2018.03.001_bb0400) 2009; 182
Crossa (10.1016/j.cj.2018.03.001_bb0165) 2017; 22
Hayes (10.1016/j.cj.2018.03.001_bb0125) 2009; 91
Hu (10.1016/j.cj.2018.03.001_bb0255) 2011; 12
Gartner (10.1016/j.cj.2018.03.001_bb0420) 2009; 4
Gonzalez-Recio (10.1016/j.cj.2018.03.001_bb0205) 2014; 166
Elgin (10.1016/j.cj.2018.03.001_bb0335) 1970; 10
Denis (10.1016/j.cj.2018.03.001_bb0220) 2013; 9
Lopez-Cruz (10.1016/j.cj.2018.03.001_bb0265) 2015; 5
Cuevas (10.1016/j.cj.2018.03.001_bb0320) 2017; 7
Meuwissen (10.1016/j.cj.2018.03.001_bb0090) 2001; 157
Park (10.1016/j.cj.2018.03.001_bb0105) 2008; 103
Tsuruta (10.1016/j.cj.2018.03.001_bb0295) 2011; 94
Daetwyler (10.1016/j.cj.2018.03.001_bb0070) 2014; 127
Christensen (10.1016/j.cj.2018.03.001_bb0145) 2012; 6
Wang (10.1016/j.cj.2018.03.001_bb0210) 2012; 109
Neves (10.1016/j.cj.2018.03.001_bb0085) 2012; 13
Neves (10.1016/j.cj.2018.03.001_bb0185) 2014; 46
Burgueño (10.1016/j.cj.2018.03.001_bb0310) 2012; 52
Jannink (10.1016/j.cj.2018.03.001_bb0405) 2010; 9
Calus (10.1016/j.cj.2018.03.001_bb0390) 2008; 178
Jia (10.1016/j.cj.2018.03.001_bb0260) 2012; 192
Li (10.1016/j.cj.2018.03.001_bb0080) 2014; 3
References_xml – volume: 123
  start-page: 339
  year: 2011
  end-page: 350
  ident: bb0050
  article-title: Genome-based prediction of testcross values in maize
  publication-title: Theor. Appl. Genet.
– volume: 5
  start-page: 2155
  year: 2015
  end-page: 2164
  ident: bb0360
  article-title: A genomic selection index applied to simulated and real data
  publication-title: G3-Genes Genomes Genet.
– volume: 136
  start-page: 245
  year: 2009
  end-page: 257
  ident: bb0025
  article-title: Genomic selection: prediction of accuracy and maximisation of long term response
  publication-title: Genetica
– volume: 94
  start-page: 4198
  year: 2011
  end-page: 4204
  ident: bb0295
  article-title: Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins
  publication-title: J. Dairy Sci.
– volume: 50
  start-page: 1681
  year: 2010
  end-page: 1690
  ident: bb0040
  article-title: Plant breeding with genomic selection: gain per unit time and cost
  publication-title: Crop Sci.
– volume: 103
  start-page: 681
  year: 2008
  end-page: 686
  ident: bb0105
  article-title: The bayesian lasso
  publication-title: J. Am. Stat. Assoc.
– volume: 177
  start-page: 2389
  year: 2007
  end-page: 2397
  ident: bb0170
  article-title: The impact of genetic relationship information on genome-assisted breeding values
  publication-title: Genetics
– volume: 5
  start-page: 569
  year: 2015
  end-page: 582
  ident: bb0265
  article-title: Increased prediction accuracy in wheat breeding trials using a marker× environment interaction genomic selection model
  publication-title: G3-Genes Genomes Genet.
– volume: 10
  start-page: 190
  year: 1970
  end-page: 193
  ident: bb0335
  article-title: Comparison of four methods of multiple trait selection for five traits in alfalfa
  publication-title: Crop Sci.
– volume: 9
  year: 2014
  ident: bb0030
  article-title: Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction
  publication-title: PLoS One
– volume: 289
  start-page: 259
  year: 2009
  end-page: 264
  ident: bb0370
  article-title: Comparison of accuracy of genome-wide and BLUP breeding value estimates in sib based aquaculture breeding schemes
  publication-title: Aquaculture
– volume: 127
  start-page: 1795
  year: 2014
  end-page: 1803
  ident: bb0070
  article-title: Genomic prediction for rust resistance in diverse wheat landraces
  publication-title: Theor. Appl. Genet.
– volume: 47
  start-page: 1082
  year: 2007
  end-page: 1090
  ident: bb0045
  article-title: Prospects for genomewide selection for quantitative traits in maize
  publication-title: Crop Sci.
– volume: 80
  start-page: 975
  year: 1997
  end-page: 978
  ident: bb0215
  article-title: Dominance models with method R for stature of Holsteins
  publication-title: J. Dairy Sci.
– volume: 182
  start-page: 355
  year: 2009
  end-page: 364
  ident: bb0400
  article-title: Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study
  publication-title: Genetics
– volume: 4
  year: 2009
  ident: bb0420
  article-title: Improved heterosis prediction by combining information on DNA- and metabolic markers
  publication-title: PLoS One
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bb0110
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 94
  start-page: 21
  year: 2012
  end-page: 37
  ident: bb0225
  article-title: Bayesian models with dominance effects for genomic evaluation of quantitative traits
  publication-title: Genet. Res.
– volume: 132
  start-page: 366
  year: 2015
  end-page: 375
  ident: bb0180
  article-title: Impact of relationships between test and training animals and among training animals on reliability of genomic prediction
  publication-title: J. Anim. Breed. Genet.
– volume: 9
  start-page: 1054
  year: 2010
  end-page: 1068
  ident: bb0230
  article-title: Prediction of maize single-cross performance by mixed linear models with microsatellite marker information
  publication-title: Genet. Mol. Res.
– volume: 126
  start-page: 3
  year: 2009
  end-page: 13
  ident: bb0395
  article-title: The importance of haplotype length and heritability using genomic selection in dairy cattle
  publication-title: J. Anim. Breed. Genet.
– volume: 109
  start-page: 313
  year: 2012
  end-page: 319
  ident: bb0210
  article-title: Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations
  publication-title: Heredity
– volume: 9
  start-page: 37
  year: 2013
  end-page: 51
  ident: bb0220
  article-title: Efficiency of genomic selection with models including dominance effect in the context of eucalyptus breeding
  publication-title: Tree Genet. Genomes
– volume: 15
  start-page: 827
  year: 1975
  end-page: 833
  ident: bb0345
  article-title: Index selection for several agronomic traits in the BSSS2 maize population
  publication-title: Crop Sci.
– volume: 115
  start-page: 1003
  year: 2007
  end-page: 1013
  ident: bb0155
  article-title: Support vector machine regression for the prediction of maize hybrid performance
  publication-title: Theor. Appl. Genet.
– volume: 44
  start-page: 217
  year: 2012
  end-page: 220
  ident: bb0020
  article-title: Genomic and metabolic prediction of complex heterotic traits in hybrid maize
  publication-title: Nat. Genet.
– volume: 46
  start-page: 17
  year: 2014
  ident: bb0185
  article-title: Accuracy of genomic predictions in Bos indicus (Nellore) cattle
  publication-title: Genet. Sel. Evol.
– volume: 49
  start-page: 1533
  year: 2009
  ident: bb0245
  article-title: Epistatic models improve prediction of performance in corn
  publication-title: Crop Sci.
– volume: 3
  start-page: 263
  year: 2013
  end-page: 272
  ident: bb0275
  article-title: Accuracy of across-environment genome-wide prediction in maize nested association mapping populations
  publication-title: G3-Genes Genomes Genet.
– volume: 42
  start-page: 5
  year: 2010
  ident: bb0130
  article-title: The impact of genetic relationship information on genomic breeding values in German Holstein cattle
  publication-title: Genet. Sel. Evol.
– volume: 192
  start-page: 1513
  year: 2012
  end-page: 1522
  ident: bb0260
  article-title: Multiple-trait genomic selection methods increase genetic value prediction accuracy
  publication-title: Genetics
– volume: 10
  start-page: 22
  year: 2017
  ident: bb0060
  article-title: Genome-based identification of heterotic patterns in rice
  publication-title: Rice
– volume: 6
  start-page: 1565
  year: 2012
  end-page: 1571
  ident: bb0145
  article-title: Single-step methods for genomic evaluation in pigs
  publication-title: Animal
– volume: 96
  start-page: 4678
  year: 2013
  end-page: 4687
  ident: bb0175
  article-title: Model comparison on genomic predictions using high-density markers for different groups of bulls in the Nordic Holstein population
  publication-title: J. Dairy Sci.
– volume: 51
  start-page: 2597
  year: 2011
  ident: bb0385
  article-title: Genomic selection accuracy for grain quality traits in biparental wheat populations
  publication-title: Crop Sci.
– volume: 91
  start-page: 4414
  year: 2008
  end-page: 4423
  ident: bb0120
  article-title: Efficient methods to compute genomic predictions
  publication-title: J. Dairy Sci.
– volume: 42
  start-page: 565
  year: 2010
  end-page: 569
  ident: bb0135
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
– volume: 111
  start-page: 12456
  year: 2014
  end-page: 12461
  ident: bb0065
  article-title: Predicting hybrid performance in rice using genomic best linear unbiased prediction
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  ident: bb0090
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
– volume: 6
  start-page: 3443
  year: 2016
  end-page: 3453
  ident: bb0055
  article-title: Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline
  publication-title: G3-Genes Genomes Genet.
– volume: 52
  start-page: 707
  year: 2012
  end-page: 719
  ident: bb0310
  article-title: Genomic prediction of breeding values when modeling genotype×environment interaction using pedigree and dense molecular markers
  publication-title: Crop Sci.
– volume: 43
  start-page: 1188
  year: 1976
  end-page: 1197
  ident: bb0285
  article-title: Multiple trait evaluation using relatives' records
  publication-title: J. Anim. Sci.
– volume: 9
  start-page: 166
  year: 2010
  end-page: 177
  ident: bb0405
  article-title: Genomic selection in plant breeding: from theory to practice
  publication-title: Brief. Funct. Genomics
– volume: 52
  start-page: 146
  year: 2012
  end-page: 160
  ident: bb0160
  article-title: Genomic selection in plant breeding: a comparison of models
  publication-title: Crop Sci.
– volume: 91
  start-page: 47
  year: 2009
  end-page: 60
  ident: bb0125
  article-title: Increased accuracy of artificial selection by using the realized relationship matrix
  publication-title: Genet. Res.
– volume: 13
  start-page: 100
  year: 2012
  ident: bb0085
  article-title: A comparison of statistical methods for genomic selection in a mice population
  publication-title: BMC Genet.
– volume: 22
  start-page: 961
  year: 2017
  end-page: 975
  ident: bb0165
  article-title: Genomic selection in plant breeding: methods, models, and perspectives
  publication-title: Trends Plant Sci.
– volume: 127
  start-page: 463
  year: 2014
  end-page: 480
  ident: bb0315
  article-title: Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions
  publication-title: Theor. Appl. Genet.
– volume: 15
  start-page: 10
  year: 1959
  end-page: 19
  ident: bb0325
  article-title: Restricted selection indices
  publication-title: Biometrics
– start-page: 267
  year: 1996
  end-page: 288
  ident: bb0100
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B
– volume: 7
  start-page: 41
  year: 2017
  end-page: 53
  ident: bb0320
  article-title: Bayesian genomic prediction with genotype × environment interaction kernel models
  publication-title: G3-Genes Genomes Genet.
– volume: 44
  start-page: 4
  year: 2012
  ident: bb0375
  article-title: The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes
  publication-title: Genet. Sel. Evol.
– volume: 163
  start-page: 789
  year: 2003
  end-page: 801
  ident: bb0095
  article-title: Estimating polygenic effects using markers of the entire genome
  publication-title: Genetics
– volume: 118
  start-page: 302
  year: 2017
  end-page: 310
  ident: bb0075
  article-title: Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II
  publication-title: Heredity
– volume: 92
  start-page: 4656
  year: 2009
  end-page: 4663
  ident: bb0150
  article-title: A relationship matrix including full pedigree and genomic information
  publication-title: J. Dairy Sci.
– volume: 129
  start-page: 273
  year: 2016
  end-page: 287
  ident: bb0270
  article-title: Multiple-trait and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes
  publication-title: Theor. Appl. Genet.
– volume: 166
  start-page: 217
  year: 2014
  end-page: 231
  ident: bb0205
  article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits
  publication-title: Livest. Sci.
– volume: 198
  start-page: 129
  year: 2014
  end-page: 137
  ident: bb0280
  article-title: Multiple quantitative trait analysis using Bayesian networks
  publication-title: Genetics
– volume: 7
  start-page: 1666
  year: 2016
  ident: bb0200
  article-title: Genome-enabled prediction models for yield related traits in chickpea
  publication-title: Front. Plant Sci.
– volume: 3
  start-page: 8
  year: 2014
  ident: bb0080
  article-title: The 3,000 rice genomes project: new opportunities and challenges for future rice research
  publication-title: Gigascience
– volume: 126
  start-page: 2597
  year: 2013
  end-page: 2625
  ident: bb0410
  article-title: Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper
  publication-title: Theor. Appl. Genet.
– volume: 56
  start-page: 2436
  year: 2016
  end-page: 2447
  ident: bb0330
  article-title: A predetermined proportional gains eigen selection index method
  publication-title: Crop Sci.
– volume: 33
  start-page: 393
  year: 1942
  end-page: 399
  ident: bb0005
  article-title: The efficiency of three methods of selection
  publication-title: J. Hered.
– volume: 119
  start-page: 174
  year: 2017
  end-page: 184
  ident: bb0190
  article-title: Prediction and association mapping of agronomic traits in maize using multiple omic data
  publication-title: Heredity
– volume: 36
  start-page: 1207
  year: 1996
  end-page: 1211
  ident: bb0340
  article-title: Multiple trait selection in a recurrent selection population in oat (
  publication-title: Crop Sci.
– volume: 124
  start-page: 331
  year: 2007
  end-page: 341
  ident: bb0355
  article-title: Prediction of response to marker-assisted and genomic selection using selection index theory
  publication-title: J. Anim. Breed. Genet.
– volume: 29
  start-page: 324
  year: 1989
  end-page: 329
  ident: bb0350
  article-title: Evaluation of recurrent restricted index selection for increasing yield while holding seed protein constant in soybean
  publication-title: Crop Sci.
– volume: 60
  start-page: 925
  year: 2015
  end-page: 935
  ident: bb0115
  article-title: A comparison of genomic selection methods for breeding value prediction
  publication-title: Sci. Bull.
– volume: 2
  start-page: 1595
  year: 2012
  end-page: 1605
  ident: bb0195
  article-title: Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat
  publication-title: G3-Genes Genomes Genet.
– volume: 14
  start-page: 34
  year: 2013
  ident: bb0290
  article-title: A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits
  publication-title: BMC Bioinf.
– volume: 35
  start-page: 128
  year: 2015
  ident: bb0305
  article-title: Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm
  publication-title: Mol. Breed.
– volume: 178
  start-page: 553
  year: 2008
  end-page: 561
  ident: bb0390
  article-title: Accuracy of genomic selection using different methods to define haplotypes
  publication-title: Genetics
– volume: 95
  start-page: 4657
  year: 2012
  end-page: 4665
  ident: bb0380
  article-title: Comparison of genomic predictions using medium-density (similar to 54,000) and high-density (similar to 777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations
  publication-title: J. Dairy Sci.
– volume: 5
  start-page: 615
  year: 2015
  end-page: 627
  ident: bb0035
  article-title: Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix
  publication-title: G3-Genes Genomes Genet.
– volume: 126
  start-page: 435
  year: 2013
  end-page: 441
  ident: bb0250
  article-title: Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (
  publication-title: Theor. Appl. Genet.
– volume: 180
  start-page: 261
  year: 2011
  end-page: 271
  ident: bb0240
  article-title: Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice
  publication-title: Euphytica
– volume: 15
  start-page: 30
  year: 2014
  ident: bb0300
  article-title: Comparison of single-trait and multiple-trait genomic prediction models
  publication-title: BMC Genet.
– volume: 31
  start-page: 423
  year: 1975
  end-page: 447
  ident: bb0010
  article-title: Best linear unbiased estimation and prediction under a selection model
  publication-title: Biometrics
– volume: 124
  start-page: 743
  year: 1990
  end-page: 756
  ident: bb0015
  article-title: Efficiency of marker-assisted selection in the improvement of quantitative traits
  publication-title: Genetics
– volume: 163
  start-page: 167
  year: 2008
  end-page: 175
  ident: bb0235
  article-title: Epistasis among the three major flowering time genes in rice: coordinate changes of photoperiod sensitivity, basic vegetative growth and optimum photoperiod
  publication-title: Euphytica
– volume: 37
  start-page: 80
  year: 2017
  ident: bb0365
  article-title: Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
  publication-title: Mol. Breed.
– volume: 128
  start-page: 409
  year: 2011
  end-page: 421
  ident: bb0140
  article-title: Using the genomic relationship matrix to predict the accuracy of genomic selection
  publication-title: J. Anim. Breed. Genet.
– volume: 12
  start-page: 15
  year: 2011
  ident: bb0255
  article-title: Genomic value prediction for quantitative traits under the epistatic model
  publication-title: BMC Genet.
– volume: 166
  start-page: 217
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0205
  article-title: Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2014.05.036
– volume: 29
  start-page: 324
  year: 1989
  ident: 10.1016/j.cj.2018.03.001_bb0350
  article-title: Evaluation of recurrent restricted index selection for increasing yield while holding seed protein constant in soybean
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1989.0011183X002900020019x
– volume: 12
  start-page: 15
  year: 2011
  ident: 10.1016/j.cj.2018.03.001_bb0255
  article-title: Genomic value prediction for quantitative traits under the epistatic model
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-12-15
– volume: 47
  start-page: 1082
  year: 2007
  ident: 10.1016/j.cj.2018.03.001_bb0045
  article-title: Prospects for genomewide selection for quantitative traits in maize
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2006.11.0690
– start-page: 267
  year: 1996
  ident: 10.1016/j.cj.2018.03.001_bb0100
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 136
  start-page: 245
  year: 2009
  ident: 10.1016/j.cj.2018.03.001_bb0025
  article-title: Genomic selection: prediction of accuracy and maximisation of long term response
  publication-title: Genetica
  doi: 10.1007/s10709-008-9308-0
– volume: 103
  start-page: 681
  year: 2008
  ident: 10.1016/j.cj.2018.03.001_bb0105
  article-title: The bayesian lasso
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000000337
– volume: 96
  start-page: 4678
  year: 2013
  ident: 10.1016/j.cj.2018.03.001_bb0175
  article-title: Model comparison on genomic predictions using high-density markers for different groups of bulls in the Nordic Holstein population
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2012-6406
– volume: 56
  start-page: 2436
  year: 2016
  ident: 10.1016/j.cj.2018.03.001_bb0330
  article-title: A predetermined proportional gains eigen selection index method
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2015.11.0718
– volume: 126
  start-page: 3
  year: 2009
  ident: 10.1016/j.cj.2018.03.001_bb0395
  article-title: The importance of haplotype length and heritability using genomic selection in dairy cattle
  publication-title: J. Anim. Breed. Genet.
  doi: 10.1111/j.1439-0388.2008.00747.x
– volume: 5
  start-page: 615
  year: 2015
  ident: 10.1016/j.cj.2018.03.001_bb0035
  article-title: Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix
  publication-title: G3-Genes Genomes Genet.
  doi: 10.1534/g3.114.016261
– volume: 163
  start-page: 167
  year: 2008
  ident: 10.1016/j.cj.2018.03.001_bb0235
  article-title: Epistasis among the three major flowering time genes in rice: coordinate changes of photoperiod sensitivity, basic vegetative growth and optimum photoperiod
  publication-title: Euphytica
  doi: 10.1007/s10681-007-9584-2
– volume: 91
  start-page: 47
  year: 2009
  ident: 10.1016/j.cj.2018.03.001_bb0125
  article-title: Increased accuracy of artificial selection by using the realized relationship matrix
  publication-title: Genet. Res.
  doi: 10.1017/S0016672308009981
– volume: 6
  start-page: 1565
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0145
  article-title: Single-step methods for genomic evaluation in pigs
  publication-title: Animal
  doi: 10.1017/S1751731112000742
– volume: 129
  start-page: 273
  year: 2016
  ident: 10.1016/j.cj.2018.03.001_bb0270
  article-title: Multiple-trait and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-015-2626-6
– volume: 50
  start-page: 1681
  year: 2010
  ident: 10.1016/j.cj.2018.03.001_bb0040
  article-title: Plant breeding with genomic selection: gain per unit time and cost
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2009.11.0662
– volume: 132
  start-page: 366
  year: 2015
  ident: 10.1016/j.cj.2018.03.001_bb0180
  article-title: Impact of relationships between test and training animals and among training animals on reliability of genomic prediction
  publication-title: J. Anim. Breed. Genet.
  doi: 10.1111/jbg.12165
– volume: 126
  start-page: 435
  year: 2013
  ident: 10.1016/j.cj.2018.03.001_bb0250
  article-title: Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.)
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-012-1991-7
– volume: 43
  start-page: 1188
  year: 1976
  ident: 10.1016/j.cj.2018.03.001_bb0285
  article-title: Multiple trait evaluation using relatives' records
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas1976.4361188x
– volume: 36
  start-page: 1207
  year: 1996
  ident: 10.1016/j.cj.2018.03.001_bb0340
  article-title: Multiple trait selection in a recurrent selection population in oat (Avena sativa L.)
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1996.0011183X003600050023x
– volume: 9
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0030
  article-title: Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction
  publication-title: PLoS One
– volume: 42
  start-page: 5
  year: 2010
  ident: 10.1016/j.cj.2018.03.001_bb0130
  article-title: The impact of genetic relationship information on genomic breeding values in German Holstein cattle
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-42-5
– volume: 115
  start-page: 1003
  year: 2007
  ident: 10.1016/j.cj.2018.03.001_bb0155
  article-title: Support vector machine regression for the prediction of maize hybrid performance
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-007-0627-9
– volume: 180
  start-page: 261
  year: 2011
  ident: 10.1016/j.cj.2018.03.001_bb0240
  article-title: Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0395-0
– volume: 3
  start-page: 263
  year: 2013
  ident: 10.1016/j.cj.2018.03.001_bb0275
  article-title: Accuracy of across-environment genome-wide prediction in maize nested association mapping populations
  publication-title: G3-Genes Genomes Genet.
  doi: 10.1534/g3.112.005066
– volume: 15
  start-page: 10
  year: 1959
  ident: 10.1016/j.cj.2018.03.001_bb0325
  article-title: Restricted selection indices
  publication-title: Biometrics
  doi: 10.2307/2527598
– volume: 46
  start-page: 17
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0185
  article-title: Accuracy of genomic predictions in Bos indicus (Nellore) cattle
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-46-17
– volume: 44
  start-page: 4
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0375
  article-title: The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-44-4
– volume: 60
  start-page: 925
  year: 2015
  ident: 10.1016/j.cj.2018.03.001_bb0115
  article-title: A comparison of genomic selection methods for breeding value prediction
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-015-0791-2
– volume: 192
  start-page: 1513
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0260
  article-title: Multiple-trait genomic selection methods increase genetic value prediction accuracy
  publication-title: Genetics
  doi: 10.1534/genetics.112.144246
– volume: 118
  start-page: 302
  year: 2017
  ident: 10.1016/j.cj.2018.03.001_bb0075
  article-title: Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II
  publication-title: Heredity
  doi: 10.1038/hdy.2016.87
– volume: 80
  start-page: 975
  year: 1997
  ident: 10.1016/j.cj.2018.03.001_bb0215
  article-title: Dominance models with method R for stature of Holsteins
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(97)76022-3
– volume: 9
  start-page: 37
  year: 2013
  ident: 10.1016/j.cj.2018.03.001_bb0220
  article-title: Efficiency of genomic selection with models including dominance effect in the context of eucalyptus breeding
  publication-title: Tree Genet. Genomes
  doi: 10.1007/s11295-012-0528-1
– volume: 52
  start-page: 146
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0160
  article-title: Genomic selection in plant breeding: a comparison of models
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2011.06.0297
– volume: 2
  start-page: 1595
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0195
  article-title: Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat
  publication-title: G3-Genes Genomes Genet.
  doi: 10.1534/g3.112.003665
– volume: 9
  start-page: 1054
  year: 2010
  ident: 10.1016/j.cj.2018.03.001_bb0230
  article-title: Prediction of maize single-cross performance by mixed linear models with microsatellite marker information
  publication-title: Genet. Mol. Res.
  doi: 10.4238/vol9-2gmr791
– volume: 92
  start-page: 4656
  year: 2009
  ident: 10.1016/j.cj.2018.03.001_bb0150
  article-title: A relationship matrix including full pedigree and genomic information
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2009-2061
– volume: 94
  start-page: 21
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0225
  article-title: Bayesian models with dominance effects for genomic evaluation of quantitative traits
  publication-title: Genet. Res.
  doi: 10.1017/S0016672312000018
– volume: 4
  year: 2009
  ident: 10.1016/j.cj.2018.03.001_bb0420
  article-title: Improved heterosis prediction by combining information on DNA- and metabolic markers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005220
– volume: 15
  start-page: 827
  year: 1975
  ident: 10.1016/j.cj.2018.03.001_bb0345
  article-title: Index selection for several agronomic traits in the BSSS2 maize population
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1975.0011183X001500060025x
– volume: 42
  start-page: 565
  year: 2010
  ident: 10.1016/j.cj.2018.03.001_bb0135
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
  doi: 10.1038/ng.608
– volume: 95
  start-page: 4657
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0380
  article-title: Comparison of genomic predictions using medium-density (similar to 54,000) and high-density (similar to 777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2012-5379
– volume: 111
  start-page: 12456
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0065
  article-title: Predicting hybrid performance in rice using genomic best linear unbiased prediction
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1413750111
– volume: 7
  start-page: 1666
  year: 2016
  ident: 10.1016/j.cj.2018.03.001_bb0200
  article-title: Genome-enabled prediction models for yield related traits in chickpea
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01666
– volume: 124
  start-page: 743
  year: 1990
  ident: 10.1016/j.cj.2018.03.001_bb0015
  article-title: Efficiency of marker-assisted selection in the improvement of quantitative traits
  publication-title: Genetics
  doi: 10.1093/genetics/124.3.743
– volume: 5
  start-page: 2155
  year: 2015
  ident: 10.1016/j.cj.2018.03.001_bb0360
  article-title: A genomic selection index applied to simulated and real data
  publication-title: G3-Genes Genomes Genet.
  doi: 10.1534/g3.115.019869
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.cj.2018.03.001_bb0110
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 119
  start-page: 174
  year: 2017
  ident: 10.1016/j.cj.2018.03.001_bb0190
  article-title: Prediction and association mapping of agronomic traits in maize using multiple omic data
  publication-title: Heredity
  doi: 10.1038/hdy.2017.27
– volume: 177
  start-page: 2389
  year: 2007
  ident: 10.1016/j.cj.2018.03.001_bb0170
  article-title: The impact of genetic relationship information on genome-assisted breeding values
  publication-title: Genetics
  doi: 10.1534/genetics.107.081190
– volume: 10
  start-page: 22
  year: 2017
  ident: 10.1016/j.cj.2018.03.001_bb0060
  article-title: Genome-based identification of heterotic patterns in rice
  publication-title: Rice
  doi: 10.1186/s12284-017-0163-4
– volume: 14
  start-page: 34
  year: 2013
  ident: 10.1016/j.cj.2018.03.001_bb0290
  article-title: A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-34
– volume: 22
  start-page: 961
  year: 2017
  ident: 10.1016/j.cj.2018.03.001_bb0165
  article-title: Genomic selection in plant breeding: methods, models, and perspectives
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.08.011
– volume: 109
  start-page: 313
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0210
  article-title: Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations
  publication-title: Heredity
  doi: 10.1038/hdy.2012.44
– volume: 49
  start-page: 1533
  year: 2009
  ident: 10.1016/j.cj.2018.03.001_bb0245
  article-title: Epistatic models improve prediction of performance in corn
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2008.08.0491er
– volume: 7
  start-page: 41
  year: 2017
  ident: 10.1016/j.cj.2018.03.001_bb0320
  article-title: Bayesian genomic prediction with genotype × environment interaction kernel models
  publication-title: G3-Genes Genomes Genet.
  doi: 10.1534/g3.116.035584
– volume: 178
  start-page: 553
  year: 2008
  ident: 10.1016/j.cj.2018.03.001_bb0390
  article-title: Accuracy of genomic selection using different methods to define haplotypes
  publication-title: Genetics
  doi: 10.1534/genetics.107.080838
– volume: 31
  start-page: 423
  year: 1975
  ident: 10.1016/j.cj.2018.03.001_bb0010
  article-title: Best linear unbiased estimation and prediction under a selection model
  publication-title: Biometrics
  doi: 10.2307/2529430
– volume: 51
  start-page: 2597
  year: 2011
  ident: 10.1016/j.cj.2018.03.001_bb0385
  article-title: Genomic selection accuracy for grain quality traits in biparental wheat populations
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2011.05.0253
– volume: 13
  start-page: 100
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0085
  article-title: A comparison of statistical methods for genomic selection in a mice population
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-13-100
– volume: 15
  start-page: 30
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0300
  article-title: Comparison of single-trait and multiple-trait genomic prediction models
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-15-30
– volume: 127
  start-page: 1795
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0070
  article-title: Genomic prediction for rust resistance in diverse wheat landraces
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-014-2341-8
– volume: 127
  start-page: 463
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0315
  article-title: Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-013-2231-5
– volume: 3
  start-page: 8
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0080
  article-title: The 3,000 rice genomes project: new opportunities and challenges for future rice research
  publication-title: Gigascience
  doi: 10.1186/2047-217X-3-8
– volume: 124
  start-page: 331
  year: 2007
  ident: 10.1016/j.cj.2018.03.001_bb0355
  article-title: Prediction of response to marker-assisted and genomic selection using selection index theory
  publication-title: J. Anim. Breed. Genet.
  doi: 10.1111/j.1439-0388.2007.00701.x
– volume: 52
  start-page: 707
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0310
  article-title: Genomic prediction of breeding values when modeling genotype×environment interaction using pedigree and dense molecular markers
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2011.06.0299
– volume: 198
  start-page: 129
  year: 2014
  ident: 10.1016/j.cj.2018.03.001_bb0280
  article-title: Multiple quantitative trait analysis using Bayesian networks
  publication-title: Genetics
  doi: 10.1534/genetics.114.165704
– volume: 6
  start-page: 3443
  year: 2016
  ident: 10.1016/j.cj.2018.03.001_bb0055
  article-title: Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline
  publication-title: G3-Genes Genomes Genet.
  doi: 10.1534/g3.116.031286
– volume: 157
  start-page: 1819
  year: 2001
  ident: 10.1016/j.cj.2018.03.001_bb0090
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 5
  start-page: 569
  year: 2015
  ident: 10.1016/j.cj.2018.03.001_bb0265
  article-title: Increased prediction accuracy in wheat breeding trials using a marker× environment interaction genomic selection model
  publication-title: G3-Genes Genomes Genet.
  doi: 10.1534/g3.114.016097
– volume: 33
  start-page: 393
  year: 1942
  ident: 10.1016/j.cj.2018.03.001_bb0005
  article-title: The efficiency of three methods of selection
  publication-title: J. Hered.
  doi: 10.1093/oxfordjournals.jhered.a105102
– volume: 123
  start-page: 339
  year: 2011
  ident: 10.1016/j.cj.2018.03.001_bb0050
  article-title: Genome-based prediction of testcross values in maize
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-011-1587-7
– volume: 94
  start-page: 4198
  year: 2011
  ident: 10.1016/j.cj.2018.03.001_bb0295
  article-title: Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2011-4256
– volume: 10
  start-page: 190
  year: 1970
  ident: 10.1016/j.cj.2018.03.001_bb0335
  article-title: Comparison of four methods of multiple trait selection for five traits in alfalfa
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1970.0011183X001000020023x
– volume: 163
  start-page: 789
  year: 2003
  ident: 10.1016/j.cj.2018.03.001_bb0095
  article-title: Estimating polygenic effects using markers of the entire genome
  publication-title: Genetics
  doi: 10.1093/genetics/163.2.789
– volume: 35
  start-page: 128
  year: 2015
  ident: 10.1016/j.cj.2018.03.001_bb0305
  article-title: Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-015-0324-3
– volume: 91
  start-page: 4414
  year: 2008
  ident: 10.1016/j.cj.2018.03.001_bb0120
  article-title: Efficient methods to compute genomic predictions
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2007-0980
– volume: 44
  start-page: 217
  year: 2012
  ident: 10.1016/j.cj.2018.03.001_bb0020
  article-title: Genomic and metabolic prediction of complex heterotic traits in hybrid maize
  publication-title: Nat. Genet.
  doi: 10.1038/ng.1033
– volume: 289
  start-page: 259
  year: 2009
  ident: 10.1016/j.cj.2018.03.001_bb0370
  article-title: Comparison of accuracy of genome-wide and BLUP breeding value estimates in sib based aquaculture breeding schemes
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2009.01.027
– volume: 37
  start-page: 80
  year: 2017
  ident: 10.1016/j.cj.2018.03.001_bb0365
  article-title: Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-017-0681-1
– volume: 182
  start-page: 355
  year: 2009
  ident: 10.1016/j.cj.2018.03.001_bb0400
  article-title: Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study
  publication-title: Genetics
  doi: 10.1534/genetics.108.098277
– volume: 126
  start-page: 2597
  year: 2013
  ident: 10.1016/j.cj.2018.03.001_bb0410
  article-title: Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-013-2160-3
– volume: 128
  start-page: 409
  year: 2011
  ident: 10.1016/j.cj.2018.03.001_bb0140
  article-title: Using the genomic relationship matrix to predict the accuracy of genomic selection
  publication-title: J. Anim. Breed. Genet.
  doi: 10.1111/j.1439-0388.2011.00964.x
– volume: 9
  start-page: 166
  year: 2010
  ident: 10.1016/j.cj.2018.03.001_bb0405
  article-title: Genomic selection in plant breeding: from theory to practice
  publication-title: Brief. Funct. Genomics
  doi: 10.1093/bfgp/elq001
SSID ssj0001344260
Score 2.5174782
SecondaryResourceType review_article
Snippet With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes....
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 330
SubjectTerms Accuracy
algorithms
artificial intelligence
Crop
Genomic selection
loci
marker-assisted selection
phenotype
plant breeding
Prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQnsoBlbaIbaFypV56iEj8HW5QQVFVOIHEzfLHBO0KhYrs_n_Gdna1cIAL18SJrfHE82LPvEfITyd0ZEaGimP8qEQHumqjVxWPmknfSA1ZDujySl3ciL-38nZD6ivlhBV64GK4Iw5QA0adIGUQyndeua4NjjURNHQQ0uqLMW_jZyrvrnCRqNeTshxrRIWooBnPKEtyV5inrC5T-E2bZzEpU_c_C00vFukcec4_kp0RMtKTMtRdsgX9J7J9cvc40mbAZ_LvD-TyYjpkWRu0NS3S0ANFUEqTTBed5e2DvBt4TEdaJprqiZYDdX2keDeXXQ5fyM352fXvi2rUSagCgp1F1bVSeIZAB1zddLoBJ6NPAkRNazoZWEBUw2LrhRJOCW_QktCqVrNYe-a05ntk0j_0sE8oN8ADYiQfQiu0ib4zEQLTRnmltJBTcrSylA0jiXjSsri3q2yxuQ1zm2xra54S5qbk1_qJ_4VA45W2p8n463aJ-jpfQIewo0PYtxxiSvhq6uyIIgo6wFfNXun6x2qWLX5g6dTE9fCwHCwCqNropND89T2G9418SN2WHMIDMlk8LuEQcc3Cf88u_AQsb_V-
  priority: 102
  providerName: Directory of Open Access Journals
Title Genomic selection methods for crop improvement: Current status and prospects
URI https://dx.doi.org/10.1016/j.cj.2018.03.001
https://www.proquest.com/docview/2220874735
https://doaj.org/article/3ee0e406c55c46bfb6af9ca21de7efec
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJy6IqkUsLciVeukh2sTvcCuogKrSS0Ham-XHpNpVlUVk9__jcRzQ9sChxzh2HmNn_MWe-T5CvjihIzMyVDzNH5XoQFdt9KriUTPpG6khywHd_VK3D-LHQi72yNWUC4NhlcX3jz49e-tSMi_WnD8ul_PfDEm2G5EQMs9DMflhLkxO4ltcvq6zcIEk7Kgxl-pX2KDsVo5hXmGF8V1mZDptdmanTOK_M0n9467zHHR9RA4LeKTfxud7R_agf09-3kBOLaZDlrRJdqajLPRAEyClKNFFl3npIK8EXtBCyUQxl2g7UNdHms7mlMvhA3m4_n5_dVsVjYQqJKCzqbpWCs8SyAFXN51uwMnoUXyoaU0nAwsJ0bDYeqGEU8IbKQO0qtUs1p45rfkx2e_XPZwQyg3wkPCRD6EV2kTfmQiBaaO8UlrIGZlPtrGhEIijjsVfO0WKrWxYWbSmrTkGy83I15cWjyN5xht1L9HcL_WQ9joXrJ_-2NLvlgPUkCBISK8hlO-8cl0bHGsiaOggzAifOsvujKJ0qeUbt_489atNHxfumLge1tvBJvBUG43qzKf_deWP5ACPxoDBT2R_87SFswRiNv48__yf57H6DFHT7uY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFgQCx0BYjceEQbeLv9NZWLVvY9kIr7c2K7QnaVZWtmt3_j8dxipZDD1z9lWTsjJ_smfcI-doIHZiRvuBx_yhEC7qog1MFD5pJV0kNSQ7o6lrNbsWPhVzskbMxFwbDKrPvH3x68ta5ZJqtOb1fLqe_GJJsVyIiZJ6W4jPyPKIBjfoNl4vTvwctXCALO4rMxQ4F9sjXlUOcl19hgJcZqE6rne0psfjv7FL_-Ou0CV28Jq8yeqQnwwu-IXvQvSXz75Byi2mfNG2ioemgC93TiEgpanTRZTo7SEeBxzRzMlFMJtr2tOkCjbUp57J_R24vzm_OZkUWSSh8RDqboq2lcCyiHGjKqtUVNDI4VB-qatNKz3yENCzUTijRKOGMlB5qVWsWSscarfl7st-tO_hAKDfAfQRIzvtaaBNcawJ4po1ySmkhJ2Q62sb6zCCOQhZ3dgwVW1m_smhNW3KMlpuQb4897gf2jCfanqK5H9sh73UqWD_8tnniLQcoIWIQHz9DKNc61bS1b1gVQEMLfkL4OFl2ZxnFoZZPPPrLOK82_l14ZdJ0sN72NqKn0miUZ_74XyN_Ji9mN1dzO7-8_vmJvMSaIXrwgOxvHrZwGBHNxh2lFfsHuADxEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+selection+methods+for+crop+improvement%3A+Current+status+and+prospects&rft.jtitle=The+Crop+journal&rft.au=Wang%2C+Xin&rft.au=Xu%2C+Yang&rft.au=Hu%2C+Zhongli&rft.au=Xu%2C+Chenwu&rft.date=2018-08-01&rft.issn=2214-5141&rft.eissn=2214-5141&rft.volume=6&rft.issue=4&rft.spage=330&rft.epage=340&rft_id=info:doi/10.1016%2Fj.cj.2018.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cj_2018_03_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5141&client=summon