An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers
•All recognized antibacterial and wound remedy mechanisms of ZnONPs are presented.•Comparison of antibacterial and wound healing capacities of chitosan, cellulose, alginate.•Micro/nano formulations of ZnONPs with chitosan, cellulose, and alginate.•Challenges and future viewpoints of ZnO nanoparticle...
Saved in:
Published in | Carbohydrate polymers Vol. 227; p. 115349 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0144-8617 1879-1344 1879-1344 |
DOI | 10.1016/j.carbpol.2019.115349 |
Cover
Loading…
Abstract | •All recognized antibacterial and wound remedy mechanisms of ZnONPs are presented.•Comparison of antibacterial and wound healing capacities of chitosan, cellulose, alginate.•Micro/nano formulations of ZnONPs with chitosan, cellulose, and alginate.•Challenges and future viewpoints of ZnO nanoparticles with polysaccharides.
Release of Zn2+ ions from zinc oxide nanoparticles (ZnO NPs) is a major mechanism for oligodynamic activities of these metal oxide NPs against eukaryotic and prokaryotic microorganisms. In addition to this mechanism, ZnO NPs can form reactive oxygen species (ROSs) resulted from electron-hole formation under certain light wavelength. These properties with suitable biocompatibility and biodegradability of ZnO NPs compared to other metal NPs have caused higher applications of these nanomaterials in therapeutic and cosmetic fields. Recently, natural polymers including cellulose, chitosan, and alginate polymers have gained more attention as safe and cost-effective scaffold for wound healing. Both ZnO NPs and these polymers have not been able to satisfy related patients. In this way, the coupling of these materials and nanomaterials as nanocomposites (NCs) is an alternative way to increase the mechanical and antibacterial properties of wound-healing tissue scaffolds. Controllable release of Zn2+ ions in physiological medium should be considered as an indispensable factor to obtain appropriate industrial formulation. Therefore, in this review, attempts were made to highlight particularly important antibacterial results of these NCs in recent investigations. |
---|---|
AbstractList | Release of Zn2+ ions from zinc oxide nanoparticles (ZnO NPs) is a major mechanism for oligodynamic activities of these metal oxide NPs against eukaryotic and prokaryotic microorganisms. In addition to this mechanism, ZnO NPs can form reactive oxygen species (ROSs) resulted from electron-hole formation under certain light wavelength. These properties with suitable biocompatibility and biodegradability of ZnO NPs compared to other metal NPs have caused higher applications of these nanomaterials in therapeutic and cosmetic fields. Recently, natural polymers including cellulose, chitosan, and alginate polymers have gained more attention as safe and cost-effective scaffold for wound healing. Both ZnO NPs and these polymers have not been able to satisfy related patients. In this way, the coupling of these materials and nanomaterials as nanocomposites (NCs) is an alternative way to increase the mechanical and antibacterial properties of wound-healing tissue scaffolds. Controllable release of Zn2+ ions in physiological medium should be considered as an indispensable factor to obtain appropriate industrial formulation. Therefore, in this review, attempts were made to highlight particularly important antibacterial results of these NCs in recent investigations.Release of Zn2+ ions from zinc oxide nanoparticles (ZnO NPs) is a major mechanism for oligodynamic activities of these metal oxide NPs against eukaryotic and prokaryotic microorganisms. In addition to this mechanism, ZnO NPs can form reactive oxygen species (ROSs) resulted from electron-hole formation under certain light wavelength. These properties with suitable biocompatibility and biodegradability of ZnO NPs compared to other metal NPs have caused higher applications of these nanomaterials in therapeutic and cosmetic fields. Recently, natural polymers including cellulose, chitosan, and alginate polymers have gained more attention as safe and cost-effective scaffold for wound healing. Both ZnO NPs and these polymers have not been able to satisfy related patients. In this way, the coupling of these materials and nanomaterials as nanocomposites (NCs) is an alternative way to increase the mechanical and antibacterial properties of wound-healing tissue scaffolds. Controllable release of Zn2+ ions in physiological medium should be considered as an indispensable factor to obtain appropriate industrial formulation. Therefore, in this review, attempts were made to highlight particularly important antibacterial results of these NCs in recent investigations. Release of Zn ions from zinc oxide nanoparticles (ZnO NPs) is a major mechanism for oligodynamic activities of these metal oxide NPs against eukaryotic and prokaryotic microorganisms. In addition to this mechanism, ZnO NPs can form reactive oxygen species (ROSs) resulted from electron-hole formation under certain light wavelength. These properties with suitable biocompatibility and biodegradability of ZnO NPs compared to other metal NPs have caused higher applications of these nanomaterials in therapeutic and cosmetic fields. Recently, natural polymers including cellulose, chitosan, and alginate polymers have gained more attention as safe and cost-effective scaffold for wound healing. Both ZnO NPs and these polymers have not been able to satisfy related patients. In this way, the coupling of these materials and nanomaterials as nanocomposites (NCs) is an alternative way to increase the mechanical and antibacterial properties of wound-healing tissue scaffolds. Controllable release of Zn ions in physiological medium should be considered as an indispensable factor to obtain appropriate industrial formulation. Therefore, in this review, attempts were made to highlight particularly important antibacterial results of these NCs in recent investigations. •All recognized antibacterial and wound remedy mechanisms of ZnONPs are presented.•Comparison of antibacterial and wound healing capacities of chitosan, cellulose, alginate.•Micro/nano formulations of ZnONPs with chitosan, cellulose, and alginate.•Challenges and future viewpoints of ZnO nanoparticles with polysaccharides. Release of Zn2+ ions from zinc oxide nanoparticles (ZnO NPs) is a major mechanism for oligodynamic activities of these metal oxide NPs against eukaryotic and prokaryotic microorganisms. In addition to this mechanism, ZnO NPs can form reactive oxygen species (ROSs) resulted from electron-hole formation under certain light wavelength. These properties with suitable biocompatibility and biodegradability of ZnO NPs compared to other metal NPs have caused higher applications of these nanomaterials in therapeutic and cosmetic fields. Recently, natural polymers including cellulose, chitosan, and alginate polymers have gained more attention as safe and cost-effective scaffold for wound healing. Both ZnO NPs and these polymers have not been able to satisfy related patients. In this way, the coupling of these materials and nanomaterials as nanocomposites (NCs) is an alternative way to increase the mechanical and antibacterial properties of wound-healing tissue scaffolds. Controllable release of Zn2+ ions in physiological medium should be considered as an indispensable factor to obtain appropriate industrial formulation. Therefore, in this review, attempts were made to highlight particularly important antibacterial results of these NCs in recent investigations. Release of Zn2+ ions from zinc oxide nanoparticles (ZnO NPs) is a major mechanism for oligodynamic activities of these metal oxide NPs against eukaryotic and prokaryotic microorganisms. In addition to this mechanism, ZnO NPs can form reactive oxygen species (ROSs) resulted from electron-hole formation under certain light wavelength. These properties with suitable biocompatibility and biodegradability of ZnO NPs compared to other metal NPs have caused higher applications of these nanomaterials in therapeutic and cosmetic fields. Recently, natural polymers including cellulose, chitosan, and alginate polymers have gained more attention as safe and cost-effective scaffold for wound healing. Both ZnO NPs and these polymers have not been able to satisfy related patients. In this way, the coupling of these materials and nanomaterials as nanocomposites (NCs) is an alternative way to increase the mechanical and antibacterial properties of wound-healing tissue scaffolds. Controllable release of Zn2+ ions in physiological medium should be considered as an indispensable factor to obtain appropriate industrial formulation. Therefore, in this review, attempts were made to highlight particularly important antibacterial results of these NCs in recent investigations. |
ArticleNumber | 115349 |
Author | Nokhodchi, Ali Alavi, Mehran |
Author_xml | – sequence: 1 givenname: Mehran orcidid: 0000-0002-5691-8326 surname: Alavi fullname: Alavi, Mehran email: mehranbio83@gmail.com organization: Department of Nanobiotechnology, Faculty of science, Razi university, Iran – sequence: 2 givenname: Ali orcidid: 0000-0002-3244-2482 surname: Nokhodchi fullname: Nokhodchi, Ali email: A.Nokhodchi@sussex.ac.uk organization: Professor of Pharmaceutics and Drug Delivery, Arundel Building (Room 407), School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31590840$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFRwD5yKFZ7MRxEnFAVQW0UqVe4MLFsp3JrleOHWyn1T4PL4qjLBy4FB_sseb7x575L9CZ8w4QekvJlhLKPxy2WgY1ebstCe22lNYV616gDW2brqAVY2doQyhjRctpc44uYjyQvDglr9B5ReuOtIxs0K9rh_0jhEcDT9g7LF0yo9HBKyNtvvX4yc9534O0xu3wFPwEIRmI2A_4h3vATroM-8HYMV7h_bEPfgc2h4s4J5a89uPko0lZpWSEfnlJg7Wz9RGusN6b5KN0q0banXEyAc7NHUcI8TV6OUgb4c3pvETfv3z-dnNb3D98vbu5vi80q-pUgFK6aTqu6raRbadaJslAmCpV27ScadZoqgfFBi57Waqadp2WUIJkgy5LDdUler_WzU3-nCEmMZq4fFM68HMUZVXVtKKMk_9AScmaknOe0XcndFYj9GIKZpThKP54kIF6BfLUYwww_EUoEYvX4iBOXovFa7F6nXUf_9Fpk2TKE09BGvus-tOqzl5Bdj-IqA04Db0JoJPovXmmwm8Ddcwu |
CitedBy_id | crossref_primary_10_3389_fchem_2022_964662 crossref_primary_10_1080_10667857_2020_1794280 crossref_primary_10_1134_S263516762203020X crossref_primary_10_1016_j_ijbiomac_2024_133456 crossref_primary_10_2147_IJN_S269004 crossref_primary_10_1016_j_scp_2021_100412 crossref_primary_10_1016_j_heliyon_2024_e25289 crossref_primary_10_1016_j_jmrt_2021_05_107 crossref_primary_10_1080_02652048_2020_1851789 crossref_primary_10_1007_s10965_022_03435_2 crossref_primary_10_1007_s12668_020_00817_y crossref_primary_10_1016_j_chemosphere_2023_139103 crossref_primary_10_1016_j_msec_2021_112169 crossref_primary_10_3390_toxics10020049 crossref_primary_10_1186_s13765_022_00702_0 crossref_primary_10_3390_ma14113084 crossref_primary_10_1007_s10570_021_03746_5 crossref_primary_10_1016_j_compositesb_2022_109746 crossref_primary_10_1016_j_drudis_2021_03_030 crossref_primary_10_1016_j_matchemphys_2024_129605 crossref_primary_10_1007_s12596_024_02321_y crossref_primary_10_3389_fchem_2020_00580 crossref_primary_10_1016_j_apsusc_2022_155727 crossref_primary_10_1039_D2TB00830K crossref_primary_10_1016_j_ijbiomac_2021_04_013 crossref_primary_10_51847_BQ2peoCsFW crossref_primary_10_1016_j_carbpol_2023_121171 crossref_primary_10_1016_j_ijbiomac_2023_124922 crossref_primary_10_3390_coatings14060666 crossref_primary_10_3390_pharmaceutics13122108 crossref_primary_10_1039_D2NJ04164B crossref_primary_10_3390_ijms24021629 crossref_primary_10_1002_advs_202204929 crossref_primary_10_1016_j_cjche_2020_12_005 crossref_primary_10_1166_sam_2023_4621 crossref_primary_10_1016_j_afres_2025_100849 crossref_primary_10_1007_s40097_021_00452_3 crossref_primary_10_1177_15347346241313009 crossref_primary_10_1016_j_jiec_2021_01_018 crossref_primary_10_1016_j_ijbiomac_2022_07_038 crossref_primary_10_1088_2043_6262_ac389e crossref_primary_10_3390_molecules27206915 crossref_primary_10_1016_j_ijbiomac_2024_130950 crossref_primary_10_1016_j_ijbiomac_2024_133423 crossref_primary_10_3390_jcs6080223 crossref_primary_10_1016_j_physb_2021_413282 crossref_primary_10_1039_D4RA02452D crossref_primary_10_1016_j_colsurfb_2022_112761 crossref_primary_10_1080_00914037_2024_2367208 crossref_primary_10_3390_ijms21051799 crossref_primary_10_1007_s11696_020_01343_7 crossref_primary_10_1016_j_reactfunctpolym_2021_105003 crossref_primary_10_2147_IJN_S272734 crossref_primary_10_1016_j_ijbiomac_2022_03_066 crossref_primary_10_2147_IJN_S254763 crossref_primary_10_1016_j_jcis_2021_01_103 crossref_primary_10_1016_j_ijbiomac_2023_125358 crossref_primary_10_3389_fbioe_2023_1283771 crossref_primary_10_1016_j_carbpol_2023_120589 crossref_primary_10_1590_acb393324 crossref_primary_10_1016_j_cej_2024_152288 crossref_primary_10_1016_j_indcrop_2024_118301 crossref_primary_10_1016_j_carbpol_2020_116634 crossref_primary_10_1002_mabi_201900362 crossref_primary_10_3390_molecules26030619 crossref_primary_10_1080_17425247_2021_1989407 crossref_primary_10_3390_pharmaceutics14061197 crossref_primary_10_1002_ange_202112218 crossref_primary_10_1002_app_50468 crossref_primary_10_1016_j_algal_2022_102740 crossref_primary_10_3762_bjnano_11_129 crossref_primary_10_1016_j_ijbiomac_2025_139926 crossref_primary_10_1016_j_ijbiomac_2022_05_070 crossref_primary_10_1002_bmm2_12055 crossref_primary_10_1016_j_compositesb_2020_108208 crossref_primary_10_1007_s12668_020_00806_1 crossref_primary_10_1016_j_ijbiomac_2023_123796 crossref_primary_10_1021_acsomega_4c08537 crossref_primary_10_1007_s12221_021_3276_8 crossref_primary_10_1039_D4MA00384E crossref_primary_10_1002_adhm_202203054 crossref_primary_10_1016_j_ejmech_2020_113056 crossref_primary_10_1080_02652048_2022_2084168 crossref_primary_10_1016_j_ijpharm_2021_120325 crossref_primary_10_1016_j_jddst_2021_102631 crossref_primary_10_1016_j_carbpol_2021_118235 crossref_primary_10_1007_s10570_021_04412_6 crossref_primary_10_1016_j_cis_2022_102726 crossref_primary_10_3390_nano13101652 crossref_primary_10_1016_j_jddst_2023_105027 crossref_primary_10_1021_acs_iecr_1c02600 crossref_primary_10_35234_fumbd_858462 crossref_primary_10_1007_s10570_024_05801_3 crossref_primary_10_3390_gels9110878 crossref_primary_10_1002_anie_202112218 crossref_primary_10_1016_j_jclepro_2021_126101 crossref_primary_10_1016_j_chemosphere_2021_133251 crossref_primary_10_1016_j_carbpol_2021_118100 crossref_primary_10_1007_s12668_020_00746_w crossref_primary_10_1016_j_clay_2024_107516 crossref_primary_10_1016_j_clay_2021_106325 crossref_primary_10_1016_j_colsurfa_2024_135749 crossref_primary_10_1016_j_jddst_2022_103458 crossref_primary_10_1016_j_ijbiomac_2022_10_067 crossref_primary_10_1016_j_jmrt_2020_06_023 crossref_primary_10_25122_jml_2021_0327 crossref_primary_10_1016_j_ijbiomac_2021_03_157 crossref_primary_10_1039_D4TB01027B crossref_primary_10_1016_j_fhfh_2021_100050 crossref_primary_10_1007_s00289_021_04064_3 crossref_primary_10_2147_JIR_S375487 crossref_primary_10_1016_j_jddst_2024_106579 crossref_primary_10_1039_D3RA03477A crossref_primary_10_1016_j_ijbiomac_2023_125048 crossref_primary_10_1002_adfm_202407228 crossref_primary_10_1002_app_55035 crossref_primary_10_1021_acs_jafc_3c00508 crossref_primary_10_1016_j_eurpolymj_2022_111026 crossref_primary_10_1017_S1431927622005724 crossref_primary_10_1007_s12668_023_01079_0 crossref_primary_10_1016_j_ccr_2023_215398 crossref_primary_10_1080_10408398_2023_2200833 crossref_primary_10_3390_ijms24043173 crossref_primary_10_3390_polym14050921 crossref_primary_10_3389_fbioe_2023_1136077 crossref_primary_10_1016_j_inoche_2020_108210 crossref_primary_10_1002_pen_26184 crossref_primary_10_1021_acsbiomaterials_1c01525 crossref_primary_10_1016_j_matlet_2020_129007 crossref_primary_10_1007_s10570_022_04692_6 crossref_primary_10_1063_5_0238411 crossref_primary_10_1016_j_carbpol_2022_119558 crossref_primary_10_3390_ijms21145016 crossref_primary_10_1016_j_ijbiomac_2021_06_101 crossref_primary_10_3390_biomedicines9101462 crossref_primary_10_1002_SMMD_20230002 crossref_primary_10_1007_s10570_022_04593_8 crossref_primary_10_2147_IJN_S244686 crossref_primary_10_1016_j_ijbiomac_2021_03_178 crossref_primary_10_1016_j_ijpharm_2024_124767 crossref_primary_10_1016_j_ijbiomac_2020_04_207 crossref_primary_10_1016_j_ceja_2022_100273 crossref_primary_10_3390_coatings14030254 crossref_primary_10_1016_j_cej_2020_128140 crossref_primary_10_3390_membranes14010012 crossref_primary_10_1021_acsomega_0c01924 crossref_primary_10_1021_acsinfecdis_4c00115 crossref_primary_10_1007_s10924_020_02007_z crossref_primary_10_1016_j_jclepro_2021_128201 crossref_primary_10_1007_s10854_020_04525_x crossref_primary_10_3390_ma16124411 crossref_primary_10_1016_j_ijbiomac_2023_128581 crossref_primary_10_1016_j_compscitech_2023_110328 crossref_primary_10_2147_IJN_S232230 crossref_primary_10_1016_j_ijbiomac_2022_09_034 crossref_primary_10_1016_j_carbpol_2020_116502 crossref_primary_10_1016_j_ijbiomac_2020_11_109 crossref_primary_10_1021_acsomega_4c01860 crossref_primary_10_3390_polym15244685 crossref_primary_10_3390_toxics11030253 crossref_primary_10_1016_j_onano_2023_100162 crossref_primary_10_34172_PS_2023_27 crossref_primary_10_1016_j_mattod_2021_07_025 crossref_primary_10_3390_pharmaceutics15041142 crossref_primary_10_3390_polym14040769 crossref_primary_10_1016_j_bioadv_2022_212728 crossref_primary_10_1016_j_ijbiomac_2022_12_021 crossref_primary_10_1007_s10570_022_04523_8 crossref_primary_10_1039_D3RA05596E crossref_primary_10_1007_s00289_022_04243_w crossref_primary_10_1016_j_molliq_2020_114549 crossref_primary_10_1016_j_mtcomm_2021_102265 crossref_primary_10_1080_00914037_2021_1962876 crossref_primary_10_1007_s10439_022_02952_x crossref_primary_10_1016_j_colsurfa_2022_129655 crossref_primary_10_3390_polym14050919 crossref_primary_10_1016_j_ijbiomac_2022_05_139 crossref_primary_10_2147_IJN_S255937 crossref_primary_10_1016_j_jddst_2022_103846 crossref_primary_10_3390_nano11040877 crossref_primary_10_1007_s10570_022_04852_8 crossref_primary_10_1016_j_jddst_2023_105302 crossref_primary_10_1016_j_carbpol_2022_119202 crossref_primary_10_1016_j_smaim_2022_09_005 crossref_primary_10_2174_2468187313666230816095330 crossref_primary_10_1016_j_ijbiomac_2021_04_044 crossref_primary_10_3389_fmats_2024_1449614 crossref_primary_10_1039_D2TB01464E crossref_primary_10_1016_j_colsurfb_2022_112729 crossref_primary_10_1007_s00449_024_03123_z crossref_primary_10_2174_1381612826666200701152217 crossref_primary_10_1016_j_jics_2021_100017 crossref_primary_10_1016_j_bioactmat_2022_02_010 crossref_primary_10_3390_pharmaceutics15030970 crossref_primary_10_3390_resources12090097 crossref_primary_10_1016_j_jiec_2021_04_001 crossref_primary_10_1680_jgrma_23_00056 crossref_primary_10_1038_s41598_023_37287_7 crossref_primary_10_1116_6_0000067 crossref_primary_10_1016_j_colsurfa_2020_126127 crossref_primary_10_1002_app_53910 crossref_primary_10_3390_polym14040799 |
Cites_doi | 10.1016/j.colsurfb.2019.02.013 10.1039/C6PY01872F 10.1016/j.carbpol.2019.05.048 10.2147/IJN.S208590 10.1039/C7NR08499D 10.1021/acs.biomac.7b01058 10.1016/j.carbpol.2015.08.078 10.1002/app.46941 10.1016/j.carbpol.2018.09.083 10.1016/j.ijbiomac.2018.11.228 10.1039/C9NR02597A 10.1021/acsbiomaterials.9b00274 10.15171/bi.2018.10 10.1016/j.ijbiomac.2018.12.079 10.1016/j.ijbiomac.2018.11.232 10.1007/s10570-017-1303-0 10.1039/C9RA02907A 10.1007/s42452-019-0375-x 10.1016/j.jphotobiol.2018.04.048 10.1016/j.jiec.2018.10.022 10.2217/nnm-2017-0237 10.1016/j.carbpol.2018.12.029 10.1016/j.carbpol.2018.10.067 10.1016/j.carbpol.2019.04.042 10.1016/j.ijbiomac.2017.05.020 10.1016/j.ijbiomac.2018.12.193 10.1016/j.carbpol.2016.04.066 10.1016/j.apsusc.2018.01.143 10.1016/j.jiec.2019.01.002 10.1016/j.foodchem.2019.01.022 10.1016/j.apsusc.2017.11.167 10.1515/epoly-2019-0013 10.1016/j.carbpol.2019.01.066 10.1016/j.ijbiomac.2018.11.090 10.15171/PS.2017.30 10.1016/j.carbpol.2017.01.061 10.1016/j.jphotobiol.2018.02.011 10.1016/j.polymer.2018.05.071 10.5101/nbe.v10i1.p25-33 10.1038/s41467-018-04525-w 10.1016/j.jphotobiol.2019.01.019 10.1016/j.ijbiomac.2016.12.009 10.1016/j.ijbiomac.2019.02.061 10.5772/63437 10.1016/j.jphotobiol.2018.02.018 10.1016/j.carbpol.2016.09.051 10.1016/j.heliyon.2019.e01333 10.1080/21691401.2019.1624560 10.1016/j.matchemphys.2018.09.056 10.1016/j.molstruc.2019.04.026 10.1016/j.drudis.2017.08.006 10.1016/j.eurpolymj.2018.11.032 10.1016/j.carbpol.2018.11.023 10.1007/s10924-017-0989-2 10.1016/j.ijbiomac.2019.05.023 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2019.115349 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
ExternalDocumentID | 31590840 10_1016_j_carbpol_2019_115349 S0144861719310161 |
Genre | Journal Article Review |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ACDAQ ACGFO ACGFS ACIUM ACRLP ACVFH ADBBV ADCNI ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFPUW AFTJW AFXIZ AFZHZ AGCQF AGHFR AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AALCJ AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AGRDE AIGII ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- RIG SCB SEW SMS SOC WUQ XPP AACTN AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM 7X8 AGRNS BNPGV SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c435t-ebbc7796b587a89b84a0f04b2b87864c47c1cfb4f6ada2b5199cae2ea4fc22ce3 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Mon Jul 21 11:24:46 EDT 2025 Fri Jul 11 04:56:13 EDT 2025 Wed Feb 19 02:31:21 EST 2025 Thu Aug 14 00:12:09 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Sat Aug 30 17:16:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ZnO NPs Alginate Wound healing Antibacterial Chitosan Cellulose |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c435t-ebbc7796b587a89b84a0f04b2b87864c47c1cfb4f6ada2b5199cae2ea4fc22ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3244-2482 0000-0002-5691-8326 |
PMID | 31590840 |
PQID | 2302472666 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2335131460 proquest_miscellaneous_2302472666 pubmed_primary_31590840 crossref_primary_10_1016_j_carbpol_2019_115349 crossref_citationtrail_10_1016_j_carbpol_2019_115349 elsevier_sciencedirect_doi_10_1016_j_carbpol_2019_115349 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rad, Taran, Alavi (bib0200) 2018; 10 Mohamad Sukri, Shameli, Mei-Theng Wong, Teow, Chew, Ismail (bib0175) 2019; 1189 Pathak, Kroon, Craciun, Popa, Chifiriuc, Swart (bib0190) 2019; 5 Ishihara, Ishihara, Fukunaga, Sasaki, White, Briquez, Hubbell (bib0110) 2018; 9 Alavi, Karimi (bib0015) 2019; 47 Prasanna, Niranjan, Kaushik, Devasena, Kumar, Chelliah, Venkatasubbu (bib0195) 2018; 449 Cheah, Show, Ng, Lin, Chiu, Chang (bib0060) 2019; 126 Kelly (bib0140) 2016 Shefa, Taz, Hossain, Kim, Lee, Lee (bib0260) 2019; 126 Jatoi, Kim, Ni (bib0120) 2019; 207 Anitha, Ramesh, Ravishankar, Kumar, Ramakrishnappa (bib0030) 2018; 3 Parwani, Bhatnagar, Bhatnagar, Sharma, Sharma (bib0185) 2019 Taran, Rad, Alavi (bib0275) 2016; 67 Taran, Rad, Alavi (bib0285) 2018; 8 Abdalkarim, Yu, Wang, Yao (bib0005) 2017; 24 Liang, Wang, Li, Xu, Wang, Chen, Sun (bib0155) 2019; 220 Verma, Jha, Panda, Das, Thirumurugan, Suar, Parashar (bib0300) 2018; 13 Rasool, Ata, Islam (bib0225) 2019; 203 Gutha, Pathak, Zhang, Zhang, Jiao (bib0095) 2017; 103 Shanmugam, Jeyaperumal (bib0255) 2018; 449 Sajjad, Khan, Ul-Islam, Khan, Hussain, Khalid, Wahid (bib0235) 2019; 206 Zhong, Liu, Samal, Yun (bib0330) 2018; 183 Satish, Aswathi, Maria, Korrapati (bib0240) 2019; 110 Trevisol, Fritz, de Souza, Bierhalz, Valle (bib0290) 2019; 136 Raguvaran, Manuja, Chopra, Thakur, Anand, Kalia, Manuja (bib0205) 2017; 96 Wang, Gong, Miao, Guo, Liu, Fan, Li (bib0305) 2019; 283 Varaprasad, Raghavendra, Jayaramudu, Seo (bib0295) 2016; 135 Shankar, Rhim (bib0250) 2018 Shokoofeh, Moradi-Shoeili, Naeemi, Jalali, Hedayati, Salehzadeh (bib0270) 2019 Alavi, Karimi, Valadbaeigi (bib0025) 2019 Wang, Zhang, Zhang, Aizezi, Zhang, Hu, Wu (bib0310) 2019; 217 Wang, Shi, Fu, Zhu (bib0315) 2019 Lu, Gao, He, Wu, Liang, Yang, Chen (bib0160) 2017; 156 Raja, Ashokkumar, Pavithra Marthandam, Jayachandiran, Khatiwada, Kaviyarasu, Swaminathan (bib0210) 2018; 181 Fahmy, Mosleh, Elghany, Shams-Eldin, Serea, Ali, Shalan (bib0080) 2019; 9 Gong, Luo, Pan (bib0090) 2019; 192 Yusof, Zain, Pauzi (bib0320) 2019; 124 Rao, Kumar, Rao, Haider, Han (bib0220) 2018; 26 Zhai, Xu, Zhou, Jing (bib0325) 2018; 180 Alavi, Karimi, Salimikia (bib0020) 2019 Lv, Liu, Song, Tong, Shi, Zhao, Hou (bib0165) 2019; 205 Hassabo, El-Naggar, Mohamed, Hebeish (bib0100) 2019; 210 Taran, Rad, Alavi (bib0280) 2017; 23 Mishra, Mishra, Ekielski, Talegaonkar, Vaidya (bib0170) 2017; 22 Shi, Zhang, Song, Liu, Gao, Zhou, Li (bib0265) 2019 da Silva, Caetano, Chiari-Andréo, Pietro, Chiavacci (bib0065) 2019; 177 Karthikeyan, Ahamed, Karthikeyan, Kumar (bib0135) 2019; 1 Bomila, Suresh, Srinivasan (bib0055) 2019; 30 Hu, Duan, Xu, Zheng, Li, Xiao, Li (bib0105) 2019; 11 Dincă, Mocanu, Isopencu, Busuioc, Brajnicov, Vlad, Stroescu (bib0075) 2018 Rakhshaei, Namazi (bib0215) 2017; 73 Kadiyala, Turali-Emre, Bahng, Kotov, VanEpps (bib0130) 2018; 10 Flórez-Fernández, Domínguez, Torres (bib0085) 2019; 124 Alavi (bib0010) 2019; 19 Das, Das, Parashar, Parashar, Kumar, Choudhary, Sahoo (bib0070) 2019; 221 Mohandas, Kumar, Raja (bib0180) 2019; 14 Kocak, Tuncer, Bütün (bib0150) 2017; 8 Azarniya, Tamjid, Eslahi, Simchi (bib0035) 2019; 134 Janpetch, Saito, Rujiravanit (bib0115) 2016; 148 Bisht, Rayamajhi (bib0050) 2016; 3 Khalid, Khan, Ul-Islam, Khan, Wahid (bib0145) 2017; 164 Shahzad, Khan, Afzal, Umer, Khan, Khan (bib0245) 2019; 124 Joorabloo, Khorasani, Adeli, Mansoori-Moghadam, Moghaddam (bib0125) 2019; 70 Bashir, Teo, Ramesh, Ramesh (bib0040) 2018; 147 Bharathi, Ranjithkumar, Chandarshekar, Bhuvaneshwari (bib0045) 2019; 129 Sahariah, Masson (bib0230) 2017; 18 Bharathi (10.1016/j.carbpol.2019.115349_bib0045) 2019; 129 Shokoofeh (10.1016/j.carbpol.2019.115349_bib0270) 2019 Taran (10.1016/j.carbpol.2019.115349_bib0285) 2018; 8 Joorabloo (10.1016/j.carbpol.2019.115349_bib0125) 2019; 70 Prasanna (10.1016/j.carbpol.2019.115349_bib0195) 2018; 449 Taran (10.1016/j.carbpol.2019.115349_bib0275) 2016; 67 Jatoi (10.1016/j.carbpol.2019.115349_bib0120) 2019; 207 Varaprasad (10.1016/j.carbpol.2019.115349_bib0295) 2016; 135 Bomila (10.1016/j.carbpol.2019.115349_bib0055) 2019; 30 Pathak (10.1016/j.carbpol.2019.115349_bib0190) 2019; 5 Gong (10.1016/j.carbpol.2019.115349_bib0090) 2019; 192 Alavi (10.1016/j.carbpol.2019.115349_bib0015) 2019; 47 Ishihara (10.1016/j.carbpol.2019.115349_bib0110) 2018; 9 Hassabo (10.1016/j.carbpol.2019.115349_bib0100) 2019; 210 Rad (10.1016/j.carbpol.2019.115349_bib0200) 2018; 10 Wang (10.1016/j.carbpol.2019.115349_bib0310) 2019; 217 Rasool (10.1016/j.carbpol.2019.115349_bib0225) 2019; 203 Shanmugam (10.1016/j.carbpol.2019.115349_bib0255) 2018; 449 Mishra (10.1016/j.carbpol.2019.115349_bib0170) 2017; 22 Shahzad (10.1016/j.carbpol.2019.115349_bib0245) 2019; 124 Azarniya (10.1016/j.carbpol.2019.115349_bib0035) 2019; 134 Shi (10.1016/j.carbpol.2019.115349_bib0265) 2019 Kocak (10.1016/j.carbpol.2019.115349_bib0150) 2017; 8 Karthikeyan (10.1016/j.carbpol.2019.115349_bib0135) 2019; 1 Rao (10.1016/j.carbpol.2019.115349_bib0220) 2018; 26 Zhong (10.1016/j.carbpol.2019.115349_bib0330) 2018; 183 Bisht (10.1016/j.carbpol.2019.115349_bib0050) 2016; 3 Lv (10.1016/j.carbpol.2019.115349_bib0165) 2019; 205 Liang (10.1016/j.carbpol.2019.115349_bib0155) 2019; 220 Lu (10.1016/j.carbpol.2019.115349_bib0160) 2017; 156 Mohandas (10.1016/j.carbpol.2019.115349_bib0180) 2019; 14 Rakhshaei (10.1016/j.carbpol.2019.115349_bib0215) 2017; 73 Shankar (10.1016/j.carbpol.2019.115349_bib0250) 2018 Raja (10.1016/j.carbpol.2019.115349_bib0210) 2018; 181 Sajjad (10.1016/j.carbpol.2019.115349_bib0235) 2019; 206 Cheah (10.1016/j.carbpol.2019.115349_bib0060) 2019; 126 Hu (10.1016/j.carbpol.2019.115349_bib0105) 2019; 11 Verma (10.1016/j.carbpol.2019.115349_bib0300) 2018; 13 Alavi (10.1016/j.carbpol.2019.115349_bib0020) 2019 Wang (10.1016/j.carbpol.2019.115349_bib0315) 2019 Abdalkarim (10.1016/j.carbpol.2019.115349_bib0005) 2017; 24 Khalid (10.1016/j.carbpol.2019.115349_bib0145) 2017; 164 Anitha (10.1016/j.carbpol.2019.115349_bib0030) 2018; 3 Fahmy (10.1016/j.carbpol.2019.115349_bib0080) 2019; 9 Dincă (10.1016/j.carbpol.2019.115349_bib0075) 2018 Yusof (10.1016/j.carbpol.2019.115349_bib0320) 2019; 124 Janpetch (10.1016/j.carbpol.2019.115349_bib0115) 2016; 148 Das (10.1016/j.carbpol.2019.115349_bib0070) 2019; 221 da Silva (10.1016/j.carbpol.2019.115349_bib0065) 2019; 177 Sahariah (10.1016/j.carbpol.2019.115349_bib0230) 2017; 18 Shefa (10.1016/j.carbpol.2019.115349_bib0260) 2019; 126 Raguvaran (10.1016/j.carbpol.2019.115349_bib0205) 2017; 96 Flórez-Fernández (10.1016/j.carbpol.2019.115349_bib0085) 2019; 124 Kadiyala (10.1016/j.carbpol.2019.115349_bib0130) 2018; 10 Gutha (10.1016/j.carbpol.2019.115349_bib0095) 2017; 103 Taran (10.1016/j.carbpol.2019.115349_bib0280) 2017; 23 Kelly (10.1016/j.carbpol.2019.115349_bib0140) 2016 Trevisol (10.1016/j.carbpol.2019.115349_bib0290) 2019; 136 Wang (10.1016/j.carbpol.2019.115349_bib0305) 2019; 283 Alavi (10.1016/j.carbpol.2019.115349_bib0025) 2019 Zhai (10.1016/j.carbpol.2019.115349_bib0325) 2018; 180 Bashir (10.1016/j.carbpol.2019.115349_bib0040) 2018; 147 Alavi (10.1016/j.carbpol.2019.115349_bib0010) 2019; 19 Mohamad Sukri (10.1016/j.carbpol.2019.115349_bib0175) 2019; 1189 Parwani (10.1016/j.carbpol.2019.115349_bib0185) 2019 Satish (10.1016/j.carbpol.2019.115349_bib0240) 2019; 110 |
References_xml | – year: 2019 ident: bib0020 article-title: Phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria publication-title: Journal of Industrial and Engineering Chemistry – volume: 134 start-page: 280 year: 2019 end-page: 289 ident: bib0035 article-title: Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing publication-title: International Journal of Biological Macromolecules – volume: 1 start-page: 355 year: 2019 ident: bib0135 article-title: Enhancement of antibacterial and anticancer properties of pure and REM doped ZnO nanoparticles synthesized using Gymnema sylvestre leaves extract publication-title: SN Applied Sciences – volume: 183 start-page: 293 year: 2018 end-page: 301 ident: bib0330 article-title: Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity publication-title: Journal of Photochemistry and Photobiology B: Biology – year: 2019 ident: bib0315 article-title: Discovery of novel bacterial FabH inhibitors (Pyrazol-Benzimidazole amide derivatives): Design, synthesis, bioassay, molecular docking and crystal structure determination publication-title: European Journal of Medicinal Chemistry – volume: 206 start-page: 548 year: 2019 end-page: 556 ident: bib0235 article-title: Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration publication-title: Carbohydrate Polymers – volume: 10 start-page: 25 year: 2018 end-page: 33 ident: bib0200 article-title: Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach publication-title: Nano Biomedicine and Engineering – volume: 136 start-page: 46941 year: 2019 ident: bib0290 article-title: Alginate and carboxymethyl cellulose in monolayer and bilayer films as wound dressings: Effect of the polymer ratio publication-title: Journal of Applied Polymer Science – volume: 9 start-page: 2163 year: 2018 ident: bib0110 article-title: Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing publication-title: Nature Communications – volume: 18 start-page: 3846 year: 2017 end-page: 3868 ident: bib0230 article-title: Antimicrobial chitosan and chitosan derivatives: A review of the structure–Activity relationship publication-title: Biomacromolecules – volume: 9 start-page: 20118 year: 2019 end-page: 20136 ident: bib0080 article-title: Coated silver nanoparticles: Synthesis, cytotoxicity, and optical properties publication-title: RSC Advances – volume: 129 start-page: 989 year: 2019 end-page: 996 ident: bib0045 article-title: Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: As a bionanocomposite publication-title: International Journal of Biological Macromolecules – start-page: 1 year: 2018 end-page: 5 ident: bib0250 article-title: Effect of Zn salts and hydrolyzing agents on the morphology and antibacterial activity of zinc oxide nanoparticles publication-title: Environmental Chemistry Letters – volume: 126 start-page: 786 year: 2019 end-page: 795 ident: bib0260 article-title: Investigation of efficiency of a novel, zinc oxide loaded TEMPO-oxidized cellulose nanofiber based hemostat for topical bleeding publication-title: International Journal of Biological Macromolecules – volume: 70 start-page: 253 year: 2019 end-page: 263 ident: bib0125 article-title: Fabrication of heparinized nano ZnO/poly (vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application publication-title: Journal of Industrial and Engineering Chemistry – volume: 110 start-page: 252 year: 2019 end-page: 264 ident: bib0240 article-title: Triiodothyronine impregnated alginate/gelatin/polyvinyl alcohol composite scaffold designed for exudate-intensive wound therapy publication-title: European Polymer Journal – start-page: 1 year: 2019 end-page: 9 ident: bib0270 article-title: Biosynthesis of Fe 3 O 4@ Ag nanocomposite and evaluation of its performance on expression of norA and norB efflux pump genes in ciprofloxacin-resistant Staphylococcus aureus publication-title: Biological Trace Element Research – volume: 135 start-page: 349 year: 2016 end-page: 355 ident: bib0295 article-title: Nano zinc oxide–sodium alginate antibacterial cellulose fibres publication-title: Carbohydrate Polymers – volume: 8 start-page: 81 year: 2018 ident: bib0285 article-title: Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium publication-title: BioImpacts: BI – volume: 124 start-page: 1132 year: 2019 end-page: 1136 ident: bib0320 article-title: Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria publication-title: International Journal of Biological Macromolecules – start-page: 353 year: 2016 end-page: 365 ident: bib0140 article-title: 17 - Keratins in wound healing publication-title: Wound healing biomaterials – volume: 126 start-page: 569 year: 2019 end-page: 577 ident: bib0060 article-title: Antibacterial activity of quaternized chitosan modified nanofiber membrane publication-title: International Journal of Biological Macromolecules – volume: 220 start-page: 22 year: 2019 end-page: 29 ident: bib0155 article-title: The size-controllable preparation of chitosan/silver nanoparticle composite microsphere and its antimicrobial performance publication-title: Carbohydrate Polymers – volume: 180 start-page: 253 year: 2018 end-page: 258 ident: bib0325 article-title: Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: Characterization and biomedical application publication-title: Journal of Photochemistry and Photobiology B: Biology – volume: 205 start-page: 312 year: 2019 end-page: 321 ident: bib0165 article-title: Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes publication-title: Carbohydrate Polymers – volume: 124 start-page: 451 year: 2019 end-page: 459 ident: bib0085 article-title: A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique publication-title: International Journal of Biological Macromolecules – start-page: 1 year: 2019 end-page: 14 ident: bib0185 article-title: Gum acacia-PVA hydrogel blends for wound healing publication-title: Vegetos – year: 2018 ident: bib0075 article-title: Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties publication-title: Arabian Journal of Chemistry – volume: 22 start-page: 1825 year: 2017 end-page: 1834 ident: bib0170 article-title: Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications publication-title: Drug Discovery Today – volume: 217 start-page: 15 year: 2019 end-page: 25 ident: bib0310 article-title: In-situ mineralized robust polysiloxane–Ag@ ZnO on cotton for enhanced photocatalytic and antibacterial activities publication-title: Carbohydrate Polymers – volume: 156 start-page: 460 year: 2017 end-page: 469 ident: bib0160 article-title: Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing publication-title: Carbohydrate Polymers – volume: 30 start-page: 582 year: 2019 end-page: 592 ident: bib0055 article-title: Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications publication-title: Journal of Materials Science: Materials in Electronics – volume: 1189 start-page: 57 year: 2019 end-page: 65 ident: bib0175 article-title: Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract publication-title: Journal of Molecular Structure – year: 2019 ident: bib0265 article-title: Sustainable dual release of antibiotic and growth factor from pH-Responsive uniform alginate composite microparticles to enhance wound healing publication-title: ACS Applied Materials & Interfaces – volume: 23 start-page: 198 year: 2017 end-page: 206 ident: bib0280 article-title: Antibacterial Activity of Copper Oxide (CuO) Nanoparticles Biosynthesized by Bacillus sp. FU4: Optimization of Experiment Design publication-title: Pharmaceutical Sciences – volume: 14 start-page: 2607 year: 2019 end-page: 2608 ident: bib0180 article-title: Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds [Corrigendum] publication-title: International Journal of Nanomedicine – volume: 8 start-page: 144 year: 2017 end-page: 176 ident: bib0150 article-title: pH-Responsive polymers publication-title: Polymer Chemistry – year: 2019 ident: bib0025 article-title: Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via Protoparmeliopsis muralis Lichen aqueous extract against multi drug resistant bacteria publication-title: ACS Biomaterials Science & Engineering – volume: 449 start-page: 603 year: 2018 end-page: 609 ident: bib0195 article-title: Metal oxide curcumin incorporated polymer patches for wound healing publication-title: Applied Surface Science – volume: 124 start-page: 255 year: 2019 end-page: 269 ident: bib0245 article-title: Formulation development and characterization of cefazolin nanoparticles-loaded cross-linked films of sodium alginate and pectin as wound dressings publication-title: International Journal of Biological Macromolecules – volume: 19 start-page: 103 year: 2019 ident: bib0010 article-title: Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications publication-title: e-Polymers – volume: 210 start-page: 144 year: 2019 end-page: 156 ident: bib0100 article-title: Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide publication-title: Carbohydrate Polymers – volume: 103 start-page: 234 year: 2017 end-page: 241 ident: bib0095 article-title: Antibacterial and wound healing properties of chitosan/poly (vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO) publication-title: International Journal of Biological Macromolecules – volume: 148 start-page: 335 year: 2016 end-page: 344 ident: bib0115 article-title: Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications publication-title: Carbohydrate Polymers – volume: 164 start-page: 214 year: 2017 end-page: 221 ident: bib0145 article-title: Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds publication-title: Carbohydrate Polymers – volume: 283 start-page: 397 year: 2019 end-page: 403 ident: bib0305 article-title: Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles publication-title: Food Chemistry – volume: 3 start-page: 440 year: 2018 end-page: 451 ident: bib0030 article-title: Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method publication-title: Journal of Science: Advanced Materials and Devices – volume: 10 start-page: 4927 year: 2018 end-page: 4939 ident: bib0130 article-title: Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA) publication-title: Nanoscale – volume: 67 start-page: 351 year: 2016 ident: bib0275 article-title: Biological synthesis of copper nanoparticles by using Halomonas elongata IBRC-M 10214/Sinteza biologica a nanoparticulelor de cupru prin utilizarea Halomonas elongata IBRC-M 10214 publication-title: Industria Textila – volume: 203 start-page: 423 year: 2019 end-page: 429 ident: bib0225 article-title: Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application publication-title: Carbohydrate Polymers – volume: 5 year: 2019 ident: bib0190 article-title: Influence of Ag, Au and Pd noble metals doping on structural, optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials publication-title: Heliyon – volume: 11 start-page: 15519 year: 2019 end-page: 15529 ident: bib0105 article-title: Ni 2 P promotes the hydrogenation activity of naphthalene on wrinkled silica nanoparticles with tunable hierarchical pore sizes in a large range publication-title: Nanoscale – volume: 13 start-page: 43 year: 2018 end-page: 68 ident: bib0300 article-title: Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals publication-title: Nanomedicine – volume: 147 start-page: 108 year: 2018 end-page: 120 ident: bib0040 article-title: Synthesis and characterization of karaya gum-g-poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin publication-title: Polymer – volume: 24 start-page: 2925 year: 2017 end-page: 2938 ident: bib0005 article-title: Electrospun poly (3-hydroxybutyrate-co-3-hydroxy-valerate)/cellulose reinforced nanofibrous membranes with ZnO nanocrystals for antibacterial wound dressings publication-title: Cellulose – volume: 73 start-page: 456 year: 2017 end-page: 464 ident: bib0215 article-title: A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel publication-title: Materials Science and Engineering: C – volume: 181 start-page: 53 year: 2018 end-page: 58 ident: bib0210 article-title: Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity publication-title: Journal of Photochemistry and Photobiology B: Biology – volume: 449 start-page: 617 year: 2018 end-page: 630 ident: bib0255 article-title: Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity publication-title: Applied Surface Science – volume: 177 start-page: 440 year: 2019 end-page: 447 ident: bib0065 article-title: Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification publication-title: Colloids and Surfaces B: Biointerfaces – volume: 3 start-page: 9 year: 2016 ident: bib0050 article-title: ZnO nanoparticles: A promising anticancer agent publication-title: Nanobiomedicine – volume: 207 start-page: 640 year: 2019 end-page: 649 ident: bib0120 article-title: Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications publication-title: Carbohydrate Polymers – volume: 26 start-page: 778 year: 2018 end-page: 788 ident: bib0220 article-title: Biodegradable tragacanth gum based silver nanocomposite hydrogels and their antibacterial evaluation publication-title: Journal of Polymers and the Environment – volume: 96 start-page: 185 year: 2017 end-page: 191 ident: bib0205 article-title: Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells publication-title: International Journal of Biological Macromolecules – volume: 221 start-page: 419 year: 2019 end-page: 429 ident: bib0070 article-title: Investigation of structural, morphological and NTCR behaviour of Cu-doped ZnO nanoceramics synthesized by high energy ball milling publication-title: Materials Chemistry and Physics – volume: 192 start-page: 124 year: 2019 end-page: 130 ident: bib0090 article-title: Novel synthesized zinc oxide nanoparticles loaded alginate-chitosan biofilm to enhanced wound site activity and anti-septic abilities for the management of complicated abdominal wound dehiscence publication-title: Journal of Photochemistry and Photobiology B: Biology – volume: 47 start-page: 2405 year: 2019 end-page: 2423 ident: bib0015 article-title: Ultrasound assisted-phytofabricated Fe3O4 NPs with antioxidant properties and antibacterial effects on growth, biofilm formation, and spreading ability of multidrug resistant bacteria publication-title: Artificial Cells, Nanomedicine, and Biotechnology – volume: 73 start-page: 456 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0215 article-title: A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel publication-title: Materials Science and Engineering: C – volume: 177 start-page: 440 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0065 article-title: Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2019.02.013 – volume: 8 start-page: 144 issue: 1 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0150 article-title: pH-Responsive polymers publication-title: Polymer Chemistry doi: 10.1039/C6PY01872F – volume: 220 start-page: 22 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0155 article-title: The size-controllable preparation of chitosan/silver nanoparticle composite microsphere and its antimicrobial performance publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.05.048 – start-page: 1 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0185 article-title: Gum acacia-PVA hydrogel blends for wound healing publication-title: Vegetos – volume: 14 start-page: 2607 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0180 article-title: Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds [Corrigendum] publication-title: International Journal of Nanomedicine doi: 10.2147/IJN.S208590 – volume: 3 start-page: 440 issue: 4 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0030 article-title: Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method publication-title: Journal of Science: Advanced Materials and Devices – volume: 10 start-page: 4927 issue: 10 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0130 article-title: Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA) publication-title: Nanoscale doi: 10.1039/C7NR08499D – volume: 18 start-page: 3846 issue: 11 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0230 article-title: Antimicrobial chitosan and chitosan derivatives: A review of the structure–Activity relationship publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01058 – volume: 135 start-page: 349 year: 2016 ident: 10.1016/j.carbpol.2019.115349_bib0295 article-title: Nano zinc oxide–sodium alginate antibacterial cellulose fibres publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2015.08.078 – volume: 136 start-page: 46941 issue: 3 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0290 article-title: Alginate and carboxymethyl cellulose in monolayer and bilayer films as wound dressings: Effect of the polymer ratio publication-title: Journal of Applied Polymer Science doi: 10.1002/app.46941 – volume: 203 start-page: 423 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0225 article-title: Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.09.083 – volume: 124 start-page: 1132 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0320 article-title: Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.11.228 – volume: 11 start-page: 15519 issue: 33 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0105 article-title: Ni 2 P promotes the hydrogenation activity of naphthalene on wrinkled silica nanoparticles with tunable hierarchical pore sizes in a large range publication-title: Nanoscale doi: 10.1039/C9NR02597A – year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0075 article-title: Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties publication-title: Arabian Journal of Chemistry – year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0025 article-title: Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via Protoparmeliopsis muralis Lichen aqueous extract against multi drug resistant bacteria publication-title: ACS Biomaterials Science & Engineering doi: 10.1021/acsbiomaterials.9b00274 – volume: 8 start-page: 81 issue: 2 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0285 article-title: Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium publication-title: BioImpacts: BI doi: 10.15171/bi.2018.10 – volume: 126 start-page: 786 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0260 article-title: Investigation of efficiency of a novel, zinc oxide loaded TEMPO-oxidized cellulose nanofiber based hemostat for topical bleeding publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.12.079 – volume: 124 start-page: 451 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0085 article-title: A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.11.232 – volume: 24 start-page: 2925 issue: 7 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0005 article-title: Electrospun poly (3-hydroxybutyrate-co-3-hydroxy-valerate)/cellulose reinforced nanofibrous membranes with ZnO nanocrystals for antibacterial wound dressings publication-title: Cellulose doi: 10.1007/s10570-017-1303-0 – volume: 9 start-page: 20118 issue: 35 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0080 article-title: Coated silver nanoparticles: Synthesis, cytotoxicity, and optical properties publication-title: RSC Advances doi: 10.1039/C9RA02907A – volume: 1 start-page: 355 issue: 4 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0135 article-title: Enhancement of antibacterial and anticancer properties of pure and REM doped ZnO nanoparticles synthesized using Gymnema sylvestre leaves extract publication-title: SN Applied Sciences doi: 10.1007/s42452-019-0375-x – volume: 183 start-page: 293 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0330 article-title: Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity publication-title: Journal of Photochemistry and Photobiology B: Biology doi: 10.1016/j.jphotobiol.2018.04.048 – volume: 70 start-page: 253 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0125 article-title: Fabrication of heparinized nano ZnO/poly (vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application publication-title: Journal of Industrial and Engineering Chemistry doi: 10.1016/j.jiec.2018.10.022 – volume: 13 start-page: 43 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0300 article-title: Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals publication-title: Nanomedicine doi: 10.2217/nnm-2017-0237 – volume: 207 start-page: 640 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0120 article-title: Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.12.029 – start-page: 353 year: 2016 ident: 10.1016/j.carbpol.2019.115349_bib0140 article-title: 17 - Keratins in wound healing – volume: 205 start-page: 312 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0165 article-title: Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.10.067 – volume: 217 start-page: 15 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0310 article-title: In-situ mineralized robust polysiloxane–Ag@ ZnO on cotton for enhanced photocatalytic and antibacterial activities publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.04.042 – volume: 103 start-page: 234 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0095 article-title: Antibacterial and wound healing properties of chitosan/poly (vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO) publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2017.05.020 – start-page: 1 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0270 article-title: Biosynthesis of Fe 3 O 4@ Ag nanocomposite and evaluation of its performance on expression of norA and norB efflux pump genes in ciprofloxacin-resistant Staphylococcus aureus publication-title: Biological Trace Element Research – volume: 126 start-page: 569 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0060 article-title: Antibacterial activity of quaternized chitosan modified nanofiber membrane publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.12.193 – volume: 148 start-page: 335 year: 2016 ident: 10.1016/j.carbpol.2019.115349_bib0115 article-title: Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.04.066 – volume: 449 start-page: 603 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0195 article-title: Metal oxide curcumin incorporated polymer patches for wound healing publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2018.01.143 – year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0020 article-title: Phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria publication-title: Journal of Industrial and Engineering Chemistry doi: 10.1016/j.jiec.2019.01.002 – volume: 283 start-page: 397 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0305 article-title: Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.01.022 – volume: 449 start-page: 617 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0255 article-title: Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2017.11.167 – volume: 19 start-page: 103 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0010 article-title: Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications publication-title: e-Polymers doi: 10.1515/epoly-2019-0013 – volume: 210 start-page: 144 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0100 article-title: Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.01.066 – volume: 30 start-page: 582 issue: 1 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0055 article-title: Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications publication-title: Journal of Materials Science: Materials in Electronics – volume: 124 start-page: 255 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0245 article-title: Formulation development and characterization of cefazolin nanoparticles-loaded cross-linked films of sodium alginate and pectin as wound dressings publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.11.090 – volume: 23 start-page: 198 issue: 3 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0280 article-title: Antibacterial Activity of Copper Oxide (CuO) Nanoparticles Biosynthesized by Bacillus sp. FU4: Optimization of Experiment Design publication-title: Pharmaceutical Sciences doi: 10.15171/PS.2017.30 – year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0315 article-title: Discovery of novel bacterial FabH inhibitors (Pyrazol-Benzimidazole amide derivatives): Design, synthesis, bioassay, molecular docking and crystal structure determination publication-title: European Journal of Medicinal Chemistry – volume: 164 start-page: 214 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0145 article-title: Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.01.061 – volume: 181 start-page: 53 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0210 article-title: Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity publication-title: Journal of Photochemistry and Photobiology B: Biology doi: 10.1016/j.jphotobiol.2018.02.011 – volume: 147 start-page: 108 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0040 article-title: Synthesis and characterization of karaya gum-g-poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin publication-title: Polymer doi: 10.1016/j.polymer.2018.05.071 – volume: 10 start-page: 25 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0200 article-title: Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach publication-title: Nano Biomedicine and Engineering doi: 10.5101/nbe.v10i1.p25-33 – volume: 9 start-page: 2163 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0110 article-title: Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing publication-title: Nature Communications doi: 10.1038/s41467-018-04525-w – volume: 192 start-page: 124 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0090 article-title: Novel synthesized zinc oxide nanoparticles loaded alginate-chitosan biofilm to enhanced wound site activity and anti-septic abilities for the management of complicated abdominal wound dehiscence publication-title: Journal of Photochemistry and Photobiology B: Biology doi: 10.1016/j.jphotobiol.2019.01.019 – volume: 96 start-page: 185 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0205 article-title: Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2016.12.009 – volume: 129 start-page: 989 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0045 article-title: Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: As a bionanocomposite publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.02.061 – volume: 3 start-page: 9 year: 2016 ident: 10.1016/j.carbpol.2019.115349_bib0050 article-title: ZnO nanoparticles: A promising anticancer agent publication-title: Nanobiomedicine doi: 10.5772/63437 – volume: 180 start-page: 253 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0325 article-title: Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: Characterization and biomedical application publication-title: Journal of Photochemistry and Photobiology B: Biology doi: 10.1016/j.jphotobiol.2018.02.018 – year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0265 article-title: Sustainable dual release of antibiotic and growth factor from pH-Responsive uniform alginate composite microparticles to enhance wound healing publication-title: ACS Applied Materials & Interfaces – volume: 156 start-page: 460 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0160 article-title: Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.09.051 – volume: 5 issue: 3 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0190 article-title: Influence of Ag, Au and Pd noble metals doping on structural, optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01333 – volume: 67 start-page: 351 issue: 5 year: 2016 ident: 10.1016/j.carbpol.2019.115349_bib0275 article-title: Biological synthesis of copper nanoparticles by using Halomonas elongata IBRC-M 10214/Sinteza biologica a nanoparticulelor de cupru prin utilizarea Halomonas elongata IBRC-M 10214 publication-title: Industria Textila – volume: 47 start-page: 2405 issue: 1 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0015 article-title: Ultrasound assisted-phytofabricated Fe3O4 NPs with antioxidant properties and antibacterial effects on growth, biofilm formation, and spreading ability of multidrug resistant bacteria publication-title: Artificial Cells, Nanomedicine, and Biotechnology doi: 10.1080/21691401.2019.1624560 – volume: 221 start-page: 419 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0070 article-title: Investigation of structural, morphological and NTCR behaviour of Cu-doped ZnO nanoceramics synthesized by high energy ball milling publication-title: Materials Chemistry and Physics doi: 10.1016/j.matchemphys.2018.09.056 – volume: 1189 start-page: 57 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0175 article-title: Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract publication-title: Journal of Molecular Structure doi: 10.1016/j.molstruc.2019.04.026 – volume: 22 start-page: 1825 issue: 12 year: 2017 ident: 10.1016/j.carbpol.2019.115349_bib0170 article-title: Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2017.08.006 – volume: 110 start-page: 252 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0240 article-title: Triiodothyronine impregnated alginate/gelatin/polyvinyl alcohol composite scaffold designed for exudate-intensive wound therapy publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2018.11.032 – volume: 206 start-page: 548 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0235 article-title: Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.11.023 – volume: 26 start-page: 778 issue: 2 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0220 article-title: Biodegradable tragacanth gum based silver nanocomposite hydrogels and their antibacterial evaluation publication-title: Journal of Polymers and the Environment doi: 10.1007/s10924-017-0989-2 – start-page: 1 year: 2018 ident: 10.1016/j.carbpol.2019.115349_bib0250 article-title: Effect of Zn salts and hydrolyzing agents on the morphology and antibacterial activity of zinc oxide nanoparticles publication-title: Environmental Chemistry Letters – volume: 134 start-page: 280 year: 2019 ident: 10.1016/j.carbpol.2019.115349_bib0035 article-title: Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.05.023 |
SSID | ssj0000610 |
Score | 2.6520052 |
SecondaryResourceType | review_article |
Snippet | •All recognized antibacterial and wound remedy mechanisms of ZnONPs are presented.•Comparison of antibacterial and wound healing capacities of chitosan,... Release of Zn ions from zinc oxide nanoparticles (ZnO NPs) is a major mechanism for oligodynamic activities of these metal oxide NPs against eukaryotic and... Release of Zn2+ ions from zinc oxide nanoparticles (ZnO NPs) is a major mechanism for oligodynamic activities of these metal oxide NPs against eukaryotic and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115349 |
SubjectTerms | Alginate alginates Alginates - administration & dosage Alginates - chemistry Animals Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - chemistry Antibacterial antibacterial properties biocompatibility biodegradability biopolymers Cellulose Cellulose - administration & dosage Cellulose - chemistry Chitosan Chitosan - administration & dosage Chitosan - chemistry cost effectiveness Humans hydrogels Hydrogels - administration & dosage Hydrogels - chemistry ions microorganisms nanocomposites Nanocomposites - administration & dosage Nanocomposites - chemistry nanoparticles Nanoparticles - administration & dosage Nanoparticles - chemistry patients reactive oxygen species therapeutics tissue repair wavelengths Wound Healing zinc zinc oxide Zinc Oxide - administration & dosage Zinc Oxide - chemistry ZnO NPs |
Title | An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers |
URI | https://dx.doi.org/10.1016/j.carbpol.2019.115349 https://www.ncbi.nlm.nih.gov/pubmed/31590840 https://www.proquest.com/docview/2302472666 https://www.proquest.com/docview/2335131460 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhQxLKrKAS4IyqsFqiBx3OnO5DGTPa5WVEsryoVKFZcoySQw1TZZ7UOoF36GH8WeRykSUInryJ712F7bcfwg5K2RytiirjPHmc2EK9EOljILyvKa82CMwn7nD2fl_FycXMiLHTIbemGwrLK3_Z1Nb611_2Tcc3O8bJoxliUJBQ4YQhA8grYd7KJCLT_6Xtyyxu1EAgTOEPpXF8_4Eo6AK7tMeANRTMB4SI4jNf_sn_4Wf7Z-6PgRedgHkHTa0fiY7Pi4R-7Phr1tT8iPaaRYl4k5f5oiBdY1V007bwnwTKzpN1ylRDFEBL9Fl5iOX-FcVZoC_Rw_0mgiDmcKzeJqPaJfr-tV-gIkjlpki7nDmLAUHeu9AAsdYY2_hJcA20Va-xHF24m0NrHDMQvc_rDxFLhwjYnyp-T8-N2n2TzrVzFkDuKpTeatdVU1Ka1UlVETq4TJQy4ss6pSpXCicoULVoTS1IZZCAsnznjmjQiOMef5M7IbU_QvCHXCBCkBxEhA87lyTMLL4GjKnJQq3ydiEIB2_ZxyXJex0ENB2qXu5aZRbrqT2z45ukFbdoM67kJQg3T1bxqnwZnchfpm0AYNwkXumujTdq3hQMdEBUFP-S8YLgsOHgo-9XmnSjcU8wJ30Iv84P-Je0keMMwJtGmiV2R3s9r61xA4bexh-884JPem70_nZz8BVbQcPQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9NBdhr3XPTVgx3ixZclWjkGwIl3b7NICxS6CJEuri1QK8sDQ39M_WtKPbgO2FdjV0OfQpMKXKJKQj1pIbbKqSmzOTMJtgXqwEImXJq_y3Gst8b7zybyYnfEv5-J8h0z7uzBYVtnp_lanN9q6ezLquDla1vUIy5K4BAMMLgiGoBAC7WJ3KjEgu5PDo9n8F4XcNCXA9QkCfl7kGV1CFLgyy4iHENkY9IfIsavmn03U31zQxhQdPCIPOx-STloyH5MdF56QvWk_uu0puZkEiqWZmPanMVDgXn1VNy2XAKdDRX_gNCWKXiKYLrrEjPwKW6vS6Om38JUGHbA_k68XV-shvbiuVvE7kDhswAbThyFiNTqWfAEKbWGFv4TnANtFXLshxQOKuNahxegFDoDYOApcuMZc-TNydvD5dDpLumkMiQWXapM4Y2xZjgsjZKnl2EiuU59yw4wsZcEtL21mveG-0JVmBjzDsdWOOc29Zcy6_DkZhBjcS0It114IWKIFwFwqLRPwMohOmRVCpvuE9wJQtmtVjhMzFqqvSbtUndwUyk21ctsnn-5gy7ZXx30A2UtX_bbpFNiT-6Af-t2gQLjIXR1c3K4VxHSMl-D3FP9ak4ssByMFn_qi3Up3FOcZjqHn6av_J-492Zudnhyr48P50WvygGGKoMkavSGDzWrr3oIftTHvuv_JLfhfHu4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+on+antimicrobial+and+wound+healing+properties+of+ZnO+nanobiofilms%2C+hydrogels%2C+and+bionanocomposites+based+on+cellulose%2C+chitosan%2C+and+alginate+polymers&rft.jtitle=Carbohydrate+polymers&rft.au=Alavi%2C+Mehran&rft.au=Nokhodchi%2C+Ali&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0144-8617&rft.volume=227&rft_id=info:doi/10.1016%2Fj.carbpol.2019.115349&rft.externalDocID=S0144861719310161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |